31列方程解应用题(1)

合集下载

五年级列方程解应用题(一

五年级列方程解应用题(一

8、食堂运来一批煤,原计划每天烧210千克,可以烧 24天。改进炉灶后这批煤可烧28天。问:改进炉灶后 平均每天比原计划节约多少千克?
解:设平均每天比原计划节约X千克 (210-X)X28=210X24
9、三角形ABC中,角A是角B的2倍,角A与角B的和 比角C小18°。求三个角的度数。这是一个什么三角形?
解:设两车x小时相遇。 (28+32)X=210 60X=210 X=210÷60 X=3.5 答:两车3.5小时相遇。
两地间的路程是210千米,甲、乙两辆汽车同 时从两地相向开出,3.5小时相遇,甲车每小 时行28千米。乙车每小时行多少千米? 甲车 乙车
甲车行驶的路程+乙车行驶的路程=210千米 解:设乙车每小时行X千米。 28×3.5+3.5X=210 98+3.5X=210 3.5X=112 X=32 答:乙车每小时行32千米。
用字母表示数
1、每支钢笔X元,买10支这样的钢笔要 ( 10X )元。
2、小红每小时走1.2千米,X小时走(1.2X )千米。 3、王阿姨买了m千克香蕉和n千克苹果, 香蕉每千克4.8元,苹果每千克5.4元,一 共花了( 4.8m+5.4n )元。 4、小明买6本书,每本X元,付出5元,找回 ( 5-6x )元。
3、黄花14朵,比红花的2倍少2朵, 红花有多少朵? 黄花的朵数=红花的朵数×2-2 解:设红花有X朵。 2X-2=14 2X=14+2 2X=16 X=16÷2 X=8 答:红花有8朵。
2、乙书架上有320本书,比甲书架上的1.5倍 还多5本,甲书架上有多少本书? 甲书架上的书×1.5+5=乙书架上的书 解:设甲书架上有X本书。 1.5X+5=320 1.5X=320-5 1.5X=315 X=315÷1.5 X=210 答:设甲书架上有210本书.

列方程解应用题50道

列方程解应用题50道

列方程解应用题50道一、行程问题(10道)1. 甲、乙两地相距300千米,一辆汽车从甲地开往乙地,平均每小时行60千米,行了x小时后,距离乙地还有70千米。

求汽车行驶的时间x。

- 解析:汽车行驶的路程为速度乘以时间,即60x千米。

总路程是300千米,此时距离乙地还有70千米,那么汽车行驶的路程就是300 - 70 = 230千米。

可列方程60x=230,解得x = 23/6小时。

2. 一辆客车和一辆货车同时从相距540千米的两地相对开出,客车每小时行65千米,货车每小时行55千米。

经过x小时两车相遇,求x的值。

- 解析:两车相对而行,它们的相对速度是两车速度之和,即65 + 55 = 120千米/小时。

经过x小时相遇,根据路程=速度×时间,可列方程(65 + 55)x=540,120x = 540,解得x = 4.5小时。

3. 小明和小亮在400米的环形跑道上跑步,小明每秒跑5米,小亮每秒跑3米,他们同时从同一点出发,同向而行,经过x秒小明第一次追上小亮,求x。

- 解析:同向而行时,小明第一次追上小亮时,小明比小亮多跑了一圈,即400米。

小明每秒比小亮多跑5 - 3 = 2米。

可列方程(5 - 3)x = 400,2x = 400,解得x = 200秒。

4. 甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,经过x小时两人还相距10千米,A、B两地相距100千米,求x。

- 解析:甲、乙两人x小时一共走了(8 + 6)x千米,此时两人还相距10千米,而A、B两地相距100千米,可列方程(8+6)x+10 = 100,14x+10 = 100,14x = 90,解得x = 45/7小时。

5. 一辆汽车以每小时45千米的速度从A地开往B地,另一辆汽车以每小时55千米的速度从B地开往A地,两车同时出发,经过x小时相遇,A、B两地相距400千米,求x。

列方程解应用题100道附详解

列方程解应用题100道附详解

列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。

(完整版)列方程解应用题练习题

(完整版)列方程解应用题练习题

一、列方程解应用题和倍问题例1 图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有多少本?例2 一个果园有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵树是龙眼的3倍,芒果的棵树是龙眼的2倍,这三种果树各有多少棵?例3一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的3倍。

水池里有16吨水,打开两管5小时能把水排完,甲管每小时排水量多少吨?例4 某粮店全天卖出大米、面粉和玉米面11520千克,卖出大米的千克数是面粉的6倍,面粉的千克数是玉米免的5倍,卖出的大米比玉米面多多少千克?较复杂的和倍问题例1甲粮仓有510吨大米,乙粮仓有1170吨大米,每天从乙粮仓调30吨大米到甲粮仓,多少天以后甲粮仓大米的吨数是乙粮仓的6倍?例2 图书馆买回来故事书、科普书和连环画236本,如果故事书增加10本,就是科普书本数的2倍,科普书减少12本,就是连环画本数的一半,买回来的故事书有多少本?例3 甲数与乙数的和是30,甲数的8倍与乙数的3倍的和是160.甲数、乙数各是多少?例4 甲站和乙站相距299千米,一辆大客车从甲站开往乙站,1.5小时后一辆小轿车从乙站开往甲站,行驶速度是客车的3倍,小轿车行驶2.5小时遇见大客车,小轿车每小时行多少千米?差倍问题一个问题的已知条件是有关数量的差与数量之间的倍的关系,这种问题就是差倍问题。

列方程解差倍问题,可以吧问题中的一个未知数量用x表示,再根据问题中的“差”或“倍”的关系,把其他未知数量用含有x 的式子表示,再找出数量之间的等量关系列方程。

在设未知数x时,通常把倍的关系中作为1的数量设为x较好。

例1一张办公桌的价钱是一把椅子的4倍,办公桌的定价比椅子贵138元,一张办公桌的价钱是多少钱?例2 一个书柜下层放的书的本数是上层的3倍,如果从下层取43本数放到上层,两层的书的本数相同,这个书柜一共方有多少本书?例3 水果店购进的一批西瓜,分三天售完,其中第一天售出的千克数是第二天的2倍,第二天售出的千克数是第三天的1.5倍,第三天售出的比第一天少88千克,这批西瓜共有多少千克?例4 有对黑棋子和白棋子,其中黑棋子的个数是白棋子的3倍,每次取走相同的个数的黑棋子和白棋子,取了若干次后,白棋子还剩8个,黑棋子还剩94个,原来这堆棋子中多少个黑棋子?较复杂的差倍问题例1 有两根同样长的绳子,第一根绳子剪去10米,第二根绳子剪去28米,第一根绳子剩下的长度是第二根的4倍。

第3讲-列方程解应用题(一)(教师版)

第3讲-列方程解应用题(一)(教师版)

1.综合复习小学所学的多种类型的应用题解法;2.训练列方程解应用题的熟练程度,提高速度和准确度.(此环节设计时间在10-15分钟)在解决和差倍问题时,要注意找到“1倍量”,一般将其设为x后,根据总数的和或差的关系列出方程。

回顾上次课的预习思考内容写出下列应用题中的等量关系:(1) 故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。

天安门广场的面积多少万平方米?___________________=____________________________________________。

(2) 妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁。

儿子和妈妈今年分别是多少岁?____________=____________________;____________=____________________。

(3) 甲、乙两人原来存款数相同。

后来甲取出250元,而乙又存入350元,这时乙的存款数正好是甲存款数的4倍。

原来每人存款多少元?(此环节设计时间在50-60分钟)例题1:有甲、乙、丙三所小学的同学来参加幼苗杯数学邀请赛,其中甲校参赛人数比乙校多5人,比丙校多7人.如果乙、丙两校一共有40人参加比赛,那么三所学校各有多少人参加比赛?教法说明:先让学生找出本题中的等量关系,再根据等量关系设未知数。

参考答案:设甲校有x人,则乙校有(x-5)人,丙校(x-7)人,x-5+x-7=40x=26乙:x-5=21(人),丙:x-7=19(人)答:甲、乙、丙三所小学的分别有26、21、19人参加比赛。

试一试:甲、乙、丙三个人每人都有一些弹珠,其中甲的弹珠比乙多3颗,乙的弹珠比丙多9颗,如果甲、丙两人共有100颗弹珠,那么三人各有多少颗弹珠?参考答案:56、53、44试一试:一群黄鼠狼给鸡拜年,黄鼠狼和鸡一共有24只,鸡的总腿数比黄鼠狼的总腿数多18条,求黄鼠狼和鸡各有几只?参考答案:5只、19只此环节设计时间在30分钟左右(20分钟练习+10分钟互动讲解)。

七年级数学上册专题提分精练一元一次方程应用之行程问题(解析版)

七年级数学上册专题提分精练一元一次方程应用之行程问题(解析版)

专题31 一元一次方程应用之行程问题1.甲、乙两地相距300千米,从甲地开出一辆快车,速度为100千米/时,从乙地开出一辆慢车,速度为 65千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意列方程为( ) A .()10010065300x ++= B .()100165300x x -+= C .()6510065300x ++= D .()6510065300x +-=【答案】C【分析】根据两车相遇共行驶270千米列出方程即可.【详解】解:设经过x 小时两车相遇,依题意得()6510065300x ++=. 故选C .【点睛】本题考查了一元二次方程的应用,解题的关键是了解相遇问题中的等量关系. 2.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( ) A .2 B .2或2.25 C .2.5 D .2或2.5钟,但由于堵车,所以实际车速比预计的每小时慢了10千米,且路上多用了5分钟.设预计车速为x 千米/时,根据题意可列方程为( ) A .2530(10)6060x x =+ B .2530(10)6060x x += C .25x =30x ﹣10 D .2530(10)6060x x =- 【答案】D【分析】由实际车速比预计的每小时慢了10千米可得出实际车速为(10)x -千米/时,利用路程=速度⨯时间,结合路程不变,即可得出关于x 的一元一次方程,此题得解. 【详解】解:预计车速为x 千米/时,实际车速比预计的每小时慢了10千米,时,水速为2千米/时,则A 港和B 港相距______千米..如图,在ABC 中,的速度沿着三角形的边按A B C A →→→的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm/s 的速度沿着三角形的边按A C B A →→→的方向行走,那么甲出发________s 后,甲乙第一次相距2cm .【答案】4【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案. 【详解】解:根据题意,∵3cm AB =,6cm BC ,5cm AC =, ∵周长为:35614++=(cm ),∵甲乙第一次相距2cm ,则甲乙没有相遇,设甲行走的时间为t ,则乙行走的时间为(1)t -, ∵1.52(1)214t t +-+=, 解得:4t =;∵甲出发4秒后,甲乙第一次相距2cm . 故答案为:4.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.三、解答题 6.列方程解应用题一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是80千米/小时,卡车的行驶速度是60千米/小时,客车比卡车早2小时经过B 地,A 、B 两地间的路程是多少千米?秒后,两点相距15个单位长度.已知点B 的速度是点A 的速度的4倍(速度单位:单位长度/秒).(1)求出点A 、点B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(2)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A 、点B 的正中间?(3)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点后又立即返回向A 点运动,如此往返,直到B 点追上A 点时,C 点立即停止运动.若点C 一直以15单位长度/秒的速度匀速运动,那么点C 从开始运动到停止运动,行驶的路程是多少个单位长度?【答案】(1)点A的速度为每秒1个单位长度,点B的速度为每秒4个单位长度,图见解析(2)运动1.8秒时,原点恰好处在A、B两点的正中间(3)点C行驶的路程为75单位长度【分析】(1)设点A的速度为每秒t个单位长度,则点B的速度为每秒4t个单位长度.由甲的路程+乙的路程=总路程建立方程求出其解即可;(2)设x秒时,原点恰好处在点A、点B的正中间.根据两点离原点的距离相等建立方程求出其解即可;(3)先根据追及问题求出A,B相遇的时间就可以求出C行驶的路程.(1)设点A的速度为每秒t个单位长度,则点B的速度为每秒4t个单位长度.依题意有:3t+3×4t=15,解得t=1,4t=4,∵点A的速度为每秒1个单位长度,点B的速度为每秒4个单位长度.画图,如图所示:(2)设x秒时,原点恰好处在点A、点B的正中间,根据题意,得3+x=12-4x,解得x=1.8,即运动1.8秒时,原点恰好处在A、B两点的正中间.(3)设运动y秒时,点B追上点A,根据题意,得4y-y=15,解得y=5,即点B追上点A共用去5秒,而这个时间恰好是点C从开始运动到停止运动所花的时间,因此点C行驶的路程为:15575⨯=(单位长度).【点睛】本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.8.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.()1求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)()2若两人相遇后,甲立即以每分钟300m 的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min 两人再次相遇,则乙的速度至少要提高每分钟多少米?【答案】()1甲的速度是每分钟350米,乙的速度是每分钟150米;()250米. 【分析】(1) 设乙的速度为每分钟x 米,则甲的速度为每分钟(200)x +米,两人同向而行相遇属于追及问题,等量关系:甲的路程与乙的路程之差等于环形场地的路程,即可列出方程. (2)在环形跑道上两人背向而行属于相遇问题,等量关系:甲的路程加上乙的路程等于环形场地的路程,列出算式即可.【详解】解:()1 设乙的速度为每分钟x 米,则甲的速度为每分钟(200)x +米,依题意有31502003x +=⨯,解之得:150x = ,200150200350x +=+= .答:甲的速度是每分钟350米,乙的速度是每分钟150米. (2)(2003300 1.2) 1.2⨯-⨯÷240 1.2=÷200()m = , 20015050()m -=答:乙的速度至少要提高每分钟50米.【点睛】本题主要考查了环形跑道上的追及问题和相遇问题,明确相遇问题和追及问题的等量关系(追及问题的等量关系:甲路程-乙路程=环形跑道的长度;相遇问题的等量关系:甲路程+乙路程=环形跑道长度)是解题关键. 9.列方程解应用题如图,在数轴上的点A 表示4-,点B 表示5,若有两只电子蜗牛甲、乙分别从A 、B 两点同时出发,保持匀速运动,甲的平均速度为2单位长度/秒,乙的平均速度为1单位长度/秒.请问:()1两只蜗牛相向而行,经过______秒相遇,此时对应点上的数是______.()2两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3,2;(2)9秒.【分析】()1可设两只蜗牛相向而行,经过x 秒相遇,根据等量关系:两只蜗牛的速度和⨯时间()54=--,列出方程求解即可;()2可设两只蜗牛都向正方向而行,经过y 秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差⨯时间()54=--,列出方程求解即可.【详解】解:()1设两只蜗牛相向而行,经过x秒相遇,依题意有()()+=--,21x54=.解得x3-+⨯=-+=.423462答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.()2设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有()()21y54-=--,=.解得y9答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙.【点睛】本题考查了数轴和一元一次方程的应用,用到的知识点是数轴上两点之间的距离,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.一列匀速前进的火车,通过列车隧道.(1)如果通过一个长300米的隧道AB,从车头进入隧道到车尾离开隧道,共用15秒的时间(如图1),又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,求这列火车的长度;(2)如果火车以相同的速度通过了另一个隧道CD,从火车车尾全部进入隧道到火车车头刚好到达隧道出口(如图2),其间共用20秒时间,求这个隧道CD的长.【答案】(1)火车长度为60米;(2)CD的长为540米答:这列火车的长度为60米.(2)火车的速度60 2.524=÷=米/秒,另一隧道的长242060540=⨯+=米.【点睛】本题主要考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,列出等式方程,即可解答.11.列方程解应用题:某校组织七年级师生共300人乘车前往“故乡”农场进行劳动教育活动. (1)他们早晨8:00从学校出发,原计划当天上午10:00便可以到达“故乡”农场,但实际上他们当天上午9:40便达到了“故乡”农场,已知汽车实际行驶速度比原计划行驶速度快10km/h.求汽车原计划行驶的速度.(2)到达“故乡”农场后,需要购买门票,已知该农场门票票价情况如右表,该校购买门票时共花了3100元,那么参加此次劳动教育的教师、学生各多少人?数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)求a、b、c的值;(2)P、Q同时出发,求运动几秒后,点P可以追上点Q?(3)在(2)的条件下,P、Q出发的同时,动点M从点C出发沿数轴正方向运动,速度为每秒6个单位长度,点M追上点Q后立即返回沿数轴负方向运动,追上后点M再运动几秒,M到Q的距离等于M到P距离的两倍?5min 后,爸爸以180m/min 的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间? (2)追上小明时距离学校有多远? 【答案】(1)2.5min (2)650m【分析】(1)可以设爸爸追上小明用了x 分钟,根据爸爸追上小明时的行程=小明5分钟的行程+x 分钟的行程列出方程求解即可;(2)根据(1)中的时间可求得行程,即可得距离学校的距离=总路程一已行路程 【详解】(1)设爸爸追上小明用了min x . 依题意,得(18060)605x -=⨯, 解得 2.5x =.答:爸爸追上小明用了2.5min . (2)1100180 2.5-⨯1100450=-650(m)=答:追上小明时,距离学校还有650m 远.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.14.如图,AB=12cm ,点C 在线段AB 上,AC=3BC ,动点P 从点A 出发,以4cm/s 的速度向右运动,到达点B 之后立即返回,以4cm/s 的速度向左运动;动点Q 从点C 出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=______cm,BC=______cm;(2)当t=______秒时,点P与点Q第一次重合;当t=______秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?39933动点P 从点A 出发,以每秒6个单位的速度沿A →B向终点B匀速运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动,当P、Q都到达终点后停止运动.设点P 的运动时间为t(s) .(1)当点P 到达点B 时,点Q 所表示的数是;(2)当t= 0.5时,线段PQ 的长为;(3)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,求t 的值.44。

沪教版 六年级(上)学期数学 列方程解应用题(一) (含解析)

沪教版 六年级(上)学期数学 列方程解应用题(一) (含解析)

沪教版六年级(上)数学辅导教学讲义1.综合复习小学所学的多种类型的应用题解法;2.训练列方程解应用题的熟练程度,提高速度和准确度.在解决和差倍问题时,要注意找到“1倍量”,一般将其设为x后,根据总数的和或差的关系列出方程。

回顾上次课的预习思考内容写出下列应用题中的等量关系:(1) 故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。

天安门广场的面积多少万平方米?___________________=____________________________________________。

(2) 妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁。

儿子和妈妈今年分别是多少岁?____________=____________________;____________=____________________。

(3) 甲、乙两人原来存款数相同。

后来甲取出250元,而乙又存入350元,这时乙的存款数正好是甲存款数的4倍。

原来每人存款多少元?___________________=____________________________________________。

案例1:小王原来的钱数是小李的3倍,他们各自买了80元的书之后,小王的钱数变成了小李的5倍,请问小王和小李原来各有多少钱?教法说明:有些应用题会出现前后变化的情况,例如“小王给小李5元,他们的钱就一样多了”之类的条件,遇上这种情况,一定要分清“变化前”和“变化后”这两个时间点的不同,虽然是同一人,不同时间他有的钱数是不同的,也要分清倍数关系所对应的时间。

李之后的钱”。

它们之间的关系如下图所示:利用这个关系图,可以比较方便地列出方程并求解。

参考答案:设小李原来的钱为x元,3x-80=5(x-80)x=1603x=480答:小王和小李原来各有160元和480元。

总结:列方程解应用题的一般步骤:1.审题,迅速理解题意。

2.思考,找到题中的数量关系。

五年级下数学试题—第5讲-列方程解应用题(一)(沪教版)有答案

五年级下数学试题—第5讲-列方程解应用题(一)(沪教版)有答案

学员姓名:学科教师:年级:辅导科目:授课日期时间主题第5讲—列方程解应用题(一)学习目标1、学会列方程解应用题;2、学会数字问题和年龄问题以及和差倍类问题的应用题解题方法。

教学内容1、上次课课后巩固作业处理,建议让学生互批互改,个别错题可以让学生进行分享,针对共性的错题教师讲解为主。

2、上节课预习内容,教师检查正确率,根据学生做题情况,有适当的积分激励,并且进行讲解。

案例:如图,天平的两个盘内分别盛有51g、45g盐,问该从A盘内拿出多少盐到B盘内,才能使两者所盛盐的质量相等?【分析】方法:列方程关键:设未知数、找等量关系(1)设应从A盘拿出xg放到B盘(2)分析数量盘A盘B原有盐(g)5145现有盐(g)51-x45+x【解答】解:设应从A盘拿出xg放到B盘内则根据题意得51-x=45+x解方程得x=3经检验符合题意答:应从A盘拿出3g放到B盘列方程解应用题的一般步骤是:(1)审:审请题意,弄清题目中的数量关系;(2)设:用字母表示题目中的一个未知数;(3)找:找出题目中的等量关系;(4)列:根据所设未知数和找出的等量关系列方程;(5)解:解方程,求未知数;(6)答:检验所求解,写出答案。

实际问题中,设未知数的方法可能不唯一,要寻找最简捷的设法;解题时,检验过程不可少,但可不写在书面上。

用列方程解应用题的几个注意事项:(1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.(2)所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等.(3)要养成“验”的好习惯,即所求结果要使实际问题有意义.(4)不要漏写“答”,“设”和“答”都不要丢掉单位名称.(5)分析过程可以只写在草稿纸上,但一定要认真.【知识梳理1】数字问题数字问题是常见的数学问题。

这种列方程解应用题中的数字问题多是整数,要注意数位、数位上的数字、数值三者间的关系:两位数=10a+b;三位数帽一样多说明男孩数目比女孩多一个,以此设未知数。

五下思训3-1列方程解应用题1

五下思训3-1列方程解应用题1

五下思训3-1.列方程解应用题(一)班级姓名例1.故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。

天安门广场的面积是多少万平方米?1.客车和货车同时从甲乙两地相对开出,5小时后相遇,两地相距770千米,已知客车速度是货车的1.2倍,求两车速度各是多少?2.摄氏度与华氏度之间的换算关系是摄氏度×1.8+32=华氏度,在摄氏度是几度时,华氏度的值恰好比摄氏度大60?例2.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍,问甲乙原来各有存款多少元?3.甲仓库存粮32吨,乙仓库存粮57吨,甲仓库每天存入4吨,乙仓库每天存入9吨,几天后乙仓库存粮是甲仓库的2倍?4.哥哥的漫画书是弟弟的5倍,每人再得到18本漫画书后,哥哥的漫画书是弟弟的2倍。

问哥哥原有多少本漫画书?例3.小芳想在母亲节给妈妈买一束鲜花,她带的钱如果买4枝康乃馨还剩3.6元,如果买同样的8枝康乃馨,则差4.8元,问小芳带了多少钱?5.箱子里有同样多的红球和蓝球,每次取出5个红球和3个蓝球,取了几次以后,红球没有了,蓝球还有6个。

红球和蓝球各有多少个?6.有一些糖,每人分5块多10块,如果现有的人数增加到原有人数的1.5倍,那么每人4块少2块。

这些糖共有多少块?★7.一艘轮船在两个码头间航行,顺流需要6小时,逆流需要7.5小时,已知水流的速度是每小时3千米,求两码头间的距离?★8.一架飞机所带的燃料最多可以用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可以飞1200千米。

这架飞机最多飞出多少千米,就需要往回飞?综合练习1.两个水池共贮水40吨,甲池注进4吨,乙池再注进水8吨,则两池的水一样多,那么甲池、乙池原来有水分别为多少吨?2.第一车间工人人数是第二车间工人人数的3倍。

如果从第一车间调20名工人去第二车间,则两个车间人数相等。

求原来两个车间各有工人多少名?3.甲乙两数的和是140,现在甲增加25,乙减少5,甲就是乙的3倍。

(完整版)列方程解应用题练习(附答案)

(完整版)列方程解应用题练习(附答案)

小学列方程解应用题1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。

解:设乙有书x本,则甲有书3x本X+3X=82×22、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.解:设下层有书X本,则上层有书3X本3X—60=X+603、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.解:设乙缸有X条,则甲缸有1/2X条X—9=1/2X+94、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.解:设计划时间为X小时60×(X—1)=40×(X+1)5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?解:设四年级种树X棵,则五年级种(3X-10)棵(3X-10)—X=626、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.解:设原计划生产时间为X天40×(X+6)=60×(X—4)7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?解:设X天后,乙仓存粮是甲仓的2倍(32+4X)×2=57+9X8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?解:设直尺每把x元,小刀每把就是(1.9—x)元4X+6×(1.9-X)=99、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?解:设原来每个粮仓各存粮X吨X-130=(X-230)×310、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.解:设两人各加工X个零件X/(50-40)=X/50+5-111、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?解:设橘子每千克X元,则苹果每千克(X+2。

(11)列方程解应用题(一)(1)

(11)列方程解应用题(一)(1)

---------------------------------------------------------------最新资料推荐------------------------------------------------------(11)列方程解应用题(一)(1)(第 11 课时)【列方程解应用题】 1. 列方程解应用题是一种不同于算术解法的新的解题方法。

它是用字母来代替未知数,根据题目中的已知条件找出等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。

(1)列方程解应用题的优点在于可以使未知数直接参加运算;(2)列方程解应用题的关键在于要能正确地设立未知数,善于抓住已知量和未知量之间的数量关系,找出等量关系,建立方程。

2. 列方程解应用题的一般步骤:(1)理解题意;弄清题目所给的已知条件和未知条件,以及它们之间的相互关系。

(2)设未知数;未知数的设立有一定的窍门,不一定都以题目中最后所要求的量作为所设的未知数,而是应该根据题目的内容来确定。

如果设立的未知数不是题目最终要求的量,至少设立的这个未知数也要与已知条件和要求的答案关系紧密。

(3)找出题目中数量之间的等量关系,根据等量关系列出方程;(4)解方程;这是应该纯粹的计算过程,要细心运算。

1 / 6(5)检验,写出答案。

将求出的结果代入原应用题,依照题意检验结果的正确性。

注意不能只检验求得的结果是不是所列方程的解,要防止列方程式时出现的错误。

3. 找等量关系一般有下列方法:(1)以总量为等量关系建立方程;(2)以相差量为等量关系建立方程;(3)以较大的量(或几倍数)为等量关系建立方程;(4)以题中的等量为等量关系建立方程。

【专题训练】 1. 某工厂计划生产一批洗衣机,原计划 20 天完成,实际每天生产 300 台,结果提前 4 天完成任务。

原计划每天生产多少台? 2. 工程队要修一条 3 千米的公路,修了 5 天后,还剩下 300 米没有修,平均每天修多少米?3. 某班有男生 30 人,比女生的 2 倍少 16 人,这个班有女生多少人?4. 有甲、乙两桶油,甲桶油的重量是乙桶油的 3 倍。

列方程解应用题整理与练习(1)

列方程解应用题整理与练习(1)

2.一只羽毛球拍的价钱是一
个羽毛球价钱的10倍。林芳 买了一只羽毛球拍和3个羽 毛球,一共花了39元。买一 个羽毛球花多少元?
3.去年张强比他爸爸小
28岁,今年爸爸的年龄 恰好是张强年龄的8倍。 张强今年多少岁?
4.小明家2009年3月1日电
表读数是1376度,到2009 年9月1日的读数是1846度, 小明家平均每月用电多少 度?
4.南京长江大桥的铁路桥长6772米,
公路桥长4589米。它的铁路桥比武汉长 江大桥铁路桥的5倍多197米,公路桥比 武汉长江大桥公路桥的3倍少421米。
(1)武汉长江大桥铁路桥长多少米?
(2)武汉长江大桥公路桥长多少米?
★题
目标检测
小明2009年3月1日测量了一棵
小树的高度是90厘米,而2009 年10月1日去测量这棵小树的 高度是118厘米,这棵小树平均 每月长高多少厘米?
整理与复习(一)
填空: (1)小红的身高是χ厘米,小刚的身 高比小红的2倍少60厘米,小刚的身高 是( 2x-60 )厘米。 (2)养殖场有绵羊χ只,山羊的只数 是绵羊的2.4倍,养殖场有山羊( 2.4x )只, 山羊比绵羊多(1.4x )只,山羊和绵羊共 ( 3.4x )只。
小组讨论
1、像3.4χ+1.8=8.6、 5χ-χ=24这 样的方程各应怎样解?
实践活动 ★★★题:
甲乙两人的存款相同,甲
取出60元,乙存入20元, 乙的存款是甲的3倍,两人 原有存款各多少元?
实验小学六年级毕业生照毕业
相片共用去1500元。其中底片 费用600元,其余的是刷印费。 每张照片的 印刷费是1.8元。 刷了多少张照片?
★ ★题
1.用合适的方法进行解答:

列方程解应用题1

列方程解应用题1

列方程解下列应用题1至231. 小强上街花110元钱买了一条裤子和一件上衣,已知上衣比裤子贵20元,小强买上衣和裤子各花多少钱?2. 张梅与李芳今年的年龄和是38岁,张梅比李芳大4岁,张梅和李芳今年各多少岁?3. 某工厂去年与今年的平均产值85万元,今年比去年多16万元。

今年的产值多少万元?4. 一枝圆珠笔和一枝钢笔需要12元,钢笔的单价是圆珠笔的5倍,圆珠笔和钢笔每枝各走多少钱?5. 工厂有工人125人,现在又调来7名女工,这时女工人数是男工人数的3倍。

原来男、女工各有多少人?6. 三块钢板共重207千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍,三块钢板各重多少千克?7. 在一个除法算式里,被除数、除数、商与余数的和是127,已知商是3,余数是2,那么被除数是多少?8.两个数相除商8,余16,被除数、除数、商与余数的和是463,被除数是多少?9.一张书桌价钱是一把椅子价钱的5倍。

已知一张书桌比一把椅子贵640元,书桌和椅子单价各是多少元?10. 爸爸比小刚大25岁,爸爸的年龄比小刚的5倍少3岁。

爸爸多少岁?11. 若干个同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位,有多少个同学?多少条船?12. 全班同学站队排成若干行,若每行14人则多5人,若每行17人则少4人。

排成了多少行?有多少同学?13. 全班同学去划船,如果减少一条船,那么每条船正好坐9人;如果增加一条船,那么每条船正好坐6人。

全班有多少人?14. 全班同学去划船,如果减少2条船,那么每条船正好坐12人;如果增加4条船,那么每条船正好坐4人。

全班有多少人?15. 鸡兔同笼,数头共有90只,数脚共有252只,鸡、兔各有多少只?16. 全班46人去划船,共乘12只船,其中大船每船坐5人,小船每船坐3人,大船、小船各几只?17. 2分和5分硬币共36枚,共99分。

两种硬币各多少枚?方程组(七)消元法18. 小明买3盒彩笔和1支毛笔共付款22元,小强买同样的10盒彩笔和1支毛笔共付款50元,问彩笔和毛笔的单价各多少元?19. 小明和小丽去水果店,小明买了4千克梨和5千克苹果,共付41元;小丽买了7千克苹果和4千克梨,共付51元。

小学数学列方程解应用题100道及答案(完整版)

小学数学列方程解应用题100道及答案(完整版)

小学数学列方程解应用题100道及答案(完整版)题目1:小明有x 本书,小红的书比小明多5 本,小红有10 本书,小明有多少本书?答案:小明有5 本书。

方程:x + 5 = 10,解得x = 5题目2:学校买来10 个篮球,比足球多2 个,足球有x 个,求足球个数。

答案:足球有8 个。

方程:x + 2 = 10,解得x = 8题目3:果园里苹果树有x 棵,梨树比苹果树少8 棵,梨树有12 棵,苹果树有多少棵?答案:苹果树有20 棵。

方程:x - 8 = 12,解得x = 20题目4:一支铅笔x 元,一支钢笔比铅笔贵3 元,钢笔5 元,铅笔多少钱?答案:铅笔2 元。

方程:x + 3 = 5,解得x = 2题目5:爸爸的年龄是x 岁,小明比爸爸小25 岁,小明10 岁,爸爸多少岁?答案:爸爸35 岁。

方程:x - 25 = 10,解得x = 35题目6:图书馆有故事书x 本,科技书比故事书多15 本,科技书有40 本,故事书有多少本?答案:故事书有25 本。

方程:x + 15 = 40,解得x = 25题目7:一辆汽车每小时行x 千米,5 小时行了250 千米,汽车速度是多少?答案:汽车速度是50 千米/小时。

方程:5x = 250,解得x = 50题目8:水果店运来苹果x 千克,香蕉比苹果多20 千克,香蕉有80 千克,苹果有多少千克?答案:苹果有60 千克。

方程:x + 20 = 80,解得x = 60题目9:姐姐有零花钱x 元,妹妹的零花钱比姐姐少10 元,妹妹有20 元,姐姐有多少元?答案:姐姐有30 元。

方程:x - 10 = 20,解得x = 30题目10:长方形的长是x 厘米,宽比长少3 厘米,宽是5 厘米,长是多少厘米?答案:长是8 厘米。

方程:x - 3 = 5,解得x = 8题目11:学校合唱队有x 人,舞蹈队比合唱队多8 人,舞蹈队有30 人,合唱队有多少人?答案:合唱队有22 人。

列简易方程解应用题(1)(2)

列简易方程解应用题(1)(2)

列方程解应用题1例1、小亚买了7支铅笔,小巧也买了一些,她们一共买了21支铅笔,小巧买了多少支铅笔?例2、小巧买了14支铅笔,是小丁丁买的铅笔数的2倍,小丁丁买了多少支铅笔?练习1、甲乙两个书架,已知甲书架有540本书,比乙书架的3倍少30本.乙书架有多少本书?练习2、一只鲸的体重比一只大象的体重的37.5倍多12吨.已知鲸的体重是162吨,大象的体重是多少吨?练习3、某饲养场养鸡352只,比鸭的只数的4倍还多32只。

养鸭多少只?例3、育新小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。

参加科技小组的男、女生各有多少人?练习1、强强和丽丽共有奶糖40粒,强强比丽丽少6粒,强强有奶糖多少粒?练习2、一支钢笔比一支圆珠笔贵6.8元。

钢笔的价钱是圆珠笔价钱的4.4倍。

钢笔和圆珠笔的价钱各是多少元?练习3、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?(两种不同的设法)例4、食堂买了8千克黄瓜,付出15元,找回1.4元,每千克黄瓜是多少钱?思路1:付出的钱-用掉的钱=找回的钱思路2:用掉的钱+找回的钱=付出的钱练习1、王老师带500元去买足球,买了12个足球后,还剩140元,每个足球多少元?练习2、奶奶买4袋牛奶和2个面包,付给售货员35元,找回3.2元,每个面包6.3元,每袋牛奶多少元?练习3、小芳家买了一套桌椅,6张椅子配一张桌子,一共用了1120元,如果一张桌子730元,那么一把椅子多少钱?练习4、小刚去买大米和面粉,每千克大米2.6元,每千克面粉2.3元,他买了20千克面粉和一些大米,共付了61.6元,买大米多少千克?列方程解应用题2例1、小胖的年龄乘5,再加上7,就是王爷爷的年龄,王爷爷62岁,小胖几岁?练习1、小红今年11岁,妈妈今年39岁,小红几岁时,妈妈年龄是小红的3倍?练习2、李老师今年42岁,小明今年9岁,当小明几岁时,李老师的年龄是小明的4倍?例2、鸡兔共有8个头,26只脚,求鸡和兔共有几只?练习1、鸡兔同笼,共有35个头,94条腿,求鸡兔各有几只?练习2、鸡和兔共有20个头,兔脚比鸡脚多14只,求鸡兔各有几只?练习3、鸡兔同笼,鸡比兔多25只,一共有脚170只,求鸡兔各有几只?练习4、鸡和兔的数量相同,两只动物腿加起来共有48条,求鸡兔各有几只?例3、A大楼的总高度为258米,比B大楼的3倍还高24米,B大楼高多少米?练习:一、计算.4X+3X= 7a-5a= 7.5b-5b=S-0.5s= 9t+7t= 20t-5t-3t=二、看图列方程,并求出方程的解.桃树X棵X千克 2X千克520棵 1200千克杏树X棵X棵X棵三、填空1、铅笔每枝a元,买了m枝,付出b元,应找回( )元.2、服装计划做x套衣服,已经做了5天,每天做y套,还剩( )套.3、小东每小时走8千米,小明每小时走7千米,他们走t小时后,小东比小明我走( )千米.4、甲乙两数的和是m, 乙数是甲数的3倍,甲数是( ),乙数是( ).5、两种水果的价钱都是a元,小芳的妈妈分别买了2千克和3千克,一共花了( )元.6、一堆笔分给几个小朋友,若每人3根,将剩余6根,每人4根,将缺少6根,那么小朋友共()位。

小学五年级数学思维能力训练(奥数)《列方程解应用题》(一)(含答案)

小学五年级数学思维能力训练(奥数)《列方程解应用题》(一)(含答案)

列方程解应用题(一)专题解析:“年龄问题”“盈亏问题”“差倍应用题”大家只要要根据两个条件,然后建立等量关系列出方程就可以了。

例1 今年李老师年龄是王东的2倍,李老师10年前的年龄和王东8年后的年龄相等,今年李老师和王东各是多少岁?分析与解答:要求王东与李老师两个人的年龄,我们不妨设今年王东的年龄是x岁,李老师为3x岁,然后根据“李老师在10年前的年龄和王东8年后的年龄相等”这个数量关系式,列出方程。

解:设今年王东的年龄为x岁,李老师的年龄为2x岁,可列方程2x-10=x+82x-x=10+8x=182x=36答:李老师今年36岁,王东今年18岁。

随堂练习:今年爸爸的年龄是朵朵的6倍,再过4年,爸爸的年龄就是朵朵的4倍,今年朵朵几岁?例2 今年姐姐的年龄比弟弟年龄的3倍多1岁,弟弟5年后年龄比3年前姐姐的年龄大1岁,姐弟俩现在各多少岁?分析与解答先表示出姐姐与弟弟今年的年龄,然后运用弟弟5年后,姐姐3年前的年龄作为等量关系。

解:设弟弟今年x岁,那么姐姐今年(3x+1)岁,可列方程x+5=3x+1-3+1x+5=3x-16=2xx=33x+1=3×3+1=10答:姐姐今年10岁,弟弟今年3岁。

随堂练习:今年爸爸的年龄比小明年龄的3倍多2岁,小明15年后年龄比爸爸10年前的年龄还大1岁。

那么,爸爸现在多少岁?例3小学学生乘汽车去春游,如果每辆车上从45人,那么有30人没有座位;如果每辆车上多坐5人,那么可以多出1辆汽车,问原计划准备多少辆汽车?学校共有学生多少人?分析解答:假设原计划准备x辆汽车,由第一种坐法,有(45x+30)名学生;由第二种坐法,有(45+5)(x-1)名学生。

而学生总人数是不变的,我们根据“总人数相等”作为等量关系列出方程。

解:设原计划准备x辆汽车,可列方程45x+30=(45+5) (x-1)45x+30=50x-5080=5xx=16学生有45×16+30=750(人)或50×(16-1)=750(人)答:原计划准备16辆汽车,学校共有学生750人。

列方程解应用题

列方程解应用题
女生: 男生:
解:参加活动女生有x人,男生有1.4x人。 男生+女生=108本 X 1.4X
女生的1.4倍 一倍数
91本
X+1.4X=108
文艺书×2+47=科技书
解:设文艺书有x本。 2x+47=495
(一)列方程解应用题:
1、学校图书馆有文艺书450本,比科技 书的3倍还多45本,图书馆有图书多少 本?
2、猎豹是世界上奔跑速度最快的动物, 能达到每分钟1.9千米,比大象的3倍 少0.2千米。大象最快能达到每分钟多 少千米?
(1)2x-0.6=9.8 (2)7x-3.4x=7.2 (3)时代家园小区的绿化面积是1.6 万平方米,比阳光小区绿化面积的 1.5倍少0.2万平方米。阳光小区的绿 化面积是多少万平方米?
X
4X
10人
254人
4X - 10 = 254 4X - 254 = 10 4X = 254 +10
[1]学校饲养小组今年养兔25只,比去年养 兔只数的3倍少8只,去年养兔多少只? 去年×3-8=今年
解:设去年养兔ⅹ只。
3ⅹ-8=25 [2]学校图书馆里科技书的本数比文艺书的2 倍多47本,科技书有 495本,文艺书有多 少本?
底×高÷2=三角形面积
解:设高是x厘米。
12x÷2=54
(1)找到应用题数量间的相等关系。
(2)解设未知数用x表示。
(3)列方程,解方程。
(4)注意单位,答题,检验。
例题2 王阿姨买5个西红柿,付出10元,找回2 元,每个西红柿多少元?
找 + 花 付 花 付 找
解:设每个西红柿x元。 找回的钱+花去的钱=付出的钱 5x+2=10 付出的钱-花去的钱=找回的钱 10 -5x=2 花去的钱=付出的钱-找回的钱 5x=10 - 2

列方程组解应用题1

列方程组解应用题1

典型例题【例1】某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?【例2】根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【例3】某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?【例4】某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.求购进甲,乙两种钢笔每支各需多少元?【例5】某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.两种跳绳的单价各是多少元?【例6】某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?【例7】甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程组求解)【例8】某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?课堂练习1、“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.求“益安”车队载重量为8吨、10吨的卡车各有多少辆?2、为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.购进甲乙两种纪念品每件各需要多少元?3、夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?4、苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?5、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是多少?6、我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?7、2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?家庭作业1、为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ).A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y xy x C.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y x y x 2、陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有A.4种B.11种C.6种D.9种4、成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是( )5、雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐BD元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你根据上文,判断布丁和棒棒糖的单价相差多少元?()A.20 B.30 C.40 D.508、图(①)的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A、5B、10C、15D、209、某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组是.。

列方程解应用题(一)

列方程解应用题(一)

列方程解应用题(一)列方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“x”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。

1.淮安市佳一才艺学校买来32支圆珠笔和64本练习本奖给三好学生,一共付出89.6元。

已知每本练习本0.5元,每支圆珠笔的价钱是多少元?2.要铺设一条长213.6米的路,甲队平均每天铺10.8米。

7天后,乙队一起参加铺路,两队又合铺6天完成了任务。

甲乙两队合铺一天能完成多少米?3.水果店有苹果和梨共308.3千克,已知苹果的重量是梨的2倍还多8千克。

梨有多少千克?4.甲乙两人同时从A地出发到B地,甲到B地后立即按原路返回,在距B地32千米处与乙相遇。

已和甲每小时行20千米,乙每小时行12千米。

问从出发到相遇时各行了多少千米?5.小李从图书馆借一本书,每天看6页,8天只看了这本书的一半,从这以后,他每天看8页,那么他看完这本书共需多少天?6.陈老师去文具店买乒乓球,如果买50个,但所带的钱还缺5元,如果改买45个,还缺1.5元,那么每个乒乓球要多少元?7.工厂三个车间共有工人480人,如果从第一车间调12人到第二车间,从第二车间调18人到第三车间,这三个车间的人数相等。

第二车间原有工人多少人?8.王明和杨荣的存款数相等,后来王明取出了60元,杨荣存入了20元,这时杨荣的存款是王明的3倍,求两人原有存款各多少元?9.学校买来4个篮球和9个足球,共用去76.2元,一个篮球和一个足球共价12.8元,每个足球多少元?10.一批小麦存放在两个粮库中,甲库所存小麦的数量是乙库的2倍。

后来从甲库运走86吨,从乙库运走40吨,这时两库所剩小麦的数量相等。

甲库原来有小麦多少吨?11.李老师到体育用品店买3副羽毛球拍,付出110元,找回5元。

每副羽毛球拍的售价是多少元?12.甲乙两地之间的路程是200千米,一辆汽车以每小时48千米的速度从甲地开往乙地,汽车在离乙地还有32千米时,已经行了多少小时?13.某服装厂计划加工800套西服,已经做了4天,平均每天加工60套,剩下的要在7天内完成,平均每天应加工多少套?14.甲乙两个车间,甲车间有工人112人,乙车间有工人94人,要使两个车间的人数相等,要从甲车间调几人到乙车间?15.小伟爸爸今年的岁数是小伟的7倍,再过10年,小伟爸爸的岁数是小伟岁数的3倍。

列方程解应用题选题(1-10)

列方程解应用题选题(1-10)

列方程解应用题—1 姓名:1.成都七中育才学校六年级共有学生276人,比二年级人数的3倍还多51人,成都七中育才学校二年级共有()人。

2.某学校共有学生460人,其中男生人数是女生人数的1.3倍,男生有()人,女生有()人。

3.学校有足球和篮球共45个,其中篮球的个数比足球的2倍少6个,学校有篮球()个。

4.两个数的和是240,商是3,那么较大的一个数是()。

5.甲桶里有油500千克,乙桶里有油160千克,甲桶的油要倒入乙桶()千克,才能使甲桶油乙桶的2倍。

6.甲、乙、丙三个数的和是360,已知甲数是乙数的3倍,乙数是丙数的2倍,求甲、乙、丙三数各是()、()、()。

7.某校六年级人数是二年级人数的3倍多18人,比二年级人数的4倍少66人。

六年级有()人。

8.某小卖部有啤酒300瓶,汽水212瓶,每天卖出去啤酒和汽水各21瓶,()天后剩下的啤酒是汽水的3倍。

9.小红的爸爸妈妈每月收入6000元,如果他们家每月支出比储蓄少600元,那么她家每月要储蓄()元。

10.师徒两人4小时共做124个零件,如果徒弟每小时比师傅少做7个零件,那么师傅每小时做()个零件。

列方程解应用题—2 姓名:1.三个修路队共修路1760米,甲队修的是乙队的3倍,乙队比丙队少修240米,甲队修了()米。

2.儿子今年9岁,妈妈今年33岁,()年前妈妈的年龄正好是儿子的5倍。

3.爸爸17年前的年龄相当于儿子11年后的年龄,当爸爸的年龄是儿子年龄的8倍时,爸爸()岁。

4.在一个减法算式里,被减数、减数、差的和是420,已知减数是差的2.5倍,那么减数是()。

5.在一个减法算式里,被减数、减数、差的和是190,已知差是减数的4倍,那么差是()。

6.一个长方形的周长是150分米,其中宽比长少15分米,那么这个长方形的面积是()平方分米。

7.把长140厘米的铁丝围成一个长方形,使长比宽多18厘米,长是()厘米。

8.两个数相除,商是24,余数是8,被除数、除数、商与余数的和是1840,则被除数是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

---------------------------------------------------------------最新资料推荐------------------------------------------------------
31列方程解应用题(1)
3 3. . 1 1 列方程解应用题(1)
奉奉贤贤区区江江海海第第三三小小学学张张其其荣荣
教学目标【知识与技能】 1 1、、复习巩固用字母表示常见的数
量关系、计算公式。

2、在理解题意的基础上寻找等量关系,初步掌握列方程解两、
三步计算的简单实际问题。

【过程与方法】 1 1、、从不同角度探究解题的思路,让
学生学会在计算公式中求各个量的方法。

2 2、、培养学生的语言表达能力和合作探究精神,发展学
生思维的灵活性。

【情感、态度与价值观】 1 1、让学生初步体会利用等量
关系分析问题的优越性。

2 2、、在探究交流的过程中,养成仔细观察、认真思考的
学习习惯。

教学重点及难点 1、让学生学习在计算公式中求各个量的方法。

2、让学生体会利用等量关系分析问题的优越性。

教学用具准备配套教与学的平台教学过程设计一、复习
引入 1、解方程:
8x 2 = 28 7(x+3) 2 = 28 2(x +17 ) = 40 6(5+x) 2 = 36 2、任意选择一题进行检验。

1 / 6
3、复习以前学过的公式:
C=2(a+b) C=4a S=ab S=ah2 S=(a+b) h2 4、揭示课题:
列方程解应用题(1) [说明:
复习部分安排解方程,一方面帮助学生巩固方程的合理解法;另一方面也对方程的检验格式稍作复习,便于学生养成良好的验算习惯。

同时,适当地帮助学生整理与复习计算公式,这样导入新课比较自然,也有助于展开后续的学习。

] 二、探究新知 1、出示例题:
用一根长为 28 厘米的铁丝围成一个长方形,这个长方形的长是 8 厘米,宽是多少厘米?(1)学生尝试。

(抽生板演)(2)分析、交流:
先设这个长方形的宽是 x 厘米,再找等量关系来列方程。

(长方形的周长计算公式就是一个等量关系。

)(3)板书:
解:
设这个长方形的宽是 x 厘米。

2( 8 + x )= 28 , 8 + x = 14, x = 6. 答:这个长方形的宽是 6 厘米。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ (4)比较算术与方程的解法。

(建议学生,选择方程的方法。

)(5)检验。

2、补充例题:
一块三角形土地的面积是 900 平方米,高 36 米,它的底边长多少米?问:
(1) 这道题已知条件是什么?要求什么? (2) 能不能直接用三角形的面积计算公式算出高。

(3) 可以利用三角形的面积计算公式列方程,未知数高怎样表示?学生练习并交流。

3、小结:
根据计算公式列方程解应用题。

[说明:
让学生通过尝试、分析、交流、比较的探究活动,进一步体会用方程解的优越性。

探究活动开始,先让学生尝试练习,学生会出现方程和算术两种解法;后小组比较、大组交流,让学生自己来解决问题。

其主要目的是通过方程与算术解法的比较,让学生体会用方程解的优越性,特别是列方程时的优越性。

] 三、巩固练习 1、只列方程不求解:
(1)有一个长方形的面积是 3600 ㎡,宽是 40m,长应是
3 / 6
多少米?(2)已知长方形的周长是 26 厘米,它的长是 8 厘米,它的宽应是多少厘米?(3)已知正方形的周长是 100 厘米,它的边长是多少厘米? 2、练一练:
列方程解应用题(1)长方形游泳池占地 600 平方米,长 30 米,游泳池宽多少米?(2)面积为 15 平方厘米的三角形纸片的底边长 6 厘米,这条底边上的高是多少厘米?(3)一块梯形草坪的面积是 30 平方米,量得上底长 4 米,高 6米,它的下底长多少米?(学生练习并交流。

) 3、总结:
列方程解应用题的一般步骤。

[说明:
只列方程不求解,主要仍是训练学生能根据公式来建立方程,体会用方程解的思维的优越性。

同时,通过学生的独立思考和解题,让学生体会解题中常用的基本思维方法。

培养学生有条理的思考问题,提高学生的语言表达能力。

] 四、课堂总结 1、通过这堂课的学习,你有什么收获?还有什么问题? 2、布置作业:
练习册 [说明:
让学生自主交流,对思维方法的学习,解题步骤的掌握等作全面的回顾与总结。

达到梳理知识,反思解题思路、方法的目的。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 进一步激发和保持学生的进取心和创新精神。

] 教学设计说明方程的准确求解与计算公式的熟悉程度是学好本课的前提。

课的开始就对这两个知识进行复习,以检验学生的知识储备情况。

首先,对以前的解方程进行复习,主要帮助学生巩固方程的合理解法;其次,对方程的检验格式稍作复习,便于学生养成良好的验算习惯。

最后,适当地帮助学生整理与复习计算公式,有助于展开后续的学习。

这部分应用题的等量关系以计算公式为主,而学生往往习惯于用推导公式求解。

因此,在探究部分,让学生先尝试练习,再分析交流。

这里教师只有通过方程与算术解法的比较,让学生体会用方程解的优越性,特别是列方程时的优越性。

当然,教师不能作硬性规定,只能建议学生用方程做。

练习分为两层:
第一层,只列方程不求解。

主要仍是训练学生能根据公式来建立方程,体会用方程解的思维的优越性。

第二层是完整地列方程解应用题,学生会在前一层训练的基础
5 / 6
上,自主地选择用方程求解。

最后的课堂总结,仍采用自主交流的方法。

让学生自主地对所学的知识进行归纳整理。

通过交流,巩固和强化学生们根据公式来建立方程的意识,学生也可以进一步集思广益,举一反三,取长补短,共同提高。

相关文档
最新文档