高考数学一轮复习第五章数列数列求和的七种基本方法试题
数列求和专题,方法大全,7种方法(全面模型+精选例题+习题附答案)精编材料word版
七、数列求和专题1.公式法等差数列求和公式: 11()(1)22n n n a a n n S na d +-==+. 等比数列求和公式:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩.常用求和公式:1123(1)2n n n ++++=+L22221123(1)(21)6n n n n ++++=++L333321123[(1)]2n n n ++++=+L2.分组求和法如果一个数列的通项可以写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差或等比数列或可转化为能够求和的数列,可采用分组求和法.3.错位相减法{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b ⋅的前n 项和时,采用错位相减法求解,在等式的两边同乘以{}n b 的公比,然后错位一项与{}n n a b ⋅的同次项对应相减,转化为特殊数列求和问题.需注意{}n b 共比为参数字母时,要对公比是否为1做讨论.它是等比数列前n 项和公式的推导方法.4.裂项相消法将数列每一项拆成两项或若干项,使得相加后有一些项可以相互抵消,从而求得其和.一般未被消去的项有前后对称的特点.常见裂项方法:①111(1)1n n n n=-++②1111()()n n k k n n k=-++③1111()(21)(21)22121n n n n=--+-+④1111[](1)(2)2(1)(1)(2)n n n n n n n=-+++++1k=⑥1log(1)log(1)logaa an nn+=+-注:(1)裂项常见公式没有必要死记硬背,例如对1(5)n n+裂项,可直接把分式从中间截断,变为115n n-+,再通分求得1155(5)n n n n-=++,与原式比较分母变为5倍,则把裂项后的结果115n n-+前面乘以15就变为与原式相等的裂项,即1111()(5)55n n n n=-++.(2)分母为根式相加形式的裂项,本质就是对分母有理化,即=1k=.(3)对数形式的裂项,考察的是对数的基本计算,利用对数性质巧妙构造相消项,如11log(1)log()log(1)loga a a ann nn n++==+-.5.倒序相加法一个数列中,与首末两项等距离的两项之和等于首末两项之和,那么把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.它是等差数列前n 项和公式的推导方法.6.并项求和法一个数列的前n 项和中,若项与项之间能两两结合求解,则称为并项求和.形如(1)()n n a f n =-的数列,可用此法.7.含有绝对值的求和关键找到正负转折项进行分类讨论.练习题:答案解析:1n=也适合上式,故3104na n=-+令31040na n=-+≥,解得34.7n≤即当34n≤时,0na>;当35n≥时,0na<(1)当34n≤时,12||||||n nT a a a=+++L12na a a=+++L2320522nS n n==-+(2)当35n≥时,12||||||n nT a a a=+++L12343536()()na a a a a a=+++-+++L L342nS S=-23205350222n n=-+综上:223205(34)2232053502(35)22nnn nTnn n⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩数学浪子整理制作,侵权必究。
高考数学一轮复习 第五章 数列 数列求和的七种基本方法试题-人教版高三全册数学试题
数列求和的七种基本方法数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过题目(这些题目基本涵盖了2016年高考卷中的数列求和题)简单介绍数列求和的七种基本方法. 1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列前n 项和n S 的公式,因此以下常用公式应当熟记:221231123(1)2135(21)12222111111122222n n n n n n n n n -++++=+++++-=++++=-++++=-还要记住一些正整数的幂和公式:2233332222)1(41321)12)(1(61321+=++++++=++++n n n n n n n题1 (2016年高考全国卷I 文科第17题)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和.解 (1)在11n n n n a b b nb +++=中选1n =,得1221a b b b +=,即11111,233a a +==. 又因为{}n a 是公差为3的等差数列,所以23(1)31n a n n =+-=-. (2)由(1)得()1131n n n n b b nb ++-+=,即113n n b b +=,得{}n b 是以1为首项,13为公比的等比数列,得113n n b -⎛⎫= ⎪⎝⎭.所以{}n b 的前n 项和111313122313n n n S --==-⋅-.2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 题2 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:31,32,34,,34,32,31---+++n n n m m m有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=题3 求数列{}123n ++++的前n 项和n S .解法1 因为211123(1)()22n n n n n ++++=+=+,所以 22221[(123)(123)]2n S n n =+++++++++1111(1)(21)(1)(1)(2)2626n n n n n n n n ⎡⎤=++++=++⎢⎥⎣⎦ 解法2 因为2331211123(1)C C C (2)2n n n n n n n +++++++=+==-≥ 所以33333333343542121C (C C )(C C )(C C )C (1)(2)(2)6n n n n S n n n n +++=+-+-++-==++≥ 进而可得1(1)(2)(6n S n n n n =++∈N *). 解法3 (倒序相加法)可得1(12)(123)(123)n S n =+++++++++++1(21)(321)[(1)(2)1]n S n n n =++++++++-+-++1212[(1)(1)][(2)(2)(2)](1111)n n n S n n n n n n --=+-+-+-+-+-++++++个个()3个()把它们相加,得31(2)2(2)3(2)(2)n S n n n n n =++++++++1(123)(2)(1)(2)2n n n n n =+++++=++1(1)(2)6n S n n n =++3 裂项相消法题4 (2016年高考某某卷理科第18题)已知{}n a 是各项均为正数的等差数列,公差为d .对任意的*n ∈N ,n b 是n a 和1n a +的等比中项.(1)设22*1,n n n c b b n +=-∈N ,求证:数列{}n c 是等差数列;(2)设1a d =,()2211nkn k k T b ==-∑,*n ∈N ,求证:21112nk kT d =<∑. 解 (1)可得21n n n b a a +=,所以221n n n c b b +=-=121n n n n a a a a +++-=12n da +①()212122n n n n c c d a a d +++-=-=所以数列{}n c 是等差数列.(2)可得1(1)(1)n a a n d d n d nd =+-=+-=,还可得①式在这里也成立,所以()()()2222221234212n n n T b b b b b b -=-++-+++-+=()2422n d a a a +++=()222(2462)21d n d n n =++++=+所以()222211111111111112121212nn n k k k k T d k k d k k d n d ===⎛⎫⎛⎫==-=-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑ 4 分组求和法题5 求11111111111224242n n S -⎛⎫⎛⎫⎛⎫=+++++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解 设11111242n n a -=++++,得1122n n a -=-.所以本题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和: 111111212222422n n n n S n n a n --⎛⎫=-++++=-=-+ ⎪⎝⎭题6 (2016年高考某某卷文科第18题)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.解 (1)设等比数列{}n a 的公比为q ,可得2111112a a q a q -=,解得2q =或1-. 又由61(1)631n a q S q -==-知,1q ≠-,所以61(12)6312a -=-,解得11a =. 得数列{a n }的通项公式是12n n a -=. (2)由题意,可得21)2log 2(log 21)log (log 21212122-=+=+=-+n a a b n n n n n 所以数列})1{(2n n b -的前n 项和为22221234()()b b b b -++-++⋅⋅⋅+222122121222()()22n n n n n b b b b b b b n -+-+=++⋅⋅⋅+== 题7 (2016年高考某某卷文科第17题)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*n ∈N .(1)求通项公式n a ;(2)求数列{}2n a n --的前n 项和.解(1)可得21221421S a a a a ⎧=+=⎨=+⎩,解得1213a a =⎧⎨=⎩.由121n n a S +=+,121n n a S -=+()2n ,可得()()1121212n n n n n a a S S a +--=+-+=,13n n a a +=()2n ≥.又因为213a a =,所以可得数列{}n a 的通项公式为13n n a -=.(2)得b n =|a n -n -2|=|3n -1-n -2|,所以b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,所以b n =3n -1-n -2(n ≥3). 设数列{b n }的前n 项和为T n ,得T 1=2,T 2=3. 当n ≥3时,可得T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112进而可得T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *. 题8 (2016年高考某某卷文科第19题)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0q >,*n ∈N .(1)若2a ,3a ,23+a a 成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离心率为n e ,且22e =,求22212n e e e ++⋅⋅⋅+.解 (1)由S n +1=qS n +1,S n +2=qS n +1+1(n ∈N *),两式相减得a n +2=qa n +1(n ∈N *). 又由S 2=qS 1+1,11a =,可得a 2=qa 1,所以a n +1=qa n (n ∈N *).得数列{a n }是首项为1,公比为q 的等比数列,所以a n =q n -1.再由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3即a 3=2a 2,得q =2.所以数列{a n }的通项公式是a n =2n -1.(2)在(1)的解答中已得a n =q n -1,所以双曲线x 2-y 2a 2n=1的离心率22(1)11nnn e a q .由e 2=1+q 2=2,解得q =3,所以e 21+e 22+…+e 2n =(1+1)+(1+q 2)+…+[1+q2(n -1)] =n +[1+q 2+…+q2(n -1)]=n +q 2n -1q 2-1=n +12(3n-1)5 错位相减法题9 (2016年高考某某卷理科第18题即文科第19题)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+(1)求数列{}n b 的通项公式;(2)令1(1).(2)n n n nn a c b ++=+求数列n C 的前n 项和n T . 解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 又因为a 1=S 1=11,所以a n =6n +5(n ∈N *). 设等差数列{b n }的公差为d .可得⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d 17=2b 1+3d ,解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1. (2)由(1)的解答,可得=(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又由T n =c 1+c 2+…+,得T n =3×[2×22+3×23+…+(n +1)×2n +1]2T n =3×[2×23+3×24+…+(n +1)×2n +2]把它们相减,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+4×(1-2n )1-2-(n +1)×2n +2] =-3n ·2n +2所以T n =3n ·2n +2.6 待定系数法题10 数列}3)12{(n n ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得111[(1)](1,2,,)m m m a b a m d b q m n -⋅=+-⋅=先用错位相减法求数列{}m m a b ⋅的前n 项和n S :21111112111111211112111111{()(2)[(1)]}{()[(2)][(1)]}(1){[(1)]}{()[(1)]}[(1n n n n n n n n n n n S b a a d q a d q a n d q qS b a q a d q a n d q a n d q q S b a dq dq dq a n d q b d dq dq dq a n d q a d d dq b a n q ----=+++++++-=+++++-++--=++++-+-=++++-+-+---+-=11)]n d q a d ⎧⎫-+-⎨⎬⎩⎭111111n n q d dS dn a d q a d b q q ⎛⎫-=+---++ ⎪--⎝⎭ 所以有下面的结论成立:若{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S n n -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解本题: 可设()3n n S an b b =+⋅-(其中,a b 是常数).可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .题11 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅.解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法题12 (1)求证:)1(111132≠--=++++++x x x x x x x n n; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nx x x n n ; (3)求数列{}(21)3nn -⋅的前n 项和n S.解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立. (2)视(1)的结论为两个函数相等,两边求导后即得欲证成立.(3)1(21)3=6(3)3n n nn n --⋅⋅-.在(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又因为数列{}3n的前n 项和为2331-+n .所以数列{}(21)3n n -⋅的前n 项和为33)1(233413)12(611+⋅-=--+⋅-⋅=++n n n n n n S题13 (2008年高考某某卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对x 求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x nn n n n n n ()1(2210 R ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证:(i)0)1(1=-∑=nk knkkC ; (ii)0)1(12=-∑=nk k nkC k ; (iii)1121110+-=++=∑n C k n nk kn .答案:(1)在已知等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由已知等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在已知等式两边在[0,1]上对x 积分后可得欲证.。
2022届高考数学一轮复习第五章数列第四节数列求和学案含解析新人教版
第四节 数列求和热点命题分析学科核心素养本节是高考的热点,其中等差、等比数列的通项与求和、数列与不等式的综合、以数学文化为背景的数列题是高考命题的热点,多以解答题的形式呈现. 本节通过数列求和以与数列的综合应用提升考生的数学运算和逻辑推理核心素养.授课提示:对应学生用书第108页 知识点 数列前n 项和的求法 1.公式法(1)等差数列的前n 项和公式S n =n a 1+a n2=na 1+n n -12d .(2)等比数列的前n 项和公式 ①当q =1时,S n =na 1; ②当q ≠1时,S n =a 11-q n1-q=a 1-a n q1-q.2.分组转化法把数列的每一项分成两项或几项,使其转化为几个能求和的数列,再求解. 3.裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾假如干项. 4.倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. 5.错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. 6.并项求和法一个数列的前n 项和中,可两两结合求解,如此称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. •温馨提醒• 二级结论1.常见的裂项公式 (1)1n n +1=1n -1n +1.(2)12n -12n +1=12⎝⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .2.常见数列的求和公式 (1)12+22+32+…+n 2=n n +12n +16.(2)13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n n +122.必明易错1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进展合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项如此后剩多少项.1.在数列{a n }中,a n =1n n +1,假如{a n }的前n 项和为2 0192 020,如此项数n 为( )A .2 016B .2 017C .2 018D .2 019答案:D2.数列:112,214,318,…,⎝ ⎛⎭⎪⎫n +12n ,…,如此其前n 项和关于n 的表达式为________. 答案:n n +12+1-12n 3.数列{a n }的前n 项和为S n 且a n =n ·2n ,如此S n =________. 答案:(n -1)2n +1+24.(易错题)求1+2x +3x 2+…+nx n -1(x ≠0且x ≠1)的和. 解析:设S n =1+2x +3x 2+…+nx n -1,① 如此xS n =x +2x 2+3x 3+…+nx n ,②①-②得:(1-x )S n =1+x +x 2+…+x n -1-nx n =1-x n 1-x -nx n ,所以S n =1-x n 1-x 2-nx n1-x.授课提示:对应学生用书第109页题型一 分组转化法求和 合作探究[例] 等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2). (1)求数列{a n }的通项公式;(2)假如数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . [解析] (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d ,又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n,2a n =2n . 因为b n =a 2n +2a n -1,所以b n=2n-1+2n,所以数列{b n}的前n项和T n=(1+3+5+…+2n-1)+(2+22+23+…+2n)=n1+2n-12+21-2n1-2=n2+2n+1-2.分组转化法求和的常见类型[对点训练](2021·某某质检)等差数列{a n}的前n项和为S n,且满足S4=24,S7=63.(1)求数列{a n}的通项公式;(2)假如b n=2a n+a n,求数列{b n}的前n项和T n.答案:(1)a n=2n+1 (2)T n=83(4n-1)+n2+2n题型二裂项相消法求和合作探究[例] 数列{a n}满足a1=1, a2n+2=a n+1(n∈N*).(1)求证:数列{a2n}是等差数列,并求出{a n}的通项公式;(2)假如b n=2a n+a n+1,求数列{b n}的前n项和.[解析] (1)证明:由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1,所以数列{a 2n }是以1为首项,2为公差的等差数列,所以a 2n =1+(n -1)×2=2n -1, 又由易得a n >0,所以a n =2n -1(n ∈N *).(2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1, 故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.裂项相消法求和的实质和解题关键裂项相消法求和的实质是将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)裂项原如此:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.[对点训练](2020·高考某某卷)数列{a n },{b n },{}满足a 1=b 1=c 1=1,=a n +1-a n ,+1=b nb n +2,n ∈N *.(1)假如{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值与数列{a n }的通项公式; (2)假如{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+<1+1d,n ∈N *.解析:(1)由b 1+b 2=6b 3,得1+q =6q 2, 解得q =12.由+1=4得=4n -1. 由a n +1-a n=4n -1,得a n =a 1+1+4+…+4n -2=4n -1+23.(2)证明:由+1=b nb n +2,得=b 1b 2c 1b n b n +1=1+d d ⎝⎛⎭⎪⎫1b n -1b n +1,所以c 1+c 2+c 3+…+=1+d d ⎝ ⎛⎭⎪⎫1-1b n +1, 由b 1=1,d >0,得b n +1>0,因此c 1+c 2+c 3+…+<1+1d,n ∈N *. 题型三 错位相减法求和 合作探究[例](2020·高考全国卷Ⅲ)设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜测{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n . [解析](1)a 2=5,a 3a n =2n +1.证明:由可得a n +1-(2n +3)=3[a n -(2n +1)],a n -(2n +1)=3[a n -1-(2n -1)],…,a 2-5=3(a 1-3).因为a 1=3,所以a n =2n +1. (2)由(1)得2n a n =(2n +1)2n ,所以S n =3×2+5×22+7×23+…+(2n +1)×2n .① 从而2S n =3×22+5×23+7×24+…+(2n +1)×2n +1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1,所以S n =(2n -1)2n +1+2.运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错位相减;三是注意符号,相减时要注意最后一项的符号.[对点训练](2021·某某市局部区联考)数列{a n }是等差数列,数列{b n }是等比数列,且a 1=1,a 3+a 4=12,b 1=a 2,b 2=a 5.(1)求{a n }和{b n }的通项公式;(2)设=(-1)n a n b n (n ∈N *),求数列{}的前n 项和S n . 解析:(1)设等差数列{a n }的公差为d , 因为a 1=1,a 3+a 4=12, 所以2a 1+5d =12,所以d =2, 所以a n =2n -1.设等比数列{b n }的公比为q ,因为b 1=a 2,b 2=a 5, 所以b 1=a 2=3,b 2=a 5=9, 所以q =3,所以b n =3n .(2)由(1)知,a n =2n -1,b n =3n ,所以=(-1)n ·a n ·b n =(-1)n ·(2n -1)·3n =(2n -1)·(-3)n , 所以S n =1·(-3)+3·(-3)2+5·(-3)3+…+(2n -1)·(-3)n ,①所以-3S n =1·(-3)2+3·(-3)3+…+(2n -3)·(-3)n +(2n -1)·(-3)n +1,② ①-②得,4S n =-3+2·(-3)2+2·(-3)3+…+2·(-3)n -(2n -1)·(-3)n +1 =-3+2·-32[1--3n -1]1+3-(2n -1)·(-3)n +1=32-4n -12·(-3)n +1. 所以S n =38-4n -18·(-3)n +1.数列求和中的核心素养数学运算——数列求和的创新交汇应用[例](2021·某某重点中学联考)设x =1是函数f (x )=a n +1x 3-a n x 2-a n +2x +1(n ∈N *)的极值点,数列{a n }中满足a 1=1,a 2=2,b n =log 2a n +1,假如[x ]表示不超过x 的最大整数,如此⎣⎢⎡⎦⎥⎤2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019=( ) A .2 017 B .2 018 C .2 019D .2 020解析:由题可知,f ′(x )=3a n +1x 2-2a n x -a n +2,如此f ′(1)=3a n +1-2a n -a n +2=0,即a n +2-3a n +1+2a n =0.a n +2-a n +1=2(a n +1-a n ),a 2-a 1=1,a 3-a 2=2×1=2,a 4-a 3=2×2=22,…,a n -a n -1=2n -2,累加得a n =2n -1,故b n =n .如此2 018b 1b 2+2 018b 2b 3+…+2 018b 2 018b 2 019=2 018×⎝ ⎛⎭⎪⎫11×2+12×3+…+12 018×2 019=2 018×⎝ ⎛⎭⎪⎫1-12 019=2 018-2 0182 019=2 017+12 019,所以⎣⎢⎡⎦⎥⎤2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019=2 017. 答案:A此题的关键是利用累加法求通项后,利用裂项相消法求和.[题组突破]1.(2021·某某摸底)定义n∑i =1nu i为n 个正数u 1,u 2,u 3,…,u n 的“快乐数〞.假如正项数列{a n }的前n 项的“快乐数〞为13n +1,如此数列⎩⎨⎧⎭⎬⎫36a n +2a n +1+2的前2 019项和为( )A.2 0182 019 B .2 0192 020C.2 0192 018D .2 0191 010答案:B2.(2021·某某期末测试)我国古代数学名著《九章算术》中,有长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘以n ,得到一个新数列a 1,a 2,a 3,…,a n ,如此a 1a 2+a 2a 3+…+a n -1a n =( )A .n 2B .(n -1)2C .n (n -1)D .n (n +1) 答案:C。
高考数学专题复习题:数列求和
高考数学专题复习题:数列求和一、单项选择题(共8小题)1.某旅游景区计划将山脚下的一片荒地改造成一个停车场,根据地形,设计7排停车位,靠近山脚的第1排设计9个停车位,从第2排开始,每排设计的停车位个数是上一排的2倍减去8,则设计的停车位的总数是( ) A .172B .183C .286D .3112.在数列{}n a 中,已知112a =,1(2)n n n a na ++=,则它的前30项的和为( ) A .1929B .2829C .2930D .30313.已知{}n a 是递增的等比数列 ,且34528++=a a a ,等差数列{}n b 满足23b a =,542b a =+,85b a =.如果m 为正整数,且对任意的*n ∈N ,都有12231nn b b b m a a a +≥+++,那么m 的最小值为( ) A .8B .7C .5D .44.数列{}n a 的前n 项和为n S ,11a =−,*(1)(N )n n na S n n n =+−∈,设(1)n n n b a =−,则数列{}n b 的前51项之和为( ) A .149−B .49−C .49D .1495.已知递推数列{}n a 满足11a =,()*121n n a a n +=+∈N ,如果n S 是数列{}n a 的前n 项和,那么9S =( ) A .9210−B .9211−C .10210−D .10211−6.如图,某地毯是一系列正方形图案,在4个大正方形中,着色的小正方形的个数依次构成一个数列{a n }的前4项. 记12100111S a a a =++⋅⋅⋅+,则下列结论正确的为( )A .87S >B .87S =C .87S <D .S 与87的大小关系不能确定7.已知首项为2的数列{}n a 满足114522n n n n a a a a ++−−=,当{}n a 的前n 项和16n S ≥时,则n 的最小值为( ) A .40B .41C .42D .438.如图,用相同的球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,且只有1个球;第2堆有2层4个球,其中第1层有1个球,第2层有3个球;依次递推;第n 堆有n 层共n S 个球,第1层有1个球,第2层有3个球,第3层有6个球,依次递推.已知201540S =,则2021n n ==∑( )A .2290B .2540C .2650D .2870二、多选题(共3小题)9.已知函数()f x 满足22()()()()f x y f x y f x f y +−=−,(1)1f =,(2)0f =,下列说法正确的是( ) A .(3)1f =−B .(2024)0f =C .21()x k k =+∈Z 时,()(1)kf x =−D .20241()2024k f k ==∑10.利用不等式“ln 10x x −+≤,当且仅当x =1时,等号成立”可得到许多与n (2n ≥且*n ∈N )有关的结论,则下列结论正确的是( ) A .111ln 1231n n <+++⋅⋅⋅+− B .1111ln 4562n n>+++⋅⋅⋅+C .()()()()12121412e 2n n n+++⋅⋅⋅+>⋅D .e12e 1n n n n n ++⋅⋅⋅+<⋅− 11.“杨辉三角”是二项式系数在三角形中的一种几何排列,从第1行开始,第n 行从左至右的数字之和记为n a ,如{}12112,1214,,n a a a =+==++=⋅⋅⋅的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,...,记为{b n },{b n }的前n 项和记为n T ,则下列说法正确的有( )A .101022S =B .12n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和21122n a +−− C .5766b =D .574150T =三、填空题(共3小题)12.在数列{}n a 中,11a =且1n n a a n +=,当20n ≥时,1231112n n na a a a a λ+++⋅⋅⋅+≤+−,则实数λ的取值范围为__________.13.已知数列{}n a 满足111,21n n a a a n +=+=+,则其前9项和9S =__________,数列1n S ⎧⎫⎨⎬⎩⎭的前2024项的和为__________. 14.函数()[]f x x =称为高斯函数,其中[]x 表示不超过x 的最大整数,如][2.32, 1.92⎡⎤=−=−⎣⎦,已知数列{}n a 满足121,5a a ==,2145n n n a a a +++=,若[]21log ,n n n b a S +=为数列18108n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,则[]2025S =__________.四、解答题(共5小题)15.已知数列{}n a ,{}n b 中,14a =,12b =−,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式. (2)求数列{}n b 的前n 项和n T . 16.已知数列{}n a 满足122n n a a n +−=+. (1)证明:数列{}2n a n −是等差数列.(2)若12a =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是递增的等差数列,它的前三项和为9,前三项的积为15. (1)求数列{}n a 的通项公式. (2)记b n =1(an+1)2,设数列{}n b 的前n 项和为n T ,求证:14n T <.18.已知{}n a 是等差数列,{}n b 是等比数列,且{}n b 的前n 项和为n S ,1122a b ==,()5435a a a =−,在①()5434b b b =−,②12n n b S +=+这两个条件中任选其中一个,完成下面问题的解答.(1)求数列{}n a 和{}n b 的通项公式.(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .19.已知2()cos 2x f x a x =+.(1)若()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,求a 的取值范围.(2)证明:()2*11112111tan1212tan 3tantan 23n nn n n n−++++>∈+N . 参考答案12.(],1−∞13.45,4048202514.202515.(1)23nn b n =−− (2)n T 217222n n n+−−− 16.(1)通过构造()()22111n n a n a n +⎡⎤−+−−=⎣⎦证明即可 (2)1n nS n =+. 17.(1)21n a n =− (2)先求数列{}n b 的通项,放缩后再裂项求和即可证明。
数列求和方法和经典例题
来源:网络转载数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法:一、公式法1、等差数列前n 项和公式2、等比数列前n 项和公式二、拆项分组求和法某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。
三、裂项相消求和法将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。
四、重新组合数列求和法将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和五、错位相减求和法适用于一个等差数列和一个等比数列对应项相乘构成的数列求和典型例题一、拆项分组求和法 例1、求数列1111123,2482n n ⎛⎫+ ⎪⎝⎭,,,,的前n 项和例2、求和:222221111n n x x x x x ⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法例5、求和:()()11113352121n S n n =+++⨯⨯-+ 例6、求数列1111,,,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++⨯⨯+ 例8、数列{}n a 的通项公式11n a n n =++,求数列的前n 项和三、重新组合数列求和法例9、求2222222212345699100-+-+-++-四、错位相减求和法来源:网络转载例10、求数列123,,,,,2482n n 的前n 项和例11、求和:()23230n n S x x x nx x =++++≠。
2018高考文科数学备考方法与策略数列1数列求和的七种基本方法Word版含答案
数列求和的七种基本方法数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过题目(这些题目基本涵盖了2016年高考卷中的数列求和题)简单介绍数列求和的七种基本方法.1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列前n 项和n S 的公式,因此以下常用公式应当熟记:221231123(1)2135(21)12222111111122222nnnnn n n n n 还要记住一些正整数的幂和公式:2233332222)1(41321)12)(1(61321n n nnnn n题1(2016年高考全国卷I 文科第17题)已知n a 是公差为3的等差数列,数列n b 满足12111==3n nnn b b a b b n b 1,,.(1)求na 的通项公式;(2)求n b 的前n 项和.解(1)在11n nnn a b b n b 中选1n,得1221a b b b ,即11111,233a a .又因为na 是公差为3的等差数列,所以23(1)31na n n .(2)由(1)得1131nnn nb b n b ,即113nn b b ,得n b 是以1为首项,13为公比的等比数列,得113n nb .。
高一数列求和的7类题型和15种方法讲义
高一数列求和的7类题型和15种方法讲义数列求和是高中数学中比较重要的一章,其中有七种基本类型的题目,涉及到15种不同的解法。
一、基本概念- 数列:按照一定规律排列的一些数的集合。
- 通项公式:数列中第 $n$ 项和 $n$ 的公式,通常表示为$a_n$。
- 前 $n$ 项和:数列的前 $n$ 项之和,表示为 $S_n$。
二、七类题型1. 等差数列求和- 当公差为常数时使用求和公式:$S_n=\dfrac{(a_1+a_n)\cdot n}{2}$。
- 当公差为 $1$ 时,可以使用去端项的方法简化计算。
2. 等比数列求和- 当公比不为 $1$ 时使用求和公式:$S_n=\dfrac{a_1(1-q^n)}{1-q}$。
- 当公比为 $1$ 时,可以使用 $\mathrm{ln}$ 函数推导出求和公式。
3. 含有等差或等比数列的求和- 先化简为单独的等差数列或等比数列,再使用对应的求和公式。
- 如果难以化简,可以采用分段求和的方法,即按照数列的等差或等比段分段求和,最后相加。
4. 转化为数列求和- 将题目中的问题转化为数列求和的形式,即可以使用已知的求和公式来解决。
5. 凑整法- 将数列的相邻项相加,凑出一个整数,再使用等差或等比数列求和的方法求解。
6. 差分法- 求出相邻项之差的数列后,可以将原数列转化为等差数列或等比数列求和的形式。
7. 数学归纳法- 设定初始值成立,然后证明递推公式成立,最后得出结论。
- 通常适用于复杂问题的证明。
三、15种解法- 求和公式法- 套公式法- 化简求和法- 凑整法- 差分求和法- 分段求和法- 变项积分法- 叠加法- 逆向思维法- 归纳证明法- 凑数法- 分离求和法- 同除法- 矩阵幂法- 洛必达法数列求和问题也是高考的热门考点之一,要多多练习,熟能生巧。
高中数学必修五数列求和方法总结附经典例题和答案详解
数列专项之求和-4(一)等差等比数列前n 项求和1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nnn 项求和② 数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ⋅的求和就要采用此法. ②将数列{}n n a b ⋅的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列{}n n a b ⋅的前n 项和.此法是在推导等比数列的前n 项和公式时所用的方法.例23. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S )0(≠x例24.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.一般地,当数列的通项12()()n ca anb an b =++ 12(,,,a b b c 为常数)时,往往可将na 变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项:设12n a an b an b λλ=-++,通分整理后与原式相比较,根据对应项系数相等得21cb b λ=-,从而可得12211211=().()()()c c an b an b b b an b an b -++-++常见的拆项公式有: ①111(1)1n n n n =-++; ②1111();(21)(21)22121n n n n =--+-+③1a b=-- ④11;m m mn n n C C C -+=- ⑤!(1)!!.n n n n ⋅=+- ⑥])2)(1(1)1(1[21)2)(1(1++-+=+-n n n n n n n…… 例25. 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.例26. 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组.例27. 求数列{n(n+1)(2n+1)}的前n 项和. 例28. 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。
数列求和7种方法(方法全,例子多)
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
高考数学一轮复习: 专题6.4 数列求和(练)
专题6.4 数列求和【基础巩固】一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.【答案】n 2+1-12n【解析】该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.(·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________. 【答案】2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.【答案】-200【解析】S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.(·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 【答案】7【解析】根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.5.(·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 【答案】6【解析】由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.6.(·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1 (a k a k +1)的值为________. 【答案】1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.8.(·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________. 【答案】4n-1【解析】由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.二、解答题9.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.10.(·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ. 令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+12λ+1.由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n-1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2). 代入①得S n =n +32a n -1=n 2+5n 6.【能力提升】11.(·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 【答案】92【解析】a n =1+(n -1)=n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号. ∴S n +8a n 的最小值是92. 12.(·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________. 【答案】7813.(·南京、盐城模拟)已知函数f (x )=⎩⎨⎧1-x -12,0≤x <2,f x -2,x ≥2,若对于正数k n (n ∈N*),直线y=k n x与函数y=f(x)的图象恰有(2n+1)个不同交点,则数列{k2n}的前n项和为________.【答案】n4n+4【解析】函数f(x)的图象是一系列半径为1的半圆,因为直线y=k n x与f(x)的图象恰有(2n+1)个不同交点,所以直线y=k n x与第(n+1)个半圆相切,则2n+1k n1+k2n=1,化简得k2n=14n n+1=14⎝⎛⎭⎪⎫1n-1n+1,则k21+k22+…+k2n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4n+4.14.(·苏、锡、常、镇四市调研)正项数列a1,a2,…,a m(m≥4,m∈N*),满足a1,a2,a3,…,a k-1,a k(k<m,k∈N*)是公差为d的等差数列,a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列.(1)若a1=d=2,k=8,求数列a1,a2,…,a m的所有项的和S m;(2)若a1=d=2,m<2 016,求m的最大值;(3)是否存在正整数k,满足a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m)?若存在,求出k的值;若不存在,请说明理由.又a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列,则a k=a1·2m+1-k,故a1+(k-1)d=a1·2m+1-k,即(k-1)d=a1(2m+1-k-1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1, 则ka 1+12k (k -1)d =3×2a 1×1-2m -k1-2,即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k-1),则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k+k =6×2m +1-k-12,显然k ≠6,则2m +1-k=k +126-k =-1+186-k,。
高考数学一轮复习第五篇数列(必修5)第4节数列求和习题理(含解析)
3.等差数列{an}的通项公式为an=2n+1,其前n项和为Sn,则数列{ }的前10项的和为( C )
答案: -1
8.有穷数列1,1+2,1+2+4,…,1+2+4+…+2n-1所有项的和为.
解析:由题意知所求数列的通项为 =2n-1,故由分组求和法及等比数列的求和公式可得和为 -n=2n+1-2-n.
答案:2n+1-2-n
能力提升(时间:15分钟)
9.已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an+2Sn-1=n,则S2 017的值为( D )
a2=a1+cos 2π=1+1=2,
a3=-a2+cos 3π=-2-1=-3,
a4=a3+cos 4π=-3+1=-2,
a5=-a4+cos 5π=2-1=1,
……
由上可知,数列{an}是以4为周期的周期数列,且a1+a2+a3+a4=-2,
所以S2 017=504(a1+a2+a3+a4)+a1=504×(-2)+1=-1 007.
10.已知等差数列{an}的前n项和Sn满足S3=6,S5= ,则数列{ }的前n项和为( B )
(A)1- (B)2-
(C)2- (D)2-
2023届高考一轮复习数列专题 数列求和常用方法(学生版)
数列专题 数列求和常用方法(学生版)一、公式法1.等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2. 推导方法:倒序相加法.2.等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1. 例1已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列.(1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 跟踪练习1、已知等差数列{a n }的前n 项和为S n ,a 2=0,a 4=1,则S 4=( )A .12B .1C .2D .32、等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项的和为( )A .-24B .-3C .3D .83、(2022·天津模拟)设1+2+22+23+…+2n -1>128(n ∈N *),则n 的最小值为( )A .6B .7C .8D .94、设数列{a n }(n ∈N *)的各项均为正数,前n 项和为S n ,log 2a n +1=1+log 2a n ,且a 3=4,则S 6=( )A .128B .65C .64D .635、已知数列{a n }的前n 项和S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b =( )A .-1B .0C .1D .46、已知等比数列{a n },a 1=1,a 4=18,且a 1a 2+a 2a 3+…+a n a n +1<k ,则k 的取值范围是( ) A .⎣⎡⎦⎤12,23 B .⎣⎡⎭⎫12,+∞C .⎣⎡⎭⎫12,23D .⎣⎡⎭⎫23,+∞ 7、(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是( )A .a n =n (n +1)2B .数列⎩⎨⎧⎭⎬⎫1a n 的前2 020项的和为2 0202 021 C .数列⎩⎨⎧⎭⎬⎫1a n 的前2 020项的和为4 0402 021 D .数列{a n }的第50项为2 5508、(多选)设数列{a n }的前n 项和为S n ,若S 2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有( )A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n9、在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.10、数列{a n }满足:a 1=1,点(n ,a n +a n +1)在函数y =kx +1的图象上,其中k 为常数,且k ≠0.(1)若a 1,a 2,a 4成等比数列,求k 的值;(2)当k =3时,求数列{a n }的前2n 项的和S 2n .11、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;二、分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成的,则求和时可用分组转化法,分别求和后再相加减.例2(2022·北京模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧b n -n 2,n 为偶数,2a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .跟踪练习1、已知数列{a n }的通项公式为a n =2n +n ,若数列{a n }的前n 项和为S n ,则S 8=( )A .546B .582C .510D .5482、(2022·珠海模拟)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项和为( )A .1 009B .1 010C .2 019D .2 0203、若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为__ _____.4、(2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .5、已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数. (1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.6、已知等比数列{a n }的前n 项和为S n ,且S n =2n +a .(1)求a n ;(2)定义[x ]为取整数x 的个位数,如[1]=1,[32]=2,[143]=3,求[a 1]+[a 2]+[a 3]+…+[a 100]的值.7、已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.8、(2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .9、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.10、(2022·青岛模拟)从“①S n =n ⎝⎛⎭⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.11、(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.三、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(1)1n (n +1)=1n -1n +1; (2)1n (n +2)=12⎝⎛⎭⎫1n -1n +2; (3)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; (4)1n +n +1=n +1-n .例3(2022·南京质检)已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.跟踪练习1、(2022·北京模拟)数列{a n }的通项公式为a n =1n +n +1 ,若{a n }的前n 项和为9,则n的值为( )A .576B .99C .624D .625 2、(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n ,数列⎩⎨⎧⎭⎬⎫1a n +1的前n 项和为B n ,则下列结论正确的是( ) A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +143、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =____ ____. 4、已知数列⎩⎨⎧⎭⎬⎫1(2n -1)(2n +1)的前n 项和为T n ,若对任意的n ∈N *,不等式12T n <a 2-a 恒成立,则实数a 的取值范围是__ __.5、(2022·本溪模拟)已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .6、已知数列{a n }的前n 项和为S n ,且S n +1=4a n ,n ∈N *,a 1=1.(1)在下列三个结论中选择一个进行证明,并求{a n }的通项公式; ①数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列; ②数列{}a n +1-2a n 是等比数列;③数列{}S n +1-2S n 是等比数列.(2)记b n =S n +2S n S n +1,求数列{b n }的前n 项和T n . 注:如果选择多个结论分别解答,则按第一个解答计分.7、给出以下三个条件:①4a 3,3a 4,2a 5成等差数列;②∀n ∈N *,点(n ,S n )均在函数y =2x -a 的图象上,其中a 为常数;③S 3=7.请从这三个条件中任选一个将下面的题目补充完整,并求解.设{a n }是一个公比为q (q >0,且q ≠1)的等比数列,且它的首项a 1=1,________.(1)求数列{a n }的通项公式;(2)令b n =2log 2a n +1(n ∈N *),证明:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <12. 注:如果选择多个条件分别解答,则按第一个解答计分.8、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .9、设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34.10、已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n =n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)记b n =2n +1a 2n,求数列{b n }的前n 项和S n .11、(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .12、已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b n b n +2c n,n ∈N *. (1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.13、已知数列{a n }满足a 1=12,1a n +1=1a n+2(n ∈N *). (1)求数列{a n }的通项公式;(2)求证:a 21+a 22+a 23+…+a 2n <12.14、若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式;②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .四、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.例4(2022·江门模拟)已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ;(2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .跟踪练习1、(2022·广东模拟)在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1.(1)求{a n }的通项公式;(2)若b n =3na n,求数列{b n }的前n 项和S n .2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .3、(2022·湖南模拟)某同学在复习数列时,发现曾经做过的一道题目因纸张被破坏,导致一个条件看不清(即下题中“已知”后面的内容看不清),但在(1)的后面保留了一个“答案:S 1,S 3,S 2成等差数列”的记录,具体如下:记等比数列{a n }的前n 项和为S n ,已知_____________.①判断S 1,S 2,S 3的关系;(答案:S 1,S 3,S 2成等差数列)②若a 1-a 3=3,记b n =n 12|a n |,求证:b 1+b 2+…+b n <43. (1)请在本题条件的“已知”后面补充等比数列{a n }的首项a 1的值或公比q 的值(只补充其中一个值),并说明你的理由;(2)利用(1)补充的条件,完成②的证明过程.4设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.5、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.6、设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .7、(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n .8、(2022·重庆调研)在等差数列{a n}中,已知a6=12,a18=36.(1)求数列{a n}的通项公式a n;(2)若________,求数列{b n}的前n项和S n,在①b n=4a n a n+1,②b n =(-1)n·a n,③b n=2n ana 这三个条件中任选一个补充在第(2)问中,并对其求解.9、(2022·沈阳模拟)已知正项数列{a n}的前n项和为S n,且a2n+1=2S n+n+1,a2=2.(1)求数列{a n}的通项公式a n;(2)若b n=a n·2n,数列{b n}的前n项和为T n,求使T n>2 022的最小的正整数n的值.。
高三数学一轮专题复习------- 数列的求和(有详细答案)
数列的求和1. 在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 答案:a n =2n -1解析:由已知{a n }为等差数列,d =a n +1-a n =2, ∴ a n =2n -1.2. 已知数列{a n }中,a 1=1,(n +1)a n +1=na n (n ∈N *),则该数列的通项公式a n =________. 答案:a n =1n解析:a n a 1=a n a n -1×a n -1a n -2×…×a 2a 1=1n .3. (必修5P 44习题2(2)改编) 20n =å(1+2 n )=________.答案:441 解析:20n =å(1+2n)=1+(1+2×1)+(1+2×2)+…+(1+2×20)=21+2×20(1+20)2=441.4. (必修5P 60复习题8(1)改编)数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 4=________.答案:45解析:a n =1n (n +1)=1n -1n +1,∴ S 4=1-12+12-13+13-14+14-15=45.5. (必修5P 51例3改编) 数列112,214,318,4116,…的前n 项和是 __________.答案:S n =n (n +1)2+1-12n解析:S n =(1+2+3+…+n)+⎝⎛⎭⎫12+122+…+12n =n (n +1)2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n (n +1)2+1-12n.1. 当已知数列{a n }中,满足a n +1-a n =f(n),且f(1)+f(2)+…+f(n)可求,则可用累加法求数列的通项a n .2. 当已知数列{a n }中,满足a n +1a n=f(n),且f(1)·f(2)·…·f(n)可求,则可用迭乘法求数列的通项a n .3. (1) a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.(2) 等差数列前n 项和S n =n (a 1+a n )2,推导方法:倒序相加法. (3) 等比数列前n 项和S n =⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.推导方法:错位相减法.4. 常见数列的前n 项和: (1) 1+2+3+…+n =n (n +1)2;(2) 2+4+6+…+2n =n(n +1); (3) 1+3+5+…+(2n -1)=n 2;(4) 12+22+32+…+n 2=n (n +1)(2n +1)6.5. (1) 分组求和:把一个数列分成几个可以直接求和的数列.(2) 拆项相消:有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和.(3) 错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (4) 倒序相加:例如,等差数列前n 项和公式的推导方法. 6. 常见的拆项公式有:(1) 1n (n +1)=1n -1n +1;(2) 1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n (n +1)(n +2)=12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);(4)1a +b =1a -b(a -b).题型1 求简单数列的通项公式 例1 求下列数列{a n }的通项公式: (1) a 1=1,a n +1=a n +2n +1; (2) a 1=1,a n +1=2n a n . 解:(1) a n =n 2(2) a n =2n (n -1)2变式训练求下列数列{a n }的通项公式: (1) a 1=1,a n +1=2a n +1; (2) a 1=1,a n +1=2a n2+a n ;(3) a 1=2,a n +1=a 2n . 解:(1) a n =2n -1 (2) a n =2n +1(3) a n =22n -1 题型2 分组转化求和例2 求下面数列的前n 项和: 112,314,518,7116, … 解:S n =112+314+518+7116+…+⎣⎡⎦⎤(2n -1)+12n =[1+3+5+…+(2n -1)]+⎝⎛⎭⎫12+14+18+…+12n =n[1+(2n -1)]2+12⎝⎛⎭⎫1-12n 1-12=n 2-12n +1.备选变式(教师专享)已知a n =⎩⎪⎨⎪⎧5n +1,n 为奇数,2n 2,n 为偶数.(1) 求数列{a n }的前10项和S 10;(2) 求数列{a n }的前2k 项和S 2k .解:(1) S 10=(6+16+26+36+46)+(2+22+23+24+25) =5(6+46)2+2(1-25)1-2=192.(2) 由题意知数列{a n }的前2k 项中,k 个奇数项组成首项为6,公差为10的等差数列,k 个偶数项组成首项为2,公比为2的等比数列.∴ S 2k =[6+16+...+(10k -4)]+(2+22+ (2))=k[6+(10k -4)]2+2(1-2k )1-2=5k 2+k +2k +1-2.题型3 裂项相消求和例3 求下面各数列的前n 项和: (1)11×5,13×7,15×9,17×11,… (2) 2222-1,4242-1,6262-1,8282-1,…解:(1) ∵ a n =1(2n -1)(2n +3)=14(12n -1-12n +3),∴ S n =14(1-15+13-17+15-19+…+12n -3-12n +1+12n -1-12n +3)=14(1+13-12n +1-12n +3)=n (4n +5)3(2n +1)(2n +3). (2) ∵ a n =(2n )2(2n -1)(2n +1)=1+1(2n -1)(2n +1)=1+12⎝⎛⎭⎫12n -1-12n +1,∴ S n =n +12⎝⎛⎭⎫1-12n +1=2n (n +1)2n +1. 备选变式(教师专享) 求1+11+2+11+2+3+…+11+2+3+…+n .解:∵a k =2⎝⎛⎭⎫1k -1k +1,∴S n =2n n +1.题型4 倒序相加求和例4 设f(x)=13x +3,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.解:∵ f(x)+f(1-x)=33,∴ 原式=1333. 备选变式(教师专享)一个等差数列前4项之和为26,最末4项之和为110,所有项之和为187,则它的项数为________.答案:11解析:∵a 1+a 2+a 3+a 4=26,a n +a n -1+a n -2+a n -3=110,∴a 1+a n =26+1104=34.又S n =n (a 1+a n )2=187,∴n =11. 题型5 错位相减求和 例5 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列.(1) 求数列{a n }的通项公式;(2) 设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 解:(1) 设{a n }公比为q ,由题意得q>0,且⎩⎪⎨⎪⎧a 2=2a 1+3,3a 2+5a 3=2a 4,即⎩⎪⎨⎪⎧a 1(q -2)=3,2q 2-5q -3=0, 解得⎩⎪⎨⎪⎧a 1=3,q =3或⎩⎨⎧a 1=-65,q =-12(舍),所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N (2) 由(1)可得b n =log 3a n =n ,所以a n b n =n·3n . 所以S n =1·3+2·32+3·33+…+n·3n ,所以3S n =1·32+2·33+3·34+…+n·3n +1,两式相减得,2S n =-3-(32+33+…+3n )+n·3n +1=-(3+32+33+…+3n )+n·3n +1=-3(1-3n )1-3+n ·3n +1=3+(2n -1)·3n +12,所以数列{a n b n }的前n 项和S n =3+(2n -1)·3n +14.备选变式(教师专享)已知数列{a n }的前n 项和为S n =3n -1. (1) 求数列{a n }的通项公式;(2) 若b n =log 13(S n +1),求数列{b n a n }的前n 项和T n .解:(1) 当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -1,综上所述,a n =2×3n -1.(2) b n =log 1(S n +1)=log 13n =-n ,所以b n a n =-2n ×3n -1,T n =-2×1-4×31-6×32-…-2n ×3n -1,3T n =-2×31-4×32-…-2(n -1)×3n -1-2n ×3n , 相减,得-2T n =-2×1-2×31-2×32-…-2×3n -1+2n ×3n=-2×(1+31+32+…+3n -1)+2n ×3n , 所以T n =(1+31+32+…+3n -1)-n ×3n=1-3n1-3-n ×3n=-(2n -1)×3n +12,n ∈N *.1. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N ).若b 3=-2,b 10=12,则a 8=________.答案:3解析:已知b n =2n -8,a n +1-a n =2n -8,由叠加法(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=-6-4-2+0+2+4+6=0a 8=a 1=3.2. (2013·大纲)等差数列{a n }中,a 7=4,a 19=2a 9. (1) 求{a n }的通项公式; (2) 设b n =1na n,求数列{b n }的前n 项和S n . 解:(1) 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ).解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12. (2) b n =1na n =2n (n +1)=2n -2n +1,所以S n =⎝⎛⎭⎫21-22+⎝⎛⎭⎫22-23+…+⎝⎛⎭⎫2n -2n +1 =2n n +1. 3. (2013·湖南)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N(1) 求a 1,a 2,并求数列{a n }的通项公式; (2) 求数列{na n }的前n 项和.解:(1) ∵ S 1=a 1.∴ 当n =1时,2a 1-a 1=S 1·S 1a 1≠0,a 1=1. 当n>1时,a n =S n -S n -1=2a n -a 1S 1-2a n -1-a 1S 1=2a n -2a n -1a n =2a n -1{a n }是首项为a 1=1公比为q =2的等比数列,a n =2n -1,n ∈N *.(2) 设T n =1·a 1+2·a 2+3·a 3+…+n·a n qT n =1·qa 1+2·qa 2+3·qa 3+…+n·qa n qT n =1·a 2+2·a 3+3·a 4+…+n·a n +1, 上式左右错位相减:(1-q)T n =a 1+a 2+a 3+…+a n -na n +1=a 11-q n1-q -na n +1=2n -1-n·2nT n =(n -1)·2n +1,n ∈N *.4. 已知等差数列{a n }前三项之和为-3,前三项积为8. (1) 求等差数列{a n }的通项公式;(2) 若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.解:(1) 设公差为d ,则⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∴ a n =-3n +5或a n =3n -7.(2) 当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4成等比数列,满足条件.当|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.n =1,S 1=4;n =2时,S 2=5;当n ≥3时,S n =|a 1|+…+|a n |=32n 2-112n +10.又n =2满足此式,∴ S n =⎩⎪⎨⎪⎧4(n =1),32n 2-112n +10(n >1).1. 已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,求a 1+a 2+a 3+a 4+…+a 99+a 100的值.解:由题意得a 1+a 2+a 3+a 4+…+a 99+a 100=0+2+2+4+4+…+98+98+100=2(2+4+6+…+98)+100=2×49×(2+98)2+100=5 000.2. 已知各项均为正数的数列{a n }的前n 项的乘积T n =⎝⎛⎭⎫14n 2-6n (n ∈N *),b n =log 2 a n ,则数列{b n }的前n 项和S n 取最大时,n =________.答案:3解析:当n =1时,a 1=T 1=45=210,当n ≥2时,a n =T n T n -1=⎝⎛⎭⎫14n 2-6n -(n -1)2+6(n -1)=⎝⎛⎭⎫142n -7=214-4n,此式对n =1也成立,所以a n =214-4n,从而b n =log 2a n =14-4n ,可以判断数列{b n }是首项为10,公差为-4的等差数列,因此S n =-2n 2+12n ,故当n =3时,S n 有最大值.3. 已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f(x)=x 2+2x 的图象上,且在点P n (n ,S n )处的切线的斜率为k n .(1) 求数列{a n }的通项公式;(2) 若b n =2k n a n ,求数列{b n }的前n 项和T n .解: (1) ∵ 点P n (n ,S n )在函数f(x)=x 2+2x 的图象上,∴ S n =n 2+2n(n ∈N *),当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=3满足上式,所以数列{a n }的通项公式为a n =2n +1.(2) 由f(x)=x 2+2x ,求导得f′(x)=2x +2. ∵ 在点P n (n ,S n )处的切线的斜率为k n , ∴ k n =2n +2,∴ b n =2k n a n =4·(2n +1)·4n ,∴ T n =4×3×4+4×5×42+4×7×43+…+4×(2n +1)×4n ,用错位相减法可求得T n =6n +19·4n +2-169.4. 已知等差数列{a n }是递增数列,且满足a 4·a 7=15,a 3+a 8=8. (1) 求数列{a n }的通项公式;(2) 令b n =19a n -1a n(n ≥2),b 1=13,求数列{b n }的前n 项和S n .解:(1) 根据题意:a 3+a 8=8=a 4+a 7,a 4·a 7=15,知:a 4,a 7是方程x 2-8x +15=0的两根,且a 4<a 7,解得a 4=3,a 7=5,设数列{a n }的公差为d ,由a 7=a 4+(7-4)·d ,得d =23.故等差数列{a n }的通项公式为a n =a 4+(n -4)·d =3+23(n -4)=2n +13.(2) 当n ≥2时,b n =19a n -1a n =19⎝⎛⎭⎫23n -13⎝⎛⎭⎫23n +13=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.又b 1=13=12⎝⎛⎭⎫1-13, ∴ S n =b 1+b 2+…+b n=12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1=n 2n +1.1. a n 的两种常见变形a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)(累加法) a n =a 1·a 2a 1·a 3a 2·…a na n -1(累乘法)2. 数列求和的方法技能① 倒序相加 ② 错位相减 ③ 分组求和 ④ 拆项相消3. 方程思想、函数思想、化归思想、整体思想、分类讨论等数学思想在数列中均得到广泛应用,尤其是运用化归的思想将问题转化为等差、等比数列问题来研究是解决数列综合问题的最基本思维方法.。
2022届高考数学(理)一轮总复习检测:第五章 第四节 数列求和 Word版含解析
第四节 数列求和【最新考纲】 1.把握等差、等比数列的前n 项和公式.2.把握特殊的非等差、等比数列的几种常见的求和方法.1.公式法直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.倒序相加法假如一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.3.错位相减法假如一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形: ①1n (n +1)=1n -1n +1; ②1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n.5.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则可用分组求和法求和.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f(n)类型,可接受两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.1.(质疑夯基)推断下列结论的正误.(正确的打“√”,错误的打“×”)(1)假如数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可依据错位相减法求得.( )(4)假如数列{a n }是周期为k(k 为大于1的正整数)的周期数列,那么S km =mS k .( )答案:(1)√ (2)√ (3)× (4)√2.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 6等于( )A.142B.45C.56D.67 解析:由于a n =1n (n +1)=1n -1n +1,所以S 6=1-12+12-13+…+16-17=1-17=67. 答案:D3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2 D .2n +n 2-2解析:S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1))=2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.答案:C4.(2022·“江南十校”联考)若数列{a n }为等比数列,且a 1=1,q =2,则T n=1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ) A .1-14n B .1-12nC.23⎝ ⎛⎭⎪⎫1-14nD.23⎝ ⎛⎭⎪⎫1-12n 解析:a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n 答案:C5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 解析:设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .答案:4-n+4 2n●两种思路解决非等差、等比数列的求和,主要有两种思路1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.2.不能转化为等差或等比数列的数列,往往通过裂项相消法、倒序相加法等来求和.●两点留意利用裂项相消法求和的留意事项1.抵消后并不肯定只剩下第一项和最终一项,也有可能前面剩两项,后面也剩两项;2.将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n}是等差数列,则1a n a n+1=1d⎝⎛⎭⎪⎫1a n-1a n+1,1a n a n+2=12d⎝⎛⎭⎪⎫1a n-1a n+2.]一、选择题1.数列{1+2n-1}的前n项和为()A.1+2n B.2+2nC.n+2n-1 D.n+2+2n解析:由题意得a n=1+2n-1,所以S n=n+1-2n1-2=n+2n-1.答案:C2.已知{a n}是等比数列,a2=2,a5=14,则a1a2+a2a3+…+a n a n+1=() A.16(1-4-n) B.16(1-2-n)C.323(1-4-n) D.323(1-2-n)解析:由于q3=a5a2=18,所以q=12,a1=4,从而数列{a n a n+1}是以8为首项,14为公比的等比数列,其前n项和T n=8⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫14n1-14=323(1-4-n).答案:C3.(2022·太原一模)已知数列{a n}的通项公式为a n=(-1)n·(2n-1)·cosnπ2+1(n∈N*),其前n项和为S n,则S60=()A.-30 B.-60C .90D .120解析:由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k -1=1;当n =4k(k ∈N *)时,a n =a 4k =8k.∴a 4k -3+a 4k -2+a 4k -1+a 4k =8,∴S 60=8×15=120.答案:D4.已知函数f(x)=x a的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 013=( )A. 2 012-1B. 2 013-1C. 2 014-1D. 2 014+1解析:由f(4)=2得4a =2,解得a =12,则f(x)=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 013=a 1+a 2+a 3+…+a 2 013=(2-1)+(3-2)+(4-3) +…+( 2 014- 2 013)= 2 014-1. 答案:C5.已知等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n ,则数列lg a 1,2lg a 2,22lg a 3,23lg a 4,…,2n -1lga n ,…的前n 项和S n 等于( )A .n ·2nB .(n -1)·2n -1-1C .(n -1)·2n +1D .2n +1解析:∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,∴a 2n =102n ,即a n =10n ,∴2n -1lg a n =2n -1lg 10n =n·2n -1, ∴S n =1+2×2+3×22+…+n·2n -1,① 2S n =1×2+2×22+3×23+…+n·2n ,②∴①-②得-S n =1+2+22+…+2n -1-n·2n =2n -1 -n·2n =(1-n)·2n -1,∴S n =(n -1)·2n +1. 答案:C二、填空题6.数列{a n }的通项公式a n =⎩⎨⎧5n +1 n 是奇数,2n 2 n 是偶数,则这个数列的前2m 项的和是________.解析:数列{a n }的奇数项组成首项为6,公差为10的等差数列,偶数项组成首项为2,公比为2的等比数列,则S 2m =6m +m (m -1)2×10+2(1-2m )1-2=5m 2+m +2m +1-2.答案:5m 2+m +2m +1-27.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析:由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20,∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.答案:68.对于每一个正整数n ,设曲线y =x n +1在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99=________.解析:曲线y =x n +1在点(1,1)处的切线方程为y =(n +1)(x -1)+1,即y =(n +1)x -n ,它与x 轴交于点(x n ,0),则有(n +1)x n -n =0⇒x n =nn +1,∴a n =lg x n =lg nn +1=lg n -lg(n +1),∴a 1+a 2+…+a 99=(lg 1-lg 2)+(lg 2-lg 3)+…+(lg 99-lg 100)=lg 1-lg 100=-2,答案:-2 三、解答题9.(2021·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎨⎧a 1=1,a 4=8或⎩⎨⎧a 1=8,a 4=1(舍去).由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.(2)S n =a 1(1-q n )1-q=2n -1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.10.(2021·山东卷)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)由于2S n =3n +3,所以2a 1=3+3,故a 1=3. 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1, 即a n =3n -1.所以a n =⎩⎨⎧3, n =1,3n -1, n ≥2.(2)由于a n b n =log 3a n ,所以b 1=13.当n ≥2时,b n =31-n log 33n -1=(n -1)·31-n . 所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n =13+[1×3-1+2×3-2+…+(n -1)×31-n ],所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n ], 两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n, 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n.数列中的高考热点题型数列在中学数学中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要连接点,本专题解答题的热点题型有:一是等差、等比数列的综合问题;二是数列与函数的综合问题;三是数列与不等式的综合问题.难度中等.热点1 等差、等比数列的综合问题解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.并留意方程思想的应用,等差(比)数列总共涉及五个量a ,a n ,S n ,d(q),n ,“知三求二”.(2021·湖北卷)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解:(1)由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎨⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+…+2n -32n -1+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.1.若{a n }是等差数列,则{ba n }(b >0且b ≠1)是等比数列;若{a n }是正项等比数列,则{log b a n }(b >0且b ≠1)是等差数列.2.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系,以便实现等差、等比数列之间的相互转化.【变式训练】 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式.(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解:(1)取n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0.若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0(n ≥1),若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ.综上,当a 1=0时,a n =0;当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)知,b n =lg1002n=2-nlg 2. 所以数列{b n }是单调递减的等差数列{公差为-lg 2}. b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg10027=lg 100128<lg 1=0. 故数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.热点2 数列与函数的综合问题(满分现场)数列与函数的综合一般体现在两个方面:一是以数列的特征量n ,a n ,S n 等为坐标的点在函数图象上,可以得到数列的递推关系;二是数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(经典例题)(本小题满分12分)(2022·四川卷)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .规范解答:(1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n.4分(2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.6分所以,d =a 2-a 1=1. 从而a n =n ,b n =2n ,8分所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -110分因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n.所以,T n =2n +1-n -22n .12分【满分规章】(1)本题的易失分点是:①不能由题意正确列出a 7、a 8的关系式;②不能正确利用导数的几何意义求解; ③不会利用错位相减法求T n . (2)满分规章:①明确点在函数图象上,点的坐标适合函数解析式. ②明确导数的几何意义是曲线在切点处的切线斜率.③若{a n }是等差数列,{b n }是等比数列,可用错位相减法求数列{a n b n }前n 项的和.【构建模板】错位相减法求和的一般步骤第一步:确定通项,依据已知条件求a n ,b n .其次步:巧分拆,即新的数列分解为等差数列和等比数列的乘积,并确定等比数列的公比.第三步:构差式,即写出S n 的表达式,然后乘以公比,两式作差.第四步:依据差式的特征精确求和.第五步:反思回顾.查看关键点,易错点及解题规范.解决此类问题要抓住一个中心——函数,两个亲密联系:一是数列和函数之间的亲密联系,数列的通项公式是数列问题的核心,函数的解析式是争辩函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行机敏的处理.【变式训练】已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{a n}的前n项和为S n,点(n,S n)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{a n}的通项公式;(2)设b n=3a n a n+1,试求数列{b n}的前n 项和T n.解:(1)设二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b.由于f′(x)=6x-2,得a=3,b=-2,所以f(x)=3x2-2x.又由于点(n,S n)(n∈N*)均在函数y=f(x)的图象上,所以S n=3n2-2n.当n≥2时,a n=S n-S n-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=3×12-2×1=6×1-5,所以a n=6n-5(n∈N*).(2)由(1)得b n=3a n a n+1=3(6n-5)[6(n+1)-5]=12·⎝⎛⎭⎪⎪⎫16n-5-16n+1,故T n=12⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫1-17+⎝⎛⎭⎪⎫17-113+…+⎝⎛⎭⎪⎪⎫16n-5-16n+1=12(1-16n+1)=3n6n+1.热点3数列与不等式的综合问题数列与不等式相结合问题的考查方式主要有三种:一是推断数列中的一些不等关系;二是以数列为载体,考查不等式恒成立问题;三是考查与数列有关的不等式的证明.(2021·安徽卷)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=x21x23…x22n-1,证明:T n≥14n.解:(1)y′=(x2n+2+1)′=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y =0,得与x 轴交点的横坐标x n =1-1n +1=nn +1.所以数列{x n }的通项公式x n =nn +1.(2)证明:由题设和(1)中的计算结果知,T n =x 21x 23…x 22n -1=⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫342…⎝ ⎛⎭⎪⎪⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,由于x 22n -1=⎝ ⎛⎭⎪⎪⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n, 所以T n >⎝ ⎛⎭⎪⎫122×12×23×…×n -1n =14n .综上可得,对任意的n ∈N *,均有T n ≥14n.解决数列与不等式的综合问题时,假如是证明题要机敏选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;假如是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法等.总之解决这类问题把数列和不等式的学问奇妙结合起来综合处理就行了.【变式训练】 已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m)a n +1<0恒成立,试求m 的取值范围.解:(1)设等比数列{a n }的首项为a 1,公比为q. 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20,∴⎩⎨⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎨⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎨⎧q =2,a 1=2.∴a n =2n .(2)b n =2n ·log 122n =-n·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①—②,得S n =2+22+23+…+2n -n ×2n +1 =2(1-2n )1-2-n ×2n +1=2n +1-n ×2n +1-2.由S n +(n +m)a n +1<0,得2n +1-n ×2n +1-2+n ×2n +1+m ×2n +1<0对任意正整数n 恒成立, ∴m ·2n +1<2-2n +1,即m <12n -1对任意正整数n 恒成立.∵12n -1>-1,∴m≤-1,即m的取值范围是(-∞,-1].1.(2021·浙江卷)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+12b2+13b3+…+1n b n=b n+1-1(n∈N*).(1)求a n与b n;(2)记数列{a n b n}的前n项和为T n,求T n.解:(1)由a1=2,a n+1=2a n,得a n=2n(n∈N*).由题意知:当n=1时,b1=b2-1,故b2=2.当n≥2时,1n b n=b n+1-b n.整理得b n+1n+1=b nn,所以b n=n(n∈N*),(2)由(1)知a n b n=n·2n,因此T n=2+2·22+3·23+…+n·2n,2T n=22+2·23+3·24+…+n·2n+1,所以T n-2T n=2+22+23+…+2n-n·2n+1.故T n=(n-1)2n+1+2(n∈N*).2.(2021·四川卷)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n的前n项和为T n,求使得|T n-1|<11 000成立的n的最小值.解:(1)由已知S n=2a n-a1,有a n=S n-S n-1=2a n-2a n-1(n≥2),则a n=2a n-1(n≥2),所以q=2.从而a2=2a1,a3=2a2=4a1.又由于a1,a2+1,a3成等差数列,即a1+a3=2(a2+1),所以a1+4a1=2(2a1+1),解得a1=2.所以数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(2)由(1)得1a n=12n,所以T n=12+122+…+12n=12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫12n1-12=1-12n.由|T n-1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n-1<11 000,即2n>1 000.由于29=512<1 000<1 024=210,所以n≥10.于是使|T n-1|<11 000成立的n的最小值为10.3.已知数列{a n}的前n项和为S n,满足S n+2n=2a n.(1)证明:数列{a n+2}是等比数列,并求数列{a n}的通项公式a n;(2)若数列{b n}满足b n=log2(a n+2),设T n是数列⎩⎨⎧⎭⎬⎫b na n+2的前n项和,求证:T n <32.证明:(1)由S n +2n =2a n ,得S n =2a n -2n ,① 当n =1时,S 1=2a 1-2,则a 1=2,当n ≥2,n ∈N *时,S n -1=2a n -1-2(n -1),② ①-②,得a n =2a n -2a n -1-2,即a n =2a n -1+2, ∴a n +2=2(a n -1+2), 又a 1+2=4≠0,则a n +2≠0.∴{a n +2}是以a 1+2=4为首项,以2为公比的等比数列. ∴a n +2=4·2n -1,∴a n =2n +1-2. (2)由b n =log 2(a n +2)=log 22n +1=n +1, 得b n a n +2=n +12n +1, 则T n =222+323+…+n +12n +1,③12T n =223+…+n2n +1+n +12n +2.④ ③-④,得12T n =222+123+124+…+12n +1-n +12n +2=14+14⎝ ⎛⎭⎪⎫1-12n 1-12-n +12n +2=14+12-12n +1-n +12n +2=34-n +32n +2, 所以T n =32-n +32n +1<32.4.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解:(1)由于{a n }是首项a 1=1,公差d =2的等差数列, 所以a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.由于q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).5.(2022·山东青岛一模)已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n .令c n =(-1)n S n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)d n -2+2n -1,a ∈R.(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围.解:(1)由于等差数列{a n }的公差为d ,设c n =(-1)n S n , 所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,即10(3+d)+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n.(2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n =2(a -2)3n -1+2n -[2(a -2)3n -2+2n -1] =4(a -2)3n -2+2n -1 =4·3n -2⎣⎢⎢⎡⎦⎥⎥⎤(a -2)+12⎝ ⎛⎭⎪⎫23n -2. 由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,由于2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2取得最小值54,所以a ≤54. 6.已知数列{a n }的首项a 1=4,前n 项和为S n ,且S n +1-3S n -2n -4=0(n ∈N *). (1)求数列{a n }的通项公式;(2)设函数f(x)=a n x +a n -1x 2+a n -2x 3+…+a 1x n ,f ′(x)是函数f(x)的导函数,令b n =f′(1),求数列{b n }的通项公式,并争辩其单调性.解:(1)由S n +1-3S n -2n -4=0(n ∈N *), 得S n -3S n -1-2n +2-4=0(n ≥2),两式相减得a n +1-3a n -2=0, 可得a n +1+1=3(a n +1)(n ≥2),又由S 2-3S 1-2-4=0及a 1=4,得a 2=14, 所以a 2+1=3(a 1+1),即{a n +1}是一个首项为5,公比为3的等比数列, 所以a n =5×3n -1-1(n ∈N *).(2)由于f′(x)=a n +2a n -1x +…+na 1x n -1,所以f′(1)=a n +2a n -1+…+na 1=(5×3n -1-1)+2(5×3n -2-1)+…+n(5×30-1)=5(3n -1+2×3n -2+3×3n -3+…+n ×30)-n (n +1)2. 令S =3n -1+2×3n -2+3×3n -3+…+n ×30, 则3S =3n +2×3n -1+3×3n -2+…+n ×31,两式作差得S =-n2-3-3n +14,所以f′(1)=5×3n +1-154-n (n +6)2,即b n =5×3n +1-154-n (n +6)2.又b n +1=5×3n +2-154-(n +1)(n +7)2,所以b n +1-b n =15×3n 2-n -72>0,所以数列{b n }是单调递增数列.。
高考数学一轮复习第五章数列课时作业37数列求和与数列的综合应用课件理新人教A版
又S11=1,所以数列S1n是首项为 1,公差为 2 的等差数列,所以S1n= 1+2(n-1)=2n-1,所以 Sn=2n1-1。
答案
1 2n-1
11.已知数列{an}是公差不为 0 的等差数列,对任意大于 2 的正整数 n, 设集合{x|x=ai+aj,i∈N,j∈N,1≤i<j≤n}的元素个数为 cn,把{cn}的各 项摆成如图所示的三角形数阵,则数阵中第 17 行由左向右数第 10 个数为 ________。
14.(2019·山东青岛检测)已知数列{an}的前 n 项和 Sn 和通项 an 满足 2Sn +an=1,数列{bn}中,b1=1,b2=12,bn2+1=b1n+bn1+2(n∈N*)。
(1)求数列{an},{bn}的通项公式; (2)数列{cn}满足 cn=abnn,Tn=c1+c2+c3+…+cn,是否存在 m 使 Tn≥34 -m 恒成立,若存在,求出 m 的取值范围;若不存在说明理由。
7.(2019·山西八校联考)已知数列{an}满足:a1=1,an+1=ana+n 2(n∈N*),
若 bn+1=(n-λ)a1n+1,b1=-λ,且数列{bn}是递增数列,则实数 λ 的取值
范围是( )
A.(2,+∞)
B.(3,+∞)
C.(-∞,2)
D.(-∞,3)
解析 由 an+1=ana+n 2,知an1+1=a2n+1,即an1+1+1=2a1n+1,所以数列
课时作业(三十七) 递推数列通项公式的求法
一、选择题
1.数列{an}满足 a1=1,an+1=2an-1,则 an=( )
高考数学一轮复习第五篇数列必修5第4节数列求和习题理含解析
高考数学一轮复习第五篇数列必修5第4节数列求和习题理含解析第4节数列求和【选题明细表】知识点、方法题号公式法、并项法、倒序相加法、2,3,8,11,12分组法求和裂项相消法求和5,7,13错位相减法求和1,10,14数列的综合应用4,9数列的实际应用 6基础巩固(时间:30分钟)1.S n=+++…+等于( B )(A) (B)(C)(D)解析:由S n=+++…+,①得S n=++…++, ②①-②得,S n=+++…+-=-,所以S n=.2.数列{(-1)n(2n-1)}的前2 018项和S2 018等于( B )(A)-2 016 (B)2 018 (C)-2 015 (D)2 015解析:S2 018=-1+3-5+7-…-(2×2 017-1)+(2×2 018-1)=(-1+3)+(-5+7)+…+[-(2×2 017-1)+(2×2 018-1)]=2×1 009=2 018.故选B.3.等差数列{a n}的通项公式为a n=2n+1,其前n项和为S n,则数列{}的前10项的和为( C )(A)120 (B)70 (C)75 (D)100解析:由a n=2n+1,得a1=3,d=2.所以S n=3n+×2=n2+2n.因为=n+2,所以数列{}是以3为首项,1为公差的等差数列.所以()的前10项和为10×3+×1=75.4.已知函数y=log a(x-1)+3(a>0,a≠1)的图象所过定点的横、纵坐标分别是等差数列{a n}的第二项与第三项,若b n=,数列{b n}的前n项和为T n,则T10等于( B )(A)(B)(C)1 (D)解析:对数函数y=log a x的图象过定点(1,0),所以函数y=log a(x-1)+3的图象过定点(2,3),则a2=2,a3=3,故a n=n,所以b n==-,所以T10=1-+-+…+-=1-=,故选B.5.+++…+的值为( C )(A) (B)-(C)-(+) (D)-+解析:因为===(-),所以+++…+=(1-+-+-+…+-)=(--)=-(+).6.在2016年至2019年期间,甲每年6月1日都到银行存入m元的一年定期储蓄,若年利率为q 保持不变,且每年到期的存款本息自动转为新的一年定期,到2020年6月1日甲去银行不再存款,而是将所有存款的本息全部取出,则取回的金额是( D )(A)m(1+q)4元 (B)m(1+q)5元(C)元(D)解析:2019年存款的本息和为m(1+q),2018年存款的本息和为m(1+q)2,2017年存款的本息和为m(1+q)3,2016年存款的本息和为m(1+q)4,四年存款的本息和为m(1+q)+m(1+q)2+m(1+q)3+m(1+q)4==.故选D.7.已知函数f(x)=x a的图象过点(4,2),令a n=,n∈N*.记数列{a n}的前n项和为S n,则S2 018= .解析:由f(4)=2可得4a=2,解得a=.则f(x)=.所以a n===-,S2 018=a1+a2+a3+…+a2 018=(-)+(-)+(-)+…+(-)+(-)=-1.答案:-18.有穷数列1,1+2,1+2+4,…,1+2+4+…+2n-1所有项的和为.解析:由题意知所求数列的通项为=2n-1,故由分组求和法及等比数列的求和公式可得和为-n=2n+1-2-n.答案:2n+1-2-n能力提升(时间:15分钟)9.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值为( D )(A)2 015 (B)2 013 (C)1 008 (D)1 009解析:因为a n+2S n-1=n(n≥2),所以a n+1+2S n=n+1(n≥1),两式相减得a n+1+a n=1(n≥2).又a1=1,所以S2 017=a1+(a2+a3)+…+(a2 016+a2 017)=1+1 008×1=1 009,故选D.10.已知等差数列{a n}的前n项和S n满足S3=6,S5=,则数列{}的前n项和为( B )(A)1-(B)2-(C)2-(D)2-解析:设等差数列{a n}的公差为d,则S n=na1+d,因为S3=6,S5=,所以解得所以a n=n+1,=,设数列{}的前n项和为T n,则T n=+++…++,T n=+++…++,两式相减得T n=+(++…+)-=+(1-)-,所以T n=2-.故选B.11.(2018·江西赣南联考)在数列{a n}中,已知a1=1,a n+1+(-1)n a n=cos(n+1)π,记S n为数列{a n}的前n项和,则S2 017= .解析:由a1=1,a n+1+(-1)n a n=cos(n+1)π,得a2=a1+cos 2π=1+1=2,a3=-a2+cos 3π=-2-1=-3,a4=a3+cos 4π=-3+1=-2,a5=-a4+cos 5π=2-1=1,……由上可知,数列{a n}是以4为周期的周期数列,且a1+a2+a3+a4=-2,所以S2 017=504(a1+a2+a3+a4)+a1=504×(-2)+1=-1 007.答案:-1 00712.设函数f(x)=+log2,定义S n=f()+f()+…+f(),其中n∈N*,且n≥2,则S n= .解析:因为f(x)+f(1-x)=+log2++log2=1+log21=1,所以2S n=[f()+f()]+[f()+f()]+…+[f()+f()]=n-1.所以S n=.答案:13.已知数列{a n}的前n项和是S n,且S n+a n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=lo(1-S n+1)(n∈N*),令T n=++…+,求T n.解:(1)当n=1时,a1=S1,由S1+a1=1,得a1=,当n≥2时,S n=1-a n,S n-1=1-a n-1,则S n-S n-1=(a n-1-a n),即a n=(a n-1-a n),所以a n=a n-1(n≥2).故数列{a n}是以为首项,为公比的等比数列.故a=·()n-1=2·()n(n∈N*).(2)因为1-S n=a n=()n.所以b n=lo(1-S n+1)=lo()n+1=n+1,因为==-,所以T n=++…+=(-)+(-)+…+(-)=-=.14.(2018·广西玉林一模)已知数列{a n}中,a1=1,a n+1=(n∈N*).(1)求证:(+)为等比数列,并求{a n}的通项公式a n;(2)数列{b n}满足b n=(3n-1)··a n,求数列{b n}的前n项和T n.解:(1)因为a1=1,a n+1=,所以==1+,即+=+=3(+),则(+)为等比数列,公比q=3,首项为+=1+=,则+=·3n-1,即=-+·3n-1=(3n-1),即a=.(2)b n=(3n-1)··a n=,则数列{b n}的前n项和T n=+++…+,T n=+++…+,两式相减得T n=1+++…+-=-=2--=2-, 则T n=4-.。
高考数学一轮知能训练 第五章 数列 第4讲 数列的求和(含解析)-人教版高三全册数学试题
第4讲 数列的求和1.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 20172017=( )A .1009B .1008C .2D .12.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,若b n =1a n a n +1,那么数列{b n }前n 项的和为( )A .4⎝⎛⎭⎪⎫1-1n +1 B .4⎝ ⎛⎭⎪⎫12-1n +1C .1-1n +1 D.12-1n +13.已知数列{a n }的前n 项和S n =n 2-6n ,则数列{|a n |}的前n 项和T n 等于( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3 D.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n ,n >34.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2018=( )A .3B .2C .1D .05.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2 D .2n -1-26.(多选)已知数列{a n }满足a 1=1,a n +1=a n2+3a n(n ∈N *),则下列结论正确的有( )A.⎩⎨⎧⎭⎬⎫1a n+3为等比数列 B .{a n }的通项公式为a n =12n +1-3C .{a n }为递增数列D.⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =2n +2-3n -4 7.在数列{a n }中,a 1=1,a n +2+(-1)na n =1,记S n 是数列{a n }的前n 项和,则S 60=________. 8.(2017年新课标Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则11nk kS=∑=________.9.(2019年新课标Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.10.已知数列{a n }的前n 项和S n =2n +1+n -2. (1)求数列{a n }的通项公式; (2)设b n =log 2(a n -1),求T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1.11.(2018年某某)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.12.(2018年某某)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ⅰ)求T n ;ⅱ)证明:21()(1)(2)nk k k k T b b k k +=+++∑=2n +2n +2-2(n ∈N *).第4讲 数列的求和1.A 解析:S 2017=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2016+a 2017) =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2016+1) =1+2×2016+1×10092=2017×1009, ∴S 20172017=1009.故选A. 2.A 解析:∵a n =1+2+3+…+nn +1=n n +12n +1=n 2,∴b n =1a n a n +1=4n n +1=4⎝ ⎛⎭⎪⎫1n -1n +1. ∴S n =4⎝⎛⎭⎪⎫1-1n +1. 3.C 解析:∵由S n =n 2-6n 得{a n }是等差数列, 且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7. ∴n ≤3时,a n <0;n >3时,a n >0.∴T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3.4.A 解析:∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0.故S 2018=336×0+a 2017+a 2018=a 1+a 2=3.5.C 解析:∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n,∴S n =2-2n +11-2=2n +1-2.6.ABD7.480 解析:∵a n +2+(-1)na n =1,∴a 3-a 1=1,a 5-a 3=1,a 7-a 5=1,…,且a 4+a 2=1,a 6+a 4=1,a 8+a 6=1,…. ∴{a 2n -1}为等差数列,且a 2n -1=1+(n -1)×1=n ,即a 1=1,a 3=2,a 5=3,a 7=4,…. ∴S 4=a 1+a 2+a 3+a 4=1+1+2=4,S 8-S 4=a 5+a 6+a 7+a 8=3+4+1=8,S 12-S 8=a 9+a 10+a 11+a 12=5+6+1=12,….∴该数列构成以4为首项,4为公差的等差数列. ∴S 60=4×15+15×142×4=480.8.2nn +1解析:设等差数列{a n }的首项为a 1,公差为d , 依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+4×32d =10.解得⎩⎪⎨⎪⎧a 1=1,d =1.数列{a n }的前n 项和为S n =na 1+n n -12d =n n +12,1S k =2kk +1=2⎝ ⎛⎭⎪⎫1k -1k +1,则11nk kS =∑=2⎝ ⎛1-12+12-⎭⎪⎫13+13-14+…+1n -1n +1=2nn +1. 9.解:(1)设{a n }的公比为q ,由题设得 2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4. 因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1, ∴数列{}b n 的前n 项和为1+3+…+2n -1=n 2.10.解:(1)由⎩⎪⎨⎪⎧S n =2n +1+n -2,S n -1=2n+n -1-2,得a n =2n+1(n ≥2).当n =1时,a 1=S 1=3, 综上所述,a n =2n+1.(2)由b n =log 2(a n -1)=log 22n=n .T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×2+12×3+13×4+…+1nn +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 11.解:(1)由a 4+2是a 3,a 5的等差中项,得a 3+a 5=2a 4+4,∴a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20,得8⎝⎛⎭⎪⎫q +1q =20,∵q >1,∴q =2.(2)设=(b n +1-b n )a n ,数列{}前n 项和为S n .由=⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.解得=4n -1.由(1)可知a n =2n -1,∴b n +1-b n =(4n -1)·⎝ ⎛⎭⎪⎫12n -1,故b n -b n -1=(4n -5)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)·⎝ ⎛⎭⎪⎫12n -2+(4n -9)·⎝ ⎛⎭⎪⎫12n -3+…+7·12+3.设T n =3+7·12+11·⎝ ⎛⎭⎪⎫122+…+(4n -5)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,12T n =3·12+7·⎝ ⎛⎭⎪⎫122+…+(4n -9)·⎝ ⎛⎭⎪⎫12n -2+(4n -5)·⎝ ⎛⎭⎪⎫12n -1,∴12T n =3+4·12+4·⎝ ⎛⎭⎪⎫122+…+4·⎝ ⎛⎭⎪⎫12n -2-(4n -5)·⎝ ⎛⎭⎪⎫12n -1, 因此T n =14-(4n +3)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,又b 1=1,∴b n =15-(4n +3)·⎝ ⎛⎭⎪⎫12n -2.12.(1)解:设等比数列{a n }的公比为q . 由a 1=1,a 3=a 2+2,可得q 2-q -2=0. ∵q >0,可得q =2,故a n =2n -1.设等差数列{b n }的公差为d , 由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6, 可得3b 1+13d =16, 从而b 1=1,d =1,故b n =n . ∴数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n .(2)ⅰ)解:由(1),有S n =1-2n1-2=2n-1,故T n =1(n k =∑2k-1)=12nk =∑k-n =2×1-2n1-2-n =2n +1-n -2.ⅱ)证明:∵T k +b k +2b kk +1k +2=2k +1-k -2+k +2kk +1k +2=k ·2k +1k +1k +2=2k +2k +2-2k +1k +1, ∴1nk =∑T k +b k +2b k k +1k +2=⎝ ⎛⎭⎪⎫233-222+⎝ ⎛⎭⎪⎫244-233+…+⎝ ⎛⎭⎪⎫2n +2n +2-2n +1n +1=2n +2n +2-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的七种基本方法数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过题目(这些题目基本涵盖了2016年高考卷中的数列求和题)简单介绍数列求和的七种基本方法. 1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列前n 项和n S 的公式,因此以下常用公式应当熟记:221231123(1)2135(21)12222111111122222n nn n n n n n n -++++=+++++-=++++=-++++=-还要记住一些正整数的幂和公式:2233332222)1(41321)12)(1(61321+=++++++=++++n n n n n n n题1 (2016年高考全国卷I 文科第17题)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和.解 (1)在11n n n n a b b nb +++=中选1n =,得1221a b b b +=,即11111,233a a +==. 又因为{}n a 是公差为3的等差数列,所以23(1)31n a n n =+-=-. (2)由(1)得()1131n n n n b b nb ++-+=,即113n n b b +=,得{}n b 是以1为首项,13为公比的等比数列,得113n n b -⎛⎫= ⎪⎝⎭.所以{}n b 的前n 项和111313122313n n n S --==-⋅-.2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 题2 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:31,32,34,,34,32,31---+++n n n m m m有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=题3 求数列{}123n ++++的前n 项和n S .解法1 因为211123(1)()22n n n n n ++++=+=+,所以 22221[(123)(123)]2n S n n =+++++++++1111(1)(21)(1)(1)(2)2626n n n n n n n n ⎡⎤=++++=++⎢⎥⎣⎦ 解法2 因为2331211123(1)C C C (2)2n n n n n n n +++++++=+==-≥ 所以33333333343542121C (C C )(C C )(C C )C (1)(2)(2)6n n n n S n n n n +++=+-+-++-==++≥ 进而可得1(1)(2)(6n S n n n n =++∈N *). 解法3 (倒序相加法)可得1(12)(123)(123)n S n =+++++++++++1(21)(321)[(1)(2)1]n S n n n =++++++++-+-++1212[(1)(1)][(2)(2)(2)](1111)n n n S n n n n n n --=+-+-+-+-+-++++++个个()3个()把它们相加,得31(2)2(2)3(2)(2)n S n n n n n =++++++++1(123)(2)(1)(2)2n n n n n =+++++=++1(1)(2)6n S n n n =++ 3 裂项相消法题4 (2016年高考天津卷理科第18题)已知{}n a 是各项均为正数的等差数列,公差为d .对任意的*n ∈N ,n b 是n a 和1n a +的等比中项.(1)设22*1,n n n c b b n +=-∈N ,求证:数列{}n c 是等差数列;(2)设1a d =,()2211nkn k k T b ==-∑,*n ∈N ,求证:21112nk kT d =<∑. 解 (1)可得21n n n b a a +=,所以221n n n c b b +=-=121n n n n a a a a +++-=12n da + ①()212122n n n n c c d a a d +++-=-=所以数列{}n c 是等差数列.(2)可得1(1)(1)n a a n d d n d nd =+-=+-=,还可得①式在这里也成立,所以()()()2222221234212n n n T b b b b b b -=-++-+++-+=()2422n d a a a +++=()222(2462)21d n d n n =++++=+所以()222211111111111112121212nn n k k k k T d k k d k k d n d ===⎛⎫⎛⎫==-=-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑ 4 分组求和法题5 求11111111111224242n n S -⎛⎫⎛⎫⎛⎫=+++++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解 设11111242n n a -=++++,得1122n n a -=-.所以本题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和: 111111212222422n n n n S n n a n --⎛⎫=-++++=-=-+ ⎪⎝⎭题6 (2016年高考天津卷文科第18题)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.解 (1)设等比数列{}n a 的公比为q ,可得2111112a a q a q -=,解得2q =或1-. 又由61(1)631n a q S q-==-知,1q ≠-,所以61(12)6312a -=-,解得11a =. 得数列{a n }的通项公式是12n n a -=. (2)由题意,可得21)2log 2(log 21)log (log 21212122-=+=+=-+n a a b n n n n n 所以数列})1{(2n n b -的前n 项和为22221234()()b b b b -++-++⋅⋅⋅+222122121222()()22n n n n n b b b b b b b n -+-+=++⋅⋅⋅+== 题7 (2016年高考浙江卷文科第17题)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*n ∈N .(1)求通项公式n a ;(2)求数列{}2n a n --的前n 项和.解 (1)可得21221421S a a a a ⎧=+=⎨=+⎩,解得1213a a =⎧⎨=⎩.由121n n a S +=+,121n n a S -=+()2n …,可得()()1121212n n n n n a a S S a +--=+-+=,13n n a a +=()2n ≥.又因为213a a =,所以可得数列{}n a 的通项公式为13n n a -=.(2)得b n =|a n -n -2|=|3n -1-n -2|,所以b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,所以b n =3n -1-n -2(n ≥3). 设数列{b n }的前n 项和为T n ,得T 1=2,T 2=3. 当n ≥3时,可得T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112进而可得T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *. 题8 (2016年高考四川卷文科第19题)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0q >,*n ∈N .(1)若2a ,3a ,23+a a 成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离心率为n e ,且22e =,求22212ne e e ++⋅⋅⋅+. 解 (1)由S n +1=qS n +1,S n +2=qS n +1+1(n ∈N *),两式相减得a n +2=qa n +1(n ∈N *). 又由S 2=qS 1+1,11a =,可得a 2=qa 1,所以a n +1=qa n (n ∈N *).得数列{a n }是首项为1,公比为q 的等比数列,所以a n =q n -1.再由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3即a 3=2a 2,得q =2.所以数列{a n }的通项公式是a n =2n -1.(2)在(1)的解答中已得a n =q n -1,所以双曲线x 2-y 2a 2n=1的离心率n e ==.由e 2=1+q 2=2,解得q =3,所以e 21+e 22+…+e 2n =(1+1)+(1+q 2)+…+[1+q2(n -1)] =n +[1+q 2+…+q2(n -1)]=n +q 2n -1q 2-1=n +12(3n-1)5 错位相减法题9 (2016年高考山东卷理科第18题即文科第19题)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+(1)求数列{}n b 的通项公式;(2)令1(1).(2)n n n nn a c b ++=+求数列n C 的前n 项和n T . 解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 又因为a 1=S 1=11,所以a n =6n +5(n ∈N *). 设等差数列{b n }的公差为d .可得⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d 17=2b 1+3d ,解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1. (2)由(1)的解答,可得c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又由T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1]2T n =3×[2×23+3×24+…+(n +1)×2n +2]把它们相减,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+4×(1-2n )1-2-(n +1)×2n +2] =-3n ·2n +2所以T n =3n ·2n +2.6 待定系数法题10 数列}3)12{(nn ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得111[(1)](1,2,,)m m m a b a m d b q m n -⋅=+-⋅=先用错位相减法求数列{}m m a b ⋅的前n 项和n S :21111112111111211112111111{()(2)[(1)]}{()[(2)][(1)]}(1){[(1)]}{()[(1)]}[(1n n n n n n n n n n n S b a a d q a d q a n d q qS b a q a d q a n d q a n d q q S b a dq dq dq a n d q b d dq dq dq a n d q a d d dq b a n q ----=+++++++-=+++++-++--=++++-+-=++++-+-+---+-=11)]n d q a d ⎧⎫-+-⎨⎬⎩⎭111111n n q d dS dn a d q a d b q q ⎛⎫-=+---++ ⎪--⎝⎭ 所以有下面的结论成立:若{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S n n -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解本题: 可设()3n n S an b b =+⋅-(其中,a b 是常数).可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .题11 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅.解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法题12 (1)求证:)1(111132≠--=++++++x x x x x x x n n; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nx x x n n ; (3)求数列{}(21)3nn -⋅的前n 项和n S.解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立. (2)视(1)的结论为两个函数相等,两边求导后即得欲证成立. (3)1(21)3=6(3)3nn n n n --⋅⋅-.在(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又因为数列{}3n的前n 项和为2331-+n .所以数列{}(21)3n n -⋅的前n 项和为33)1(233413)12(611+⋅-=--+⋅-⋅=++n n n n n n S题13 (2008年高考江苏卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对x 求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x nn n n n n n ()1(2210 R ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证:(i)0)1(1=-∑=nk knkkC ; (ii)0)1(12=-∑=nk k nkC k ; (iii)1121110+-=++=∑n C k n nk kn . 答案:(1)在已知等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由已知等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在已知等式两边在[0,1]上对x 积分后可得欲证.。