计量经济学实验教程 实验七 多重共线性模型的检验和处理
多重共线性的检验方法
多重共线性的检验方法
多重共线性(multicollinearity)是指在回归模型中,自变量之间存在高度相关或线性相关的情况。
由于存在多重共线性,导致模型的解释能力降低,预测结果不可靠。
因此,需要对回归模型中自变量之间的关系进行检验和分析。
下面介绍几种多重共线性的检验方法。
1. 相关系数矩阵法。
计算自变量之间的相关系数矩阵,判断是否存在较高的相关系数。
相关系数矩阵主要分为Pearson 相关系数和Spearman 相关系数,其中Pearson 相关系数适用于连续变量之间的关系,Spearman 相关系数适用于序数类或等距类别的变量之间的关系。
2. 变量膨胀因子(VIF)法。
VIF 是判断某个自变量对其他自变量的回归系数影响的程度。
如果某个自变量的VIF 值超过10,就表示需要对其进行检验和分析。
3. 特征值检验法。
通过计算相关系数矩阵的特征值和特征向量,判断模型是否存在多重共线性。
如果某个特征值较小,就表示存在多重共线性。
4. 条件数检验法。
条件数是相邻特征值之比的平方根。
如果条件数大于30,就表示模型存在多重共线性。
综上所述,多重共线性的检验方法有多种,不同的检验方法可以互相验证,得到更加准确的判断结果。
在实际应用中,可以根据具体情况选择合适的方法进行多重共线性的检验。
多重共线性的诊断方法和解决方法综述-计量经济学论文-经济学论文
多重共线性的诊断方法和解决方法综述-计量经济学论文-经济学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:多元线性回归模型的经典假定之一是解释变量之间不存在线性关系。
但在实际应用中,多元线性回归模型中的解释变量之间往往存在近似的线性关系,如果仍然用最小二乘法估计模型,会造成分析结果不准确甚至严重偏离变量间本来的依存关系。
为此,首先总结了多重共线性的检验方法,然后探讨了多重共线性常用的修正方法,最后结合实例演绎了逐步回归法和主成分回归法的具体应用,为现实经济问题中多重共线性的检验与处理提供一定借鉴。
关键词:多重共线性; 诊断; 补救措施; 逐步回归法; 主成分回归;Abstract:There being no linear relationship among interpretation variables is one of the classical assumptions in multiple linear regression model.However,in the practical application,there is often an approximate linear relation.If we still use the method ofordinary least squares to estimate the model,the result may become incorrect and even far from the original relationship among the variables.Therefore,the paper first summarizes the test methods of Multicollinearity.And then,the paper summarizes the commom correction methods of multicollinearity.Finally,the application of stepwise regression and principal component regression is deduced by using an example.The research will provide some reference for the test and treatment of multicollinearity in real economic problems.Keyword:multicollinearity; diagnosis; remedial measures; stepwise regression; principal component regression;多重共线性是指模型中解释变量间存在相关关系。
实验报告多重共线性(1)
实验报告多重共线性(1)西南科技大学Southwest University of Science and Technology 经济管理学院计量经济学实验报告——多重共线性模型的检验专业班级:国贸0702姓名:麦晓俊学号: 20072152任课教师:龙林成绩:多重共线性模型的检验和处理实验目的:掌握多重共线性模型的检验和处理方法。
实验要求:了解辅助回归检验,解释变量相关系数检验等。
试验用软件:Eviews实验原理:解释变量相关系数检验和辅助回归检验等。
实验内容:1、 实验用样本数据:研究某国经济试拟合如下线性回归模型t t t t t u X X X Y ++++=4433221ββββ其中 Y t =消费, X 2=工资收入,X 3=非工资、非农业收入,X 4=农业收入。
其中相关数据如下表(表1):某国国民经济统计资料 单位:10亿美元2、实验步骤:1、 参数估计,过程如下:(1)点击“File/New/Workfile”,屏幕上出现Workfile Range 对话框,选择数据频率,在本例中应选择Undated or irrequar,在Start date里键入1,在End date里键入14,点击OK后屏幕出现“Workfile对话框(子窗口)”。
(2)在Objects菜单中点击New objects,在New objects选择Group,并在Name for Objects定义文件名,点击OK出现数据编辑窗口,,按顺序键入数据。
(3)点击“Quick/Estimate E”,在出现的估计对话框中,键入Y C X。
然后点击OK,得如下输出结果(表2)。
2、分析由F=37.68可知,模型从整体上看,家庭消费与解释变量之间线性关系显著。
3、检验计算解释变量之间的简单相关系数。
Eviews过程如下:(1)在Quick菜单中选Group Statistics项中的Correlation命令。
计量经济学07计量多重共线性
Y/C1 △ Y
0.6072 0.6028 0.5996 0.5613 0.5339 0.5697
588 587 1088 1628 1441
0.5552 1651 0.5067 2920
0.5684 1762 0.5762 1854 0.5339 2960 0.5083 4584 0.4624 8637 0.4284 12610 0.4581 12294 0.5041 9093
横截面数据:生产函数中,资本投入与劳动力投入往 往出现高度相关情况,大企业二者都大,小企业都小。
(2)滞后变量的引入
在经济计量模型中,往往需要引入滞后经济变量来 反映真实的经济关系。例如消费变动的影响因素不仅有 本期可支配收入,还应考虑以往各期的可支配收入;固 定资产存量变动的影响因素不仅有本期投资,还应考虑 以往若干期的投资。同一变量的前后期之值很可能有较 强的线性相关性,模型中引入了滞后变量,多重共线性 就难以避免。
第七章 多重共线性
(Multicollinearity)
一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例
一、多重共线性的概念
对于模型
Yi= 0+ 1X1i+ 2X2i+ + kXki+ i
i=1,2,…,n 其基本假设之一是解释变量是互相独立的。
求出X1与X2的简单相关系数r,若|r|接近1,则说明两变量 存在较强的多重共线性。
(2) 对多个解释变量的模型,采用综合统计检验法
若 在OLS法下:R2与F值较大,但t检验值较小,说明各 解释变量对Y的联合线性作用显著,但各解释变量间存在共 线性而使得它们对Y的独立作用不能分辨,故t检验不显著。
多重共线性检验方法
多重共线性检验方法多重共线性是多元回归分析中常见的问题,指的是自变量之间存在高度相关性,导致回归系数估计不准确甚至失真。
在实际应用中,多重共线性可能会对模型的解释能力和预测能力造成严重影响,因此需要采取相应的检验方法来识别和应对多重共线性问题。
一、多重共线性的影响。
多重共线性会导致回归系数估计不准确,增大回归系数的标准误,降低统计推断的准确性。
此外,多重共线性还会使得模型的解释能力下降,使得模型对自变量的解释变得模糊不清,降低模型的预测能力。
因此,识别和解决多重共线性问题对于保证模型的准确性和稳定性至关重要。
二、多重共线性的检验方法。
1. 方差膨胀因子(VIF)。
方差膨胀因子是一种常用的多重共线性检验方法,它通过计算每个自变量的方差膨胀因子来判断自变量之间是否存在多重共线性。
通常情况下,方差膨胀因子大于10时,就表明存在严重的多重共线性问题。
2. 特征值检验。
特征值检验是通过计算自变量矩阵的特征值来判断自变量之间是否存在多重共线性。
当特征值接近0或者为0时,就表明存在多重共线性问题。
3. 条件数(Condition Number)。
条件数是通过计算自变量矩阵的条件数来判断自变量之间是否存在多重共线性。
通常情况下,条件数大于30就表明存在多重共线性问题。
4. 相关系数和散点图。
通过计算自变量之间的相关系数和绘制散点图来初步判断自变量之间是否存在多重共线性。
当自变量之间存在高度相关性时,就可能存在多重共线性问题。
三、处理多重共线性的方法。
1. 剔除相关性较强的自变量。
当自变量之间存在高度相关性时,可以考虑剔除其中一个或者几个相关性较强的自变量,以减轻多重共线性的影响。
2. 主成分回归分析。
主成分回归分析是一种处理多重共线性的方法,它通过将自变量进行主成分变换,从而降低自变量之间的相关性,减轻多重共线性的影响。
3. 岭回归和套索回归。
岭回归和套索回归是一种通过对回归系数进行惩罚来减轻多重共线性影响的方法,通过引入惩罚项,可以有效地缩小回归系数的估计值,减轻多重共线性的影响。
关于多重共线性模型的检验和处理的方法
计量经济学实验报告题目:关于多重共线性模型的检验和处理方法姓名:张飞飞学号:2008163050专业:工商管理指导教师:崔海燕实验时间: 2010-12-22二○一○年十二月二十五日关于多重共线性模型的检验和处理的方法一、实验目的:掌握多重共线性模型检验和处理的方法二、实验原理:判定系数检验法、逐步回归法、解释变量、相关系数检验三、实验步骤:1.创建一个新的工作文件:打开Eviews软件,点击File下的New File,创建一个新的工作文件,选择Annual,在Start Date栏中输入1983,在End date栏中输入2000,点击OK,点击保存,完成创建新的工作文件。
2.输入数据:点击Quick下的Empty Group,导入中国粮食生产函数模型的具体数据,命名被解释变量为Y,解释变量为X1、X2、X3、X4、X5,其中:Y表示粮食产量;X1表示农业化肥施用量;X2表示粮食播种面积;X3表示成灾面积;X4表示农业机械总动力;X5表示农业劳动力.点击Name保存数据,命名为Group01。
3.采用普通最小二乘法估计模型参数:点击Quick下的Estimate Equation,输入方程y c x1 x2 x3 x4 x5.点击OK,生成EQ1. 如下表所示:从结果可以看出:R-squared的值为0.982798,拟合优度比较高(一般为0.9以上),F-statistic 的值为137.1164,也比较大,说明模型上存在多重共线性,但无法看出变量之间的关系。
4.进行多重共线性检验:主要运用综合统计检验和采用解释变量之间的相关系数进行检验。
由综合统计检验法(步骤3),可以看出存在多重共线性,继而进行解释变量之间的相关下系数检验。
点击Quick下的Groupstatistics,选择Correlations,打开Series List界面,输入X1 X2 X3 X3 X4 X5,点击OK,生成Group02,结果如下图:从结果可以看出:X1和X4之间的相关系数为0.960278,最接近1,说明X1和X4之间存在高度相关性。
什么是多重共线性如何进行多重共线性的检验
什么是多重共线性如何进行多重共线性的检验多重共线性是指在统计模型中,独立变量之间存在高度相关性或者线性依赖关系,从而给模型的解释和结果带来不确定性。
在回归分析中,多重共线性可能导致系数估计不准确、标准误差过大、模型的解释变得复杂等问题。
因此,对于多重共线性的检验和处理是非常重要的。
一、多重共线性的检验多重共线性的检验可以通过以下几种方式进行:1. 相关系数矩阵:可以通过计算独立变量之间的相关系数,判断它们之间的关系强度。
当相关系数超过0.8或-0.8时,可以视为存在高度相关性,即可能存在多重共线性问题。
2. 方差扩大因子(VIF):VIF是用来检验自变量之间是否存在共线性的指标。
计算每一个自变量的VIF值,当VIF值大于10或者更高时,可以视为存在多重共线性。
3. 条件数(Condition index):条件数也是一种用来检验多重共线性的指标。
它度量了回归矩阵的奇异性或者相对不稳定性。
当条件数超过30时,可以视为存在多重共线性。
4. 特征值(Eigenvalues):通过计算特征值,可以判断回归矩阵的奇异性。
如果存在特征值接近于零的情况,可能存在多重共线性。
以上是常用的多重共线性检验方法,可以根据实际情况选择合适的方法进行检验。
二、多重共线性的处理在检测到存在多重共线性问题后,可以采取以下几种方式进行处理:1. 去除相关性强的变量:在存在高度相关变量的情况下,可以选择去除其中一个或多个相关性较强的变量。
2. 聚合相关变量:将相关性强的变量进行加权平均,得到一个新的变量来替代原来的变量。
3. 主成分分析(PCA):主成分分析是一种降维技术,可以将相关性强的多个变量合并成为一个或多个无关的主成分。
4. 岭回归(Ridge Regression):岭回归是一种缓解多重共线性的方法,通过加入一个正则化项,来使得共线性变量的系数估计更加稳定。
5. Lasso回归(Lasso Regression):Lasso回归也是一种缓解多重共线性的方法,通过对系数进行稀疏化,来选择重要的变量。
多重共线性问题的检验和处理
山西大学实验报告实验报告题目:多重共线性问题的检验和处理学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:熟悉和掌握Eviews在多重共线性模型中的应用,掌握多重共线性问题的检验和处理。
二、实验原理:1、综合统计检验法;2、相关系数矩阵判断;3、逐步回归法;三、实验步骤:(一)新建工作文件并保存打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date1978和end date 2006并点击确认,点击save键,输入文件名进行保存。
(二)输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,根据理论和经验分析,影响粮食生产(Y)的主要因素有农业化肥施用量(X1)、粮食播种面积(X2)、成灾面积(X3)、农业机械总动力(X4)和农业劳动力(X5),其中成灾面积的符号为负,其余均应为正。
下表给出了1983——2000中国粮食生产的相关数据。
点击name键进行命名,选择默认名称Group01,保存文件。
Y X1 X2 X3 X4 X5 1983 38728 1660 114047 16209 18022 31151 1984 40731 1740 112884 15264 19497 30868 1985 37911 1776 108845 22705 20913 31130 1986 39151 1931 110933 23656 22950 31254 1987 40208 1999 111268 20393 24836 31663 1988 39408 2142 110123 23945 26575 32249 1989 40755 2357 112205 24449 28067 33225 1990 44624 2590 113466 17819 28708 38914 1991 43529 2806 112314 27814 29389 39098 1992 44264 2930 110560 25895 30308 38669 1993 45649 3152 110509 23133 31817 37680 1994 44510 3318 109544 31383 33802 36628 1995 46662 3594 110060 22267 36118 35530 1996 50454 3828 112548 21233 38547 34820 1997 49417 3981 112912 30309 42016 34840 1998 51230 4084 113787 25181 45208 35177 1999 50839 4124 113161 26731 48996 35768 2000 46218 4146 108463 34374 52574 36043 2001 45264 4254 106080 31793 55172 36513 2002 45706 4339 103891 27319 57930 36870 2003 43070 4412 99410 32516 60387 365462004 46947 4637 101606 16297 64028 35269 2005 48402 4766 104278 19966 68398 33970 2006 49804 4928 104958 24632 72522 32561 2007 50160 5108 105638 25064 76590 31444 (三)用普通最小二乘法估计模型参数用最小二乘法估计模型参数。
多重共线性和自相关的检验和解决
《计量经济学》课程实训项目报告项目名称多重共线性和自相关的检验及解决方法实训日期2012.11.23 实训人53 班级统计1005 学号1004100508 指导教师张维群应用软件SPSS 实训地点实验楼314实训目的1.多重共线性和自相关的检验及解决方法的软件操作能力训练2.验证多重共线性和自相关的检验及解决方法的理论,并加深理解。
实训内容1.根据自己在网上寻找到的感兴趣的数据,用膨胀因子法和相关系数法对其进行是否存在多重共线性的检验;运用图示法和D-W法对数据是否存在自相关进行检验。
2.若检验出有多重共线性,则用逐步回归法剔除对因变量影响不大的解释变量;若检验出存在自相关,则用广义差分法建立新的模型进行解决。
实训数据资料说明1.问题:我国GDP的增长率与第一产业增长率、第二产业增长率、第三产业增长率用最小二乘法回归时的模型是否存在多重共线性和自相关。
若存在,先解决多重共线性再解决自相关并重新估计。
2.指标有哪些?自变量有x1:第一产业增长率,x2:第二产业增长率,x3:第三产业增长率。
因变量是y:GDP的增长率。
3.数据来源什么地方?数据是从网上查找的,数据包括从1981—2010年我国的GDP增长率、第一产业增长率、第二产业增长率和第三产业增长率,为时间序列数据,样本量为30。
实训结果与简要分析首先对原始数据进行用普通最小二乘法进行大致的拟合,并选择Linear Regression-Statistics-Collinearity diagnostics,即用膨胀因子法对原模型进行多重共线性检验,结果如下:Model SummaryModel R R Square Adjusted R Square Std. Error of the Estimate1 .982a.965 .961 .55883表1A N OVA bModel Sum of Squares df Mean Square F Sig.1 Regression 224.079 3 74.693 239.176 .000aResidual 8.120 26 .312T otal 232.199 29表2Coefficients aModel1(Constant) 第一产业增长率第二产业增长率第三产业增长率Unstandardized Coeff icients B .690 .187 .456 .287Std. Error .400 .047 .030 .042 Standardized Coeff icients Beta .169 .742 .344t 1.727 3.971 15.045 6.837 Sig. .096 .001 .000 .000 Collinearity Statistics T olerance .740 .553 .531VIF 1.351 1.809 1.883表3由表1可知模型的可决系数R^=0.965>0.8,可见其拟合程度较好。
多重共线性问题及解决方法
多重共线性问题及解决方法概念所谓多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。
一般来说,由于经济数据的限制使得模型设计不当,导致设计矩阵中解释变量间存在普遍的相关关系。
后果参数估计失去其意义检验与检验目前常用的多重共线性诊断方法有:1.自变量的相关系数矩阵R诊断法:研究变量的两两相关分析,如果自变量间的二元相关系数值很大,则认为存在多重共线性。
但无确定的标准判断相关系数的大小与共线性的关系。
有时,相关系数值不大,也不能排除多重共线性的可能。
2.方差膨胀因子(the variance inflation factor,VIF)诊断法:方差膨胀因子表达式为:VIFi=1/(1-R2i)。
其中Ri为自变量xi对其余自变量作回归分析的复相关系数。
当VIFi很大时,表明自变量间存在多重共线性。
该诊断方法也存在临界值不易确定的问题,在应用时须慎重。
3.容忍值(Tolerance,简记为Tol)法:容忍值实际上是VIF的倒数,即Tol=1/VIF。
其取值在0~1之间,Tol越接近1,说明自变量间的共线性越弱。
在应用时一般先预先指定一个T ol值,容忍值小于指定值的变量不能进入方程,从而保证进入方程的变量的相关系数矩阵为非奇异阵,计算结果具有稳定性。
但是,有的自变量即使通过了容忍性检验进入方程,仍可导致结果的不稳定。
4.多元决定系数值诊断法:假定多元回归模型p个自变量,其多元决定系数为R2y(X1,X2,…,Xp)。
分别构成不含其中某个自变量(Xi,i=1,2,…,p)的p个回归模型,并应用最小二乘法准则拟合回归方程,求出它们各自的决定系数R2i(i=1,2,…,p)。
如果其中最大的一个R2k与R2Y很接近,就表明该自变量在模型中对多元决定系数的影响不大,说明该变量对Y总变异的解释能力可由其他自变量代替。
它很有可能是其他自变量的线性组合。
七多重共线性及其处理
第七章 多重共线性及其处理一、简答题1. 什么是变量之间的多重共线性?2. 什么是完全多重共线性? 什么是不完全多重共线性?3. 多重共线性在多元线性回归模型中普遍存在的主要原因有哪些?4. 多重共线性可能造成哪些不利后果?5. 多重共线性的检验有哪些适当的方法?6. 多重共线性的修正方法有哪些?二、计算题分析题1. 某地区供水部门利用最近20年的用水年度数据得出如下估计模型:12345ˆ326.90.3050.3630.00517.87 1.123Y X X X X X =-++--- (-1.7) (0.9) (1.4) (-0.6) (-1.2) (-0.8)93.02=RF=38.9式中, ——用水总量(百万立方米), ——住户总数(千户), ——总人口(千人),3x ——人均收入(元),4x ——价格(元/100立方米),5x ——降雨量(毫米)。
(1)根据经济理论和直觉,请计回归系数的符号是什么(不包括常量), 为什么? 观察符号与你的直觉相符吗?(2)在10%的显著性水平下, 请进行变量的t 检验与方程的F-检验。
T 检验与F 检验结果有相矛盾的现象吗?(3)你认为估计值是(1)有偏的;(2)无效的;(3)不一致的吗? 详细阐述理由。
2. 下表是某地区1995年~2004年食品需求量 、可支配收入 、食品类价格指数 、 物价总指数3X 和流动资产拥有量4X 的数据资料。
食品需求函数有关统计资料问题:(1)检验变量间的多重共线性。
(2)利用 法, 建立适当的回归方程。
第四部分 习题答案 一、简答题1. 多重共线性指两个或多个解释变量之间不再彼此独立, 而是出现了相关性。
2.完全多重共线性指:在有多个解释变量模型中, 其中一个变量可以表示为其他多个变量的完全线性函数, 即 , 其中至少有一个 , 与等式右边线性组合的相关系数为1, 则这种情况被称为完全多重共线性。
在此情况下, 不能估计解释变量各自对被解释变量的影响。
多重共线性的检验与处理
实验名称:多重共线性的检验与处理实验时间:2011.12.10实验要求:主要是学习多重共线性的检验与处理,主要是研究解释变量与其余解释变量之间有严重多重共线性的模型,分析变量之间的相关系数。
通过具体案例建立模型,然后估计参数,求出相关的数据。
再对模型进行检验,看数据之间是否存在多重共线性。
最后利用所求出的模型来进行修正。
实验内容:实例:我国钢材供应量分析通过分析我国改革开放以来(1978-1997)钢材供应量的历史资料,可以建立一个单一方程模型。
根据理论及对现实情况的认识,影响我国钢材供应量 Y(万吨)的主要因素有:原油产量X1(万吨),生铁产量X2(万吨),原煤产量X3(万吨),电力产量X4(亿千瓦小时),固定资产投资X5(亿元),国内生产总值X6(亿元),铁路运输量X7(万吨)。
(一)建立我国钢材供应量的计量经济模型:(二)估计模型参数,结果为:Dependent Variable: YMethod: Least SquaresDate: 11/02/09 Time: 16:09Sample: 1978 1997Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.C 139.2362 718.2493 0.193855 0.8495X1 -0.051954 0.090753 -0.572483 0.5776X2 0.127532 0.132466 0.962751 0.3547X3 -24.29427 97.48792 -0.249203 0.8074X4 0.863283 0.186798 4.621475 0.0006X5 0.330914 0.105592 3.133889 0.0086X6 -0.070015 0.025490 -2.746755 0.0177X7 0.002305 0.019087 0.120780 0.9059R-squared 0.999222 Mean dependent var 5153.350Adjusted R-squared 0.998768 S.D. dependent var 2511.950S.E. of regression 88.17626 Akaike info criterion 12.08573Sum squared resid 93300.63 Schwarz criterion 12.48402Log likelihood -112.8573 F-statistic 2201.081Durbin-Watson stat 1.703427 Prob(F-statistic) 0.000000由此可见,该模型可绝系数很高,F检验值2201.081,明显显著。
计量经济学简明教程-07第七章_多重共线性-文档资料
当完全共线时, r2=1,
ˆ ) var( 1
模型的显著性检验失去意义
存在多重共线性时
参数估计值的方差与标准差变大
容易使通过样本计算的 t 值小于临界值, 误导作出参数为0的推断
可能将重要的解释变量排除在模型之外
注意:
除非是完全共线性,多重共线性并不意味 着任何基本假设的违背; 因此,即使出现较高程度的多重共线性, OLS估计量仍具有线性性等良好的统计性质。 问题在于,即使OLS法仍是最好的估计方 法,它却不是“完美的”,尤其是在统计推断 上无法给出真正有用的信息。
(4)研究者主观认知能力的限制导 致设定模型不当
例如,在分析建立我国某省粮食产量现行回 归模型时,考虑引入解释变量:化肥施用量、 灌溉面积、农业生产资金投入,显然、、之 间存在很强的相关关系,这是因为化肥施用 量和灌溉面积都要受农业生产资金投入的影 响。
7.1.3多重共线性的后果
( 1)在完全多重共线性的情形下,采用OLS估计 不能求得参数估计量,即回归分析无法进行。 (2)不完全多重共线性问题所产生的理论后果
7.1.3多重共线性的后果
(3)不完全多重共线性所产生的实际后果
共线变量的系数估计量将有相当大的方差,而且两个解 释变量之间的相关越强(共线程度越高),它们的系数 估计量的方差越大。这意味着不可能对参数做出精确的 估计(因为置信区间很大)。 由于共线变量的系数估计值有很大的方差,在这些系数的 显著性检验中将严重低估值。这样就很容易接受非真零假 设,导致模型的设定错误(摒弃不该摒弃的解释变量)。 参数的 OLS 估计量及其方差均对样本十分敏感,缺乏稳 定性,因而是不可靠的。
7.2.1不显著系数法
当模型估计结果至少出现下列情况之一时,可以认 为可能存在多重共线性。 ① 若R2很大(> 0.8),大部分参数却不显著;
计量经济学 第七章 多重共线性
第七章 多重共线性“多重共线性”一词由R. Frisch 1934年提出,它原指模型的解释变量间存在线性关系。
7.1多重共线性及产生的原因 7.1.1.非多重共线性假定111211212221121111k k T T Tk x x xx xx X x x x ---=如果rk (X 'X ) = rk (X ) < k 或`0X X =称解释变量是完全共线性相关。
在实际经济问题中,完全多重共线性和完全无多重共线性两种极端情况都是极少的,大多数情况是解释变量存在不完全的多重共线性,或者近似的多重共线性,可一表示为:1122110k k x x x u λλλ--++++= 7.1.2.多重共线性的经济解释(1)经济变量在时间上有共同变化的趋势。
如在经济上升时期,收入、消费、就业率等都增长,当经济收缩期,收入、消费、就业率等又都下降。
当这些变量同时进入模型后就会带来多重共线性问题。
0.E+001.E+112.E+113.E+114.E+11808284868890929496980002GDPCONS0.E +001.E +112.E +113.E +114.E +110.0E +005.0E +101.0E +111.5E +112.0E +112.5E +11C O N SG D P o f H o n g K o n g(2)解释变量与其滞后变量同作解释变量。
滞后变量与原因变量在经济意义上没有本质区别,只是时间上的差异,原因变量与解释变量有相关关系,滞后变量也会有相关关系。
(见下图) (3)解释变量之间往往存在密切的关联度。
对同一经济现象的解释变量,往往存在密切的相关关系,如生产函数,资本大,需投入的劳动力也应趆多。
0.E+001.E+112.E+113.E+114.E+11GDP0.E+001.E+112.E+113.E+114.E+110.E+001.E+112.E+113.E+114.E+11GDP(-1)GDP7.2.多重共线性的后果(1) 当 `0X X =,X 为降秩矩阵,则 (X 'X ) -1不存在,βˆ= (X 'X )-1 X 'Y 不可计算。
多重共线性检验方法
多重共线性检验方法在统计学中,多重共线性是指自变量之间存在高度相关性的情况,这会导致回归分析结果的不稳定性和不准确性。
因此,为了确保回归分析结果的可靠性,需要进行多重共线性检验。
本文将介绍多重共线性的概念、影响和常用的检验方法。
多重共线性的概念。
多重共线性是指在回归分析中,自变量之间存在高度相关性的情况。
当自变量之间存在线性相关性时,会导致回归系数估计值的不准确性,增加预测误差,降低模型的解释能力。
因此,多重共线性是回归分析中需要重点关注和解决的问题之一。
多重共线性的影响。
多重共线性会对回归分析结果产生一系列负面影响。
首先,它会导致回归系数估计值的不稳定性,使得对自变量的影响难以准确估计。
其次,多重共线性会增加回归模型的预测误差,降低模型的预测准确性。
此外,多重共线性还会降低回归模型的解释能力,使得模型对数据的解释变得困难。
多重共线性的检验方法。
为了检验回归模型中是否存在多重共线性,通常采用以下几种方法进行检验:1. 方差膨胀因子(VIF)检验,VIF是用来衡量自变量之间相关性的指标,其计算方法为1/(1-R^2),其中R^2为自变量与其他自变量的相关系数的平方。
通常情况下,VIF大于10表示存在严重的多重共线性问题。
2. 特征值检验,通过计算自变量矩阵的特征值来判断是否存在多重共线性。
当自变量之间存在高度相关性时,自变量矩阵的特征值会非常接近于0。
3. 条件数检验,条件数是矩阵的最大特征值与最小特征值的比值,用来衡量矩阵的条件性。
通常情况下,条件数大于30表示存在多重共线性问题。
4. 相关系数和散点图检验,通过观察自变量之间的相关系数和绘制散点图来判断是否存在多重共线性。
当自变量之间存在高度相关性时,它们的相关系数会接近于1,散点图会呈现出明显的线性关系。
结语。
多重共线性是回归分析中需要重点关注的问题,它会对回归模型的稳定性、准确性和解释能力产生负面影响。
因此,在进行回归分析时,需要进行多重共线性检验,并采取相应的方法来解决多重共线性问题,以确保回归分析结果的可靠性和准确性。
多重共线性问题的定义和影响多重共线性问题的检验和解决方法
多重共线性问题的定义和影响多重共线性问题的检验和解决方法多重共线性问题的定义和影响,多重共线性问题的检验和解决方法多重共线性问题是指在统计分析中,使用多个解释变量来预测一个响应变量时,这些解释变量之间存在高度相关性的情况。
共线性是指两个或多个自变量之间存在线性相关性,而多重共线性则是指两个或多个自变量之间存在高度的线性相关性。
多重共线性问题会给数据分析带来一系列影响。
首先,多重共线性会导致统计分析不准确。
在回归分析中,多重共线性会降低解释变量的显著性和稳定性,使得回归系数估计的标准误差变大,从而降低模型的准确性。
其次,多重共线性会使得解释变量的效果被混淆。
如果多个解释变量之间存在高度的线性相关性,那么无法确定每个解释变量对响应变量的独立贡献,从而使得解释变量之间的效果被混淆。
此外,多重共线性还会导致解释变量的解释力度下降。
当解释变量之间存在高度的线性相关性时,其中一个解释变量的变化可以通过其他相关的解释变量来解释,从而降低了该解释变量对响应变量的独立解释力度。
为了检验和解决多重共线性问题,有几种方法可以采用。
首先,可以通过方差膨胀因子(VIF)来判断解释变量之间的相关性。
VIF是用来度量解释变量之间线性相关性强度的指标,其计算公式为:VIFi = 1 / (1 - R2i)其中,VIFi代表第i个解释变量的方差膨胀因子,R2i代表模型中除去第i个解释变量后,其他解释变量对第i个解释变量的线性回归拟合优度。
根据VIF的大小,可以判断解释变量之间是否存在多重共线性。
通常来说,如果某个解释变量的VIF大于10或15,那么可以认为该解释变量与其他解释变量存在显著的多重共线性问题。
其次,可以通过主成分分析(PCA)来降低多重共线性的影响。
PCA是一种降维技术,可以将高维的解释变量压缩成低维的主成分,从而减少解释变量之间的相关性。
通过PCA,可以得到一组新的解释变量,这些新的解释变量之间无相关性,并且能够保留原始解释变量的主要信息。
计量经济学实验报告 多重共线性检验
计量经济学上机实验报告多重共线性检验实验背景近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。
中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。
改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。
为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。
模型•其中,•Yt——第t年全国旅游收入•X2——国内旅游人数(万人)•X3——城镇居民人均旅游支出(元)•X4——农村居民人均旅游支出(元)•X5——公路里程(万公里)•X6——铁路里程(万公里)Y = 0.0639689468*X2 + 0.2098186372*X3 + 5.283346538*X4 - 3.352906602*X5 - 53.38584085*X6 - 2220.150544数据来源中国统计局网站样本区间1994——2009实验过程及结果(一)实证结果Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 15:49Sample: 1994 2009Included observations: 16Variable Coefficient Std. Error t-Statistic Prob.X2 0.063969 0.007714 8.292875 0.0000X3 0.209819 1.319292 0.159039 0.8768X4 5.283347 1.918838 2.753409 0.0204X5 -3.352907 2.376484 -1.410869 0.1886X6 -53.38584 434.6829 -0.122816 0.9047C -2220.151 2210.044 -1.004573 0.3388R-squared 0.994274 Mean dependent var 4270.119Adjusted R-squared 0.991411 S.D. dependent var 2720.860S.E. of regression 252.1678 Akaike info criterion 14.17806Sum squared resid 635886.0 Schwarz criterion 14.46778Log likelihood -107.4245 F-statistic 347.2644Durbin-Watson stat 1.224560 Prob(F-statistic) 0.000000R2很高,F显著,但x3、x5、x6不显著,X5、X6的符号甚至是负的。
(完整版)多重共线性检验与修正
问题:选取粮食生产为例,由经济学理论和实际可以知道,影响粮食生产y的因素有:农业化肥施用量x1,粮食播种面积x2,成灾面积x3,农业机械总动力x4,农业劳动力x5,由此建立以下方程:y=β0+β1x1+β2x2+β3x3+β4x4+β5x5,相关数据如下:解:1、检验多重共线性(1)在命令栏中输入:ls y c x1 x2 x3 x4 x5,则有;可以看到,可决系数R2和F值都很高,二自变量x1到x5的t值均较小,并且x4和x5的t检验不显著,说明方程很可能存在多重共线性。
(2)对自变量做相关性分析:将x1——x5作为组打开,view——covariance analysis——correlation,结果如下:可以看到x1和x4的相关系数为0.96,非常高,说明原模型存在多重共线性2、多重共线性的修正 (1)逐步回归法第一步:首先确定一个基准的解释变量,即从x1,x2,x3,x4,x5中选择解释y 的最好的一个建立基准模型。
分别用x1,x2,x3,x4,x5对y 求回归,结果如下:在基准模型的基础上,逐步将x2,x3等加入到模型中, 加入x2,结果:从上面5个输出结果可以知道,y 对x1的可决系数R2=0.89(最高),因此选择第一个方程作为基准回归模型。
即: Y = 30867.31062 + 4.576114592* x1再加入x3,结果:再加入x4,结果:拟合优度R2=0.961395,显著提高;并且参数符号符合经济常识,且均显著。
所以将模型修改为:Y= -44174.52+ 4.576460*x1+ 0.672680*x2拟合优度R2=0.984174,显著提高;并且参数符号符合经济常识(成灾面积越大,粮食产量越低),且均显著。
所以将模型修改为:Y=-12559.35+5.271306*x1+0.417257*x2-0.212103*x3拟合优度R2=0.987158,虽然比上一次拟合提高了;但是变量x4的系数为-0.091271,符号不符合经济常识(农业机械总动力越高,粮食产量越高),并且x4的t检验不显著。
计量经济学实验教程 实验七 多重共线性模型的检验和处理
目录R值和t值检验 (4)一、2二、解释变量相关系数检验 (5)三、辅助回归检验 (6)四、CS对GDP1、GDP2、GDP3回归多重共线性的处理 (8)五、TZG对ZJ、YY和CZ回归多重共线性的处理 (9)实验七多重共线性模型的检验和处理实验目的:掌握多重共线性模型的检验和处理方法。
R值和t值检验及解释变量相关系数检验,实验要求:了解辅助回归检验和掌握2了解变量变换法和掌握先验信息法。
R值和t值检验、解释变量相关系数检验和辅助回归检验,先验信实验原理:2息法和变量变换法。
实验步骤:一、2R值和t值检验在实验二的一元线性回归模型的估计中,根据广东数据把CS作为应变量,GDPS作为解释变量,进行了一元线性回归,得到结果为CS=0.0802959511276*GDPS+12.5096023259其含义是国内生产总值GDPS每增加一个单位,财政收入CS将增加0.0830个单位。
实际上三个产业对财政收入的贡献是不同的,那么就应该把上述回归改为财政收入CS对三个产业增加值GDP1、GDP2、GDP3进行回归。
进行这个三元回归,得结果为:从结果看判定系数2R很高,方程很显著,但3个参数t检验值两个不显著,有一个较显著,其中一个参数估计值还是负的,不符合经济理论。
显然,出现了严重的多重共线性。
在实验三的多元线性回归模型的估计和检验中,根据广东数据,建立了固定资产投资模型,固定资产投资TZG取决于固定资产折旧ZJ、营业盈余YY和财政支出CZ,进行三元线性回归如下:估计方程的判定系数2R很高,方程显著性F检验也显著,但只有两个参数显著性t检验比较显著,这与很高的判定系数不相称,出现了严重的多重共线性。
二、解释变量相关系数检验根据广东数据,CS对GDP1、GDP2和GDP3的回归中,解释变量GDP1、GDP2和GDP3之间的相关系数为可以看出三个解释变量GDP1、GDP2和GDP3之间高度相关,必然存在严重的多重共线性。
计量经济学多重共线性的检验及修正
经济计量分析实验报告一、实验项目多重共线性的检验及修正二、实验日期三、实验目的对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正。
四、实验内容建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显着性检验、变量的显着性检验,以及参数的置信区间估计。
检验变量是否具有多重共线性并修正。
五、实验步骤1、建立模型。
以国内旅游总花费Y作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。
2、模型设定为:Y—国内旅游总花费(亿元)其中:tX—年底总人口(万人)t1X—旅行社数量(个)t2X—城市公共交通运营数(辆)t3X—城乡居民储蓄存款年末增加值(亿元)t43、对模型进行检验。
4、对变量进行检验,作相关系数矩阵,并逐步对模型进行修正。
六、实验结果1、初步模型及存在的问题多元线性回归模型估计结果如下:SE=(26581.73) (0.230790) (0.108223) (0.013834) (0.020502)t =(3.051494) (-3.120046) (1.403805) ( 3.854988) (0.038020)R2=0.969693 R2=0.957571 F=79.98987模型检验: (1)拟合优度检验:可决系数R 2=0.969693较高,修正的可决系数R 2=0.957571也较高,表明模型拟合较好。
(2)方程总体线性的显着性检验(F):针对043210====H ββββ:,取α=0.05,查自由度为k=4和n-k-1=10的临界值F α(4,10)。
由于F =79.98987 >F α(4,10)=3.48,p 值<0.05,应拒绝0H ,说明回归方程整体显着。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
R值和t值检验 (4)
一、2
二、解释变量相关系数检验 (5)
三、辅助回归检验 (6)
四、CS对GDP1、GDP2、GDP3回归多重共线性的处理 (8)
五、TZG对ZJ、YY和CZ回归多重共线性的处理 (9)
实验七多重共线性模型的检验和处理
实验目的:掌握多重共线性模型的检验和处理方法。
R值和t值检验及解释变量相关系数检验,实验要求:了解辅助回归检验和掌握2
了解变量变换法和掌握先验信息法。
R值和t值检验、解释变量相关系数检验和辅助回归检验,先验信实验原理:2
息法和变量变换法。
实验步骤:
一、2R值和t值检验
在实验二的一元线性回归模型的估计中,根据广东数据把CS作为应变量,GDPS作为解释变量,进行了一元线性回归,得到结果为
CS=0.0802959511276*GDPS+12.5096023259
其含义是国内生产总值GDPS每增加一个单位,财政收入CS将增加0.0830个单位。
实际上三个产业对财政收入的贡献是不同的,那么就应该把上述回归改为财政收入CS对三个产业增加值GDP1、GDP2、GDP3进行回归。
进行这个三元回归,得结果为:
从结果看判定系数2R很高,方程很显著,但3个参数t检验值两个不显著,有一个较显著,其中一个参数估计值还是负的,不符合经济理论。
显然,出现了严重的多重共线性。
在实验三的多元线性回归模型的估计和检验中,根据广东数据,建立了固定
资产投资模型,固定资产投资TZG取决于固定资产折旧ZJ、营业盈余YY和财政支出CZ,进行三元线性回归如下:
估计方程的判定系数2R很高,方程显著性F检验也显著,但只有两个参数显著性t检验比较显著,这与很高的判定系数不相称,出现了严重的多重共线性。
二、解释变量相关系数检验
根据广东数据,CS对GDP1、GDP2和GDP3的回归中,解释变量GDP1、GDP2和GDP3之间的相关系数为
可以看出三个解释变量GDP1、GDP2和GDP3之间高度相关,必然存在严重的多重共线性。
根据广东数据,TZG对ZJ、YY、CZ的回归中,解释变量ZJ、YY、CZ之间的相关系数为
可以看出三个解释变量ZJ、YY、CZ之间也高度相关,特别是ZJ和CZ之间高度相关,必然存在严重的多重共线性。
三、辅助回归检验
根据广东数据,CS对GDP1、GDP2和GDP3的回归中,解释变量GDP1、GDP2和GDP3之间的辅助回归分别为:
三个回归方程均高度显著,特别是第二、三个方程,显示存在严重的多重共线性,特别是GDP2和GDP3之间存在严重的多重共线性,解释变量之间相关系数检验也证实了这一点。
根据广东数据,TZG对ZJ、YY、CZ的回归中,解释变量ZJ、YY、CZ之间的辅助回归分别为:
三个回归方程均高度显著,特别是第一、三个方程,显示存在严重的多重共线性,特别是ZJ和CZ之间存在严重的多重共线性,解释变量之间的相关系数检验也证实了这一点。
通过多重共线性模型的检验试验,发现根据广东数据CS对GDP1、GDP2和GDP3的回归以及根据广东数据TZG对ZJ、YY、CZ的回归都存在严重的多重共线性,现在分别对它们进行处理。
处理方法有多种,但没有一种万无一失的补救措施,只有一些经验的法则。
四、CS对GDP1、GDP2、GDP3回归多重共线性的处理
根据广东数据CS对GDP1、GDP2和GDP3的回归中,发现存在严重的多重共线性,特别是GDP2和GDP3之间存在严重的多重共线性。
假设知道已知信息,
GDP3对CS的贡献是GDP1贡献的3倍,并结合变量变换法,进行如下回归:
得回归方程为
LOG(CS)=0.0693221*LOG(GDP2)+2.372361e-05(GDP1+3*GDP3)+0.432021 基本消除了多重共线性,当然,假设是否正确有待探讨,上述方程也是试了很多次得到的,同学们也可以试其他形式。
五、TZG对ZJ、YY和CZ回归多重共线性的处理
根据广东数据TZG对ZJ、YY和CZ的回归中,发现存在严重的多重共线性,特别是ZJ和CZ之间存在严重的多重共线性。
实际上,在企业折旧资金和营业盈余资金主要是会计账面的区别,资金常常是混在一起用的,不区别折旧资金和营业盈余资金的使用,据此,把ZJ和YY加在一起,进行如下回归:
得回归方程为
TZG=0.461207865212*(ZJ+YY)+1.06966732681*CZ+30.6306268397 基本消除了多重共线性。