平面向量的实际背景基本概念 说课稿 教案
平面向量的实际背景及基本概念说课稿教案.doc
平面向量的实际背景及基本概念说课稿教案.. 平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4.本章教学约需12课时,具体分配如下,仅供参考.标题课时2.1平面向量的实际背景及基本概念1课时2.2向量的线性运算3课时2.3平面向量的基本定理及坐标表示2课时2.4平面向量的数量积2课时2.5平面向量的应用举例2课时本章复习2课时§2.1 平面向量的实际背景及基本概念一、教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.二、教学目标1、知识与技能:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、-省略部分-表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解:根据题意画出示意图,如图6所示.||=100 m,||=100 m,∠ABC=45°+15°=60°,∴△ABC为正三角形.∴||=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1) ABCD中,与是共线向量;(2)单位向量都相等. 活动:教师引导学生画出平行四边形,如图7. 因为AB//CD,所以∥.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O是正六边形ABCDEF的中心,分别写出图中所示向量与相等的量. 活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断与,与是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解:==;==;===. 点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练本例变式一:与向量长度相等的向量有多少个?(11个) 本例变式二:是否存在与向量长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线 B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案:C 点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.(四)课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.(五)word教育资料达到当天最大量API KEY 超过次数限制。
平面向量的实际背景及基本概念 说课稿 教案 教学设计
2.1 平面向量的实际背景及基本概念整体设计教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学目标1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.2.难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.教学准备多媒体课件教学过程导入新课位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图1,如何由点A确定点B的位置?图1一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.推进新课新知探究本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?图2请大家阅读课本2.1.1向量的物理背景与概念;2.1.2向量的几何表示.并回答下面问题:(1)什么是向量?向量和数量有何不同?(2)向量如何表示?(3)什么是零向量和单位向量?(4)什么是平行向量?待学生阅读完后,老师总结并展示课件:1.什么是向量?向量和数量有何不同?(数量:只有大小,没有方向的量)在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量?数量有:质量、身高、面积、体积向量有:重力、速度、加速度提问:角度,海拔,温度是向量吗?2.向量如何表示?(1)几何表示——向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.图3注:以A 为起点,B 为终点的有向线段记为AB →,线段AB 的长度记作|AB →|(读为模); (2)也可以表示为a ,b ,c ,…,大小记作:|a|、|b|、|c |、…说明一:我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置.所以数学中的向量也叫自由向量.如图4:它们都表示同一个向量.图4练习:向量AB →和BA →是同一个向量吗?为什么? 不是,方向不同.探究:向量就是有向线段吗?有向线段就是向量吗? 说明二:有向线段与向量的区别: 有向线段:有固定起点、大小、方向.向量:可选任意点作为向量的起点、有大小、有方向.图5有向线段AB →、CD →是不同的.图6向量AB →、CD →是同一个向量. 3.什么是零向量和单位向量? 零向量:长度为0的向量,记为0; 单位向量:长度为1的向量.注:零向量,单位向量都是只限制大小,不确定方向的.向量之间的关系: 4.什么是平行向量?方向相同或相反的非零向量叫平行向量. 注:1.若是两个平行向量,则记为a ∥b .2.我们规定,零向量与任一向量平行,即对任意向量a ,都有0∥a . 练习:判断下列各组向量是否平行?图7向量的平行与线段的平行有什么区别? 练习:已知下列命题:(1)向量AB →和向量BA →长度相等;(2)方向不同的两个向量一定不平行;(3)向量就是有向线段;(4)向量0=0;(5)向量AB →大于向量CD →.其中正确命题的个数是( )A .0B .1C .2D .3 答案:B例1试根据图8中的比例尺以及三地的位置,在图中分别用向量表示A 地至B 、C 两地的位移,并求出A 地至B 、C 两地的实际距离(精确到1 km).图8请同学们阅读课本2.1.3相等向量与共线向量,并回答问题:什么是相等向量和共线向量?待学生回答后,老师总结并展示课件: 5.什么是相等向量和共线向量? 长度相等且方向相同的向量叫相等向量.a =b =c A 1B 1→=A 2B 2→=A 3B 3→=A 4B 4→图9注:1.若向量a ,b 相等,则记为a =b ;2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.平行向量也叫共线向量.注:任一组平行向量都可以平移到同一直线上. 练习:判断下列命题是否正确:(1)两个向量相等,则它们的起点相同,终点相同;(2)若|a|=|b |,则a =b ;(3)若AB →=DC →,则四边形ABCD 是平行四边形;(4)平行四边形ABCD 中,一定有AB →=DC →;(5)若m =n ,n =k ,则m =k ;(6)若a ∥b ,b ∥c ,则a ∥c .其中不正确命题的个数是( )A .2B .3C .4D .5 答案:C练习:下列说法正确的是( ) A .若|a|>|b|,则a>b B .若|a |=0,则a =0C .若|a|=|b|,则a =b 或a =-bD .若a ∥b ,则a =bE .若a =b ,则|a|=|b |F .若a ≠b ,则a 与b 不是共线向量G .若a =0,则-a =0 答案:EG例2如图10,设O 是正六边形ABCDEF 的中心,分别写出图中与OA →、OB →、OC →相等的向量.图10解:OA →=CB →=DO →, OB →=DC →=EO →, OC →=AB →=ED →=FO →.练习:如图11,EF 是△ABC 的中位线,AD 是BC 边上的中线,在以A 、B 、C 、D 、E 、F 为端点的有向线段表示的向量中请分别写出:图11(1)与向量CD →共线的向量有________个,分别是________________________________; (2)与向量DF →的模一定相等的向量有________个,分别是______________________; (3)与向量DE →相等的向量有________个,分别是__________.答案:(1)7 DC →、DB →、BD →、FE →、EF →、CB →、BC → (2)5 FD →、EB →、BE →、EA →、AE →(3)2 CF →、F A →课堂小结通过本节课的学习,要求大家能够理解向量的概念;掌握向量的几何表示;理解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.。
平面向量的实际背景及基本概念 说课稿 教案 教学设计
向量的实际背景及基本概念一、教学目标知识与技能了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。
过程与方法通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。
情感、态度与价值观通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
二.重点难点重点理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点平行向量、相等向量和共线向量的区别和联系.三、教材与学情分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.四、教学方法问题引导,主动探究,启发式教五、教学过程(一)导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论追不上,猫的速度再快也没用,因为方向错了.教师适时设问如何从数学的角度揭示这个问题的本质?由此展开新课.图1思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.(二)新知探究、提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动 教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB 的两个端点中,规定一个顺序,假设A 为起点、B 为终点,我们就说线段AB 具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB .起点要写在终点的前面.已知AB ,线段AB 的长度也叫做有向线段AB 的长度,记作|AB |.有向线段包含三个要素 起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定. 用有向线段表示向量的方法是1°起点是A,终点是B 的有向线段,对应的向量记作 AB .这里要提醒学生注意AB 的方向是由点A 指向点B,点A 是向量的起点.2°用字母a,b,c,…表示.(一定要学生规范书写 印刷用黑体a,书写用a )3°向量(或a)的大小,就是向量(或a)的长度(或称模),记作 (或 a ).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a >b 就没有意义,而 a > b 有意义.讨论结果 ①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a → 表示,或用表示向量的有向线段的起点和终点字母表示,如AB 、.注意手写体上面的箭头一定不能漏写.②有向线段具有方向的线段就叫做有向线段,其有三个要素起点、方向、长度.向量与有向线段的区别向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出OA=a,OB=b, OC=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出的,只有大小与方向两个要素,与起点的位置无关.(三)应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C 两地的位移.(精确到1 m)图5分析本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解AB表示A地至B地的位移,且AB≈232 m;(AB长度×8 000 000÷100 000)AC表示A地至C地的位移,且AC≈296 m.(AC长度×8 000 000÷100 000) 点评位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练1. 一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解根据题意画出示意图,如图6所示. =100 m, BC=100 m,∠ABC=45°+15°=60°, ∴△ABC为正三角形.∴=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1) ABCD 中,AB 与CD 是共线向量;(2)单位向量都相等.活动 教师引导学生画出平行四边形,如图7. 因为AB//CD,所以AB ∥CD .由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解 (1)正确; (2)不正确. 点评 本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O 是正六边形ABCDEF 的中心,分别写出图中所示向量与、OC 、OB 、OA 相等的量.活动 本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教 书中要求判断OA 与,OB 与是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解 OA =CB =DO ;OB =DC =EO ;OC ===FO .点评 向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练2.本例变式一 与向量长度相等的向量有多少个? (11个)本例变式二是否存在与向量OA长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题入手考虑,假若a与b 不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案C点评对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.六、课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.。
《平面向量的实际背景及基本概念》教案全面版
《平面向量的实际背景及基本概念》教案全面版一、教学目标:1. 了解平面向量的实际背景,理解向量的概念及物理意义。
2. 掌握平面向量的基本运算,包括加法、减法、数乘和共线定理。
3. 能够运用平面向量的知识解决实际问题。
二、教学内容:1. 平面向量的实际背景:引入向量的概念,解释向量在物理学、几何学等领域的应用。
2. 向量的概念:定义向量的基本属性,包括大小、方向和起点。
3. 向量的表示:介绍平面向量的几何表示法和坐标表示法。
4. 向量的加法:定义向量加法,讲解平行四边形法则和三角形法则。
5. 向量的减法:定义向量减法,转化为加法运算。
6. 向量的数乘:定义向量的数乘,讲解数乘对向量大小和方向的影响。
7. 向量共线定理:介绍共线定理及其应用。
三、教学方法:1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念。
2. 利用几何图形和物理情境,帮助学生直观地理解向量的运算。
3. 运用案例分析和练习题,巩固学生对向量知识的理解和应用。
四、教学评估:1. 通过课堂提问,检查学生对向量概念的理解。
2. 布置课后作业,检验学生掌握向量运算的能力。
3. 进行小组讨论和报告,评估学生对向量应用问题的解决能力。
五、教学资源:1. 教案、PPT课件。
2. 几何图形和物理情境的图片或视频。
3. 练习题和案例分析题。
4. 小组讨论和报告的评价标准。
六、教学重点与难点:1. 教学重点:向量的概念、表示方法、基本运算(加法、减法、数乘)及共线定理。
2. 教学难点:向量加法、减法的几何意义,数乘对向量的影响,共线定理的应用。
七、教学步骤:1. 引入向量的概念:通过实际问题,引导学生认识向量,理解向量表示物体运动和力的作用。
2. 向量的表示:讲解几何表示法和坐标表示法,让学生能用图形和坐标表示向量。
3. 向量加法:讲解平行四边形法则和三角形法则,让学生理解向量加法的几何意义。
4. 向量减法:转化为加法运算,让学生掌握减法与加法的联系。
必修4-2.1 平面向量的实际背景及基本概念 说课稿
4、教法学法
采用“启发和探究-建构教学相结合 ”的教学模式
应用规律 总结规律 探索规律 呈现问题
应用规律 总结规律 探索规律 呈现问题
10
4、教法学法
亲身体验法 合作探究法 归纳总结法
11
5、教学流程
创设情境引入课题
设计意图:创设情境让学生进行 直观感知、猜想、思考,激发和 吸引学生学习兴趣,为学习向量 作铺垫.
过程与方法线:通过力和力的分析等实例, 了解向量的实际背景,理解向量相等的含义 ,理解向量的几何表示.
8
3、教学目标、重难点
3-4 教学难点:向量的概念
抓两点,破难点
一抓学生情感和思 维的兴奋点,激发 他们的兴趣,鼓励 学生大胆猜想、积 极探索;
二抓知识选择的切 入点,从学生原有 的认知水平和所需 的知识特点入手, 教师在学生主体下 给予适当的提示和 指导.
3.坐标平面上的 x 轴和 y 轴都是向量 (
)
4.有下列量:①质量;②速度;③力;④密度.其中是向量的
( ).
A.1 个
B.2 个
C.3 个
D.4 个
设计意图:帮助学生辨析理解向量概念.
15
5、教学流程
形成向量的概念:
定义:既有大小又有方向的量叫向量。 注:1.向量两要素: 大小,方向
2.向量与数量的区别:
4-2.1 平面向量的实际背景 及基本概念 第一课时 (说课)
1
说 课 程 序:
1
教材分析
2
学情分析
3 教学目标、重难点
4
教法学法
5
教学流程
6
板书设计
2
1、 教材分析
1-1、教材所处的位置
平面向量的实际背景及基本概念 说课稿 教案 教学设计
1 / 2向量的物理背景与概念一、课题:向量二、教学目标:1.理解向量的概念,掌握向量的二要素(长度、方向);2.能正确地表示向量,初步学会求向量的模长; 3.注意向量的特点:可以平行移动(长度、方向确定,起点不确定)。
三、教学重、难点:1.向量、相等向量、共线向量的概念;2.向量的几何表示。
四、教学过程:(一)问题引入:老鼠由A 向西北方向逃窜,如果猫由B 向正东方向追赶,那么猫能否抓到老鼠?为什么?(二)新课讲解:1.向量定义:既有大小又有方向的量叫做向量。
2.向量的表示方法:(1)用有向线段表示;(2)用字母表示:a说明:(1)具有方向的线段叫有向线段。
有向线段的三要素:起点、方向和长度;(2)向量AB 的长度(或称模):线段AB 的长度叫向量AB 的长度,记作||AB .3.单位向量、零向量、平行向量、相等向量、共线向量的定义:(1)单位向量:长度为1的向量叫单位向量,即||1AB =;(2)零向量:长度为零的向量叫零向量,记作0;(3)平行向量:方向相同或相反的非零向量叫平行向量,记作:////a b c ;(4)相等向量:长度相等,方向相同的向量叫相等向量。
即:a b =;(5)共线向量:平行向量都可移到同一直线上。
平行向量也叫共线向量。
说明:(1)规定:零向量与任一向量平行,记作0//a ;(2)零向量与零向量相等,记作00=;(3)任意二个非零相等向量可用同一条有向线段表示,与有向线段的起点无关。
4.例题分析:例1 如图1,设O 是正六边形ABCDEF 的中心,分别写出图中与向量OA ,OB ,OC 相等的向量。
B (终点) A (起点)1)2 / 2 解:OA CB DO ==EF =;OB DC EO AF ===; OC AB ED FO ===.例2 如图2,梯形ABCD 中,E ,F 分别是腰AB 、DC 的三等分点,且||AD 2=,||5BC =,求||EF . 解:分别取BE ,CF 的中点分别记为M ,N , 由梯形的中位线定理知:1||(||)2MN EF BC =+ 1111||()(||||)2222EF AD MN AD EF BC =+=++∴3159||(2)4224EF =+=∴||3EF =.五、课堂练习:六、课堂小结:七、作业:2)。
平面向量的实际背景及基本概念教学设计( )
第二章平面向量2.1平面向量的实际背景及基本概念教学设计一、内容和内容解析向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,它有着丰富的现实背景和物理背景。
向量是刻画位置的重要数学工具,在诸如卫星定位、飞船设计等领域有着广泛的应用。
向量也是刻画物理量——力、位移、速度、加速度、动量、电场强度这些物理量的数学工具,它体现了数学和物理的天然联系。
向量的学习有助于学生认识数学和实际生活以及物理学科的紧密联系,体会向量在刻画和解决实际问题中的作用,从中感受数学的应用价值。
在教学中需要引导学生对现实原型的观察分析和比较,得出抽象的数学模型,所以本节内容是渗透“数学抽象”很好的载体。
在本节中,学生将了解平面向量丰富的实际背景,理解平面向量的意义,能用向量的语言和方法表达和解决数学和物理中的一些问题。
本节课是一节概念课,在向量基本概念的形成过程中,需要将学生已有的旧知识作为新知识的固着点和生长点,在探究向量的几何表示时让学生经历以物理中学习力的图示,位移的表示,速度的表示为起点,归纳并确定向量的几何表示以及符号表示,而在探索向量间的特殊关系时,引导学生借助图形进行,这样不仅使研究有序,同时更锻炼学生的直观想象能力,有助于感受向量集数与形于一身的特性。
通过类比学习数量的过程,让学生自然的获得新知识的探究方向,在基本概念的学习中,要让学生体验概念的生成过程,获得这些概念的“基本思路”即获得数学研究对象,认识数学新对象的基本方法,用数学的观点刻画和研究现实事物的方法和途径。
二、目标和目标解析1. 通过对平面向量概念的抽象概括,体验数学概念的形成过程,了解平面向量的实际背景;2. 理解平面向量的意义和两个向量相等的含义;3. 理解平面向量的几何表示和基本要素,会用有向线段表示向量,会判断零向量,单位向量,能做一个向量和已知向量相等,能根据图形判定向量是否是平行,共线,相等向量。
4.通过类比“学习数量的过程”而获得研究的内容与方法的启发,再一次体会研究一类新的数学问题的基本思路.学生已经学习过数量,但是形如确定位置的问题,只用数量是无法满足需要的,这就使得学习新知识是自然的有必要的,同时可以引导学生类比“学习数量的过程”明确研究向量概念的基本方向,因此,复习回顾数量的相关知识是有必要的。
【说课稿】人教A版数学必修4 2.1平面向量的实际背景及基本概念 说课稿
《平面向量的实际背景及基本概念》说课稿---人教A版必修4第二章2.1一、教材结构与内容简析1 本节内容在全书及章节的地位:《平面向量的实际背景及基本概念》出现在高中数学必修4第二章第一节。
本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。
2 数学思想方法分析:(1)从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。
(2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。
二、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:1 基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。
2 能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。
3 创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《平面向量的实际背景及基本概念》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。
4 个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。
三、教学重点、难点、关键重点:向量概念的引入及理解零向量,单位向量,平行向量和共线向量的概念. 难点:“数”与“形”完美结合。
关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。
四、教材处理建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。
本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。
其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。
《平面向量的实际背景及基本概念》参考教案11
平面向量的实际背景及基本概念教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学内容《普高中课程标准数学教科书数学必修四》(人教A版)教学目标1.通过力和力的分析等实例,了解向量的实际背景;理解向量的概念。
2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量。
教学重点、难点:1、通过学生自主探究,并在教师的引导下,使学生理解向量的概念,相等向量等相关的概念,向量的几何表示等是本节课的重点.2、难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析向量是近代数学中重要和基本的概念之一,有深刻的几何背景及代数意义,因此向量具有数形结合的特征,是深入学习数学及解决各类数学问题的有效工具,在其他学科中也有广泛应用。
所以向量是历年高考的必考内容,本节课是向量的第一节课,是新知识的一个起点,所以这是十分关键、重要的一节课。
本节教学内容的特点是:概念多,有向量、平行向量、相等向量、单位向量等相关概念及向量的几何表示。
学生在学习过程中,诸多概念容易混淆,它们之间关系不易理清,这些是学习中的难点。
鉴于以上分析,我认为本课的教学方法应采用“指导学生自主学习”方式,以培养学生的阅读能力、独立学习能力,又可以避免满堂灌及学习死记硬背的学习方法。
教学准备:多媒体课件。
教学过程一、导入新课1.我们知道物理中的力、速度,位移等都是矢量,他们具有共同的特征是什么?………………………(学生讨论回答)2.你能举出几个具有以上特征的量吗?岁数、身高、面积具有这些特征吗?3.在数学上,我们把具有这种特征的量称为向量,(引导学生看书P85)二、推进新课提出问题:本课的概念较多,课本中对这些概念的表述清楚,容易读懂,下面请同学们阅读课本,然后对所学的内容作一个归纳,并完成课后的练习师:1.巡查学生读书情况,并为个别学生作指导;2.过后,请一个学生叙述他的知识归纳,并请几个同学作补充。
平面向量的实际背景及基本概念说课稿
“平面向量的实际背景及基本概念”说课稿高一数学组朱雯婷各位领导各位同事大家下午好:很高兴今天能有机会和大家一起在这里交流对说课的理解,我今天说课的题目是普通高中课程标准实验教科书数学必修四第二章第一节平面向量的实际背景及基本概念,我将从四个方面进行具体说明:1.教材内容分析2.教法学法分析3.教学目标4.教学过程。
一教材内容分析:向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。
向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。
向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。
本课是“平面向量”的入门课,具有“统领全局”的作用。
本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力,概念较多,但难度不大,学生可借鉴对物理学中的位移、力、速度等的认识来学习.二.教法学法分析:1.教法分析:本课的教学,我们力求使学生理了解向量概念的背景和形成过程,了解为什么要引入这个概念,怎样定义这个概念,怎样入手研究一个新的问题。
因此,在教学中教师应注意从宏观上为学生勾勒研究框架和总体思路,使学生能“抬头看路”,知道往哪里走,这是起始课的重要任务;微观上,引导学生通过类比,有序地给出向量的定义、讨论向量的表示、定义特殊向量、研究特殊向量的关系。
在引导学生展开对向量及其相关概念的学习过程中,应强调“让学生参与到定义概念的活动中来”,不轻易打断学生的思维和活动,恰如其分地“以问题引导学习”,在质疑——反思的过程中深化概念的理解,使概念的理解成为学生自己主动思维的结果。
《平面向量》优秀说课稿(通用3篇)
《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。
那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。
《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。
本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。
为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。
本节内容也是全章重要内容之一。
二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。
通过精讲多练,充分调动学生自主学习的积极性。
如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。
平面向量的实际背景及基本概念(教学设计)
2.1 平面向量的实际背景及基本概念(教学设计)[教学目标]一、知识与能力:理解向量、零向量、单位向量、平行向量的概念:掌握向量的几何表示,会用字母表示向量;理解相等向量与共线向量的含义.二、过程与方法:通过力和力的分析等实例,了解向量的实际背景;渗透数形结合的数学思想方法.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.[教学重点]向量的概念,向量的几何表示.[教学难点]向量的概念.[教学要求]向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。
了解这些物理背景和几何背景,对于学生理解向量和运用向量解决实际问题都是十分重要的。
[教学过程]一、创设情境,新课引入问题 1:我们已经知道位移是既有大小,又有方向的量。
请再举出一些这样的量.学生思考讨论,举出物理学中既有大小,又有方向的量,例如力,包括重力G、浮力F、拉力F等。
在学生讨论的基础上,抽象概括出向量的概念:数学中,把既有大小,又有方向的量叫做向量,而把那些只有大小,没有方向的量,称为数量(或标量)。
教师提问,学生回答,并再次强调向量的两要素。
有学生总结判断方法。
课堂练习1:判定下列各量中哪些是向量:(1)浮力;(2)密度;(3)质量;(4)路程;(5)面积;(6)电流强度.二、师生互动,新课讲解:向量的表示1.几何表示:用有向线段表示向量,以A为起点,B为终点的向量记作向量AB,注意起点在前,终点在后。
2.字母表示:印刷体可用黑体小写字母,,a b c表示向量,手写时写成带箭头的小写字母,如a。
3.图示表示:4.向量的模向量的长度称为向量的模,如向量AB的模记作||AB,向量a的模记作||a。
零向量:长度等于0的向量叫做零向量,记作0。
单位向量:长度等于1的向量叫做单位向量。
思考:两个向量能否比较大小?两个向量的模能否比较大小?5.平行向量(共线向量)方向相同或相反的非零向量叫做平行向量。
平面向量的实际背景及基本概念说课稿
平面向量的实际背景及基本概念的说课稿今天我说课的容是人教A版必修四第二章第三节《平面向量的实际背景及基本概念》.下面我将从教学容分析、教学目标确定、教法、学法分析和教学过程设计这四个方面来进行说课.一、教材容分析向量是近代数学中重要和基础的数学概念之一,它具有几何形式和代数形式的“双重身份”,因而成为数形结合的桥梁,成为沟通代数、几何、三角的得力工具.向量的概念是从大量的生活实例和丰富的物理素材中抽象出来,反过来它的理论和方法又成为解决生活实际问题和物理学的重要工具.它之所以有用,关键是它具有一套良好的运算性质,可以使复杂问题简单化、直观化,使代数问题几何化、几何问题代数化.正是由于向量所特有的数形二重性,使它成为中学数学知识的一个交汇点,成为联系多项容的媒介,在高中数学教学容中有广泛的应用.本节课是向量的入门课,概念较多,但难度不大,学生可借鉴对物理学中的位移、力、速度等的认识来学习.二、教学目标确定(一)《课程标准》的表述与《教学大纲》的要求对比《课程标准》的表述——通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.《教学大纲》的要求——理解向量的概念,掌握向量的几何表示,了解共线向量.可以看出,《课程标准》注重了概念的产生及发展形成的过程,更关注相等向量,对向量的几何表示在要求上有所降低.所以我将本节课的教学目标确定为:1.从生活实例和物理素材中感受向量以及研究向量的必要性.2.理解平面向量的含义、向量的几何表示,向量的模.3.理解零向量、单位向量、平行向量、相等向量、共线向量的含义,能在图形中辨认相等向量和共线向量.4.从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两个要素及向量可以平移的特点.(二)教学重点、难点分析掌握向量的概念,要抓住向量的本质——大小和方向.尽管学生有着相对比较丰富的物理素材,但对向量的认识还是比较单一的(往往只考虑大小而忽略方向),所以平面向量的含义是本节课的重点也是难点.解决这一难点的关键是多用几何图形中相等的有向线段让学生辨认,加深对向量的理解.同时,相等向量、共线向量的含义及向量的几何表示也是本节课的重点.教学重点:向量、相等向量、共线向量的含义及向量的几何表示.教学难点:向量的含义.三、教法、学法分析1.教法分析:向量的概念是从生活实例和物理素材中抽象出来的,如物理学中的位移、力、速度等概念,其几何背景是有向线段,虽然是抽象的形式符号,教学时依然可以用位移、力等物理量为背景,理解上并不困难.因此教学时要注意把握概念的物理意义,理解有关概念的实际背景,有助于学生认同新概念的合理性.而相等向量、共线向量等概念可以让学生在对向量的两要素(大小、方向)的认识中结合具体案例主动构建,让学生自己得出的概念比简单的告诉印象要深刻得多.总之,为了加深学生对向量涵的理解,应精心选例设问,引导学生的思考置疑.通过直观形象→具体→抽象→再具体的反复过程,正向思考与逆向思考相结合,使学生逐步理解概念,克服思维的负迁移.2.学法分析:学生在物理学科中已经积累了足够多的向量模型,并且在三角函数线部分容的学习中(必修4任意角的三角函数、三角函数的图象与性质)已经接触到有向线段的概念,从而为本节课的学习提供了知识准备;学生间通过一学期的共同学习,其合作探究的习惯和意识已然养成,这就为本节课的学习提供了认知准备.四、教学过程(一)情境创设1.南辕北辙——战国时,有个北方人要到南方的楚国去.他从太行山脚下出发,乘着马车一直往北走去.有人提醒他:“到楚国应该朝南走,你怎能往北呢?”他却说:“不要紧,我有一匹好马!”结果原因2.如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫由B向正向的D处追去,猫能否抓到老鼠?结果原因思考:上述情景中,描绘了物理学中的那些量?咱们还认识类似于上面的量,你能举出来吗?这些量的共同特征是什么?设计意图:为学生得出向量模型(位移、速度、力)提供依据.(二)概念形成观察:如图2中的三个量有什么区别?设计意图:区别数量与向量.明的身高h=2.26 m 拍球的力F=20 N 摩托车的速度v=80 km/h如图21.向量的概念——既有大小又有方向的量叫向量.2.向量的表示方法思考:物理学中如何画物体所受的力?设计意图:用有向线段表示,线段的长度表示力的大小,箭头表示方向.(1)几何表示法:常用一条有向线段表示向量如图所示.(2)符号表示:以A为起点、B为终点的有向线段,记作.(注意起终点顺序).(2) 字母表示法:可表示为.练习.如图4,小船由A地向西北方向航行15海里到达B地,小船的位移如何表示?(用1cm表示5海里)设计意图:向量的概念不是采取简单“告诉”的方式,而是让学生参与构建,虽然会费点周折,但易为学生所理解接受.3.向量的模向量的大小——向量长度称为向量的模. 记作:||.强调:数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有大小,方向,不能比较大小,模是实数,可以比较大小的.4.两个特殊的向量(1) 零向量——长度为零的向量,记作.(2) 单位向量——长度等于1个单位长度的向量.5.向量间的关系观察如图5,你认为向量之间有那些关系?(1)平行向量——方向相同或相反的非零向量,记作∥∥.规定:与任一向量平行.(2)相等向量——长度相等且方向相同的向量,记作.规定:.注意:1°零向量与零向量相等.2°任意两个相等的非零向量,都可以用一条有向线段来表示,并且与有向线段的起点无关.思考:如果我们把一组平行向量的起点全部移到同一点O,这时各向量的终点之间有什么关系?这时它们是不是平行向量?(3)共线向量——平行向量又叫做共线向量.设计意图:本部分容主要启发学生结合向量的两要素自主构建完成,而教师的主要任务则是通过提问的形式“点起学生思维的火花”.(三)拓展应用例1.下列命题中,正确的是( )A.||=||⇒=B.||=||且∥⇒=C.=⇒∥D.∥⇒||=0例2.如图6,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.思考:(1)与向量长度相等的向量有多少个?(2)是否有与向量长度相等,方向相反的向量?(3)与向量共线的向量有哪些?例3.如图7,在45的方格图中,有一个向量,分别以图中的格点为起点和终点作向量.(1) 与向量相等的向量有多少个?(2)与向量长度相等的向量有多少个?练习巩固::P100 –1,2,3,4.(四)归纳小结1.描述一个向量有两个指标——模、方向.2.平行向量不是平面几何中平行线概念的简单移植,这儿的平行是指方向相同或相反的一对向量,与长度无关.3.共线向量是指平行向量,与是否真的画在同一条直线上无关.4.向量的图示,要标上箭头及起、终点,以体现它的直观性版书设计概念练习多媒体。
《平面向量的实际背景及基本概念》教案全面版
《平面向量的实际背景及基本概念》教案全面版一、教学目标1. 让学生理解平面向量的实际背景,了解向量在现实生活中的应用。
2. 掌握平面向量的基本概念,包括向量的定义、表示方法、相等向量、相反向量等。
3. 掌握向量的线性运算,包括加法、减法、数乘等。
4. 培养学生的数学思维能力和实际问题解决能力。
二、教学内容1. 向量的实际背景:介绍向量在物理学、工程学等领域的应用,如力的表示、位移的表示等。
2. 向量的定义:介绍向量的概念,强调向量是有大小和方向的量。
3. 向量的表示方法:介绍向量的表示方法,包括箭头表示法、坐标表示法等。
4. 相等向量、相反向量:介绍相等向量和相反向量的概念,强调它们的性质和运算规律。
5. 向量的线性运算:介绍向量的加法、减法和数乘运算,包括运算规则、运算性质等。
三、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念和运算规律。
2. 利用多媒体辅助教学,通过动画、图片等形式展示向量的实际背景和运算过程。
3. 采用小组讨论、合作学习的方式,培养学生的团队协作能力和交流表达能力。
4. 结合例题讲解,让学生通过实践操作理解和掌握向量的运算方法和技巧。
四、教学评估1. 通过课堂提问、作业批改等方式及时了解学生的学习情况,发现问题并及时解决。
2. 设计一些实际问题,让学生运用所学的向量知识解决,评估学生对知识的掌握程度。
3. 组织课堂讨论,评估学生的参与程度和团队协作能力。
五、教学资源1. 多媒体教学课件:包括向量的实际背景图片、向量运算的动画演示等。
2. 教材:提供相关章节的学习材料,供学生预习和复习使用。
3. 练习题库:提供丰富的练习题,包括填空题、选择题、解答题等,用于巩固所学知识。
4. 参考资料:提供一些相关的研究论文、书籍等,供有兴趣深入学习的学生参考。
六、教学安排1. 课时安排:本章节共需4课时,每课时45分钟。
2. 课堂活动安排:第一课时:向量的实际背景介绍,向量的定义和表示方法学习。
平面向量的实际背景及基本概念说课稿
《2.1平面向量的实际背景及基本概念》教学设计一、教材分析(一)地位与作用本节内容选自人教A版高中数学必修4第二章第一节,是“平面向量”的第一课时,概念较多,但难度不大。
同时学生对其基本概念的正确理解和掌握直接影响到学生对平面向量的后续学习,因此本节课的教学至关重要。
向量是近代数学中重要的基础数学概念之一,它具有几何形式和代数形式的“双重身份”,正是由于向量所特有的数形二重性,使它成为中学数学知识的一个交汇点,成为联系多项内容的媒介,因而成为数形结合的桥梁,成为沟通代数、几何、三角的得力工具。
向量的概念是从大量的生活实例和丰富的物理素材中抽象而来,反之,它的理论和方法又成为解决生活实际问题和的物理学重要工具。
在高中数学教学内容中有广泛的应用。
(二)、教学目标根据本课教材的特点,新课标的教学要求,学生身心发展的需要,本节课确定教学目标如下:1、四个基础:1、基础知识:(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;2、基本技能:通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。
3、基本思想:类比、迁移思想4、基本活动经验:通过学生主动地参与到课堂教学中,提高学生学习的积极性。
体现了在老师的引导下,学生的主体地位和作用。
意识到数学与现实生活是密不可分的,是源于生活,用于生活的。
2、四个能力:引导发现法与讨论相结合。
让学生直观感受培养他们发现、提出问题的能力;以问题串的形式,并通过对向量与数量的类比展开,培养学生认识客观事物的数学本质的能力,培养学生分析、解决问题的能力。
(三)、教学重难点重点:理解向量的概念,向量的几何表示。
掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念难点:向量的概念和共线向量的概念二、学情分析(一)、学生已有知识储备:从学生已经学习过的知识中看,他们已经掌握了数的抽象过程、实数的绝对值(线段的长度)、单位长度、0和1的特殊性。
《平面向量的实际背景及基本概念》参考教案
《平面向量的实际背景及基本概念》参考教案一、教学目标1. 让学生了解平面向量的实际背景,感受向量在实际问题中的应用价值。
2. 掌握平面向量的基本概念,包括向量的定义、表示方法、模长、方向等。
3. 学会用坐标表示平面向量,并理解其几何意义。
二、教学内容1. 平面向量的实际背景:引入向量的概念,通过物理、几何等实际问题,让学生感受向量在描述运动、力、角度等方面的作用。
2. 平面向量的定义及表示方法:讲解向量的定义,引导学生理解向量是具有大小和方向的量。
介绍平面向量的表示方法,包括几何表示和坐标表示。
3. 向量的模长:定义向量的模长,让学生掌握求解向量长度的方法,并理解模长的几何意义。
4. 向量的方向:介绍向量的方向,讲解如何用角度或方向角表示向量的方向。
5. 坐标表示:讲解平面向量的坐标表示方法,让学生学会用坐标表示向量,并理解其几何意义。
三、教学重点与难点1. 教学重点:平面向量的实际背景,向量的基本概念,向量的模长和方向,坐标表示。
2. 教学难点:向量的坐标表示及其几何意义。
四、教学方法1. 采用讲授法,讲解平面向量的基本概念和性质。
2. 借助多媒体课件,展示向量的图形,增强学生对向量概念的理解。
3. 结合实际例子,引导学生运用向量解决实际问题。
4. 开展小组讨论,让学生探讨向量坐标表示的方法和几何意义。
五、教学过程1. 引入向量的概念:通过讲解物理中的力和速度等实际问题,引导学生了解向量的实际背景。
2. 讲解向量的定义及表示方法:介绍向量的定义,讲解几何表示和坐标表示,让学生掌握向量的基本表示方法。
3. 向量的模长:讲解向量长度的求解方法,让学生理解模长的几何意义。
4. 向量的方向:讲解如何用角度或方向角表示向量的方向,引导学生理解向量方向的概念。
5. 坐标表示:讲解向量的坐标表示方法,让学生学会用坐标表示向量,并理解其几何意义。
六、教学练习1. 让学生通过练习题,巩固向量的基本概念,包括向量的定义、表示方法、模长、方向等。
人教版数学必修四 平面向量的实际背景及基本概念 说课
• 4.从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两个要素 (方向、大小)及向量可以平移的特点.
• 学习新课之前,我先介绍两个预备知识。
• 预备知识1:如果由你来简略介绍实数,你准备介绍什么?按 照什么顺序介绍?
• 请看投影.同学们思考的基本线索可能是:什么是实数→几何 表示→特殊的实数→简单的相互关系等.)
• 反过来,向量的理论和方法,又成为解决物理学和工程技术的 重要工具,向量之所以有用,关键是它具有一套良好的运算性 质,通过向量可把空间图形的性质转化为向量的运算,这样通 过向量就能较容易地研究空间的直线和平面的各种有关问题.
• 如果采用全新的思维视角,恰当的教与学,可以使得向量不仅 生动有趣,而且是培养学生创新精神与能力的极佳契机.
• 建议教学时,可以渗透在具体内容中,不必作抽象讲解, 以避免空洞说教.
• §2.1是《平面向量》的最基本内容,教材首先从学生熟知的力、位 移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了 平面向量的有关知识.
• 这节课将直接影响到我们对向量的进一步研究和学习,如向量间 关系、向量的加法、减法以及乘法等运算,还有向量的坐标运算 等.
• 基于以上分析,具体教学时,需要设计一个能让学生开展概括活 动的过程,引导他们经历从具体事例(位移、力、速度等)中领 悟向量概念的本质特征,类比数的概念获得向量概念的定义及表 示,类比数的集合认识“向量的集合”,类比直线(段)的基本关 系认识向量的基本关系.
• 要使学生从中体会到学情分析】从§2.1内容上看,“平面向量的实际背景及基本概念”概 念多但不难理解,但从“概念的形成”的角度看,本节内容,重要的 不是向量的形式化定义及几个相关概念,而是获得数学研究对象、 认识数学新对象的基本方法,蕴含了用数学的观点刻画和研究现实 事物的方法和途径,这是一个带有“本源”性质的过程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4.本章教学约需12课时,具体分配如下,仅供参考.§2.1 平面向量的实际背景及基本概念一、教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.二、教学目标1、知识与技能:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。
2、过程与方法:通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。
3、情感态度与价值观:通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
三、重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.四、教学设想:(一)导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.图1思路 2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.(二)推进新课、新知探究、提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果:①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB的两个端点中,规定一个顺序,假设A为起点、B为终点,我们就说线段AB具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作AB .起点要写在终点的前面. 已知AB ,线段AB 的长度也叫做有向线段AB 的长度,记作|AB |.有向线段包含三个要素:起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B 的有向线段,对应的向量记作:AB .这里要提醒学生注意AB 的方向是由点A 指向点B,点A 是向量的起点.2°用字母a,b,c,…表示.(一定要学生规范书写:印刷用黑体a,书写用a )3°向量AB (或a)的大小,就是向量AB (或a)的长度(或称模),记作|AB |(或|a|). 教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a >b 就没有意义,而|a|>|b|有意义.讨论结果:①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a →来表示,或用表示向量的有向线段的起点和终点字母表示,如AB 、CD .注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c 平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出OA=a,OB=b, OC=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.(三)应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C 两地的位移.(精确到1 km)图5分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:AB表示A地至B地的位移,且|AB|≈232 km;(AB长度×8 000 000÷100 000)AC表示A地至C地的位移,且|AC|≈296 km.(AC长度×8 000 000÷100 000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解:根据题意画出示意图,如图6所示.|AB|=100 m,|BC|=100 m,∠ABC=45°+15°=60°,∴△ABC为正三角形.∴|CA|=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1) ABCD 中,AB 与CD 是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以AB ∥CD .由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O 是正六边形ABCDEF 的中心,分别写出图中所示向量与、OC 、OB 、OA 相等的量.活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断OA 与EF ,OB 与AF 是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念. 解:OA =CB =DO ;OB =DC =EO ;OC =AB =ED =FO .点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练本例变式一:与向量OA 长度相等的向量有多少个? (11个)本例变式二:是否存在与向量OA长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a 与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.(四)课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.(五)。