八年级数学竞赛试题及答案 (1)

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

初二竞赛数学试题及答案

初二竞赛数学试题及答案

初二竞赛数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或1答案:D3. 一个直角三角形的两个直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差也不是等比D. 无法确定答案:A5. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______。

答案:非负数7. 如果一个数的相反数是-3,那么这个数是______。

答案:38. 一个数的平方根是4,那么这个数是______。

答案:169. 一个数的立方根是2,那么这个数是______。

答案:810. 如果一个数的1/4等于5,那么这个数是______。

答案:20三、计算题(每题5分,共15分)11. 计算下列表达式的值:(2x - 3) / (x + 1),当x = 5时。

答案:(2*5 - 3) / (5 + 1) = 7 / 612. 计算下列多项式的乘积:(3x^2 - 2x + 1) * (x + 2)答案:3x^3 + 4x^2 + x - 2x^2 - 4x + 2 = 3x^3 + 2x^2 - 3x + 213. 求解方程:2x + 5 = 3x - 1答案:2x - 3x = -1 - 5 => -x = -6 => x = 6四、解答题(每题10分,共20分)14. 一个长方形的长是宽的两倍,且面积为24平方厘米。

求长方形的长和宽。

答案:设宽为x厘米,则长为2x厘米。

面积为x * 2x = 24平方厘米,解得x^2 = 12,x = √12 = 2√3,所以宽为2√3厘米,长为4√3厘米。

全国初二数学竞赛试题及答案解析

全国初二数学竞赛试题及答案解析

全国初二数学竞赛试题及答案解析一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不规则三角形答案:A解析:根据勾股定理的逆定理,如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

2. 已知x^2 - 5x + 6 = 0,求x的值。

A. 1B. 2C. 3D. 6答案:C解析:这是一个二次方程,可以通过因式分解法求解。

x^2 - 5x + 6 = (x - 2)(x - 3) = 0,解得x = 2 或 x = 3。

...30. 已知一个数列的前三项为2, 3, 5,且每一项都是前两项的和,求第10项的值。

答案:55解析:这是一个斐波那契数列,每一项都是前两项的和。

根据数列的规律,可以依次计算出第10项的值为55。

二、填空题(每题4分,共20分)31. 如果一个圆的半径是r,那么它的面积是______。

答案:πr^232. 一个长方体的长、宽、高分别是a、b、c,它的体积是______。

答案:abc...三、解答题(每题10分,共50分)36. 已知一个等腰三角形的底边长为10厘米,两腰的长度相等,且底角为45度。

求这个等腰三角形的面积。

答案:25√2解析:首先,根据底角为45度,我们可以知道这是一个等腰直角三角形。

根据勾股定理,两腰的长度为底边的√2倍,即10√2厘米。

然后,根据三角形面积公式(底×高÷2),面积为10×(10√2)÷2=50√2平方厘米。

37. 一个数的平方减去这个数等于36,求这个数。

答案:9 或 -4解析:设这个数为x,根据题意,我们有x^2 - x - 36 = 0。

这是一个二次方程,可以通过因式分解法求解:(x - 9)(x + 4) = 0。

解得x = 9 或 x = -4。

...结束语:本次全国初二数学竞赛试题涵盖了代数、几何、数列等多个领域,旨在考察学生的数学基础知识和解题能力。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

初二数学竞赛测试题(含答案)

初二数学竞赛测试题(含答案)

初二数学竞赛测试题 班级 姓名_____________________ 一、选择题(每小题4分,共32分)1.如果a >b,则2a -b 一定是( C )A 、负数B 、非负数C 、正数D 、非正数。

2.已知x ﹥0,y ﹤0,∣x ∣﹤∣y ∣,则x+y 是( C )A 、零B 、正数C 、负数D 、不确定。

3.如图,△ABC 中,∠B=∠C ,D 在BC 边上, ∠BAD=500,在AC 上取一点E ,使得∠ADE=∠AED ,则∠EDC 的度数为( B )A 、150B 、250C 、300D 、5004.满足等式2003200320032003=+--+xy y x x y y x的正整数对(x,y )的个数是( )A 、1B 、2C 、3D 、45.今有四个命题:①若两实数的和与积都是奇数,则这两数都是奇数。

②若两实数的和与积都是偶数,则这两数都是偶数。

③若两实数的和与积都是有理数,则这两数都是有理数。

④若两实数的和与积都是无理数,则这两数都是无理数。

其中正确命题个数为( )A 、0B 、1C 、2D 、46.若M=3x 2-8xy+9y 2-4x+6y+13(x,y 是实数),则M 的值一定是( )A 、正数B 、负数C 、零D 、整数7.设A=48)41001441431(222+++-+-⨯ 则与A 最接近的正整数是( )A 、18B 、20C 、24D 、258.如果关于x 的方程k(k+1) (k-2)x 2-2(k+1) (k+2)x+k+2=0,只有一个实数解,则实数k 可取不同的值的个数为( )(A)2 (B)3 (C)4 (D)5.二.填空题(每小题5 分共30分)9.如图,有一块矩形ABCD,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE,再将△AED 沿DE 向上翻折,AE 与BC 的交点为F,则△CEF 的面积为 .10.关于x 的方程∣∣x-2 ∣-1∣=a 有三个整数解,则a 的值是 .11.已知关于x 的方程a 2x 2-(3a 2-8a)x+2a 2-13a+15=0(其中a 是非负整数),至少有一个整数根,那么a= .12.若关于x 的方程13213+-=++x x ax x 有增根x=-1,则a= . 13.已知三个质数a,b,c 满足a+b+c+abc=99,那么a c cb b a -+-+-= .14.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心).若现在时间恰好是12点整,则经过 秒钟后,△OAB 的面积第一次达到最大.三、解答题:15.如图已知△ABC 中,∠ACB=900, AC=BC ,CD ∥AB ,BD=AB ,求∠D 的度数。

2020-2021学年浙江省八年级下学期数学竞赛卷1(解析版)

2020-2021学年浙江省八年级下学期数学竞赛卷1(解析版)

2020-2021学年浙江省八年级下学期数学竞赛卷1 一.选择题(共8小题)1.设a=﹣2,则代数式a3+4a2﹣a+6的值为()A.6B.4C.2+2D.2﹣2【解答】解:∵a=﹣2,∴(a+2)2=()2,即a2+4a=1,∴a3+4a2﹣a+6=a(a2+4a)﹣a+6=a×1﹣a+6=6.故选:A.2.关于x的方程x2﹣bx+4=0有两个相等的正实数根,则b的值为()A.4B.﹣4C.﹣4或4D.0【解答】解:∵关于x的方程x2+bx+4=0有两个相等的正实数根,∴△=b2﹣4×1×4=b2﹣16=0,解得:b=4.故选:A.3.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°【解答】解:如图,在四边形ACEH中,∠A+∠C+∠E+∠1=360°,在四边形BDFP中,∠B+∠D+∠F+∠2=360°,∵180°﹣∠1+180°﹣∠2+∠G=180°,∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.故选:C.4.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.【解答】解:如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=5,则BC=5.故选:B.5.如图正方形ABCD的顶点A在第二象限y=图象上,点B、点C分别在x轴、y轴负半轴上,点D在第一象限直线y=x的图象上,若S阴影=,则k的值为()A.﹣1B.C.D.﹣2【解答】解:如图,过点A作AG⊥x轴,过点D作DE⊥x轴,作DF⊥AG交y轴于H,∴四边形DHOE是矩形∵∠ADC=∠HDE=90°∴∠ADC﹣∠FDC=∠HDE﹣∠FDC∴∠ADF=∠CDE,∵点D在第一象限直线y=x的图象上,∴DH=DE,且∠ADF=∠CDE,∠DHM=∠DEN∴△DHM≌△DEN(ASA)∴S△DHM=S△DNE,∴=S四边形DHOE=DH×DE∴DH=DE=同理可证:△AFD≌△BGA≌△COB≌△DHC∴AF=HD=BG=OC,AG=DF=BO=HC∴OC=HD==AF=BG∴CH=∴AG==BO∴GO=∴点A坐标(﹣,)∴k=﹣×=﹣故选:B.6.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°【解答】解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选:D.7.若m是关于x的方程x2﹣2020x+1=0的根,则(m2﹣2020m+4)•(m2﹣2020m﹣5)的值为()A.18B.﹣18C.20D.﹣20【解答】解:∵m是关于x的方程x2﹣2020x+1=0的根,∴m2﹣2020m+1=0,∴m2﹣2020m=﹣1,∴(m2﹣2020m+4)•(m2﹣2020m﹣5)=(﹣1+4)×(1﹣5)=﹣18.故选:B.8.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为()A.8B.4C.D.【解答】解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C与点E都在反比例函数y=的图象上,∴OD×CD=OF×EF,∴OF==2t,∴OA=2t﹣=t,∴S四边形OABC=2S△OCE,∴t×t=2×8,∴解得:t=(舍负),∴OC=.故选:D.二.填空题(共6小题)9.已知关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围﹣3≤k<4且k≠.【解答】解:∵关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,∴,解得:﹣3≤k<4且k≠.故答案为:﹣3≤k<4且k≠.10.若<0,化简﹣﹣3的结果为﹣2x.【解答】解:由题意得,或,解得,﹣2<x<,则原式=|5﹣3x|﹣|x﹣2|﹣3=5﹣3x﹣2+x﹣3=﹣2x,故答案为:﹣2x.11.如图,双曲线y=(x>0)的图象上.△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,过B1作B1C⊥x轴于C,过B2作B2D⊥x轴于D,则点A n的坐标为(,0).【解答】解:∵点B1,B2在双曲线y=(x>0)的图象上,∴OC•B1C=3,∵△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,∴B1C=OC,∴OC=,∴OA1=2,∴;连接OB2,则OD•B2D=3,∵OD=OA1+A1D=2+,,∴∴,∴,同理可得,,…由上可知,.故答案为:(,0).12.P是正方形ABCD内一点,AB=5,P A=,PC=5,则PB=或2.【解答】解:如图所示,∴PB==或PB==2,故答案为:或2.13.已知x1,x2,x3,x4,x5为正整数,任取四个数求和,只能得到44,45,46,47这样四个结果,则这5个数的众数是11.【解答】解:根据题意,设这个重复的和为z,可得:(x1+x2+x3+x4+x5)×4=44+45+46+47+z,可得:z=46,可得五个数据之和为57,所以五个数据为:10,11,12,13,11,故答案为:1114.如图,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是或.【解答】解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,2),同理可求出点A的坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=,∴BA2﹣AC2=k>0,∴BA≠AC,若△ABC是等腰三角形,①当AB=BC时,则=,解得:k=±(舍去负值);②当AC=BC时,同理可得:k=;故答案为:或.三.解答题(共4小题)15.已知x﹣y=6,,求的值.【解答】解:∵x﹣y=6,∴,∴,∵+=•+•=(+)=9,∴,即,∴=(﹣)=×=4.16.已知实数a,b,c满足:a+b+c=2,abc=4.(1)求a,b,c中的最大者的最小值;(2)求|a|+|b|+|c|的最小值.【解答】解:(1)不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且b+c=2﹣a,.于是b,c是一元二次方程的两实根,≥0,a3﹣4a2+4a﹣16≥0,(a2+4)(a﹣4)≥0.所以a≥4.又当a=4,b=c=﹣1时,满足题意.故a,b,c中最大者的最小值为4.(2)因为abc>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,则由(1)知,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,设a>0,b<0,c<0,则|a|+|b|+|c|=a﹣b﹣c=a﹣(2﹣a)=2a﹣2,由(1)知a≥4,故2a﹣2≥6,当a=4,b=c=﹣1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.17.如图,四边形ABCD是矩形,E是对角线BD上不同于B、D的任意一点,AF=BE,∠DAF=∠CBD.(1)求证:△ADF≌△BCE;(2)求证:四边形ABEF是平行四边形;(3)试确定当点E在什么位置时,四边形AEDF为菱形?并说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS);(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∠BAD=90°,∴∠DBC=∠ADB,∵∠DAF=∠CBD,∴∠DAF=∠ADB,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形;(3)解:当E为BD的中点时,四边形AEDF变为菱形,理由如下:如图所示:∵E为BD的中点,∠BAD=90°,∴AE=BE=DE,∵AF=BE,AF∥BD,∴AF∥DE,AF=DE,AF=AE,∴四边形AEDF是平行四边形,∴四边形AEDF是菱形.18.请你利用直角坐标平面上任意两点(x1,y1),(x2,y2)间的距离公式d=解答下列问题:已知:反比例函数y=与正比例函数y=x的图象交于A,B两点(A在第一象限),点F1(﹣2,﹣2),F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数y=图象上的任意一点,记点P与F1,F2两点之间的距离之差d=|PF1﹣PF2|.(1)试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).(2)现请你在反比例函数y=第一象限内的分支上找一点P,使点P到F2(2,2)和点C(6,4)的距离之和最小,求点P的坐标.【解答】:解由y=和y=x组成的方程组可得A、B两点的坐标分别为,(,)、(﹣,﹣),线段AB的长度=4.∵点P(x0,y0)是反比例函数y=图象上一点,∴y0=.∴PF1==||,PF2==||,∴d=|PF1﹣PF2|=|||﹣|||,当x0>0时,d=4;当x0<0时,d=4.因此,无论点P的位置如何,线段AB的长度与d一定相等.由此可知:到两个定点的距离之差(取正值)是定值的点的集合(轨迹)是双曲线.(2)由条件PF2=PF1﹣4,知PF2+PC=PF1+PC﹣4,由F1,﹣P,C三点共线时最小,此时可解得P(2,1).。

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。

解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。

代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。

答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。

求△ABC的面积。

解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。

底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。

答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。

解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。

将所有项移到一边得:3x² - 12x + 11 = 0。

对方程进行因式分解得:(x - 1)(3x - 11) = 0。

由此可得x = 1 或 x = 11/3。

答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。

已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。

解:由题意可推出ABCD为平行四边形,而AE = CD。

根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。

答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。

解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。

八年级数学竞赛试卷(含答案)

八年级数学竞赛试卷(含答案)

八年级数学竞赛试卷(含答案) (满分:完卷时间:120分钟)一、选择题(每小题5分,共40分)1.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 2设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为【 】 A.M <N B.M >N C.M=N D .不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34+…+32015的末位数字是【 】 A .0B .1C .3D .94.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是【 】A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-= 5.已知△ABC 中,AB=AC,高BD 、CE 交于点O,连接AO,则图中全等三角形的对数为【 】A .3B .4C .5D .6第5题图 第6题图6、如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是【 】A .4B .5C .6D .7 7、点(3,5)P -关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 8、下列四个命题中,真命题有( )① 两条直线被第三条直线所截,内错角相等.② 如果∠1和∠2是对顶角,那么∠1=∠2. ③ 三角形的一个外角大于任何一个内角. ④ 如果02>x ,那么0>x . A .1个 B .2个 C .3个 D .4个二、填空题(每小题5分,共40分)9.若532+y x b a 与x y b a 2425-是同类项,则XY= .10. 如图,直线l ∥m,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则 ∠1+∠2的度数为 .11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 . 12.已知2(25)1000a +=,则(15)(35)a a ++的值为 .13.计算1111111111234523456⎛⎫⎛⎫----++++ ⎪⎪⎝⎭⎝⎭1111111111234562345⎛⎫⎛⎫------+++ ⎪⎪⎝⎭⎝⎭的结果是 .14.如图,在△ABC 中,I 是三内角平分线的交点,∠BIC=130°,则∠A= .15.如图,钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A,则∠A 的度数是 .16、如图AB=AC,则数轴上点C 所表示的数为_____________题 号 1 2 3 4 5 6 7 8 答案题 号 9 10 11 12 13 14 15 16 答案OE D CA QP C B D第10题第14题图第15题图第16题图二、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值.19.如图,△ABC是边长为6的等边三角形, P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.ICBA20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.参考答案三、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.(2b=a+c)18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值=319.如图,△ABC是边长为6的等边三角形, P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.解法一:过P 作PE ∥QC则△AFP是等边三角形, ∵P 、Q 同时出发、速度相同,即BQ=AP∴BQ=PF∴△DBQ≌△DFP,∴BD=DF∵,∴BD=DF=FA=,∴AP=2.解法二: ∵P 、Q 同时同速出发,∴AQ=BQ设AP=BQ=x,则PC=6-x,QC=6+x 在Rt△QCP中,∠CQP=30°,∠C=60°∴∠CQP=90°∴QC=2PC,即6+x=2(6-x)∴x=2∴AP=2(2)由(1 )知BD=DF而△APF 是等边三角形,PE ⊥AF,∵AE=EF 又DE+(BD+AE)=AB=6,∴DE+(DF+EF)=6 ,即DE+DE=6∵DE=3 为定值,即DE 的长不变20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.题号 1 2 3 4 5 6 7 8 答案 D B D D C A A A 题号9 10 11 12 13 14 15 16答案-2 4507 900 1/680°12°15AED CB证明:延长AB到F,使BF=BD,连DF,所以∠F=∠BDF因为∠ABC=80所以∠F=40°因为∠ACB=40度所以∠F=∠ACB,因为AD是平分线所以∠BAD=∠CAD又AD为公共边所以△ADF≌△ADC所以AF=AC因为AD是角平分线,所以∠CBE=∠ABC/2=40所以∠EBD=∠C所以BE=EC,所以BE+AE=EC+AE=AC=AF=AB+BF=AB+BD。

初二竞赛数学试题大全及答案

初二竞赛数学试题大全及答案

初二竞赛数学试题大全及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,这个数是什么?A. 4B. -4C. 4或-4D. 16答案:C3. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数的立方是-27,这个数是什么?A. -3B. 3C. -27D. 27答案:A5. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C6. 一个数的倒数是1/4,这个数是什么?A. 4B. -4C. 1/4D. 4/1答案:A7. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π答案:B8. 一个数的平方根是4,这个数是什么?A. 16B. -16C. 4D. 8答案:A9. 如果一个数的立方根是2,这个数是什么?A. 8B. 6C. 4D. 2答案:A10. 一个数的对数以10为底是2,这个数是什么?A. 100B. 10C. 20D. 200答案:B二、填空题(每题3分,共15分)11. 一个数的平方是36,这个数是_________。

答案:±612. 一个数的立方是64,这个数是_________。

答案:413. 一个圆的周长是2π,那么它的半径是_________。

答案:114. 如果一个数的绝对值是10,那么这个数可以是_________。

答案:±1015. 一个数的对数以2为底是3,这个数是_________。

答案:8三、解答题(每题5分,共55分)16. 证明勾股定理。

答案:略(根据直角三角形的两条直角边的平方和等于斜边的平方进行证明)17. 解一元二次方程:x² - 5x + 6 = 0。

答案:(x - 2)(x - 3) = 0,解得 x₁ = 2,x₂ = 3。

初二数学竞赛试题及答案

初二数学竞赛试题及答案

初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 4B. 2/3C. √2D. 0.5答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 7答案:C3. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时,结果为:A. 1/3B. 1C. 4D. 5答案:C4. 一个数的平方是其本身的数有:A. 0和1B. 0和-1C. 1和-1D. 0和2答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -3答案:B7. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或08. 计算下列表达式的值:(2x + 3) / (x - 1),当x = 2时,结果为:A. 5B. 7C. 9D. 11答案:B9. 一个等腰三角形的两边长分别为5和8,那么其周长可能是:A. 18B. 21C. 26D. 30答案:C10. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。

12. 一个数的立方根是2,那么这个数是______。

答案:813. 如果一个角的补角是120°,那么这个角的度数是______。

答案:60°14. 一个数的倒数是1/2,那么这个数是______。

答案:215. 一个数的绝对值是5,那么这个数可能是______或______。

答案:5或-5三、解答题(每题10分,共50分)16. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。

答案:根据勾股定理,斜边的长度为√(6² + 8²) = √(36 + 64) = √100 = 10。

八数学竞赛试题及答案

八数学竞赛试题及答案

八数学竞赛试题及答案一、选择题(每题2分,共10分)1. 在一个直角三角形中,如果一个锐角是另一个锐角的两倍,那么这个直角三角形是()。

A. 等腰直角三角形B. 等边三角形C. 等腰三角形D. 直角三角形2. 一个数的平方根是4,这个数是()。

A. 16B. -16C. 8D. 43. 一个圆的直径是14厘米,那么它的半径是()厘米。

A. 7B. 14C. 28D. 214. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,它的体积是()立方厘米。

A. 60B. 48C. 30D. 245. 如果一个分数的分子和分母同时乘以2,那么这个分数的大小()。

A. 变大B. 变小C. 不变D. 不能确定二、填空题(每题2分,共10分)6. 一个数的立方根是3,那么这个数是______。

7. 一个数的倒数是1/5,那么这个数是______。

8. 一个正数的平方是25,那么这个数是______。

9. 如果一个数的绝对值是5,那么这个数可以是______。

10. 一个数的平方是它本身,这个数可以是______。

三、解答题(每题10分,共30分)11. 一个长方形的长是15厘米,宽是10厘米,求这个长方形的周长和面积。

12. 一个数列的前三项是2,5,10,求这个数列的第四项和第五项。

13. 一个班级有40名学生,其中30名学生参加了数学竞赛,求参加数学竞赛的学生占班级总人数的百分比。

四、证明题(每题15分,共15分)14. 证明:在一个直角三角形中,斜边的中点到三个顶点的距离相等。

五、综合题(每题15分,共15分)15. 一个长方体的长、宽、高分别是a、b、c,求证:长方体的对角线的长度的平方等于长、宽、高的平方和。

答案一、选择题1. A2. A3. A4. B5. C二、填空题6. 277. 58. ±59. ±510. 0或1三、解答题11. 周长= 2 × (15 + 10) = 50厘米,面积= 15 × 10 = 150平方厘米。

初二数学竞赛试题及参考答案

初二数学竞赛试题及参考答案

初二数学竞赛试题及参考答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 44. 以下哪个表达式等于0?A. 2 + 3B. 2 - 2C. 2 × 3D. 2 ÷ 25. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的立方根是它本身,这个数可以是______。

7. 一个数的绝对值是它本身,这个数可以是______。

8. 一个数的相反数是它本身,这个数是______。

9. 一个数的倒数是它本身,这个数是______。

10. 如果一个数的平方是16,那么这个数可以是______。

三、简答题(每题5分,共20分)11. 解释什么是勾股定理,并给出一个例子。

12. 解释什么是有理数和无理数,并给出一个例子。

13. 解释什么是因式分解,并给出一个例子。

14. 解释什么是二次方程,并给出一个例子。

四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的体积。

16. 一个等腰三角形的底边长为8厘米,两腰边长为5厘米,求它的面积。

17. 一个二次方程 \( ax^2 + bx + c = 0 \) 的系数 a、b、c 分别为 2、-7 和 3,求它的根。

五、附加题(每题5分,共5分)18. 一个数列的前三项是 1, 1, 2,从第四项开始,每一项都是前三项的和。

求这个数列的前10项。

参考答案一、选择题1. D2. A3. A4. B5. B二、填空题6. 0, 1, -1, 17. 非负数8. 09. ±110. ±4三、简答题11. 勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。

八年级趣味数学竞赛试题

八年级趣味数学竞赛试题

八年级趣味数学竞赛试题班级姓名得分1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。

问他赚了多少?答案:2元2、小华的爸爸1分钟可以剪好5只自己的指甲。

他在5分钟内可以剪好几只自己的指甲?答案:20只,包括手指甲和脚趾甲3、哪一年正着念和倒着念一样?答案:1961年4、一根绳子两个头,一根半绳子有几个头?答案:4个5、桌子上原有12支点燃的蜡烛,先被风吹灭了3支,不久又被风吹灭了2支,桌子上还剩几支蜡烛呢?答案:12支6、一张照片上有3个人,但是却有2个爸爸和2个儿子,为什么?答案:照片上的人分别为爷爷、爸爸、儿子7、用放大镜不能放大的是什么?猜一几何名词。

答案:角8、5只鸡,5天生了5个蛋。

100天内要100个蛋,需要多少只鸡?答案:5只9、12356789,猜一含数字成语。

答案:丢三落四10、阿拉伯数字是哪个国家或地区的人发明创造的?()答案:AA、古印度人B、阿拉伯人C、欧洲人D、中国人11、7/8,猜一含数字成语。

答案:七上八下12、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量。

答案:先称3只,再拿下一只,称量后算差。

13、一天有个年轻人来到王老板的店里买一件礼物,这件礼物成本是18元,售价是21元。

结果是这个年轻人掏出100元要买这件礼物。

王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。

但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。

现在问题是:王老板在这次交易中到底损失了多少钱?答案:97元14、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。

求井深和绳子各是多少?15、王师傅爱喝酒,家中有24只空啤酒瓶。

某商店推出一项活动:三个空啤酒瓶可以换一瓶啤酒。

请问:王师傅家的空啤酒瓶可以换多少瓶啤酒喝?答案:12瓶。

因为三个空啤酒瓶可以换一瓶啤酒,相当于两个空瓶换一瓶酒喝。

希望杯数学八年级竞赛真题及答案(1-23届)

希望杯数学八年级竞赛真题及答案(1-23届)

1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。

八年级数学竞赛题(01)及答案

八年级数学竞赛题(01)及答案

一、选择题(共25小题)1、已知a,b,c,d是互不相等的正整数,且abcd=441,那么a+b+c+d的值是()A、30B、32C、31D、362、已知实数m满足|2009﹣m︳+=m,那么m﹣20092=()A、2008B、2009C、2010D、20073、若单项式﹣2a|x|b|4x|和32ab3﹣x的相同字母的指数相同,则x的整数值等于()A、1B、﹣1C、±1D、±1以外的数4、使不等式|x+2|>1成立的x的值为()A、比﹣1大的数B、比﹣3小的数C、大于﹣1或小于﹣3的数D、﹣2以外的数5、已知△ABC的三边长分别为a,b,c,且,则△ABC一定是()A、等边三角形B、腰长为a的等腰三角形C、底边长为a的等腰三角形D、等腰直角三角形6、,﹣,﹣,﹣这四个数从小到大的排列顺序是()A、﹣<﹣<﹣<﹣B、﹣<﹣<﹣<﹣C、﹣<﹣<﹣<﹣D、﹣<﹣<﹣<﹣7、已知25x=2000,80y=2000,则等于()A、2B、1C、D、8、设a+b+c=0,abc>0,则的值是()A、﹣3B、1C、3或﹣1D、﹣3或19、三方一次方程x+y+z=1999的非负整数解的个数有()A、20001999个B、19992000个C、2001000个D、2001999个10、金与银做成的王冠重250克,放在水中减轻16克.已知金在水中轻,银在水中轻.这块王冠中金重()A、180克B、188克C、190克D、2OO克11、小聪与小明发明了24点新玩法,要制作一正方体骰子,使六个面上写着六个数,而且相对的两个面的乘积都等于24,则以下的展开图中,哪一个是可行的()A、B、C、D、12、在一次生活中的数学知识竞赛中,共有20道题选择题.评分标准是:答对1题给5分,答错一题扣3分,不打不给分,小明有1道题未答,要使总分才不会低于60分,他至少答对()A、12道B、13道C、14道D、15道13、若a,b,c,m都是有理数,并且a+2b+3c=m,a+b+2c=m,则b与c()A、互为倒数B、互为负倒数C、互为相反数D、相等14、(2006•天津)已知,则的值等于()A、6B、﹣6C、D、15、把100块玻璃由甲地运往乙地.按规定,把一块玻璃安全运到,得到运费3元.如果运输途中打碎一块玻璃,则要赔偿5元.在结算时共得运输费260元,则运输途中打碎了()块玻璃.A、8B、7C、6D、516、下列各对数中,相等的是()A、﹣32和﹣23B、(﹣3)2和(﹣2)3C、﹣32和(﹣3)2D、﹣23和(﹣2)317、代数式的最小值是()A、0B、C、D、18、如图,一直尺放在一直角三角板上,则图中∠α与∠β的关系是()A、α+β=180°B、α﹣β=90°C、α=2βD、α=3β19、实数a,b在数轴上表示的位置如图所示,则下列式子正确的是()A、B、C、D、20、代数式的值的大小()A、只与x的取值有关B、只与y的取值有关C、与x,y的取值都有关D、与x,y的取值都无关21、已知a是正整数,方程组的解满足x>0,y<0,则a是()A、4、5B、5、6C、6、7D、以上都不对22、韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人.问:这队士兵至少有()人.A、8B、11C、38D、5323、有一个5分钱币,4个二分钱币,8个一分钱币,要取9分钱,有()取法.A、5B、6C、7D、824、如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A、2005B、2006C、2007D、200825、边长为整数,周长等于21的等腰三角形共有()A、4个B、5个C、6个D、7个二、填空题(共5小题)26、如图,AB⊥BC,DC⊥BC,垂足分别为点B,C,∠BAD和∠ADC的平分线恰好交在BC边上的E点,AD=8,BE=6,则四边形ABCD的面积为_________.27、已知实数a、b、c满足,则a(b+c)=_________.28、已知a,b,c都是正整数,且abc=2008,则a+b+c的最小值为_________.29、初二某班有49位同学,他们之间的年龄最多相差3岁,若按属相分组,那么人数最多的一组中至少有同学_________位.30、已知n为正整数,若是一个既约分数,那么这个分数的值等于_________.答案与评分标准一、选择题(共25小题)1、已知a,b,c,d是互不相等的正整数,且abcd=441,那么a+b+c+d的值是()A、30B、32C、31D、36考点:质因数分解。

八年级数学竞赛试题(含答案)

八年级数学竞赛试题(含答案)

CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。

八年级(上)竞赛数学试卷(含答案)

八年级(上)竞赛数学试卷(含答案)

八年级(上)竞赛数学试卷(含答案)一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=度.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有个数据.9.若(x+2)2=64,则x=.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是三角形.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.8114.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.2218.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.119.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表:组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?参考答案与试题解析一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为5.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据题意作出图形,利用等腰三角形的两底角相等求出三角形的顶角等于150°,所以顶角的邻补角等于30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半即可求出.【解答】解:如图,△ABC中,∠B=∠ACB=15°,∴∠BAC=180°﹣15°×2=150°,∴∠CAD=180°﹣150°=30°,∵CD是腰AB边上的高,∴CD=AC=×10=5cm.故答案为:5.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】先根据“于x轴对称的点,横坐标相同,纵坐标互为相反数”求得a,b的值再求代数式的值.【解答】解:∵点A(a,2)、B(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=30度.【考点】等边三角形的性质.【分析】作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.【解答】解:作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB=BP=BC,∠DBP=∠DBC,BD=BD;∴△BDC≌△BDP,所以∠BPD=30°.故应填30°.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为30°或150°.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】本题要分两种情况解答:当BD在三角形内部以及当BD在三角形外部.再根据等腰三角形的性质进行解答.【解答】解:本题分两种情况讨论:(1)如图1,当BD在三角形内部时,∵BD=AB,∠ADB=90°,∴∠A=30°;(2)当如图2,BD在三角形外部时,∵BD=AB,∠ADB=90°,∴∠DAB=30°,∠ABC=180°﹣∠DAB=30°=150°.故答案是:30°或150°.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为【考点】待定系数法求一次函数解析式.【分析】将点(﹣2,﹣1)代入函数解析式即可求出k的值.【解答】解:将点(﹣2,﹣1)代入得:﹣1=﹣2k+2,解得:k=.故填.6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是98%.【考点】有理数的除法.【分析】合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,即有294件合格,根据合格率=合格产品÷总产品,得出结果.【解答】解:这批产品的合格率=÷300=294÷300=0.98.答:这批产品的合格率是98%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.【考点】代数式求值.【分析】令a=1,b=2,代入a◇b=,可求得k的值,进而根据运算法则可得出2◇3的值.【解答】解:令a=1,b=2,∴=1,k=7,∴2◇3==.故填:.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有60个数据.【考点】频数(率)分布表.【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【解答】解:∵一组数据中某一个数据的频数是12,频率是0.2,∴这个数据组中共有数据的个数=12÷0.2=60.9.若(x+2)2=64,则x=6或﹣10.【考点】平方根.【分析】依据平方根的定义可求得x+2的值,然后解关于x的一元一次方程即可.【解答】解:∵(x+2)2=64,∴x+2=±8.解得:x=6或x=﹣10.故答案为:6或﹣10.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=94°10′.【考点】全等三角形的性质.【分析】全等三角形的对应角相等,三角形内角和等于180°.所以∠C=180°﹣∠A﹣∠B,且∠C1=∠C,∠B=∠B′.【解答】解:∵△ABC≌△A1B1C1,∴∠C1=∠C,∠B=∠B′,又∵∠C=180°﹣∠A﹣∠B=180°﹣∠A﹣∠B′=180°﹣35°25′﹣49°45′=94°50′.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“几个非负数相加,和为0,这几个非负数的值都为0”解出x、y、z的值,再根据勾股定理的逆定理判断三角形的类型.【解答】解:依题意得:x﹣13=0,y﹣12=0,z﹣5=0,∴x=13,y=12,z=5,∵x2=y2+z2,∴此三角形为直角三角形,故填直角.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为9【考点】规律型:数字的变化类.【分析】根据3的指数从1到4,末位数字从3,9,7,1进行循环,再用2010除以4得出余数,再写出32010个位数字.【解答】解:2010÷4=502…2,则32010个位数字为9,故答案为9.二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.81【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出=9的算术平方根.【解答】解:∵=32=9,∴的算术平方根是3.故选:B.14.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【考点】角平分线的性质.【分析】根据到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角平分线两两相交的交点,共三处.故选:D.15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:根据对称的性质,得已知点A(﹣3,a)是点B(3,﹣4)关于y轴对称的点的坐标,那么a=﹣4;则点A的坐标是(﹣3,﹣4),所以点A关于x轴对称的点的坐标是(﹣3,4).故选B.16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人【考点】频数与频率.【分析】根据频率、频数的关系:频率=,可得频数=频率×数据总和.【解答】解:根据题意,得0.3×60=18(人).故选B.17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.22【考点】加权平均数.【分析】本题是加权平均数,根据加权平均数的公式即可求解.【解答】解:平均数=12×+17×+25×=16.5.故选B.18.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.1【考点】菱形的判定与性质;含30度角的直角三角形.【分析】过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.【解答】解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COMP为菱形,PM=4PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD=PC=2.令解:作CN⊥OA.∴CN=OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.19.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°【考点】等腰三角形的性质.【分析】由题意知,△ABD和△ABC是等腰三角形,可求得顶角∠DAE的度数,及∠BAD=∠EAC,进而求得∠CAE的度数.【解答】解:∵AD=AE,BE=CD,∴△ABE和△ABC是等腰三角形.∴∠B=∠C,∠ADE=∠AED.∵∠1=∠2=110°,∴∠ADE=∠AED=70°.∴∠DAE=180°﹣2×70°=40°.∵∠1=∠2=110°,∠B=∠C,∴∠BAD=∠EAC.∵∠BAC=80°.∴∠BAD=∠EAC=(∠BAC﹣∠DAE)÷2=20°.故选A.20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m﹣3)=±8,∴m=7或﹣1.【解答】解:∵(x±4)2=x2±8x+16,∴在x2+2(m﹣3)x+16中,2(m﹣3)=±8,解得:m=7或﹣1.故选:C.三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两直线解析式,解方程即可得到点A的坐标,两直线的解析式令y=0,求出x的值,即可得到点A、B的坐标;(2)根据三点的坐标求出BC的长度以及点A到BC的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l1:y=2x+1、直线l2:y=﹣x+7联立得,,解得,∴交点为A(2,5),令y=0,则2x+1=0,﹣x+7=0,解得x=﹣0.5,x=7,∴点B、C的坐标分别是:B(﹣0.5,0),C(7,0);(2)BC=7﹣(﹣0.5)=7.5,=×7.5×5=.∴S△ABC22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B==70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表: 组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.【考点】频数(率)分布表.【分析】(1)根据频率、频数的关系,频率=,可依次计算出各组的频率;(2)观察图表,可得其中100m跑的成绩不低于15.55秒的有8人,进而求得其所占的比例.【解答】解:(1)样本容量为25,且已知各组的频数,则各组的频率分别为0.12,0.24,0.32,0.2,0.12.(2)观察图表可得:有8人100m跑的成绩不低于15.55秒,所占的比例为=0.32.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?【考点】一次函数的应用.【分析】(1)根据“甲厂费用=单价×数量+制版费;乙厂费用=单价×数量”,即可得出y甲、y乙关于x之间的函数关系式;(2)分别令y甲、y乙=2000,求出与之对应的x的值,比较后即可得出结论.【解答】解:(1)根据题意可知:y甲=0.2x+500;y乙=0.4x.(2)选甲印刷厂,理由如下:当y甲=2000时,有0.2x+500=2000,解得:x=7500;当y乙=2000时,有0.4x=2000,解得:x=5000.∵7500>5000,∴若三江职业中学拿出2000元材料印刷费,应该选取甲印刷厂.。

八年级数学竞赛试题及答案

八年级数学竞赛试题及答案

八年级数学竞赛试题及答案1.将1、2、3、4、5这五个数字排成一排,使得最后一个数是奇数且其中任意连续三个数之和都能被这三个数中的第一个数整除。

求满足要求的排法数量。

答案:3种2.XXX沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车。

假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车。

求发车间隔的时间。

答案:18分钟3.如图,在三角形ABC中,AB=7,AC=11,点M是BC 的中点,AD是∠BAC的平分线,MF∥AD。

求FC的长度。

答案:FC=54.已知0<a<1,且满足$\left\lfloor\frac{a+1}{2}\right\rfloor+\left\lfloor\frac{a+2}{3}\right\rfloor+\cdots+\left\lfloor\frac{a+29}{30}\right\rfloor=18$,求$\left\lfloor10a\right\rfloor$的值。

答案:25.XXX家电话号码原为六位数。

第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码。

XXX发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍。

求XXX家原来的电话号码。

答案:6.在平面上有7个点,其中任意3个点都不在同一条直线上。

如果连接这7个点中的每两个点,那么最多可以得到21条线段;以这些线段为边,最多能构成35个三角形。

7.设a、b、c均是不为0的实数,且满足$a^2-b^2=bc$及$b^2-c^2=ca$。

证明:$a^2-c^2=ab$。

8.如图,在凹四边形ABCD中,它的三个内角∠A、∠B、∠C均为45度。

E、F、G、H分别是边AB、BC、CD、DA的中点。

证明:四边形EFGH是正方形。

9.已知长方形ABCO,O为坐标原点,点B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限且是直线y=2x+6上的一点,若△APD是等腰直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期数学竞赛
一、选择题(共7小题,每小题4分,共28分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请在答题卡上相应位置进行正确填涂。


1、下列图案都是由字母m 组合而成的,其中不是中心对称图形的是
2、如果梯子的底端离建筑物9m ,那么15m 长的梯子可以达到建筑物的高度是
A 、10m
B 、11m
C 、12m
D 、13m
3、某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量y 随时间t 变化的大致图象只能是
4、以线段a=16,b=13,c=10,d=6为边,且使a∥c 作四边形,这样的四边形
A 、能作一个
B 、能作两个
C 、能作三个
D 、不能作
5、已知非零实数a ,b 满足 24242a b a -+++=,则b a -等于
A 、3
B 、-2
C 、1
D 、5
6、方程|x+1|+|x-3|=4的整数解有
A 、2个
B 、3个
C 、5个
D 、无穷多个
7、购买铅笔7支,作业本3个,圆珠笔1支共需3元;购买铅笔10支,作业本4个,圆珠笔1支共需4元,则购买铅笔11支,作业本5个,圆珠笔2A 、 B 、 C 、 D 、
支共需
A 、4.5元.
B 、5元.
C 、6元.
D 、6.5
元.
二、填空题(共7小题,每小题4分,共28分,请将结果填入答题卡上相应位置)
8、用同样大小的黑色棋子按如图所示的方式摆图案,按照这样的规律摆下去,第2010个图案需填棋子 枚。

9、三位数ab 3的2倍等于8ab ,则ab 3等于 。

11、已知方程组3542x y m x y m +=-⎧⎨+=⎩
中未知数1x y m -=和的和等于,则 。

12、已知△ABC 的三个内角的比是m :(m+1):(m+2),其中m 是大于1的正整数,那么
△ABC 按角分类应是 三角形。

13、直线y =45
x -4
95与x 轴、y 轴的交点分别为A 、B ,则线段AB 上(包括端点A 、B )横坐标和纵坐标都是整数的点有 个。

14、如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线。

若AC =15,BC =20,CD =12,EF ∥AC 则∠CEF 的大小
为 。

三、解答题(共5小题,第15题8分,第16、17、18、19题每题9分,计44分,请将答题过程填写在答题卡上相应位置)
第8题图 第14题图
16、如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点B 出
发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y 看作x 的函数,函数的图像如图2所示,试求当90≤≤x
时y 与x 的函数关系式。

17、10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都
想好一个数,并把自己想好的数如实地告诉他两旁的两个人,
然后每个人将他两旁的两个人告诉他的数的平均数报出来。

若报出来的数如图所示,试从方程的角度求报1的人心里想
的数。

18、如图,AD=DB,AE=EC,FG∥AB,AG∥BC。

(1)说明:△AGE≌△CFE.
(2)说明四边形ABFG是平行四边形;
(3)说明四边形BDEF是平行四边形;
(4)研究图中的线段DE,BF,FC之间有怎样的位置关
系和数量关系。

19、如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、
FH都在直线l上.O
1、O
2
分别是正方形的中心,线段O
1
O
2
的长叫做两个正方
形的中心距.当中心O
2
在直线l上平移时,正方形EFGH也随之平移,在平移时正方形EFGH的形状、大小没有改变.
(1)当中心O
2在直线l上平移到两个正方形只有一个公共点时,中心距O
1
O
2
等于多少?
第18题图
(2)随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些
变化?并求出相对应的中心距的值或取值范围(不必写计算过程).
鹏展学校2011-2012八年级上学期数学竞赛
八年级数学试题参考答案
一、BCADDCB
二、6032;374;2±;-3;锐角;5;0
45 。

16.解由题意知:5,549,4==-==AD DC BC …………3分
845522=-+=AB ………………………………………5分
当40≤≤x 时,x ABx y 42
1==……………………………8分 第19题图
当94≤<x 时,162
1=⋅=BC AB y ………………………9分 17 解:设报1的人心里想的数是x …………1分
则报3的人心里想的数应是x -4,于是报5的人心里想的数是x +4,报7的人心里想的数是x x -=+-8)4(12,报9的人心里想的数是x x +=--8)8(16…3分。

则报1的人心里想的数是x x -=+-12)8(20…………4分
所以 x x =-12…………8分
解得6=x …………9分.
所以 报1的人心里想的数是6
18、(1)因为AG ∥BC ,所以∠G=∠EFC 、∠AEG=∠FEC 、AE=EC
即△AGE ≌△CFE 。

……3分
(2)因为AG ∥BC 、FG ∥AB ,所以四边形ABFG 是平行四边形…………5分
(3)因为AB=FG ,AD=DB ,EF=EG ,FG ∥AB ,所以BD 与EF 平行且相等,即四边形BDEF 是平行四边形……………………7分
(4)DE ∥BF ,DE ∥FC ,BF 与FC 在同一条直线上…………8分
DE=BF=FC ………………………………………………………9分
19、(1)|O 1O 2|=3 …………2分
(2)公共点的个数还可以有两个,无数个,0个 …………4分
当公共点的个数为两个时,1<|O 1O 2|<3 …………6分
当公共点的个数为无数个时,|O 1O 2|=1 …………7分
当公共点的个数为0个时,|O 1O 2|>3或0≤|O 1O 2|<1 …………9分。

相关文档
最新文档