2015届高考数学(理)二轮复习专题讲解讲义:专题七 第一讲 几何证明选讲(选修4-1)

合集下载

2015高考理数一轮复习课件:16 几何证明选讲

2015高考理数一轮复习课件:16 几何证明选讲

第二十九页,编辑于星期五:十五点 二十四分 。
第三十页,编辑于星期五:十五点 二十四分。
第三十一页,编辑于星期五:十五点 二十四分 。
第三十二页,编辑于星期五:十五点 二十四分 。
第三十三页,编辑于星期五:十五点 二十四分 。
第三十四页,编辑于星期五:十五点 二十四分 。
第三十五页,编辑于星期五:十五点 二十四分 。
第四十三页,编辑于星期五:十五点 二十四分 。
第四十四页,编辑于星期五:十五点 二十四分 。
第四十五页,编辑于星期五:十五点 二十四分 。
第四十六页,编辑于星期五:十五点 二十四分 。
第四十七页,编辑于星期五:十五点 二十四分 。
第四十八页,编辑于星期五:十五点 二十四分 。
第四十九页,编辑于星期五:十五点 二十四分 。
高考理数 (新课标专用)
第一页,编辑于星期五:十五点 二十四分。
第十六章 几何证明选讲
第二页,编辑于星期五:十五点 二十四分。
第三页,编辑于星期五:十五点 二十四分。
第四页,编辑于星期五:十五点 二十四分。
第五页,编辑于星期五:十五点 二十四分。
第六页,编辑于星期五:十五点 二十四分。
第七页,编辑于星期五:十五点 二十四分。
第八页,编辑于星期五:十五点 二十四分。
第九页,编辑于星期五:十五点 二十四分。
第十页,编辑于星期五:十五点 二十四分。
第十一页,编辑于星期五:十五点 二十四分。
第十二页,编辑于星期五:十五点 二十四分。
第十三页,编辑于星期五:十五点 二十四分。
第十四页,编辑于Байду номын сангаас期五:十五点 二十四分。
第十五页,编辑于星期五:十五点 二十四分。

2015年高考数学4—1几何证明选讲(解答+答案)

2015年高考数学4—1几何证明选讲(解答+答案)

2015年高考数学4-1几何证明选讲(解答+答案)1.(2015广东文数15. (几何证明选讲选做题))如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C23E =,则D A = .2.(2015广东理数15.(几何证明选讲选作题))如图1,已知AB 是圆O 的直径,AB=4,EC 是圆O 的切线,切点为C ,BC=1,过圆心O 做BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD= 。

3.(2015湖北理数15.(选修4-1:几何证明选讲))如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC= .图1POECD A B4.(2015新课标Ⅰ文数(22)(本小题满分10分)选修4-1:几何证明选讲)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E 。

(Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若CA=3CE ,求∠ACB 的大小。

5.(2015新课标II 文数22.(本小题满分10分)选修4 - 1:几何证明选讲)如图,O 为等腰三角形ABC 内一点,⊙O 与ΔABC 的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点。

(1)证明:EF ∥BC ;(2)若AG 等于⊙O 的半径,且23AE MN ==,求四边形EBCF 的面积。

6.(2015湖南理数16.(Ⅰ)(本题满分6分)选修4-1:几何证明选讲)如图5,在O e 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明:(ⅰ)180MEN NOM ∠+∠=o;GAEFONDB C M(ⅱ)FE FN FM FO =g g7.(2015陕西理数22、(本小题满分10分)选修4-1:几何证明选讲)如图,AB 切O e 于点B ,直线AO 交O e 于D ,E 两点,C D B ⊥E ,垂足为C .(Ⅰ)证明:BED DBA ∠=∠; (Ⅱ)若3D DC A =,2BC =,求O e 的直径.8.(2015新课标Ⅰ理数(22)(本题满分10分)选修4-1:几何证明选讲)如图,AB 是O e 的直径,AC 是O e 的切线,BC 交O e 于E (I ) 若D 为AC 的中点,证明:DE 是O e 的切线; 若3OA CE =,求∠ACB 的大小.9.(2015新课标II 理数22.(本小题满分10分))选修4 - 1:几何证明选讲如图,O 为等腰三角形ABC 内一点,⊙O 与ΔABC 的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点。

高考数学二轮复习 专题七第一讲几何证明选讲 理

高考数学二轮复习 专题七第一讲几何证明选讲 理

第一讲 几何证明选讲1.如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E ,F 分别为线段AB ,AD 的中点,则EF =________.2.(2013·高考北京卷)如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA =3,PD ∶DB =9∶16,则PD =________,AB =________.3.(2013·深圳市调研考试)如图,在⊙O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥BC ,垂足为F ,若AB =6,CF ·CB =5,则AE =________.4.(2013·惠州市调研考试)如图,PA 切⊙O 于点A ,割线PBC 经过圆心O ,OB =PB =1,OA 绕点O 逆时针旋转60°得到OD ,则PD 的长为________.5.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF =CF =2,AF ∶FB ∶BE =4∶2∶1.若CE 与圆相切,则线段CE 的长为________.6.(2012·高考陕西卷)如图所示,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ·DB =________.7.(2013·高考湖北卷)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E ,若AB =3AD ,则CE EO的值为________.8.(2013·高考广东卷)如图,AB 是圆O 的直径,点C 在圆O 上.延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E .若AB =6,ED =2,则BC =________.9.如图,AB 为半圆的直径,DE 为半圆的一条切线,点C 为切点,AD ⊥DE 于D ,BE ⊥DE 于E 交半圆于F ,若AD =3,BE =7,那么线段DE 的长为________.10.如图,AB 、AC 是圆O 的两条弦,过点C 作圆O 的切线与BA 的延长线相交于D ,且CA 平分∠BCD ,DE 垂直于CA 的延长线于E ,则CE ∶BD =________.11.已知:如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点且与直径CT 交于点D .CD =2,AD =3,BD =6,则PB =________.12.如图,△ABC 中,D 是AB 的一个三等分点,DE ∥BC ,EF ∥DC ,AF =2,则AB =________.13.如图,AD 、CE 分别是△ABC 的两条高,若AC =10,sin B =45,则DE =________.14.在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N .若AC =12AB ,则BN AM=________.答案:1.【解析】如图,连接BD ,DE ,由题意知DE ⊥AB ,DE =32a ,即BC =DE =32a , ∴BD =(a 2)2+(32a )2=a , ∴EF =12BD =a2.【答案】a22.【解析】由于PD ∶DB =9∶16,设PD =9a ,则DB =16a .根据切割线定理有PA 2=PD ·PB .又PA =3,PB =25a ,∴9=9a ·25a ,∴a =15,∴PD =95,PB =5.在Rt △PAB 中,AB 2=PB 2-AP 2=25-9=16, 故AB =4.【答案】9543.【解析】设AE =x ,则EB =6-x ,在Rt △CEB 中,EF ⊥BC ,∴CE 2=CF ·CB =5.又易知CE =ED ,由相交弦定理得AE ·EB =CE ·ED =CE 2=5,即x (6-x )=5,得x =1.【答案】1 4.【解析】∵PA 切⊙O 于点A ,B 为PO 的中点,∴∠AOB =60°,∴∠POD =120°.在△POD 中,由余弦定理,得PD 2=PO 2+DO 2-2PO ·DO ·cos ∠POD =4+1-4×(-12)=7,故PD =7.【答案】7 5.【解析】设BE =a , 则AF =4a ,FB =2a .∵AF ·FB =DF ·FC ,∴8a 2=2,∴a =12,∴AF =2,FB =1,BE =12,∴AE =72.又∵CE 为圆的切线,∴CE 2=EB ·EA =12×72=74,∴CE =72. 【答案】726.【解析】由题意知,AB =6,AE =1,∴BE =5.∴CE ·DE =DE 2=AE ·BE =5. 在Rt △DEB 中,∵EF ⊥DB ,∴由射影定理得DF ·DB =DE 2=5. 【答案】57.【解析】设圆O 的直径AB =2R ,则AD =2R 3,DO =R 3,DB =4R 3.由相交弦定理,得CD2=AD ·DB ,所以CD =223R .在Rt △CDO 中,CO =R ,由射影定理可得EO =DO 2CO =R 9,于是CE =R -R 9=8R 9,故CEEO=8.【答案】88.【解析】法一:因为AB 为圆O 的直径,所以AC ⊥BC .又BC =CD ,所以△ABD 是等腰三角形,所以AD =AB =6,∠DAC =∠BAC .因为CE 切圆O 于点C ,所以∠ECA =∠ABC .又因为∠BAC +∠ABC =90°,所以∠DAC +∠ECA =90°,故CE ⊥AD .故CD 2=DE ·DA =2×6=12,所以BC =CD =2 3.法二:如图,连接OC ,因为BO =OA ,BC =CD ,所以OC ∥AD .又因为CE 切圆O 于点C ,所以OC ⊥CE ,所以AD ⊥CE .因为AB 为圆O 的直径,所以AC ⊥BD .又BC =CD ,所以△ABD 是等腰三角形,故∠ADB =∠ABD ,所以△ABC ∽△CDE ,则AB BC =CD DE,所以BC ·CD =AB ·DE ,即BC 2=AB ·DE =6×2=12,BC =2 3.【答案】2 3 9.【解析】连接OC,则OC ⊥DE ,得OC 是梯形ABED 的中位线,所以OC =12(AD +BE )=5,而AB =2OC =10,连接AF ,则∠AFB =90°,由四边形AFED 为矩形, 得EF =3,由BE =7,得BF =4,于是DE =AF =AB 2-BF 2=102-42=221. 【答案】221 10.【解析】如图,作△CDE 关于DE 的对称的△FDE 得∠FCD =∠CFD , 又∠FCD =∠FCB ,得∠FCB =∠CFD ⇒CB ∥DF ,那么∠CBD =∠FDA =∠FCD ,又∠FCD =∠CBD , 因此∠CFD =∠FDA ⇒AF =AD ,于是BD =BA +AD =CA +AF =CF =2CE ⇒CE ∶BD =1∶2. 【答案】1∶2 11.【解析】由于AD ·BD =CD ·TD ,得TD =9又由⎩⎪⎨⎪⎧PT 2=PD 2-TD 2PT 2=PB ·PA ⇒PB (PB +9)=(PB +6)2-92⇒PB =15.【答案】1512.【解析】由⎭⎪⎬⎪⎫DE ∥BC ⇒AB AD =ACAEEF ∥DC ⇒AD AF =ACAE ⇒AB AD =ADAF ⇒AD 2=AB ·AF , 设BD =x ,则AD =2x ,AB =3x ,而AF =2,∴4x 2=6x ,∴x =32,AB =92.【答案】9213.【解析】∵AD ⊥BC ,CE ⊥AB ,∴D 、E 都在以AC 为直径的圆上,即A 、E 、D 、C 四点共圆,∴∠BED =∠ACB ,又∠DBE =∠ABC ,∴△BDE ∽△BAC ,DE AC =BD AB =cos B =35(B 为锐角),∴DE =35AC =6.【答案】6 14.【解析】如图,在△ABC 中,因为CM 是∠ACM 的平分线,所以AC BC =AM BM ,又已知AC =12AB ,所以AB BC=2AMBM…①又因为BA 与BC 是圆O 过同一点B 的弦, 所以BM ·BA =BN ·BC , 即BA BC =BNBM…②由①、②可知,2AM BM =BN BM ⇒BNAM=2.【答案】2。

【课堂新坐标】2015届高考数学(文、理)新一轮专题复习:专题七 平面解析几何

【课堂新坐标】2015届高考数学(文、理)新一轮专题复习:专题七 平面解析几何

专题七 平面解析几何1.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.452.已知双曲线C 1:x 2a 2-y2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y3.直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( ) A .2 5 B .2 3 C. 3 D .14.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )A .3B .2 C. 3 D. 25.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-86.椭圆x 2a 2+y2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2 7.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.8.过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.9.已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝⎛⎭⎫5a 5,22a 在椭圆上. (Ⅰ)求椭圆的离心率;(Ⅱ)设A 为椭圆的左顶点,O 为坐标原点,若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.10.(2012·高考江苏卷)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120²(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.11.如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△AF 1B 的面积为403,求a ,b 的值.12.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(Ⅰ)求椭圆C 2的方程;(Ⅱ)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.13.在平面直角坐标系xOy中,已知双曲线C:2x2-y2=1.(1)设F是C的左焦点,M是C右支上一点,若|MF|=22,求点M的坐标;(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k(|k|<2)的直线l交C于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ.14.如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积.专题七 平面解析几何1.C 由题意可知∠PF 2x =60°,|PF 2|=(3a2-c )cos60°=3a -2c ,由|PF 2|=|F 1F 2|,得3a -2c =2c ,∴e =34,故选C.2.D ⎩⎪⎨⎪⎧c a=2a ·p 2a 2+b 2=2,可得p =8,故选D.3.B 圆心到直线的距离d =|0+0-2|2=1,∴|AB |=2r 2-d 2=24-1=2 3.4.B 设椭圆、双曲线的长轴和实轴分别为2a 1,2a 2,则易得a 1=2a 2,又∵焦距相等, ∴e 2∶e 1=2.5.C P A 方程为:y -8=4(x -4),即y =4x -8, 同理QA 为:y =-2x -2, 解得x =1,∴y =-4.6.B 如图|AF 1|=a -c , |F 1F 2|=2c ,|F 1B |=a +c , ∴4c 2=a 2-c 2,∴e =c a =55.7.43根据题意,x 2+y 2-8x +15=0,将此化成标准形式为(x -4)2+y 2=1,得到该圆的圆心为M (4,0),半径为1,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需要圆心M (4,0)到直线y =kx -2的距离d ≤1+1=2即可,所以有d :|4k -2|k 2+1≤2,化简得k (3k -4)≤0,解得0≤k ≤43,所以k 的最大值为43.8.(2,2) 设P (x 0,y 0)如图 |PO |=2.∴⎩⎨⎧x 20+y 20=4x 0+y 0-22=0. 则x 20+(x 0-22)2=4, ∴x 20-22x 0+2=0.∴(x 0-2)2=0,∴x 0=2,y 0= 2.9.解:(Ⅰ)因为点P ⎝⎛⎭⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58. 于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(Ⅱ)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b2=1. 消去y 0并整理得x 20=a 2b 2k 2a 2+b2.①由|AQ |=|AO |,A (-a ,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2²a 2b2+4.由(Ⅰ)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =±5.10.解:(1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6.所以当a 不超过6(千米)时,可击中目标.11.解:(Ⅰ)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(Ⅱ)法一:因为a 2=4c 2,b 2=3c 2,所以bc=3,直线AB 的方程可为:y =-3(x -c ), 将其代入椭圆方程3x 2+4y 2=12c 2,得B (85c ,-335c ),所以|AB |=1+3²⎪⎪⎪⎪85c -0=165c . 由S △AF 1B =12|AF 1|²|AB |sin ∠F 1AB =12a ²165c ²32=235a 2=403,解得a =10,b =5 3. 法二:设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a ,由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t , 再由余弦定理(3a -t )2=a 2+t 2-2at cos60°可得,t =85a , 由S △AF 1B =12a ²85a ²32=235a 2=403知,a =10,b =5 3.12.解:(Ⅰ)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2).其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x24=1.(Ⅱ)法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(Ⅰ)知,O 、A 、B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k 2, 又由OB →=2OA →得x 2B =4x 2A ,即164+k 2=161+4k 2, 解得k =±1,故直线AB 的方程为y =x 或y =-x . 法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(Ⅰ)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2, 由OB →=2OA →得x 2B =161+4k 2,y 2B =16k 21+4k 2,将x 2B ,y 2B 代入y 216+x 24=1中,得4+k 21+4k 2=1,即4+k 2=1+4k 2,解得k =±1, 故直线AB 的方程为y =x 或y =-x .13.解:(1)双曲线C :x 212-y 2=1,左焦点F ⎝⎛⎭⎫-62,0.设M (x ,y ),则|MF |2=⎝⎛⎭⎫x +622+y 2=⎝⎛⎭⎫3x +222,由M 点是右支上一点,知x ≥22,所以|MF |=3x +22=22,得x =62.所以点M 的坐标为⎝⎛⎭⎫62,±2.(2)由(1)知,左顶点A ⎝⎛⎭⎫-22,0,渐近线方程:y =±2x .过点A 与渐近线y =2x 平行的直线方程为:y =2⎝⎛⎭⎫x +22,即y =2x +1.解方程组⎩⎨⎧y =-2xy =2x +1,得⎩⎨⎧x =-24,y =12.所求平行四边形的面积为S =|OA ||y |=24. (3)设直线PQ 的方程是y =kx +b ,因直线PQ 与已知圆相切,故|b |k 2+1=1,即b 2=k 2+1(*).由⎩⎪⎨⎪⎧y =kx +b2x 2-y 2=1,得(2-k 2)x 2-2kbx -b 2-1=0. 设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2kb2-k 2,x 1x 2=-1-b 22-k 2.又y 1y 2=(kx 1+b )(kx 2+b ),所以OP →²OQ →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+kb (x 1+x 2)+b 2 =(1+k 2)(-1-b 2)2-k 2+2k 2b 22-k 2+b 2 =-1+b 2-k 22-k 2.由(*)知,OP →²OQ →=0,所以OP ⊥OQ .14.解:(Ⅰ)如图,设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F 2(c ,0).因△AB 1B 2是直角三角形且|AB 1|=|AB 2|,故∠B 1AB 2为直角,从而|OA |=|OB 2|,即b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12²|B 1B 2|²|OA |=|OB 2|²|OA |=c2²b =b 2,由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为x 220+y 24=1.(Ⅱ)由(Ⅰ)知B 1(-2,0)、B 2(2,0).由题意,直线PQ 的倾斜角不为0,故可设直线PQ 的方程为:x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. (*) 设P (x 1,y 1)、Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此y 1+y 2=4mm 2+5,y 1²y 2=-16m 2+5.又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →²B 2Q →=(x 1-2)(x 2-2)+y 1y 2 =(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,知B 2P →²B 2Q →=0,即16m 2-64=0, 解得m =±2.当m =2时,方程(*)化为:9y 2-8y -16=0,故y 1=4+4109,y 2=4-4109, |y 1-y 2|=8910,△PB 2Q 的面积S =12|B 1B 2|²|y 1-y 2|=16910.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16910,综上所述,△PB 2Q 的面积为16910.。

2015高考数学一轮配套课件:15-1几何证明选讲

2015高考数学一轮配套课件:15-1几何证明选讲

诊断·基础知识
突破·高频考第点十九页,编辑于培星养期五·:解十题三点能五十力九分。
• 考点三
• 相交弦定理、割线定理、切割线定理、切线长 定理的应用
• 【例3】 如图,AB是⊙O的直径,C,F为⊙O 上 的 点 , AC 是 ∠ BAF 的 平 分 线 , 过 点 C 作 CD⊥AF交AF的延长线于D点,CM⊥AB,垂 足为点M.
诊断·基础知识
突破·高频考第点十八页,编辑于培星养期五·:解十题三点能五十力九分。
(2)解 因为△ABE∽△ADC,所以AADB=AACE,即 AB·AC=AD·AE 又 S=21AB·ACsin∠BAC,且 S=21AD·AE, 故 AB·ACsin∠BAC=AD·AE, 则 sin∠BAC=1.又∠BAC 为△ABC 的内角, 所以∠BAC=90°.
•(2)解 由(1)得A、P、O、M四点共圆,
•所以∠OAM=∠OPM,
•由(1)得OP⊥AP,因为圆心O在∠PAC的内部,
•所 以 ∠ OPM + ∠ APM = 90° , 所 以 ∠ OAM + ∠APM=90°.
•规律方法 (1)如果四点与一定点距离相等,那么
这四点共圆;(2)如果四边形的一组对角互补,
• 证明 因为CE为圆的切线,所以∠DCE=
诊断·基础知识
突破·高频考第点九页,编辑于星培期养五:·十解三题点 五能十九力分。
• 3. (2013·镇江调研)如图,圆O的直径AB=4, C为圆周上的一点,BC=2,过点C作圆O的切 线l,过点A作l的垂线AD,AD分别与直线l、 圆O交于点D、E,
诊断·基础知识
突破·高频考第点二十七页,编辑培于养星期·五解:十题三能点 五力十九分。
• 【训练4】 如图,已知△ABC的两条角平分线 AD和CE相交于点H,∠ABC=60°,F在AC 上,且AE=AF.

2015高考数学(江苏专用,理科)二轮专题整合:1-7-1几何证明选讲(选做部分)

2015高考数学(江苏专用,理科)二轮专题整合:1-7-1几何证明选讲(选做部分)

第1讲几何证明选讲1. (2012·江苏卷)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.证明连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.2. (2011·江苏卷)如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2),圆O1的弦AB交圆O2于点C(O1不在AB上).求证:AB ∶AC 为定值.证明 如图,连接AO 1并延长,分别交两圆于点E 和点D .连接BD ,CE .因为圆O 1与圆O 2内切于点A ,所以点O 2在AD 上,故AD ,AE 分别为圆O 1,圆O 2的直径.从而∠ABD =∠ACE =π2.所以BD ∥CE ,于是AB AC =AD AE =2r 12r 2=r 1r 2.所以AB ∶AC 为定值.3. (2010·江苏卷)AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 延长线于点C ,若DA =DC ,求证:AB =2BC .证明 连接OD ,则:OD ⊥DC ,又OA =OD ,DA =DC ,所以∠DAO =∠ODA =∠DCO ,∠DOC =∠DAO +∠ODA =2∠DCO ,所以∠DCO =30°,∠DOC =60°,所以OC =2OD ,即OB =BC =OD =OA ,所以AB =2BC .4. 如图,∠P AQ 是直角,圆O 与AP 相切于点T ,与AQ 相交于两点B ,C .求证:BT 平分∠OBA .证明连接OT,因为AT是切线,所以OT⊥AP.又因为∠P AQ是直角,即AQ⊥AP,所以AB∥OT,所以∠TBA=∠BTO.又OT=OB,所以∠OTB=∠OBT,所以∠OBT=∠TBA,即BT平分∠OBA.5.如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.(1)证明:OM·OP=OA2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.证明(1)因为MA是圆O的切线,所以OA⊥AM.又因为AP⊥OM,在Rt△OAM中,由射影定理知,OA2=OM·OP.(2)因为BK是圆O的切线,BN⊥OK,同(1),有OB2=ON·OK,又OB=OA,所以OP·OM=ON·OK,即ONOP=OMOK.又∠NOP=∠MOK,所以△ONP∽△OMK,故∠OKM=∠OPN=90°.6.(2014·辽宁卷)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.证明(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA.所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.由于AF⊥EP,所以∠PF A=90°,于是∠BDA=90°.故AB是直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA. 又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.。

2015年高考第一轮复习知识点讲解:立体几何证明(二)

2015年高考第一轮复习知识点讲解:立体几何证明(二)

2015年高考第一轮复习知识点讲解立体几何证明二:垂直主编:贾海琴老师一、直线与面垂直:1、判定定理:平面外的一条直线与平面内的两条相交直线垂直,那么这条直线与这个平面垂直。

分析:在平面内找两条相交直线,然后证明平面的这条直线分别与这两条相交直线垂直。

证明一次线与面垂直⇔两次线与线垂直α⊥ααbcPcb,,,,a⊂⊥b⇒=⊥ac⊂a方法:第一步:在平面内找两条相交直线;第二步:证明平面外的一条直线与这两条相交直线垂直;2、证明两条直线垂直的方法:方法一:等腰三角形三线合一。

(三线是角平分线,中线,高线)等腰三角形中线当做垂线用。

ABC AC AB ∆⇒=是等腰三角形,BC AD CD BD ⊥⇒=。

推广:一个等腰三角形,其中一个角为060,那么这个三角形为等边三角形,等边三角形三个边上都可以中线当做垂线用。

方法二:菱形对角线垂直。

正方形是特殊的菱形,所以正方形对角线垂直。

菱形BD AC ABCD ⊥⇒方法三:勾股定理逆定理:在三角形中,如果一个边的平方等于另外两个边的平方和,那么这个三角形为直角三角形。

ABC AC BC AB ∆⇒=+222为直角三角形BC AB ⊥⇒方法四:传递性。

两条平行线,如果一条垂直第三条边,另一条也垂直于第三条边。

c b c a b a ⊥⇒⊥,//方法五:在圆中,直径所对的圆周角等于090。

在圆O 中:AB 是圆O 的直径BC AC ⊥⇒方法六:如果线垂直于面,那么这条线与这个面中的任意一条线垂直。

d a c a b a d c b a ⊥⊥⊥⇒⊂⊂⊂⊥,,,,,αααα推广:面与面垂直的性质定理:如果两个面垂直,那么在其中一个平面上做交线的垂线,这条垂线垂直于另一个平面。

αββαβα⊥⇒⊥⊂=⊥b b a b a ,,,3、例题:例题一:如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点 求证:⊥BC 面PAC在圆O 中:AB 是圆O 的直径BC AC ⊥⇒⊥PA 圆O ,⊂BC 圆O BC PA ⊥⇒⊂⊥⊥PA AC BC PA BC AC ,,,面PAC ⊥⇒BC 面PAC例题二:如图,在四棱锥ABCD P -中,,2,,//AB CD AD AB CD AB =⊥平面⊥PAD 底面ABCD ,AD PA ⊥,E 和F 分别为CD 和PC 的中点。

2015届高考数学(人教,理科)大一轮复习配套讲义:第七章 立体几何

2015届高考数学(人教,理科)大一轮复习配套讲义:第七章 立体几何

第七章 立 体 几 何第一节空间几何体的结构特征及三视图与直观图1.多面体的结构特征(1)棱柱⎩⎪⎨⎪⎧底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等(2)棱锥⎩⎪⎨⎪⎧底面:是多边形侧面:都是有一个公共顶点的三角形(3)棱台 棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分. 2.旋转体的形成3.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.4.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点. 2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.[试一试]1.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧(左)视图为( )解析:选B 给几何体的各顶点标上字母,如图1.A ,E 在侧投影面上的投影重合,C ,G 在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图2所示,故正确选项为B(而不是A).图1图22.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,则圆台的母线长为________ cm.解析:抓住轴截面,利用相似比,由底面积之比为1∶16,设半径分别为r,4r .设圆台的母线长为l ,截得圆台的上、下底面半径分别为r 、4r .根据相似三角形的性质得33+l =r4r,解得l =9.所以,圆台的母线长为9 cm. 答案:91.由三视图还原几何体的方法 定底面 根据俯视图确定定棱及侧面 根据正视图确定几何体的侧棱与侧面特征,调整实线、虚线对应棱的位置定形状 确定几何体的形状 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.3.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系 S 直观图=24S 原图形,S 原图形=22S 直观图. 4.转化与化归思想利用转化与化归思想解决棱台、圆台的有关问题由棱台和圆台的定义可知棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.[练一练]1.如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是( )A .3B .2C .1D .0解析:选A 对于①,存在斜高与底边长相等的正四棱锥,其正视图与侧视图是全等的正三角形.对于②,存在如图所示的三棱锥S -ABC ,底面为等腰三角形,其底边AB 的中点为D ,BC 的中点为E ,侧面SAB 上的斜高为SD ,且CB =AB =SD =SE ,顶点S 在底面上的射影为AC 的中点,则此三棱锥的正视图与侧视图是全等的正三角形.对于③,存在底面直径与母线长相等的圆锥,其正视图与侧视图是全等的正三角形.所以选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64空间几何体的结构特征1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体选C. 2.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.图1图23.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④[类题通法]解决此类题目需准确理解定义,把握几何体的结构特征,并学会通过反例对概念进行辨析,即要说明一个命题是错误的,设法举出反例否定即可.几何体的三视图[典例](2013·四川高考)一个几何体的三视图如图所示,则该几何体的直观图可以是()[解析]由于俯视图是两个圆,所以排除A,B,C,故选D.[答案] D[类题通法]根据几何体画三视图,要严格按以下几点执行(1)三视图的安排位置,正视图、侧视图分别放在左右两边,俯视图在正视图的下边.(2)注意实虚线的区别.[针对训练]1.(2014·山西模拟)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,该三棱柱的侧视图的面积为()A.4 B.2 3C.2 2 D. 3解析:选B依题意得,该几何体的侧视图是边长分别为2和3的矩形,因此其侧视图的面积为23,选B.2.(2014·吉林质检)已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可以是________(把你认为正确的图的序号都填上).解析:直观图如图1的几何体(上部是一个正四棱锥,下部是一个正四棱柱)的俯视图为①;直观图如图2的几何体(上部是一个正四棱锥,下部是一个圆柱)的俯视图为②;直观图如图3的几何体(上部是一个圆锥,下部是一个圆柱)的俯视图为③;直观图如图4的几何体(上部是一个圆锥,下部是一个正四棱柱)的俯视图为④.答案:①②③④几何体的直观图[典例]如图所示,△A′B′C′是△ABC的直观图,且△A′B′C′是边长为a 的正三角形,求△ABC 的面积.[解] 建立如图所示的坐标系xOy ″,△A ′B ′C ′的顶点C ′在y ″轴上,边A ′B ′在x 轴上,把y ″轴绕原点逆时针旋转45°得y 轴,在y 轴上取点C 使OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变.已知A ′B ′=A ′C ′=a ,在△OA ′C ′中, 由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a , 所以S △ABC =12×a ×6a =62a2.本例若改为“已知△ABC 是边长为a 的正三角形,求其直观图△A ′B ′C ′的面积”应如何求?解:由斜二测画法规则可知,直观图△A ′B ′C ′一底边上的高为32a ×12×22=68a ∴S △A ′B ′C ′=12×a ×68a =616a 2.[类题通法]对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S 与直观图面积S ′之间的关系S ′=24S ,能更快捷地进行相关问题的计算. [针对训练]等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.解析:∵OE = (2)2-1=1,∴O ′E ′=12,E ′F=24, ∴直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.答案:22第二节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念.[试一试]1.若某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .(13+2)π(cm 2)B .4+(13+2)π(cm 2)C .6+(13+2)π(cm 2)D .8+(13+2)π(cm 2)解析:选C 由三视图可知原几何体是一个半圆锥,其表面积S =12×π×22+12×π×2×13+12×4×3=6+(13+2)π(cm 2).2.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为( )A.33B .1 C.233D. 3解析:选A 根据三视图可知该几何体是一个高为3的三棱锥,所以该几何体的体积V =13×⎝⎛⎭⎫12×2×1×3=33. 3.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S =3×4×2+2×2×2+4×22×2+4×6+12×(2+6)×2×2=72+16 2.答案:72+16 21.求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体.2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则2R =3a ; ②正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 3.旋转体侧面积问题中的转化思想计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.[练一练]1.(2014·皖南八校联考)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,则这个几何体的体积是( )A .8πB .7πC .2πD.7π4解析:选D 依题意该几何体为一空心圆柱,故其体积V =π⎣⎡⎦⎤22-⎝⎛⎭⎫322×1=7π4.2.(2013·福建高考)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:依题意得,该几何体是球的一个内接正方体,且该正方体的棱长为2.设该球的直径为2R ,则2R =22+22+22=23,所以该几何体的表面积为4πR 2=4π(3)2=12π.答案:12π几何体的表面积1.(2013·某几何体的三视图如图所示,则该几何体的表面积为( )A.180B.200C.220 D.240解析:选D由三视图可知,此几何体是一个横放的直四棱柱,底面梯形的面积为(2+8)×42=20,侧面面积为2×10+2×5×10+8×10=200,故四棱柱的表面积为2×20+200=240.2.(2013·陕西高考改编)某几何体的三视图如图所示,则其表面积为________.解析:此几何体是一个半球,所以表面积为球的表面积的一半加上底面的面积,球半径为1,故所求表面积为S=2π+π=3π.答案:3π3.(2014·江西八校联考)若一个圆台的正视图如图所示,则其表面积等于________.解析:由图知圆台的上、下底面半径分别为r=1、r′=2,母线长为l=5,则圆台表面积为π(r+r′)l+π(r2+r′2)=5π+35π.答案:5π+35π[类题通法]以三视图为载体的几何体的表面积问题的求法(1)恰当分析给出的三视图.(2)找准几何体中各元素间的位置关系及数量关系.(3)注意组合体的表面积问题中重合部分的处理.几何体的体积B1C1的所有棱长均为1,且[典例](1)如图所示,已知三棱柱ABC-AAA1⊥底面ABC,则三棱锥B1 -ABC1的体积为()A.312 B.34 C.612D.64(2)(2013·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π[解析] (1)三棱锥B 1 -ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. (2)根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12π×22×4=16+8π.[答案] (1)A (2)A [类题通法]求解几何体体积的策略及注意问题(1)与三视图有关的体积问题关键是准确还原几何体及弄清几何体中的数量关系. (2)计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.(3)注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.(4)注意组合体的组成形式及各部分几何体的特征. [针对训练](2014·绍兴模拟)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是________.解析:根据三视图,我们先画出其几何直观图,几何体由正方体切割而成,即正方体截去一个棱台.如图1所示,把棱台补成锥体如图2,V 棱台=2×2×12×4×13-1×1×12×2×13=73,故所求几何体的体积V =23-73=173.答案:173与球有关的切、接问题角度一 直三棱柱的外接球1.(2013·辽宁高考)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132D .310解析:选C 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.角度二 正方体的外接球2.(2013·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π.答案:43π角度三 正四面体的内切球3.(2014·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π角度四 四棱锥的外接球4.四棱锥P -ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .9πB .3πC .22πD .12π解析:选D 该几何体的直观图如图所示,该几何体可看作由正方体截得,则正方体外接球的直径即为PC .由直线EF 被球面所截得的线段长为22,可知正方形ABCD 对角线AC 的长为22,可得a =2,在△P AC 中PC = 22+(22)2=23,球的半径R = 3,∴S 表=4πR 2=4π×(3)2=12π. 角度五 正三棱柱的内切球5.(2013·南昌模拟)点P 是底边长为23,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM ·PN 的取值范围是( )A .[0,2]B .[0,3]C .[0,4]D .[-2,2]解析:选C 由题意知内切球的半径为1,设球心为O ,则PM ·PN=(PO +OM )·(PO +ON )=PO 2+PO ·(OM +ON )+OM ·ON =|PO |2-1,且1≤|OP |≤5,∴PM ·PN∈[0,4]. [类题通法]解决与球有关的切、接问题的方法(1)一般要过球心及多面体中的特殊点或过线作截面将空间问题转化为平面问题,从而寻找几何体各元素之间的关系.(2)若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.第三节空间点、直线、平面之间的位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 作用:可用来证明点、直线在平面内.公理2:过不在一条直线上的三点,有且只有一个平面. 作用:①可用来确定一个平面;②证明点线共面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.作用:①可用来确定两个平面的交线;②判断或证明多点共线;③判断或证明多线共点. 公理4:平行于同一条直线的两条直线互相平行. 作用:判断空间两条直线平行的依据. 2.空间直线的位置关系 (1)位置关系的分类:⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角:①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间直线与平面,平面与平面之间的位置关系1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”. [试一试]1.下列说法正确的是()A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面解析:选D由异面直线的定义可知选D.2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:选D b与α相交或b⊂α或b∥α都可以.1.求异面直线所成角的方法(1)平移法:即选点平移其中一条或两条直线使其转化为平面角问题,这是求异面直线所成角的常用方法.(2)补形法:即采用补形法作出平面角.2.证明共面问题的两种途径(1)首先由条件中的部分线(或点)确定一个平面,再证其他线(或点)在此平面内;(2)将所有条件分为两部分,然后分别确定平面,再证明这两个平面重合.3.证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上;(2)直接证明这些点都在同一条特定直线上.4.证明共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.[练一练]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成的角的余弦值为________.解析:如图连接BA.∵BA 1∥CD 1, ∴∠A 1BE 为所求. 在△A 1BE 中, 设AB =1,则AA 1=2, ∴A 1B =5,A 1E =1,BE = 2. ∴cos ∠A 1BE =31010.答案:31010平面的基本性质及应用1... ) A .平行于同一个平面的两个平面相互平行 B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 解析:选A 选项A 是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.下列命题:①经过三点确定一个平面; ②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. 其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选C 对于①,未强调三点不共线,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,未强调三点共线,则两平面也可能相交,故④错误.3.(2013·南京模拟)如图,已知:E ,F ,G ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱AB ,BC ,CC 1,C 1D 1的中点,证明:EF ,HG ,DC 三线共点.证明:连接C 1B ,HE ,GF ,如图所示.由题意知HC 1綊EB ,∴四边形HC 1BE 是平行四边形, ∴HE ∥C 1B .又C 1G =GC ,CF =BF , 故GF 綊12C 1B ,∴GF ∥HE ,且GF ≠HE ,∴HG 与EF 相交,设交点为K ,则K ∈HG . 又HG ⊂平面D 1C 1CD , ∴K ∈平面D 1C 1CD .∵K ∈EF ,EF ⊂平面ABCD , ∴K ∈平面ABCD .∵平面D 1C 1CD ∩平面ABCD =DC , ∴K ∈DC ,∴EF ,HG ,DC 三线共点. [类题通法]1.证明共点问题的关键是先确定点后,再证明此点在第三条直线上,这个第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.2.证明过程中要注意符号语言表达准确,公理成立的条件要完善.空间两直线的位置关系[典例] (1)(2013·江西省七校联考)已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是( )A .相交或平行B .相交或异面C .平行或异面D .相交、平行或异面[解析] 依据题意,b ,c 分别为a 在α,β内的射影,可判断b ,c 相交、平行或异面均可.[答案] D(2)已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD 的中点.①求证:BC与AD是异面直线;②求证:EG与FH相交.[证明]①假设BC与AD共面,不妨设它们所共平面为α,则B,C,A,D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD 是异面直线.②如图,连接AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是▱EFGH的对角线,所以EG与HF相交.[类题通法]1.异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.[针对训练]若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交解析:选B如图,设l∩α=A,α内直线若经过A点,则与直线l相交;若不经过点A,则与直线l异面.异面直线所成的角[典例](2013·福州模拟)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15 B.25 C.35D.45[解析] 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45. [答案] D在本例条件下,若点P 在平面A 1C 1内且不在对角线B 1D 1上,过点P 在平面A 1C 1内作一直线m ,使m 与直线BD 成α角,且α∈⎝⎛⎦⎤0,π2.这样的直线可作几条? 解:在平面A 1C 1内作m ,使m 与B 1D 1相交成α角.∵BD ∥B 1D 1,∴直线m 与BD 也成α角.即m 为所求.且m 与BD 是异面直线,当α=π2时,m 只有一条,当α≠π2时,这样的直线有两条.[类题通法]用平移法求异面直线所成的角的三步法(1)一作:即据定义作平行线,作出异面直线所成的角; (2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.[针对训练]如图所示,点A 是平面BCD 外一点,AD =BC =2,E ,F 分别是AB ,CD 的中点,且EF =2,则异面直线AD 和BC 所成的角为________.解析:如图,设G 是AC 的中点,连接EG ,FG .因为E ,F 分别是AB ,CD 的中点,故EG ∥BC 且EG =12BC =1,FG∥AD ,且FG =12AD =1.即∠EGF 为所求,又EF=2,由勾股定理逆定理可得∠EGF =90°. 答案:90°第四节直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理1.直线与平面平行的判定中易忽视“线在面内”这一关键条件.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.[试一试]1.下列说法中正确的是()①一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.A.①②③④B.①②③C.②④D.①②④解析:选D由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确;③错误,因为经过一点可作一直线与已知直线平行,而经过这条直线可作无数个平面.2.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选B易知①正确;②错误,l与α的具体关系不能确定;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明.故选B.1.转化与化归思想——平行问题中的转化关系2.判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.[练一练]。

2015届高考数学状元之路二轮复习专题知识突破课件1.7.1几何证明选讲(选修4-1)

2015届高考数学状元之路二轮复习专题知识突破课件1.7.1几何证明选讲(选修4-1)
第45页,共56页。
考点三 相交弦、切割线定理的应用
【例 3】 (2014·课标全国卷Ⅱ)如图,P 是⊙O 外一点,PA 是 切线,A 为切点,割线 PBC 与⊙O 相交于点 B,C,PC=2PA,D 为 PC 的中点,AD 的延长线交⊙O 于点 E.证明:
(1)BE=EC; (2)AD·DE=2PB2.
答案 4
第17页,共56页。
知识方法·考点串联
连点串线成面 构建知识体系
第18页,共56页。
1.平行截割定理 (1)平行线等分线段定理及其推论 ①定理:如果一组平行线在一条直线上截得的线段相等,那么 在任一条(与这组平行线相交的)直线上截得的线段也相等. ②推论:经过梯形一腰的中点而平行于底边的直线平分另一 腰.
第25页,共56页。
高频考点·聚焦突破
热点题型剖析 构建方法体系
第26页,共56页。
考点一 【例 1】
相似三角形的判定与性质
如图所示,已知⊙O 是△ABC 的外接圆,AB=BC,AD 是 BC 边上的高,AE 是⊙O 的直径.
第27页,共56页。
(1)求证:AC·BC=AD·AE; (2)过点 C 作⊙O 的切线交 BA 的延长线于点 F,若 AF=4,CF =6,求 AC 的长. 课堂笔记 (1)证明:连接 BE,则△ABE 为直角三角形. 因为∠ABE=∠ADC=90°,∠AEB=∠ACB,
答案 2 3
第35页,共56页。
考点二
圆的内接四边形问题
【例 2】 如图所示,在△ABC 中,AB=AC=4,D 是 AC 的 中点,E 是 BC 上一点,AE 与 DB 交于点 F,∠BAE=∠CBD.
(1)求证:C,D,F,E 四点共圆; (2)已知 BF=2,求 FD 的长.

2015年高考数学专题十一:几何证明选讲

2015年高考数学专题十一:几何证明选讲

2015年高考数学专题十一:几何证明选讲(教师版含14年高考题)一、考纲要求(1)了解平行线截割定理,会证明并应用直角三角形摄影定理。

⑵会证明并应用圆周角定理,圆的切线的判定地理及性质定理。

⑶会证明并应用相交弦定理,圆内接四边形的性质定理与判定定理,切割线定理。

⑷了解平行投影的含义,通过援助与平面的位置关系了解平行投影;会证平面与圆柱面的截线是椭圆(特殊情形是圆)。

(5)了解下面定理。

定理:在空间中,取直线l为轴,直线l’与l相较于O,其夹角为α,l’围绕l旋转得到以O为顶点,l’为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行,记β=0),则:①β>α,平面π与圆锥的交线为圆锥,②β=α,平面π与圆锥的交线为抛物线③β<α平面π与圆锥的交线为双曲线。

(6)会利用丹迪林(Dandelin)双球(如下面所示,这两个球位于圆锥内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥面均相切,其切点分别为F,E)正面上述定理①的情形:当时α>β时,平面π与圆锥的相交线为椭圆。

(图中上,下两球与圆锥切面相切的切点分别为B和C,线段BC与平面π相交于A)(7)会证明以下结果:①在(6)中,一个丹迪林球与圆锥的交线为一个圆,并与圆锥的 底面平行,记这个圆所在平面为π’.②如果平面π与平面π’的交线为m ,在(5)①中椭圆上任取一点A ,该丹迪林球与平面π的切点为F ,则点A 到点F 的距离与点A 到直线m 的距离比是小于1的常熟e(称点F 为这个椭圆的焦点直线m 为椭圆的准线,常数e 为离心率)。

(8)了解定理(5)③中的证明,了解当β无线接近α时,平面π的极限结果。

二、高考试题感悟1、15.[2014·广东卷] (几何证明选讲选做题)如图1-1所示,在平行四边形ABCD 中,点E在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1-115.32、21.[2014·江苏卷] A .[选修4-1:几何证明选讲]如图1-7所示,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .图1-7证明:因为B ,C 是圆O 上的两点,所以OB =OC ,所以∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点,所以∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D ,因此∠OCB =∠D .3、22.[2014·辽宁卷] 选修4-1:几何证明选讲图1-6如图1-6,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG 并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.22.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA.又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.因为AF⊥EP,所以∠PF A=90°,所以∠BDA=90°,故AB为圆的直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,所以∠DAB =∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.因为AB⊥EP,所以DC⊥EP,∠DCE为直角.所以ED为直径.又由(1)知AB为圆的直径,所以ED=AB.4、22.[2014·新课标全国卷Ⅱ] 选修4-1:几何证明选讲如图1-5,P是⊙O外一点,P A是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2P A,D为PC的中点,AD的延长线交⊙O于点E.证明:(1)BE=EC;(2)AD·DE=2PB2.图1-522.证明:(1)连接AB,AC.由题设知P A=PD,故∠P AD=∠PDA.因为∠PDA=∠DAC+∠DCA,∠P AD=∠BAD+∠P AB,∠DCA=∠P AB,所以∠DAC=∠BAD,从而BE=EC.因此BE=EC.(2)由切割线定理得P A2=PB·PC.因为P A=PD=DC,所以DC=2PB,BD=PB.由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.5、22.[2014·全国新课标卷Ⅰ] 选修4-1:几何证明选讲如图1-5,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.图1-5(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故点O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.6、15.[2014·陕西卷]B.(几何证明选做题)如图1-3所示,△ABC中,BC=6,以BC为直径的半圆分别交AB,AC于点E,F,若AC=2AE,则EF=________.图1-315.37、7.[2014·天津卷] 如图1-1所示,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD·F A;③AE·CE=BE·DE;④AF·BD=AB·BF.则所有正确结论的序号是()A.①②B.③④C.①②③D.①②④7.D。

高考数学一轮复习课件:几何证明选讲

高考数学一轮复习课件:几何证明选讲

返回目录
6.直线与圆的位置关系 圆 相如离果;圆与直线没有公共点,这种情况我们说直线与
如果圆心到一条直线的距离小于半径 , 则这条直线 和该圆一定相交于两点,这时我们说直线与圆相交,这条 直线叫做 圆的割线 ;
如果一条直线与圆只有一个公共点,则这条直线叫 做这个圆的切线,公共点叫做切点.
7.圆切线的判定定理、性质及推论. 8.圆周角、圆周角定理及推论. 9.弦切角、弦切角定理及推论. 10.圆的切线、内接四边形、弦切角、比例线段.
返回目录
题型分析
考点一 计算问题 如图所示,圆O的直径AB=6,C 为圆周上一点,BC=3,过C作圆 的切线l,过A作l的垂线AD,AD 分别与直线l、圆交于点D,E,则 ∠DAC= ,线段AE的长为 .
返回目录
【分析】本题主要考查直线与圆的关系及平面几何基本 知识. 【解析】如图所示:∵OC⊥l,AD⊥l,∴AD∥OC. ∵BC=3, ∴△OBC为等边三角形,∠B=60°, ∴∠CAB=30°,∴∠ACO=30°, ∴∠DAC=30°.∴∠EAO=60°.连结OE, ∴∠OAE为等边三角形.∴AE=3.
线NB垂直于直线ON,且 交圆O于B点. 过B点的切 线交直线ON于K.证明:∠OKM=90°.
【分析】利用射影定理、圆的切线性质解题是关键.
返回目录
【证明】(1)因为MA是圆O的切线,所以OA⊥AM.
又因为AP⊥OM,在Rt△OAM源自,由射影定理知,OA2=OM·OP.
(2)因为BK是圆O的切线,BN⊥OK,
1.射影定理的内容及其证明; 2.圆周角与弦切角定理的内容及其证明; 3.圆幂定理的内容及其证明; 4.圆内接四边形的性质与判定; 5.平行投影的性质与圆锥曲线的统一定义.

高三数学二轮复习课件几何证明选讲

高三数学二轮复习课件几何证明选讲

• (7)相似三角形的判定定理:如果一个三角 形的两个角与另一个三角形的两个角对应 相等,那么这两个三角形相似(简叙为:两 角对应相等,两三角形相似);如果一个三 角形的两条边和另一个三角形的两条边对 应成比例,并且夹角相等,那么这两个三 角形相似(简叙为:两边对应成比例且夹角 相等,两个三角形相似);如果一个三角形 的三条边与另一个三角形的三条边对应成 比例,那么这两个三角形相似(简叙为:三 边对应成比例,两个三角形相似).
• 1.了解平行截割定理,会证明并应用直 角三角形射影定理;
• 2.会证明并应用圆周角定理、圆的切线 的判定定理及性质定理;
• 3.会证相交弦定理、圆内接四边形的性 质定理及判定定理、切割线定理,并会应 用相交弦定理;
• 4.平行投影的性质与圆锥曲线的统一定 义.
• 几何证明选讲是选考内容,也是新课标新 增的内容,从各地高考试题看,几年来, 这部分的考查题型,大题、小题都有,但 难度不大,从能力要求上来看,主要考查 学生的读图、识图能力,分析问题和解决 问题的能力.
• (3)经过三角形一边的中点与另一边平行的 直线必经过三角形第三边的中点.
• (4)经过梯形一腰的中点,且与底边平行的 直线必经过梯形另一腰的中点.
• (5)平行于三角形一边的直线截其它两边 (或两边的延长线)所得的对应线段成比 例.
• (6)相似三角形的性质定理:相似三角形的 对应角相等.相似三角形的对应边成比 例.相似三角形对应高的比、对应中线的 比、对应角平分线的比都等于相似比;相 似三角形周长的比、外接圆的直径比、外 接圆的周长比都等于相似比;相似三角形 面积的比、外接圆的面积比都等于相似比 的平方.
• (2011·广东文,15)如右图,在梯形ABCD 中,AB∥CD,AB=4,CD=2,E,F分 别为AD,BC上点,且EF=3,EF∥AB, 则梯形ABFE与梯形EFCD的面积比为 ________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题七选修4系列第一讲几何证明选讲(选修4-1)1.(2014·新课标全国卷Ⅱ)如图,P是⊙O外一点,P A是切线,A为切点,割线PBC与⊙O相交于点B,C,PC =2P A,D为PC的中点,AD的延长线交⊙O于点E,证明:(1)BE=EC;(2)AD·DE=2PB2.解:(1)连接AB,AC.由题设知P A=PD,故∠P AD=∠PDA.因为∠PDA=∠DAC+∠DCA,∠P AD=∠BAD+∠P AB,∠DCA=∠P AB,所以∠DAC=∠BAD,从而.因此BE=EC.(2)由切割线定理得P A2=PB·PC.因为P A=PD=DC,所以DC=2PB,BD=PB.由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.2.(2014·新课标全国卷Ⅰ)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.解:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.3.(2014·辽宁高考)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG =PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.由于AF⊥EP,所以∠PF A=90°,于是∠BDA=90°,故AB是直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径,由(1)得ED=AB.4.(2013·辽宁高考)如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD 于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:(1)∠FEB=∠CEB;(2)EF2=AD·BC.解:(1)由直线CD 与⊙O 相切,得∠CEB =∠EAB .由AB 为⊙O 的直径,得AE ⊥EB ,从而∠EAB +∠EBF =π2.又EF ⊥AB ,得∠FEB +∠EBF =π2,从而∠FEB =∠EAB .故∠FEB =∠CEB .(2)由BC ⊥CE ,EF ⊥AB ,∠FEB =∠CEB ,BE 是公共边,得Rt △BCE ≌Rt △BFE ,所以BC =BF .同理可证Rt △ADE ≌Rt △AFE ,得AD =AF . 又在Rt △AEB 中,EF ⊥AB ,故EF 2=AF ·BF ,所以EF 2=AD ·BC .1.平行线等分线段定理(1)定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.(2)推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. (3)推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理(1)定理:三条平行线截两条直线,所得的对应线段成比例.(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质(1)判定定理1:两角对应相等,两三角形相似.判定定理2:两边对应成比例并且夹角相等,两三角形相似. 判定定理3:三边对应成比例,两三角形相似.(2)性质定理1:相似三角形对应边上的高、中线、对应角平分线和它们周长的比都等于相似比.性质定理2:相似三角形的面积比等于相似比的平方.(3)推论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方.4.射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.5.圆周角与圆心角定理(1)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半. (2)圆心角定理:圆心角的度数等于它所对弧的度数. 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等. 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 6.圆内接四边形的性质与判定定理 (1)性质:定理1:圆的内接四边形的对角互补.定理2:圆内接四边形的外角等于它的内角的对角. (2)判定:定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆. 7.圆的切线的性质及判定定理(1)性质定理:圆的切线垂直于经过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(2)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 8.弦切角的性质定理:弦切角等于它所夹的弧所对的圆周角. 9.与圆有关的比例线段(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(4)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.热点一相似三角形的判定与性质的应用[例1] (2014·东北三校联考)如图,P A ,PB 是圆O 的两条切线,A ,B 是切点,C 是劣弧AB (不包括端点)上一点,直线PC 交圆O 于另一点D ,Q 在弦CD 上,且∠DAQ =∠PBC .求证:(1)BD AD =BC AC; (2)△ADQ ∽△DBQ .[师生共研] (1)因为△PBC ∽△PDB ,所以BD BC =PD PB ,同理AD AC =PD P A .又因为P A =PB ,所以BD BC =AD AC ,即BD AD =BC AC.(2)连接AB .因为∠BAC =∠PBC =∠DAQ ,∠ABC =∠ADQ , 所以△ABC ∽△ADQ , 即BC AC =DQ AQ,故BD AD =DQ AQ, 又因为∠DAQ =∠PBC =∠BDQ , 所以△ADQ ∽△DBQ .判定两个三角形相似的四种常用方法(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似; (3)三边对应成比例,两三角形相似; (4)相似三角形的定义.1.如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(1)若EC CB =13,ED DA =1,求DCAB 的值;(2)若EF 2=F A ·FB ,证明:EF ∥CD . 解:(1)∵A ,B ,C ,D 四点共圆,∴∠EDC =∠EBF ,又∠AEB 为公共角, ∴△ECD ∽△EAB , ∴DC AB =EC EA =ED EB. ∴⎝⎛⎭⎫DC AB 2=EC EA ·ED EB =EC EB ·ED EA =14×12=18. ∴DC AB =24. (2)∵EF 2=F A ·FB , ∴EF F A =FB FE, 又∵∠EF A =∠BFE , ∴△F AE ∽△FEB , ∴∠FEA =∠EBF ,又∵A ,B ,C ,D 四点共圆,∴∠EDC =∠EBF , ∴∠FEA =∠EDC ,∴EF ∥CD .热点二 圆的内接四边形问题[例2](2014·兰州模拟)如图,△ABC 是直角三角形,∠ABC =90°,以AB 为直径的圆O 交AC 于点E ,点D 是BC 边的中点,连接OD 交圆O 于点M .(1)求证:O 、B 、D 、E 四点共圆; (2)求证:2DE 2=DM ·AC +DM ·AB .[师生共研] (1)连接BE 、OE ,则BE ⊥EC . 又D 是BC 的中点,所以DE =BD , 又OE =OB ,OD =OD , 所以△ODE ≌△ODB .所以∠OED =∠OBD =90°, 所以O 、B 、D 、E 四点共圆. (2)延长DO 交圆O 于点H . 因为DE 2=DM ·DH =DM ·(DO +OH )=DM ·DO +DM ·OH ,所以DE 2=DM ·⎝⎛⎭⎫12AC +DM ·⎝⎛⎭⎫12AB , 所以2DE 2=DM ·AC +DM ·AB .1.在平面几何中求角的大小,经常考虑用三角形内角和定理及其推论. 2.在圆中求角的大小经常需要用与圆有关的角的定理.2.如图,AB 为圆O 的直径,CD 为垂直于AB 的一条弦,垂足为E ,弦BM 与CD 交于点F .(1)证明:A 、E 、F 、M 四点共圆; (2)若MF =4BF =4,求线段BC 的长.解:(1)如图,连接AM ,由AB 为直径可知∠AMB =90°,又CD ⊥AB ,所以∠AEF =∠AMB =90°, 因此A 、E 、F 、M 四点共圆.(2)连接AC ,由A 、E 、F 、M 四点共圆, 可知BF ·BM =BE ·BA , 在Rt △ABC 中,BC 2=BE ·BA ,又由MF =4BF =4知BF =1,BM =5, 所以BC 2=5,BC = 5.热点三相交弦、切割线定理及其应用[例3] (1)(2014·南京模拟)如图,AB ,CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若PC =98,OP=12,求PD 的长.(2)(2014·太原模拟)如图,已知P A 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B 、C ,∠APC 的平分线分别交AB 、AC 于点D 、E .①证明:∠ADE =∠AED ;②若AC =AP ,求PCP A的值.[师生共研] (1)∵P 为AB 的中点, ∴OP ⊥AB ,∴PB =r 2-OP 2=32(r 为圆O 的半径),又∵PC ·PD =P A ·PB =PB 2=34,由PC =98,得PD =23.(2)①∵P A 是切线,AB 是弦,∴∠BAP =∠C . 又∵∠APD =∠CPE ,∴∠BAP +∠APD =∠C +∠CPE .∵∠ADE =∠BAP +∠APD ,∠AED =∠C +∠CPE , ∴∠ADE =∠AED .②由①知∠BAP =∠C ,∵∠APC =∠BP A ,∴△APC ∽△BP A , ∴PC P A =CAAB.又∵AC =AP , ∴∠APC =∠C =∠BAP .由三角形内角和定理可知,∠APC +∠C +∠CAP =180°,∵BC 是圆O 的直径,∴∠BAC =90°,∴∠APC +∠C +∠BAP =180°-90°=90°,∴∠C =∠APC =∠BAP =13×90°=30°,在Rt △ABC 中,CA AB =3,∴PC P A =CAAB= 3.1.处理与圆有关的比例线段的常见思路有: (1)利用相似三角形; (2)利用圆的有关定理;(3)利用平行线分线段成比例定理及推论; (4)利用面积关系等.2.在涉及两圆的公共弦时,通常是作出两圆的公共弦,如果有过公共点的切线就可以使用弦切角定理,在两个圆内实现角的等量代换,这是解决两个圆相交且在交点处有圆的切线问题的基本思考方向.3.已知圆O 的弦CD 与直径AB 垂直并交于点F ,点E 在CD 上,且AE =CE . (1)求证:AC 2=CE ·CD ;(2)已知CA =5,AE =3,求sin ∠EAF .解:(1)连接AD ,则∠ACD =∠ADC ,∵CE =AE , ∴∠ACD =∠EAC ,∴△AEC 与△CAD 相似,∴AC CD =CEAC,∴AC 2=CD ·CE .(2)CA =5,AE =3,∴CE =3,CD =253,∴CF =12CD =256,则EF =76,∴sin ∠EAF =763=718.1.(2014·江苏高考)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:∠OCB =∠D .证明:因为B ,C 是圆O 上的两点, 所以OB =OC .故∠OCB=∠B.又因为C,D是圆O上位于AB异侧的两点,故∠B,∠D为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB=∠D.2.(2014·洛阳模拟)在圆内接四边形ABCD中,AC与BD交于点E,过点A作圆的切线交CB的延长线于点F,若AB=AD,AD∥FC,AF=18,BC=15,求AE的长.解:∵AF是圆的切线,且AF=18,BC=15,∴由切割线定理知AF2=FB·FC,即182=FB·(FB+15),解得FB=12.∵AB=AD,∴∠ABD=∠ADB.又∵AF是圆的切线,∴∠F AB=∠ADB.则∠F AB=∠ABD,∴AF∥BD,又∵AD∥FC,∴四边形ADBF为平行四边形,∴AD=FB=12.又∠ACF=∠ADB=∠F,∴AC=AF=18.∵AD∥FC,∴AE18-AE=ADBC,解得AE=8.3.(2014·唐山模拟)如图,△ABC内接于⊙O,AB=AC,点D在⊙O上,AD⊥AB,AD交BC于点E,点F在DA的延长线上,AF=AE,求证:(1)BF是⊙O的切线;(2)BE2=AE·DF.解:(1)连接BD.因为AD⊥AB,所以BD是⊙O的直径.因为AE=AF,所以∠FBA=∠EBA.又因为AB =AC ,所以∠FBA =∠C . 又因为∠C =∠D ,∠D +∠ABD =90°, 所以∠FBA +∠ABD =90°,即∠FBD =90°, 所以BF 是⊙O 的切线.(2)由切割线定理,得BF 2=AF ·DF . 因为AF =AE ,BE =BF , 所以BE 2=AE ·DF . 4.(2014·东北三校联考)已知PQ 与⊙O 相切于点A ,直线PBC 交圆于B ,C 两点,D 是圆上一点,且AB ∥CD ,DC 的延长线交PQ 于点Q .(1)求证:AC 2=CQ ·AB ;(2)若AQ =2AP ,AB =3,BP =2,求QD . 解:(1)⎭⎬⎫⎭⎪⎬⎪⎫AB ∥CD ⇒∠P AB =∠AQCP A 为⊙O 切线⇒∠P AB =∠ACB ⇒∠AQC =∠ACBAQ 为⊙O 切线⇒∠QAC =∠CBA⇒△ACB ∽△CQA ⇒AC CQ =ABAC⇒AC 2=CQ ·AB .⎭⎪⎬⎪⎫ ⎭⎪⎬⎪⎫(2)AB ∥CD AP AQ =12⇒BP PC =AP PQ =AB QC =13 BP =2,AB =3⇒QC =33, PC =6,AP 为⊙O 切线⇒AP 2=PB ·PC =12⇒AP =23⇒QA =4 3.又AQ 为⊙O 切线⇒AQ 2=QC ·QD ⇒QD =1633.5.(2014·沈阳模拟)如图,已知圆O 1与圆O 2外切于点P ,直线AB 是两圆的外公切线,分别与两圆相切于A 、B 两点,AC 是圆O 1的直径,过C 作圆O 2的切线,切点为D .(1)求证:C 、P 、B三点共线; (2)求证:CD =CA .证明:(1)连接PC ,P A ,PB ,BO 2,∵AC 是圆O 1的直径, ∴∠APC =90°.连接O 1O 2必过点P ,∵AB 是两圆的外公切线,A ,B 为切点,∴∠BAP =∠ACP =α,∴∠AO 1P =2α.由于O 1A ⊥AB ,O 2B ⊥AB ,∴∠BO 2P =π-2α,∴∠O 2BP =α.又∠ABP +∠O 2BP =90°,∴∠ABP +∠BAP =90°,∴C 、P 、B 三点共线.(2)∵CD 切圆O 2于点D ,∴CD 2=CP ·CB .在△ABC 中,∠CAB =90°,又∵AP ⊥BC ,∴CA 2=CP ·CB ,故CD =CA .6.(2014·忻州模拟)如图,直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB ,⊙O 交直线OB 于E 、D ,连接EC 、CD .(1)求证:直线AB 是⊙O 的切线;(2)若tan ∠CED =12,⊙O 的半径为3,求OA 的长.解:(1)如图,连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB .∵OC 是⊙O 的半径,∴AB 是⊙O 的切线.(2)∵ED 是直径,∴∠ECD =90°,∴∠E +∠EDC =90°,又∠BCD +∠OCD =90°,∠OCD =∠EDC ,∴∠BCD =∠E ,又∠CBD =∠EBC ,∴△BCD ∽△BEC ,∴BC BE =BD BC,BC 2=BD ·BE . ∵tan ∠CED =CD EC =12,△BCD ∽△BEC , ∴BD BC =CD EC =12, 设BD =x ,则BC =2x ,∵BC 2=BD ·BE ,∴(2x )2=x (x +6),∴BD =2,∴OA =OB =BD +OD =2+3=5.。

相关文档
最新文档