第二章 发酵工业菌种与种子的扩大培养

合集下载

02菌种扩大培养

02菌种扩大培养

(一)孢子的制备 1、细菌孢子的制备 细菌的斜面培养基多采用碳源限量而氮源丰富。 培养温度一般为37℃。细菌菌体培养时间1~2d,产芽孢的 细菌培养5~10d。 2、霉菌孢子的制备 霉菌孢子的培养一般以大米、小米、玉米、麸皮、麦粒等 天然农产品为培养基。培养的温度一般为25~28℃。培养时 间一般为4~14d。 3、放线菌孢子的制备 放线菌的孢子培养一般采用琼脂斜面培养基,培养基中含 有适合产孢子的营养成分,如麸皮、豌豆浸汁、蛋白胨和无 机盐等。培养温度一般为28℃。培养时间5~14d。
例如:
生产啤酒的酵母菌一般保存在麦芽汁琼脂或MYPG培养基 (培养基配制:3g麦芽浸出物,3g酵母浸出物,5g蛋白胨,10g 葡萄糖和20g琼脂于1L水中)的斜面上,于4℃冰箱内保藏。每 年移种3-4次。 将保存的酵母菌种接入含10ml麦芽汁的500-1000ml三角瓶中, 再于25℃培养2-3d。 再扩大至含有250-500ml麦芽汁的500-1000ml三角瓶中,再 于25℃培养2d. 移种至含有5-10L麦芽汁的卡氏培养罐中,于15-20℃培养35d即可作100L麦芽汁的发酵罐种子。从三角瓶到卡氏培养罐培 养期间,均需定时摇动或通气,使酵母菌液与空气接触,以有 利与酵母菌的增殖。
第二章 发酵的流程及菌种扩 大培养
2009.10
第一节 发酵的特点及流程
一、发酵的特点 发酵和其他化学工业的最大区别在于它是生物体所进行的化 学反应。其主要特点如下: 1、发酵过程一般来说都是在常温常压下进行的生物化学 反应,反应安全,要求条件也比较简单。 2、发酵所用的原料通常以淀粉、糖蜜或其他农副产品为 主,只要加入少量的有机和无机氮源就可进行反应。微生物因 不同的类别可以有选择地去利用它所需要的营养。基于这—特 性,可以利用废水和废物等作为发酵的原料进行生物资源的改 造和更新。

第二章 菌种扩大培养

第二章 菌种扩大培养
第二章
菌种的扩大培养
定义:菌种的扩大培养就是把保藏的 菌种,即砂土管,冷冻干燥管中处 于休眠状态的生产菌种接入试管斜 面活化,再经过扁瓶或药瓶和种子 罐,逐级扩大培养后达到一定的数 量和质量的纯种培养过程。这些纯 种的培养物称为种子。
பைடு நூலகம்
种子必须具备的条件
①菌种细胞的生长活力强,接种后在发酵罐 菌种细胞的生长活力强, 中能迅速生长 ②生理性状稳定 ③菌体总量和浓度能满足大容量发酵罐的要 求 无杂菌污染(不带杂菌) ④无杂菌污染(不带杂菌) ⑤生产能力稳定
(250ml 500ml麦麦 麦) 2d
1000ml 三三 三
25 oc
5 10 L 麦麦 麦
发酵酵 3 5d
实验室种子制备
在砂土管或冷冻干燥管内保藏的菌种以 无菌的方式接至适合的斜面培养基上, 无菌的方式接至适合的斜面培养基上, 培养成熟后挑选正常的菌落再接一次试 管斜面并至摇瓶。 管斜面并至摇瓶。
生产车间种子制备
实验室制备的孢子斜面或摇瓶种子移接 到种子罐进行扩大培养 种子罐培养一方面使菌种获得足够的 数量, 数量,另一方面种子罐中的培养基更接 近发酵罐培养的醪液成分和培养条件, 近发酵罐培养的醪液成分和培养条件, 譬如通无菌空气,搅拌形式等等, 譬如通无菌空气,搅拌形式等等,以使 菌体适应发酵环境
种子制备过程
实验室种子制备阶段:琼脂斜面至固体 培养基扩大培养(如茄子瓶斜面培养等 或液体摇瓶培养 生产车间种子制备阶段:种子罐扩大培 养
摇三 砂砂 ( 冷 试 试 冷冷 冷 ) 斜斜 固体斜斜
摇 三 种种酵 固 体 发 酵 酵
25
斜斜 15 20 oc
10ml 试 试
27oc 3d
2
500

发酵工程(2)第二章 工业微生物菌种的选育与扩大培养

发酵工程(2)第二章 工业微生物菌种的选育与扩大培养
淀粉酶活力极强,多作糖 化酶使用;具有较强的蛋白质 分解能力,可用于制造腐乳。
华根霉 ( Rhizopus chinentis )
酿酒所必须的重要霉菌,也是 酸性蛋白酶和腐乳生产中的重要菌 种。
2、毛霉 ( Mucor )
鲁氏毛霉 ( Mucor rouxianus ) 能糖化淀粉且能生成少量酒精;能产生
6、醋酸菌 (Acetobacter)
➢ 不形成芽孢,G-,好气性 ➢ 可生产醋酸.
7、棒状杆菌 (Corynebacterium) ➢ 是谷氨酸和其他氨基酸的高产菌.
8、短杆菌 (Brevibacterium)
氨基酸、核苷酸工业生产中常用的菌种,也是酶法 合成生产辅酶A的菌种.
9、黄单胞菌 (Xanthomonas)
5、假丝酵母 (Candida)
➢能形成假丝,液体培养时能 形成浮膜。 ➢可生产SCP、甘油、脂肪酶。
6、红酵母 (Rhodotorula)
➢有明显的红色或黄色色 素,很多种因生荚膜而形 成粘质状菌落。 ➢可由菌体提取大量脂肪、 -胡萝卜素。
7、棉病针孢酵母 ( Nematspora gossypii )
2、葡萄汁酵母 (Saccharomyces uvarum)
与酿酒酵母相似,主要的区别在于葡萄汁酵母能发酵 棉子糖和蜜二糖。
3、汉逊酵母 (Hansenula)
此属酵母多能产生乙酸乙酯,从而增加产品的香 味,可用于酿酒和食品工业。
4、球拟酵母 (Toruiopsis)
此属酵母有些种能产生不同比例的甘油、赤藓 糖、阿拉伯糖;有的能利用烃类生产蛋白质。
复筛 不纯 第四次平板分离
第三次菌种保藏
第四次原种斜面
初步工艺条件摸索
再复筛

发酵工程 第二章 发酵工业微生物菌种制备原理和技术讲解

发酵工程 第二章 发酵工业微生物菌种制备原理和技术讲解
的水生环境中生长
种类:分属于子囊菌纲、担子菌纲及半知菌 类,目前已知的酵母菌有56属,大约500多种, 与其他类群比,种类要少得多。
分布:酵母菌主要分布在含糖质较高的偏酸 性环境,诸如果品、蔬菜、花蜜和植物叶子上, 特别是葡萄园和果园的土壤中,因而称为糖菌 (Sugar fungus)。
裂殖酵母
5. 担子菌——蘑菇(mushroom)
6. 藻类
许多国家已把藻类作为人类保健食品和饲料。 螺旋藻
可通过藻类将CO2转变为石油;国外还有从“藻 类农场”获得氢能的报道。
三、工业微生物的来源
根据资料直接向有关科研单位、高等院校、工 厂或菌种保藏部门索取或购买 从发酵制品中分离目的菌株 自然界中分离筛选新的微生物菌种 菌种选育:自然选育、人工诱变、原生质体融 合、基因工程改造
第一节 发酵工业常用的微生物菌种
我们的周围存在着多种多 样的微生物,它们和我们 的生活密切相关。
目前已知微生物约有10万种,分布在以下各界中:
原核生物界:例如细菌、蓝藻 真菌界:例如酵母菌 原生生物界:例如草履虫、变形虫 病毒:例如艾滋病毒、脊髓灰质炎病毒
发酵工业对菌种的要求
能在廉价培养基上迅速生长,目的代谢产物产量高 培养条件易于控制 生长速度和反应速度快,发酵周期短 满足代谢控制的要求 抗噬菌体和杂菌的能力强 遗传性状稳定,菌种不易变异退化 发酵过程产生泡沫少 对前体物质有耐受能力,不作为碳源利用 不是病原菌,不产生有害的生物活性物质
如何在后续的操作中使这种可能性实现?
从自然界中分离培养微生物是菌种选育的重要 和基础的步骤。
到目前为止,还没有一种分离培养方法能揭示 一个试样中所包含的所有微生物总数和种类。
在任一试样中所存在的微生物仅为极少数特定种 类的菌株;在工业微生物筛选过程中,应及时调 整检测方法,以与各种不同类型的生长和代谢之 微生物相适应。

发酵——种子的扩大培养

发酵——种子的扩大培养
目的:使菌种的传代次数尽可能的少。
孢子培养
母瓶:活化、纯化,使保藏菌种生长,并去处变异株。 所以接种时要稀一点、便于纯化生长到单菌落。
子瓶: 大量繁殖,得到大量孢子。 接种:①从母斜面上点接种,选取生长好的单 菌落 ②接种时密一点,得到大量的孢子。
孢子培养时注意湿度,子斜面使用一般不超过1个月
三、生产车间阶段 1、培养物的选择原则 在生产车间阶段,最终一般都是获得一定数量的菌丝体。 菌丝体比孢子要有利: 缩短发酵时间 有利于获得好的发酵结果
✓ 培养时间为5~14天。
对于产孢子能力不强或孢子发芽慢的菌种,如产 链霉素的灰色链霉菌、产卡那霉素的卡那链霉菌 可以用摇瓶液体培养法。将孢子接入含液体培养 基的摇瓶中,于摇瓶机上恒温振荡培养,获得菌 丝体,作为种子。
试管→三角瓶→摇床→种子罐
2,厌氧培养:对于酵母菌(啤酒,葡萄酒,清酒等) 试管→三角瓶→卡式罐→种子罐
常用微生物发酵级数:
✓ 细菌:二级发酵 茄子瓶→种子罐→发酵罐
✓ 霉菌:如青霉菌,三级发酵 孢子悬浮液→一级种子罐(27˚C,40小时孢子发
芽)→二级种子罐( 27˚C,10~24小时)→发酵罐 ✓ 放线菌:四级发酵
✓ 酵母:比细菌慢,比霉菌,放线菌快,通常用一级种子
4、接种量的确定
移入种子的体积 接种量= —————————
2、培养基选择的原则
培养基的选择应该是有利于菌体的生长,对孢子培养基 应该是有利于孢子的生长。
在原料方面,实验室种子培养阶段,规模一般比较小, 因此为了保证培养基的质量,培养基的原料一般都比较 精细。
3、起始接种物的传代问题 细菌 保藏斜面 → 活化斜面 产孢子 保藏 → 母斜面 → 子斜面
种龄短:菌体太少;种龄长:易老化。

发酵工程章节复习资料

发酵工程章节复习资料

发酵⼯程章节复习资料第⼀章绪论1、发酵及发酵⼯程的概念1、传统发酵最初发酵是⽤来描述酵母菌作⽤于果汁或麦芽汁产⽣⽓泡的现象,或者是指酒的⽣产过程。

2、⽣化和⽣理学意义的发酵指微⽣物在⽆氧条件下,分解各种有机物质产⽣能量的⼀种⽅式,或者更严格地说,发酵是以有机物作为电⼦受体的氧化还原产能反应。

如葡萄糖在⽆氧条件下被微⽣物利⽤产⽣酒精并放出CO2。

3、⼯业上的发酵泛指利⽤微⽣物制造或⽣产某些产品的过程包括:1. 厌氧培养的⽣产过程,如酒精,乳酸等。

2. 通⽓(有氧)培养的⽣产过程,如抗⽣素、氨基酸、酶制剂等。

产品有细胞代谢产物,也包括菌体细胞、酶等。

发酵⼯程(Fermentation Biotechnology): 应⽤微⽣物学等相关的⾃然科学以及⼯程学原理,利⽤微⽣物等⽣物细胞进⾏酶促转化,将原料转化成产品或提供社会性服务的⼀门科学。

2、发酵⼯程技术的发展⼤致可分为哪⼏个阶段,每段的技术特点是什么?1. ⾃然发酵时期:嫌⽓性发酵⽤于酒类酿造,好⽓性发酵⽤于酿醋、制曲。

2. 纯培养技术的建⽴:⼈⼯控制环境条件使发酵效率迅速提⾼。

3.通⽓搅拌好⽓发酵过程技术的建⽴:从分解代谢转为⽣物合成代谢,可以利⽤微⽣物合成积累⼤量有⽤的代谢产物。

4.⼈⼯诱变育种与代谢控制发酵⼯程技术的建⽴:遗传⽔平上控制微⽣物代谢。

5. 发酵动⼒学、发酵⼯程连续化、⾃动化⼯程:以数学、动⼒学、化⼯原理等为基础,通过计算机实现发酵过程的⾃动化控制的研究,使发酵过程的⼯艺控制更为合理。

6. 微⽣物酶反应⽣物合成与化学合成反应结合⼯程技术:可⽣产许多过去不能⽣产的有⽤物质。

3、发酵⼯业的应⽤范围1. 酿酒⼯业(啤酒、葡萄酒、⽩酒)2. ⾷品⼯业(酱、酱油、⾷醋、腐乳、⾯包、乳酸)3. 抗⽣素⼯业(青霉素、链霉素、⼟霉素)4. 有机酸⼯业(柠檬酸、葡萄糖酸)5. 酶制剂⼯业(淀粉酶、蛋⽩酶)6. 氨基酸⼯业(⾕氨酸、赖氨酸)7. 核苷酸发酵⼯业(肌苷酸、肌苷)8. 有机溶剂⼯业(酒精、丙酮)9. 维⽣素⼯业(VB2、VB12)10.⽣物能源⼯业(沼⽓、⽣物柴油)11.环境保护产业(废⽔⽣物处理)12.⽣理活性物质发酵⼯业(激素)13. 冶⾦⼯业(微⽣物探矿、⽯油脱硫)14.微⽣物菌体蛋⽩发酵⼯业(酵母、单细胞蛋⽩)4、发酵⼯业的特点与化学⼯程相⽐,发酵⼯程具有以下特点:1、发酵过程是极其复杂的⽣物化学反应,与微⽣物细胞息息相关2、通常在常温常压下进⾏,反应安全,需求条件也⽐较简单3、发酵醪(包括固相、液相、⽓相,还含有活细胞体或菌丝体),属⾮⽜顿流体,其特性影响因素很多,对发酵⼯程都有关联4、具有严格的灭菌系统,以防⽌杂菌污染如空⽓除菌系统、培养基灭菌系统、设备的冲洗灭菌等5、反应以⽣命体的⾃动调节⽅式进⾏,因此数⼗个反应过程能够像单⼀反应⼀样,在同⼀发酵罐内进⾏6、后处理阶段,为了适应菌体与发酵产物的特点,需采取⼀些特殊的⼯艺措施并选⽤合适的设备。

第二章、菌种的扩大培养2010

第二章、菌种的扩大培养2010

实例
放线菌(抗生素生产) 放线菌的细胞生长繁殖速度较慢, 放线菌(抗生素生产):放线菌的细胞生长繁殖速度较慢,常 常用三级种子扩大培养, 常用三级种子扩大培养,即将种子罐中之菌丝移植到较大的 种子罐中扩大培养后,再移入发酵罐中, 种子罐中扩大培养后,再移入发酵罐中,这种流程称为三级 发酵。一般50t发酵罐多采用三级发酵, 50t发酵罐多采用三级发酵 发酵。一般50t发酵罐多采用三级发酵,有的甚至采用四级 发酵,如链霉素生产。 发酵,如链霉素生产。 霉菌(酶制剂):酶制剂发酵生产也采用三级发酵。 ):酶制剂发酵生产也采用三级发酵 霉菌(酶制剂):酶制剂发酵生产也采用三级发酵。 细菌(谷氨酸):谷氨酸及其他氨基酸发酵所用的菌种是细菌, 细菌(谷氨酸) 谷氨酸及其他氨基酸发酵所用的菌种是细菌, 生长繁殖速度很快,所以采用二级发酵。 生长繁殖速度很快,所以采用二级发酵。
第二节、 第二节、种子扩大培养
扩大培养的目的:为每次发酵罐的投料,提供相当 扩大培养的目的:为每次发酵罐的投料, 数量的代谢旺盛的种子,以提高发酵效率。 数量的代谢旺盛的种子,以提高发酵效率。 种子的要求:一定的数量、代谢旺盛、不能染菌。 种子的要求:一定的数量、代谢旺盛、不能染菌。 种子扩大培养流程如下: 种子扩大培养流程如下: 斜面菌种---一级种子摇床培养---二级种子罐培 斜面菌种---一级种子摇床培养---二级种子罐培 ---一级种子摇床培养------发酵罐 发酵罐。 养----发酵罐。
接种量的确定
大量地接入成熟的菌种, 大量地接入成熟的菌种,可以缩短生长过程的缓慢 因而缩短发酵周期, 期,因而缩短发酵周期,节约了发酵培养的动力消 提高了设备利用率,并有利于减少染菌机会。 耗,提高了设备利用率,并有利于减少染菌机会。 接种量过多也无必要,因种子培养费时, 接种量过多也无必要,因种子培养费时,而且过多 地移入代谢废物,反而会影响正常发酵。 地移入代谢废物,反而会影响正常发酵。 接种量与菌种的生长速度有关, 接种量与菌种的生长速度有关,如霉菌接种量一般 10%,酵母5 10%,细菌1 5%。 为10%,酵母5-10%,细菌1-5%。 接种量与菌液中菌体的浓度有关,如使用孢子接种, 接种量与菌液中菌体的浓度有关,如使用孢子接种, 接种量可明高的营养缺陷型突 根据代谢控制的要求, 变菌株或调节突变菌株或野生菌株; 变菌株或调节突变菌株或野生菌株; 抗噬菌体能力强的菌株,不易感染噬菌体; 抗噬菌体能力强的菌株,不易感染噬菌体; 菌种纯粹,不易变异退化, 菌种纯粹,不易变异退化,以保证发酵生产和产品 质量的稳定性; 质量的稳定性; 不是病源菌, 不是病源菌,不产生任何有害的生物活性物质和毒 包括抗生素、激素和毒素等) 以保证安全。 素(包括抗生素、激素和毒素等),以保证安全。

种子扩大培养 认识种子扩大培养

种子扩大培养 认识种子扩大培养
4 种子扩大培养
4.1 种子扩大培养的目的及要求
种子扩大培养的目的及要求
概述 种子扩大培养:又称种子制备工序,是指将保存在沙土管、冷冻干燥管
中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种 子罐逐级放大培养而获得一定数量和质量的纯种过程。 这些纯种培养物称为种子。
种子扩大培养的目的及要求
种子扩大培养的目的及要求
种子必须满足以下条件:
条件一
菌种细胞的生长活 力强,移种至发酵罐后能 迅速生长,缩短迟缓期
条件二
生理状态稳定,以便 获得稳定的菌体生长过程
五个
条件五
无杂菌污染,以保证 整个发酵过程正常进行 Nhomakorabea条件
稳定的生产能力
条件四
保持稳定的生产能力,使最终产
物的生物合成量持续稳定高产
条件三
菌体总量及浓度
种子扩大培养的意义 ① 为发酵生产提供充足的代谢旺盛、生命力强的种子 ② 有效地缩短发酵生产周期
种子扩大培养的目的及要求
目前工业规模的发酵罐容积已达到几十立方米或几百立方米。如按百分之十左 右的种子量计算,就要投入几立方米或几十立方米的种子。因此,种子扩大培 养应根据菌种的生理特性,选择合适的培养条件来获得代谢旺盛、数量足够的 种子。这种种子接入发酵罐后,将使发酵生产周期缩短,设备利用率提高。
适宜,可以保证在大发 酵罐中有适当的接种量

发酵工程(2)第二章 工业微生物菌种的选育与扩大培养

发酵工程(2)第二章 工业微生物菌种的选育与扩大培养
孢子丝盘卷成球形孢囊,内形成孢酵母菌
单细胞真核,主 分布于含糖质较多的 偏酸性环境中,如水 果、蔬菜、花蜜和植 物叶子上,以及果园 土壤中。
1、酿酒酵母 (Saccharomyces cerevisiae)
又称啤酒酵母。细胞多为圆形、 卵形,能产生子囊孢子。能发酵 葡萄糖、蔗糖、麦芽糖和半乳糖 等多种糖类,但不发酵乳糖和蜜 二糖。
5、白地霉 ( Geotrichum candidum )
➢ 节孢子单个或连接成链。
➢ 白地霉菌体蛋白营养价值很高,可供食用和饲 料用,也可用来提取核酸,在废料废水的利用上很 用价值。
6、产黄头孢霉 ( Cephalosporium chrysogen ) 头孢霉素、先锋霉素
3、游动放线菌属 (Actinoplanes)
➢ 一般不形成气生菌丝,孢子球形,有时端生1-40 根鞭毛,能运动。 ➢ 济南游动放线菌生产创新霉素(creatmycin; 1964).
4、诺卡氏菌属 (Norcadia)
➢ 菌落较小,边缘多呈树根 毛状。 ➢ 生产利福霉素、蚊霉素等
5、孢囊链霉菌属 (Streptosporangium)
4、青霉 ( Penicillum )
产黄青霉 ( Penicillum chrysogenum ) 生产青霉素,也可用来生产葡萄
糖氧化酶、葡萄糖酸、柠檬酸和抗坏 血酸。
娄地青霉 ( Penicillum roqueforti ) 属不对称青霉组,具有分解油
脂和蛋白质的能力,用于制造干酪; 该菌孢子能将甘油三酯氧化为甲基 酮。
第二章 工业微生物菌种的选育与扩大培养
第一节 发酵工业常用微生物 第二节 菌种来源 第三节 菌种选育 第四节 种子扩大培养 第五节 菌种保藏

发酵工程第二章发酵工业微生物菌种

发酵工程第二章发酵工业微生物菌种
施加选择性压力分离法 随机分离法 这两种方法都是针对菌种从样品中分离所采用的
方法,实际发酵工业上菌种分离的步骤要有很多 步骤。
新种分离与筛选的步骤
定方案:首先要查阅资料,了解所需菌种的生长 培养特性。
采样:有针对性地采集样品。 增殖:人为的通过控制养分或培养条件,使所需
菌种增殖培养后,在数量上占优势。 分离:利用分离技术得到纯种。 发酵性能测定:进行生产性能测定。这些特性包
工业上常用的微生物菌种
③ 霉菌: 工业上常用的霉菌有根霉、毛霉、红曲 霉、青霉等,主要生产酶制剂、抗生素、有机酸 和甾体激素等。
④ 放线菌: 工业上常用的有链霉菌属、小单胞菌 属和诺卡菌属,主要用于生产多种抗生素。
⑤ 担子菌: 即常说的蕈菌,主要用于生产多糖、 药物开发。
⑥ 藻类: 工业上常用的藻类有螺旋藻、单烈藻等, 主要用于生产食品,替代能源等。
新种分离与筛选的步骤
(三)培养分离 尽管通过增殖培养效果显著,但还是处于微生物
的混杂生长状态。因此还必须分离,纯化。在 这一步,增殖培养的选择性控制条件还应进一 步应用,而且控制得细一点,好一点。纯种分 离的方法有划线分离法、稀释分离法。
施加选择性压力分离法
施加选择性压力分离法:利用不同种类微生物生 长繁殖对环境和营养要求不同,人为控制这些条 件,使之利于某类或者某种微生物生长,不利于 其他微生物生存,以达到使目的菌占优势,从而 快速分离纯化的目的。
括形态、培养特征、营养要求、生理生化特性、 发酵周期、产品品种和产量、耐受最高温度、生 长和发酵最适温度、最适值、提取工艺等。
新种分离与筛选的步骤
从自然界中分离培养微生物是菌种选育的重要和基础的 步骤。
到目前为止,还没有一种分离培养方法能揭示一个试样 中所包含的所有微生物总数和种类。

发酵生产的过程及控制

发酵生产的过程及控制

死亡期
2、补料分批培养
在分批培养过程中补入新鲜的料液,以克服营养不足而导致 的发酵过早结束的缺点。 在此过程中只有料液的加入没有料液的取出,所以发酵结束 时发酵液体积比发酵开始时有所增加。在工厂的实际生产中 采用这种方法很多。
简单的过程,培养基中接入菌种以后,没有物料的加入和取出, 除了空气的通入和排气。整个过程中菌的浓度、营养成分的浓 度和产物浓度等参数都随时间变化。
优点: 操作简单,周期短,染菌机会少,生产过程和产品质量 容易掌握 缺点: 产率低,不适于测定动力学数据
分批培养中微生物的生长
迟滞期 对数生长期
稳 定期
发酵级数确定的依据
级数受发酵规模、菌体生长特性、接种量的影响。
级数大,难控制、易染菌、易变异,管理困难,一 般2-4级。
在发酵产品的放大中,反应级数的确定是非常重要 的一个方面。
3、接种量的确定
移入种子的体积 接种量= —————————
接种后培养液的体积
过大过小都不好,最终以实践定,如大多数抗生素为7-15%。 但是一般认为大一点好。
7 种子的质量标准
• 菌丝形态、菌体浓度和培养基外观(色素、颗粒等); • pH; • 糖氮代谢速度; • 其它参数,如接种前的抗生素含量、某种酶活等。
8 影响种子质量的因素:
1)原材料的质量:
一般选择一些有利于孢子发芽和菌丝生长的培养基,在营养 上容易被菌体直接吸收利用,营养成分要适当地丰富和完全, 氮源和维生素含量较高,这样可以使菌丝粗壮,并且具有较 强的活力。
另一方面,种子培养基中的营养成分要尽可能和发酵培养基 接近以适合发酵的需要,这样的种子移入发酵罐后能比较容 易适应发酵罐的培养条件如微量元素Mg、Ca、Ba能刺激孢子 的生长。 2)、培养温度:过低?过高?

菌种扩大培养技术

菌种扩大培养技术

谷氨酸菌斜面
赖氨酸菌斜面

三角瓶培养
三角瓶培养



30m3种子罐培养
3m3种子罐培养

有 关
300m3发酵罐发酵
30m3种子罐培养
300m3发酵罐发酵
(三)种子扩大培养的阶段
实验室种子制备阶段
生产车间种子制备阶段
实验室种子制备阶段一般包括斜面种子的培养、实验室内 进行的固体或液体培养基的种子扩大培养。 在无菌操作条件下,将试管斜面接种到摇瓶中,经恒温振 荡培养形成大量菌体的过程,称为摇瓶培养。
实例二: 葡萄糖 45g/L,MgSO4·7H2O 0.7 g/L , 磷酸二氢钾 1.5 g/L ,糖蜜 125g/L , 玉米浆 250g/L,纯生物素18.8 μg/L, 硫酸亚铁、硫酸锰 各2ppm ,实消, 121℃保温10min,实消前不需调节pH, 实消降温后用液氨调节至pH7.0。
2. 培养条件
接种量 培养温度
0.03~0.5% 32~34℃
种子罐有夹套或盘管或列管等装置。 采用循环冷却水进行降温。
搅拌转速
150~200 r/min
根据种子罐容积和搅拌叶径而定,通常容积大的种子罐 设计搅拌速度会小一些。
通气比
0.15~0.44 vvm
vvm :1m3液体1min通入空气的体积。
OD 650 值
1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4
1
3
5
7
9 11 13
培养时间(小时)
流加液氨培养 添加尿素培养
实例一与实例二的培养结果, 说明了什么问题?
无菌空气
5. 二级种子接入发酵罐的操作

种子的扩大培养

种子的扩大培养
3. 液体深层培养
液体深层种子罐从底部通气,送入的空气由搅拌桨叶分散成 微小气泡以促进氧的溶解。该法容易按照生产菌种对于代谢 的营养要求一级不同生理时期的通气、搅拌、温度与培养基 中氢离子等条件,选择最佳培养条件。
四、种子质量的控制
(二)影响种子质量的因素及控制
培养基
(1)营养成•分种适龄合:种是子指培种养子的罐需中要培养的菌丝体开始移入
种子培养要求一定量的种子,在适宜的培养基中,控制一定的培养条 件和培养方法,从而保证种子正常生长。
工业微生物培养法分为静置培养和通气培养两大类型。
❖静置培养即将培养基盛于发酵容器中,在接种后,不通空气进行培养。 ❖通气培养法的生产菌种以需氧菌和兼性需氧菌居多,它们生长的环境必须供给 空气,以维持一定的溶解氧水平,使菌体迅速生长和发酵,又称好气培养法。
(1)放线菌孢子的制备
a) 放线菌的孢子培养一般采用琼脂斜面培养基,培养基中含 有一些适合产孢子的营养成分,如麸皮、豌豆浸汁、蛋白 胨和一些无机盐等。
b) 碳源和氮源不要太丰富(碳源约为1%,氮源不超过0.5 %),干燥和限制营养可直接或间接诱导孢子形成。
c) 放线菌斜面的培养温度大多数为28℃,少数为37℃,培 养时间为5~14天。
菌种细胞的生长活力强,转种至发酵罐后能迅速生 长,延滞期短。
菌种生理状态稳定,如菌丝形态、菌丝生长速率和 种子培养液的特性等符合要求。
菌体浓度及总量能满足大容量发酵罐接种量的要求。 无杂菌污染,保证纯种发酵。 菌种适应性强,能保持稳定的生产能力。
二、种子制备的过程
从工业发酵的角度来说,种子制备分成两个 阶段:
摇瓶培养基配方和培养条件与种子罐相似。
常采用母瓶、子瓶两级培养。种子培养基要求比 较丰富和完全,易被菌体分解利用,氮源丰富有 利于菌丝生长。原则上各种营养成分不宜过浓, 子瓶培养基浓度比母瓶略高,更接近于种子罐的 培养基配方。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菌种鉴定工作是各类微生物学实验室都经常 遇到的基础性工作。不论鉴定对象属哪一类, 其工作步骤都离不开以下三步: ①获得该微生物的纯种培养物;
②测定一系例必要的鉴定指标;
③查找权威性的鉴定手册。
通常把鉴定微生物的技术分成四个不同水平:
(经典的分类鉴定方法:微生物分类学发展的早期) ①细胞的形态和习性水平,例如用经典的研究方法,观察细 胞的形态特征、运动性、酶反应、营养要求和生长条件等。 ②细胞组分水平,如细胞壁成分,细胞氨基酸库,脂类,醌 类,光合色素等的分析,所用的技术除常规实验室技术外, 还使用红外光谱、气相色谱和质谱分析等新技术。 ③蛋白质水平,包括氨基酸序列分析、凝胶电泳和血清学反 应等若干现代技术。 ④基因或DNA水平,包括核酸分子杂交(DNA与DNA或DNA 与RNA),G+Cmol%值的测定,遗传信息的转化和转导, 16S rRNA(核糖体RNA)寡核苷酸组分分析,以及DNA或 RNA的核苷酸顺序分析等。 (现代的分类鉴定方法:从20世纪60年代
由于发酵工程本身的发展以及遗传工程的介入,藻类 (alga)、病毒(virus)等也正在逐步地变为工业生产用 的生物。
尽管如此,目前人们对微生物的认识还是十分不够的 。已经初步研究的不超过自然界微生物总量的10%左右。
微生物的代谢产物据统计已超过一千三百多种,而大 规模生产的不超过一百多种; 微生物酶有近千种,而在工业上利用的不过四五十种 。可见潜力是很大的。


分离菌株 16S rRNA 基因

从平板中直接挑取一环分离菌株细胞 , 加入 100μL 无 菌重蒸 H 2 O 中 , 旋涡混匀后 , 沸水浴 2min, 12 000r min -1 离心 5min, 上清液中即含 16S rRNA 基因,可直接用 于 PCR 扩增。分离菌株 16S rRNA 基因的 PCR 扩增和序列测 定的一般步骤为: 16S rRNA 基因的 PCR 引物: 5'-AGAGT TTGAT CCTGG CTCAG-3' ; 5'-AAGGA GGTGA TCCAG CCGCA3' 。扩增反应体积 50 m L ,反应条件为 95 ℃预变性 5min , 94 ℃变性 1min , 55 ℃退火 1min , 72 ℃延伸 2min ,共进行 29 个循环, PCR 反应在 PTC-200 型热循环 仪上进行。取 5 m L 反应液在 10g L -1 的琼脂糖凝胶上进 行电泳检测。 PCR 产物测序可由专门技术公司完成。
藻类工 厂
二、微生物工业对菌种的要求


1、原料廉价、生产迅速、目的产物产量高; 2、易于控制培养条件,酶活性高,发酵周期较短; 3、抗杂菌和噬菌体的能力强; 4、菌种遗传性能稳定,不易变异和退化,不产生 任何有害的生物活性物质和毒素,保证安全生产。 5、满足代谢控制要求 6、发酵过程中产生泡沫少 7、对需添加的前体有耐受力,且不作碳源 8、不是病原菌
1. DNA的碱基组成(G+Cmol%)

1)每个生物种都有特定的GC%范围,因此后者可以作为分 类鉴定的指标。细菌的GC%范围为25--75%,变化范围最大, 因此更适合于细菌的分类鉴定。而放线菌 DNA 中的 GC 比例范围
非常窄 (37 %~ 51%)

2)GC%测定主要用于对表型特征难区分的细菌作出鉴定, 并可检验表型特征分类的合理性,从分子水平上判断物种的 亲缘关系。 3)使用原则: G+C含量的比较主要用于分类鉴定中的否定。每一种生物都 有一定的碱基组成,亲缘关系近的生物,它们应该具有相似 的G+C含量,若不同生物之间G+C含量差别大表明它们关系 远。但具有相似G+C含量的生物并不一定表明它们之间具有 近的亲缘关系。


DNA — rRNA 杂交







目前研究 RNA 碱基序列的方法有两种。一是 DNA 与 rRNA 杂交,二是 16S rRNA 寡核苷酸的序列分析。 DNA 与 rRNA 杂交的基本原理、实验方法同 DNA 杂交 一样,不同的是 ① 是 DNA 杂交中同位素标记的部分是 DNA ,而 DNA 与 rRNA 杂交中同位素标记的部分是 rRNA 。 ② DNA 杂交结果用同源性百分数表示,而 DNA 与 rRNA 杂交结果用 Tm(e) 和 RNA 结合数表示。 Tm(e) 值是 DNA 与 rRNA 杂交物解链一半时所需要的 温度。 RNA 结合数是 100mgDNA 所结合的 rRNA 的mg数。根据 这个参数可以作出 RNA 相似性图。在 rRNA 相似性图上, 关系较近的菌就集中到一起。关系较远的菌在图上占据不 同的位臵。 通过测定和比较16SrRNA 寡核苷酸顺序谱可得到属以上 细菌分类单元的较一致的系统发育概念,并导致了古细菌 的建立。
3.建立16 S r RNA系统发育树

a)使生物进化的研究范围真正覆盖所有生物类群; 传统的生物进化研究,主要基于复杂的形态学和化石记载,因 此多限于研究后生生物(metazoa),而后者仅占整个生物进 化历程的1/5 b)提出了一种全新的正确衡量生物间系统发育关系的方法; c)对探索生命起源及原始生命的发育进程提供了线索和理论 依据; d)突破了细菌分类仅靠形态学和生理生化特性的限制,建立 了全新的微生物分类、鉴定理论; e)为微生物生物多样性和微生物生态学研究建立了全新的研 究理论和研究方法,特别是不经培养直接对生态环境中的微生 物进行研究。
在筛选所需的菌种时应考虑的一些重要的指标:
(1) 菌种的营养特征:
(2) 菌种的生长温度: (3) 菌种对所采用的设备及生产过程的适应性: (4) 菌种的稳定性: (5) 产物的得率和产物的浓度:
(6) 产物容易回收:
能满足(3)~(6),则有希望成为效益较高的生产菌种。
第二节 发酵工业菌种鉴定
起,化学分类学再加上数值分类法)
一、经典分类鉴定方法
相对于现代的分类鉴定方法而 言的,通常指长期以来在常规鉴定中 普遍采用的一些形态、生理、生化、 生态、生活史和血清学反应等指标.
群体:菌落形态,在半固体或液体培养基中的生长状态等

个体:细胞形态,染色反应,各种特殊构造等 营养要求:能源,碳源,氮源,生长因子等 生理、生化反应 酶;产酶种类和反应物性等 代谢产物:种类,产量,显色反应等 经典指标 生态特性:生长温度,对氧的需要,宿主种类等 生活史特点 血清学反应 噬菌体的敏感性 其它

分类学意义:作为建立新分类单元的一项基本特征和把 那些G+C含量差别大的种类排除出某一分类单元。
2.核酸的碱基组成和分子杂交:

与形态及生理生化特性的比较不同,对DNA的 碱基组成的比较和进行核酸分子杂交是直接 比较不同微生物之间基因组的差异,因此结 果更加可信。
DNA-DNA 杂交
DNA 杂交法的基本原理:用 DNA 解链的可逆 性和碱基配对的专一性,将不同来源的 DNA 在体外加热解链,并在合适的条件下,使互 补的碱基重新配对结合成双链 DNA ,然后根 据能生成双链的情况,检测杂合百分数。 如果两条单链 DNA 的碱基顺序全部相同,则 它们能生成完整的双链,即杂合率为 100% 。 如果两条单链 DNA 的碱基序列只有部分相同, 则它们能生成的“双链”仅含有局部单链, 其杂合率小于 100% 。





C:藻类(alga): 培养螺旋藻,按干重计算每公顷可收获60吨,而种植 大豆每公顷才可获4吨;从蛋白质产率来看,螺旋藻是大 豆28倍。 培养珊列藻,从蛋白质产率计算,每公顷珊列藻所得 蛋白质是小麦的20-35倍。此外,还可通过藻类将CO2转 变为石油,培养单胞藻或其他藻类而获得的石油,可占 细胞干重得5%-50%,合成的油与重油相同,加工后可转 变汽油、煤油、和其他产品。 有的国家已建立培植单胞藻的农场,每年每公顷地培 植的单胞藻按5%干物质为碳水化合物(石油)计算,可 得60吨石油燃料。此项技术的应用,还可减轻因工业生 硅藻 产而大量排放CO2造成的温室效应。 国外还有人从“藻类农场”获取氢能的报道,大量 培养藻类,利用其光合放氢作用来取得氢能。
二、现代分类鉴定方法




分子生物学的发展和各项新技术的广泛应用, 促使微生物分类鉴定工作有了飞速发展。 从经典的表型特征的鉴定深入到现代的遗传学特 性的鉴定、细胞化学组分的精确分析以及利用电子 计算机进行数值分类研究等新的层次上。 (一)微生物遗传型的鉴定 DNA—遗传信息载体。 不同微生物间DNA成分和结构的差异程度代表着它们 间亲缘关系的远近。 测定每种微生物DNA的若干重要数据,是微生物鉴定 中极其重要的指标。


杂合率越高,表示两个 DNA 之间碱基序列的相似 性越高,它们之间的亲缘关系也就越近。 如两株大肠埃希氏菌的 DNA 杂合率可高达 100 %, 而大肠埃希氏菌与沙门氏菌的 DNA 杂合率较低, 约有 70 %。 G+Cmol %的测定和 DNA 杂交实验为细菌种 和属的分类研究开辟了新的途径,解决了以表观特 征为依据所无法解决的一些疑难问题,但对于许多 属以上分类单元间的亲缘关系及细菌的进化问题仍 不能解决。
第二章 发酵工业菌种与种子的扩大培养
第一节 工业生产常用的微生物 一、工业生产常用的微生物* · 从自然界中分离出来就能被利用;
· 对野生菌株进行人工诱变,得到突变株才能被利用。 · 使用重组DNA技术改造的菌株
目前育种总趋势 从野生菌转向变异菌 自然选育转向代谢育种 从诱发基因突变转向基因重组的定向育种。
形态
经典分类法
经典分类法是一百多年来进行微生物 分类的传统方法。其特点是人为地选择几种 形态生理生化特征进行分类,并在分类中将 表型特征分为主、次。一般在科以上分类单 位以形态特征、科以下分类单位以形态结合 生理生化特征加以区分。
相关文档
最新文档