高三数学高考专题训练指数函数与对数全国通用
全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练
全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练单选题1、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A2、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ),它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W ,而将信噪比SN 从1000提升至5000,则C 大约增加了( )(附:lg2≈0.3010) A .20%B .23%C .28%D .50% 答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解. 将信噪比SN 从1000提升至5000时,C 大约增加了Wlog 2(1+5000)−Wlog 2(1+1000)Wlog 2(1+1000)=log 25001−log 21001log 21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B.3、设函数f (x )=lg (x 2+1),则使得f (3x −2)>f (x −4)成立的x 的取值范围为( )A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x<−1或x>32,故选:D.4、Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e−0.23(t−53),其中K为最大确诊病例数.当I(t∗)=0.95K 时,标志着已初步遏制疫情,则t∗约为()(ln19≈3)A.60B.63C.66D.69答案:C分析:将t=t∗代入函数I(t)=K1+e−0.23(t−53)结合I(t∗)=0.95K求得t∗即可得解.∵I(t)=K1+e−0.23(t−53),所以I(t∗)=K1+e−0.23(t∗−53)=0.95K,则e0.23(t∗−53)=19,所以,0.23(t∗−53)=ln19≈3,解得t∗≈30.23+53≈66.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5、若2a +log 2a =4b +2log 4b ,则( ) A .a >2b B .a <2b C .a >b 2D .a <b 2 答案:B分析:设f(x)=2x +log 2x ,利用作差法结合f(x)的单调性即可得到答案.设f(x)=2x +log 2x ,则f(x)为增函数,因为2a +log 2a =4b +2log 4b =22b +log 2b所以f(a)−f(2b)= 2a +log 2a −(22b +log 22b)= 22b +log 2b −(22b +log 22b) =log 212=−1<0,所以f(a)<f(2b),所以a <2b .f(a)−f(b 2)= 2a +log 2a −(2b 2+log 2b 2)= 22b +log 2b −(2b 2+log 2b 2)= 22b −2b 2−log 2b , 当b =1时,f(a)−f(b 2)=2>0,此时f(a)>f(b 2),有a >b 2当b =2时,f(a)−f(b 2)=−1<0,此时f(a)<f(b 2),有a <b 2,所以C 、D 错误. 故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题. 6、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43, 所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).7、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0, 所以(12)a+(12)b=1,故选:B .8、若2x =3,2y =4,则2x+y 的值为( ) A .7B .10C .12D .34 答案:C分析:根据指数幂的运算性质直接进行求解即可. 因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12, 故选:C9、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.10、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1 x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.填空题11、已知a=lg5,用a表示lg20=__________.答案:2−a分析:直接利用对数的运算性质求解因为a=lg5,所以lg20=lg1005=lg100−lg5=2−a,所以答案是:2−a12、函数y=a x+1(a>0,a≠1)恒过定点___________.答案:(−1,1)分析:利用指数型函数的特征,求解函数恒过的定点坐标.当x+1=0,即x=−1时,y=a0=1,所以y=a x+1(a>0,a≠1)恒过定点(−1,1).所以答案是:(−1,1)13、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题14、已知a 12+a−12=3,求下列各式的值.(1)a+a−1;(2)a2+a−2;(3)a 32+a−32+2a2+a−2+3.答案:(1)7(2)47(3)25分析:(1)将所给的等式两边平方,整理即可求得a+a−1的值;(2)将(1)中所得的结果两边平方,整理即可求得a2+a−2的值;(3)首先利用立方差公式可得a 32+a−32=(a12+a−12)(a−1+a−1),然后结合(1)(2)的结果即可求得代数式的值.(1)将a 12+a−12=3两边平方,得a +a −1+2=9,所以a +a −1=7. (2)将a +a −1=7两边平方,得a 2+a −2+2=49, 所以a 2+a 2=47. (3)∵a 12+a −12=3,a +a −1=7,a 2+a 2=47, ∴a 32+a−32=(a 12)3+(a −12)3=(a 12+a −12)(a −1+a −1)=3×(7−1)=18,∴a 32+a−32+2a 2+a −2+3=18+247+3=25.15、已知函数f (x )=log a (a x −1)(a >0,a ≠1) (1)当a =12时,求函数f (x )的定义域;(2)当a =2时,存在x ∈[1,3]使得不等式f (x )−log 2(1+2x )>m 成立,求实数m 的取值范围. 答案:(1)(−∞,0);(2)m <log 279,.分析:(1)利用真数大于0,即可求解定义域;(2)令g (x )=f (x )−log 2(1+2x )=log 2(2x −12x +1),由题意可知m <g (x )max ,令t =2x −12x +1,求解t 的取值范围,然后可求g (x )max ,从而求出m 的取值范围.(1)当a =12时,f (x )=log 12(12x −1),故:12x −1>0,解得:x <0,故函数f (x )的定义域为(−∞,0);(2)由题意知,f (x )=log 2(2x −1)(a >1),定义域为x ∈(0,+∞),易知f (x )为x ∈(0,+∞)上的增函数, 设g (x )=f (x )−log 2(1+2x )=log 2(2x −12x +1),x ∈[1,3],设t =2x −12x +1=1−22x +1,x ∈[1,3],故2x +1∈[3,9],t =1−22x +1∈[13,79],因为g (x )=log 2t 单调递增,则g (x )∈[log 213,log 279].因为存在x ∈[1,3]使得不等式f (x )−log 2(1+2x )>m 成立故:m <g (x )max ,即m <log 279.。
高考数学专题复习-2.4指数函数与对数函数-模拟练习题(附答案)
2.4指数函数与对数函数基础篇考点一指数式与对数式考向一指数式的运算1.(2023届甘肃武威十八中诊断,2)下列运算正确的是()A.(-3a)3=-9a3B.-a2·a3=-a6C.-(-2a2)3=8a6D.3a+2a=5答案C2.(2022山西临汾二模,4)若4x−12=3,则2x= ()A.√6B.6C.32D.√62答案A3.(2022江西宜春奉新一中月考,14)(259)0.5+(2764)−23+(0.1)-2-319×π0+lg 2+lg 5=.答案101考向二对数式的运算1.(2022天津,6,5分)化简(2log43+log83)·(log32+log92)的值为()A.1B.2C.4D.6答案B2.(2021全国甲,4,5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(√1010≈1.259)() A.1.5 B.1.2 C.0.8 D.0.6答案C3.(2022浙江,7,4分)已知2a=5,log83=b,则4a-3b= ()A.25B.5C.259D.53答案C4.(2022安徽淮南第一中学月考,7)已知log23=a,3b=7,则log2156= ()A.ab+3a+ab B.3a+ba+abC.ab+3a+bD.b+3a+ab答案A5.(2023届河南南阳期中,13)已知f(x)=lg 5·lg(10x)+(lg x)2,则f(2)=.答案 16.(2021河南新乡二模,14)若log35·log2527=a,则函数f(x)=lg(2a-x)的定义域为. 答案(-∞,3)考点二指数函数的图象与性质1.(2019课标Ⅰ,3,5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<cB.a<c<bC.c<a<bD.b<c<a答案B2.(2020天津,6,5分)设a=30.7,b=(13)−0.8,c=log0.70.8,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.b<c<aD.c<a<b答案D3.(2021东北三省四市教研联合体二模,6)已知函数f(x)=2x-2-x,则不等式f(2x)+f(-8)<0的解集为() A.(-3,0) B.(-∞,3)C.(0,3)D.(3,+∞)答案B4.(2023届陕西咸阳普集高级中学月考,7)若函数f(x)=3(2a-1)x+3在R上是减函数,则实数a 的取值范围是()A.(−∞,12) B.(12,+∞)C.(12,1)∪(1,+∞) D.(12,1)答案A5.(2022新疆石河子一中模拟,14)函数y=a2-x+7(a>0,且a≠1)的图象恒过定点P,P在幂函数f(x)=xα的图象上,则f(3)=.答案27考点三对数函数的图象与性质1.(2019浙江,6,4分)在同一直角坐标系中,函数y=1a x ,y=log a(x+12)(a>0,且a≠1)的图象可能是()答案D2.(2019天津,6,5分)已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b答案A3.(2021四川绵阳三模,8)已知a=log722,b=log733,c=log766,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.a>c>bD.b>c>a答案B4.(2021江西新余四中第五次段考,9)若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|-1)的图象可以是()A BC D答案C5.(2021陕西宝鸡重点高中检测,5)若实数x,y,z满足log2x=log3y=4z,则()A.x<y<zB.y<z<xC.z<x<yD.y<x<z答案C6.(2023届皖优联盟阶段测试一,8)当0<x≤19时,√x<log a x(a>0且a≠1)恒成立,则实数a的取值范围为()A.(3,9)B.(1729,1)C.(116,1) D.[43,+∞)答案B综合篇考法一比较指数式、对数式大小的方法1.(2023届西南“三省三校”联考一,4)若a=50.1,b=12log23,c=log30.8,则a,b,c的大小关系为() A.a>b>c B.b>a>cC.c>b>aD.c>a>b答案A2.(2018课标Ⅲ,12,5分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b答案B3.(2020课标Ⅰ,12,5分)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2答案B4.(2017课标Ⅰ,11,5分)设x,y,z为正数,且2x=3y=5z,则()A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z答案D5.(2020课标Ⅲ,12,5分)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<cB.b<a<cC.b<c<aD.c<a<b答案A6.(2021全国乙,12,5分)设a=2ln 1.01,b=ln 1.02,c=√1.04-1,则()A.a<b<cB.b<c<aC.b<a<cD.c<a<b答案B考法二指数(型)函数的图象和性质1.(2022合肥第二次教学质检,9)函数f(x)=e 2x+4+1e x(e是自然对数的底数)的图象关于()A.点(-e,0)对称B.点(2,0)对称C.直线x=-2对称D.直线x=e对称答案C2.(2021四川南充二模,10)定义在R上的函数f(x)=-3|x+m|+2为偶函数,a=f(log212),b=f((12)13),c=f(m),则()A.c<a<bB.a<c<bC.a<b<cD.b<a<c答案C3.(2020课标Ⅱ,11,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0 答案A4.(2022山西长治第八中学阶段测,11)已知函数f(x)=e x−e−xe x+e−x,g(x)=[f(x)]([x]表示不超过x的最大整数,例如[1.5]=1,[-0.5]=-1),则关于f(x)和g(x)这两个函数,以下说法错误的是()A. f(x)是R上的增函数B. f(x)是奇函数C.g(x)是非奇非偶函数D.g(x)的值域是{-1,0,1}答案D5.(2023届黑龙江龙西北八校联合体开学考,13)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如:[-3.5]=-4,[2.1]=2,已知函数f(x)=e x1+e x −12,则函数y=[f(x)]的值域是.答案{-1,0}考法三对数型复合函数的单调性问题1.(2023届河南名校联考,7)已知函数f(x)=log2|x2-ax|在区间(0,1]上单调递增,则实数a的取值范围是() A.(-∞,0) B.(-∞,0]∪[2,+∞)C.(2,+∞)D.(-∞,0)∪(1,2)答案B2.(2022河南段考三,16)已知θ∈[0,2π],函数f(x)=ln(x2sin θ-x+cos θ)在[0,1]上是单调函数,则θ的取值范围为.答案(0,π6]3.(2022广西玉林育才中学10月月考,16)关于函数f(x)=lg x 2+1|x|(x≠0),有下列命题:①其图象关于y轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;③f(x)的最小值是lg 2;④f(x)在区间(-1,0)、(2,+∞)上是增函数;⑤f(x)无最大值,也无最小值.其中所有正确命题的序号是.答案①③④。
(完整版)指数函数对数函数专练习题(含答案)
指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎨⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x≥2x≥1,∴f (3x)≥f (2x).若x <0,则3x<2x<1,∴f (3x)>f (2x).∴f (3x)≥f (2x).答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x-2x>1且a >2,由A ⊆B 知a x-2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎨⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x)<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+的值域为[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x-4x,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一. (2)此时g (x )=λ·2x-4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x-ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x=u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
指数函数与对数函数高考题及答案
指数函数与对数函数1、〔2021湖南文〕2log 值为〔 〕A .BC .12-D . 12【解析】由1222211log log 2log 222===,易知D 正确.2、〔2021安徽文〕23log 9log 4⨯=〔 〕 A .14B .12C .2D .4【解析】选D 23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯=3、〔2021全国Ⅱ文〕设2lg ,(lg ),a e b e c === ( )A.a b c >>B.a c b >>C.c a b >>D.c b a >> 【解析】此题考察对数函数增减性,由1>lge>0,知a>b,又c=21lge, 作商比较知c>b,选B 。
4、〔2021广东理〕假设函数()y f x =是函数(0,1)xy a a a =>≠且反函数,其图像经过点)a ,那么()f x =〔 〕A. 2log xB. 12log x C.12xD. 2x【解析】x x f a log )(=,代入)a ,解得21=a ,所以()f x =12log x ,选B. 5、〔2021四川文〕函数)(21R x y x ∈=+反函数是〔 〕A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y 【解析】由y x y x y x 221log 1log 12+-=⇒=+⇒=+,又因原函数值域是0>y ,∴其反函数是)0(log 12>+-=x x y6、〔2021全国Ⅱ理〕设323log ,log log a b c π=== 〕A. a b c >>B. a c b >>C. b a c >>D. b c a >>【解析】322log 2log log b c <<>2233log log 2log 3log a b a b c π<=<∴>∴>> . 7、〔2021天津文〕设3.02131)21(,3log ,2log ===c b a ,那么〔 〕A.c b a <<B. b c a <<C. a c b << D .c a b <<【解析】由结合对数函数图像和指数函数图像得到10,0<<<c a ,而13log 2>=b ,因此选D 。
高中数学指数函数和对数函数练习题(带答案和解释)
高中数学指数函数和对数函数练习题(带答案和解释)一、选择题1.下列函数:①y=3x2(xN+);②y=5x(xN+);③y=3x +1(xN+);④y=32x(xN+),其中正整数指数函数的个数为()A.0B.1C.2D.3【解析】由正整数指数函数的定义知,只有②中的函数是正整数指数函数.【答案】 B2.函数f(x)=(14)x,xN+,则f(2)等于()A.2 B.8C.16 D.116【解析】∵f(x)=(14x)xN+,f(2)=(14)2=116.【答案】 D3.(2019阜阳检测)若正整数指数函数过点(2,4),则它的解析式为()A.y=(-2)x B.y=2xC.y=(12)x D.y=(-12)x【解析】设y=ax(a>0且a1),由4=a2得a=2.【答案】 B4.正整数指数函数f(x)=(a+1)x是N+上的减函数,则a 的取值范围是()A.a B.-10C.01 D.a-1【解析】∵函数f(x)=(a+1)x是正整数指数函数,且f(x)为减函数,0a+11,-10.【答案】 B5.由于生产电脑的成本不断降低,若每年电脑价格降低13,设现在的电脑价格为8 100元,则3年后的价格可降为() A.2 400元 B.2 700元C.3 000元 D.3 600元【解析】1年后价格为8 100(1-13)=8 10023=5 400(元),2年后价格为5 400(1-13)=5 40023=3 600(元),3年后价格为3 600(1-13)=3 60023=2 400(元).【答案】 A二、填空题6.已知正整数指数函数y=(m2+m+1)(15)x(xN+),则m =______.【解析】由题意得m2+m+1=1,解得m=0或m=-1,所以m的值是0或-1.【答案】0或-17.比较下列数值的大小:(1)(2)3________(2)5;(2)(23)2________(23)4.【解析】由正整数指数函数的单调性知,(2)3(2)5,(23)2(23)4.【答案】(1) (2)8.据某校环保小组调查,某区垃圾量的年增长率为b,2019年产生的垃圾量为a吨,由此预测,该区下一年的垃圾量为________吨,2020年的垃圾量为________吨.【解析】由题意知,下一年的垃圾量为a(1+b),从2019年到2020年共经过了8年,故2020年的垃圾量为a(1+b)8. 【答案】a(1+b) a(1+b)8三、解答题9.已知正整数指数函数f(x)=(3m2-7m+3)mx,xN+是减函数,求实数m的值.【解】由题意,得3m2-7m+3=1,解得m=13或m=2,又f(x)是减函数,则01,所以m=13.10.已知正整数指数函数f(x)的图像经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.【解】(1)设正整数指数函数为f(x)=ax(a0,a1,xN+),因为函数f(x)的图像经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(xN +).(2)f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,f(x)有最小值,最小值是f(1)=3;f(x)无最大值.11.某种细菌每隔两小时分裂一次(每一个细菌分裂成两个,分裂所需时间忽略不计),研究开始时有两个细菌,在研究过程中不断进行分裂,细菌总数y是研究时间t的函数,记作y=f(t).(1)写出函数y=f(t)的定义域和值域;(2)在坐标系中画出y=f(t)(06)的图像;(3)写出研究进行到n小时(n0,nZ)时,细菌的总个数(用关于n的式子表示).【解】(1)y=f(t)的定义域为{t|t0},值域为{y|y=2m,mN+)};(2)06时,f(t)为一分段函数,y=2,02,4,24,8,46.图像如图所示.(3)n为偶数且n0时,y=2n2+1;n为奇数且n0时,y=2n-12+1.。
(完整版)高考指数函数和对数函数专题复习
指数函数与对数函数专项练习例 1. 设 a > 0, f (x)=e xa 是 R 上的奇函数 . ae x(1) 求 a 的值 ;(2) 试判断 f (x ) 的反函数 f - 1 (x) 的奇偶性与单调性 . 解: (1) 因为 f (x ) 在 R 上是奇函数 , 所以 f ( 0)1a 0a1(a 0) ,a(2) f 1 ( x) lnxx 2 4( x R )f 1 ( x )2ln xx 24 ln xx 2 4f 1( x ) , f 1 (x ) 为奇函数 .2 2用定义法可证 f 1 (x) 为单调增函数 .例 2. 可否存在实数 a, 使函数 f (x ) = log a (ax 2x ) 在区间 [ 2, 4] 上是增函数 ? 如果存在 ,说明 a 可以取哪些值 ; 若是不存在 , 请说明原由 . 解:设 u( x)ax 2 x , 对称轴 x1 .2a1 2(1) 当 a 1 时, 2aa 1;u(2)1 41. 综上所述 : a(2) 当 0a 1时, 2a0 a 1u( 4) 083522 532 52a ( ) ,b (), c ( )1. (安徽卷文 7)设555,则 a , b , c 的大小关系是 ( A ) a > c > b( B ) a > b > c(C )c > a > b(D )b >c >a2c ,y 2 x 【答案】 A 【剖析】 yx5 在 x 0 时是增函数,所以 a ( 5 ) 在x 0时是减函数,所以cb 。
2. (湖南卷文 8)函数 y=ax2+ bx 与 y=直角坐标系中的图像可能是【答案】 Dlog|b |x在同一a(ab ≠0,| a | ≠| b |)b b b【剖析】对于 A、B 两图,| a|>1 而 ax2+ bx=0 的两根之和为 -a, 由图知 0<-a<1b b b b得-1< a<0, 矛盾,对于 C、D 两图, 0<|a|<1, 在 C图中两根之和 -a<-1 ,即a>1矛盾,选 D。
高考数学专题指数函数、对数函数、幂函数试题及其答案详解
1.函数()3(02)xf x x =<≤值域为( )A .(0)+∞,B .(19],C .(01),D .[9)+∞,2.给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3xf x =B .()sin f x x =C .2()log f x x =D .()tan f x x =3.以下四个数中的最大者是( )A .(ln2)2B .ln (ln2)C .ln 2D .ln24.若A=}822|{2<≤∈-xZ x ,B=}1|log ||{2>∈x R x ,则)(C R B A I 的元素个数为( )A .0个B .1个C .2个D .3个 5.设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(,0)(1,)-∞+∞U6.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A .①③B .①②C .③D .②7.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数8.设,,a b c 均为正数,且11222112log ,log ,log ,22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则( )A.a b c <<B.c b a <<C.c a b <<D.b a c << 9.已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M I N ( ) A .{}1>x x B .{}1<x x C .{}11<<-x x D .∅10.设a ∈{-1,1,21,3},则使函数y=x a的定义域为R 且为奇函数的所有a 值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,311.设函数)(x f 定义在实数集上,它的图象关于直线x =1对称,且当1≥x 时,)(x f =13-x,则有( )A .)31(f <)23(f <)32(fB .)32(f <)23(f <)31(f C .)32(f <)31(f <)23(f D . )23(f <)32(f <)31(f12.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A .4B .3C .2D .1 13.函数)(x f =x 2log 1+与)(x g =12+-x 在同一直角坐标系下的图象大致是( )14.设1>a ,函数)(x f =x a log 在区间]2,[a a 上的最大值与最小值之差为21,则a =( ) A .2 B .2 C .22 D .4 15.若1>a ,且y a x aa y a xlog log -<---,则x 与y 之间的大小关系是( )A .0>>y xB .0>=y xC .0>>x yD .无法确定 16.函数|1|||ln --=x ey x 的图象大致是( )17.函数()y f x =的图象与函数3log (0)y x x =>的图象关于直线y x =对称,则()f x =____________。
专题02 指数运算与对数运算(解析版)-高考数学计算题型精练(新高考通用版)
指数与对数运算1.求值:(1))20.51π316-⎛⎫+- ⎪⎝⎭;(2)2ln 31274e log 9log 8lg 4lg 25-⋅++.【答案】(1)0(2)12【详解】(1)原式123493711041644⎛⎫=+-=+-= ⎪⎝⎭(2)原式ln923e log 3log 2lg10091212=+⋅+=++=.2.计算(1)1223182π4-⎛⎫-+ ⎪⎝⎭(2)2log 321log lg 2lg 528--+【答案】(1)5(2)1-【详解】(1)()1122222333132282π214154233--⎡⎤⎛⎫⎛⎫-++++-++=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(2)()2log 321log lg 2lg 523lg 2lg 5318--+=--++=-3.求值:(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪ ⎪⎝⎭⎝⎭;(2)2ln3427elog 9log 8lg4lg25-⋅++.【答案】(1)3(2)10【详解】(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪⎪⎝⎭⎝⎭()()1132533353122224--=+-⨯+⨯123233122222=+-⨯+⨯12331882+=+-+12=+3=;(2)原式ln 923elog 3log 2lg10091210=-⋅+=-+=;综上,(1)原式=3;(2)原式=10.4.计算:(1)341lg2lg 3lg5log 2log 94-+-⨯;(2)21log 3231lglog 3log log 52100+-⨯++.【答案】(1)2(2)4【详解】(1)341lg2lg 3lg5log 2log 94-+-⨯2232log 9lg2lg23lg5log 2log 4-=-+-⨯32lg22lg23lg5log 2log 3=++-⨯3(lg2lg5)1=+-3lg101=-31=-2=.(2)21log 3231lglog 3log log 52100+-⨯+2log 322222log log 512log 322log 5log 32=--⨯++⨯112622=--++4=.5.求下列各式的值:(1)()10.52332770.02721259-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+-;(2)55557log 352log log 7log 1.83-+-.【答案】(1)9100(2)2【详解】(1)原式210.5332333351053-⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦95510033=+-9100=(2)原式5555499log 35log log 7log 95=-+-5499log 35795⎛⎫=÷⨯÷ ⎪⎝⎭5log 252==6.计算:(2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭【答案】(1)4-(2)1【详解】(11128125lg 25lg10lg10-⨯⨯=⨯()2lg10112=⨯-4=-;(2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭()()226666log 2log 33log 2log =++⨯()()22666log 2log 33log 2log =++⨯()()226666log 2log 32log 2log 3=++⨯()266log 2log 3=+1=.7.计算或化简下列各式:(1)()1223164⎛⎫-+ ⎪⎝⎭(2)228393(log 3log 9)(log 4log 8log 2)(lg 2)lg 20lg5+++++⨯【答案】(1)3(2)172【详解】(1)原式221111111113332362362222255122ln e 333233422++⎛⎫⎛⎫⎛⎫=⨯-++⨯⨯=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)原式=()22233322log 3log 32log 2log 2log 2lg 2lg 20lg 533⎛⎫⎛⎫+++++⨯ ⎪⎪⎝⎭⎝⎭()()()22235915log 3log 2lg 2lg 20lg5lg 2lg 21lg5322=⨯++⨯=+++⨯()()()215151517lg 2lg 2lg5lg5lg 2lg 2lg5lg5lg 2lg52222=+++=+++=++=8.计算下列各式的值:(1)2237828-⎛⎫--+⎪⎝⎭;(2)2log 331log 27lg2100++.【答案】(1)1π4+(2)92【详解】(1)02237828-⎛⎫--+⎪⎝⎭()23321213π2=-+-+141π34=-+-+1π4=+;(2)21log 33223311l 2og 27lg 2log 3lg10ln e 332310092-++=+++=-=++.9.计算下列各式的值:(1)213112726-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(2)3332log 2log 32log 8-+.【答案】(1)5.5(2)0【详解】(1)原式230.52120.54 5.5=-+-=-+=;(2)原式3333348log 4log 32log 8log log 1032⨯=-+===.10.计算下列两个小题:(1)ln 31e2lg15lg 3++;(2)0.25608π+.【答案】(1)4(2)75【详解】(1)ln 3111e2lg15lg 3lg 2lg15lg 3lg 2154333⎛⎫++=+++=+⨯⨯= ⎪⎝⎭.(2)660.750.2650.25085221289π17=⨯+⨯+=+⨯=++.11.求下列式子的值:(1)()()12623129.684-⎛⎫+--- ⎪⎝⎭.(2)ln334lg252lg2log 16log 3e +-⋅+.【答案】(1)0(2)3【详解】(1)()()()()126203122332129.68931912412 1.05444--⎛⎫+--- ⎪⎝⎭⎛⎫⎡⎤+--- ⎪⎣⎦⎝⎭==+--=(2)ln33434lg252lg2log 16log 3e lg25lg42log log 33lg1002324233+-⋅++-⋅+=-+=-+==12.计算与化简:(1)453log 27log 8log 25⨯⨯(2)12271112333662228a a b a b ---⎛⎫⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3)10220.51392(0.01)54-⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭(4)222lg5lg8lg5lg20(lg2)3++⋅+.【答案】(1)9(2)b -(3)5140(4)3【详解】(1)原式3lg 33lg 22lg 592lg 2lg 5lg 3=⨯⨯=;(2)原式12711122363262328a b b-+--⎛⎫⎛⎫⎛⎫- ⎪==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(3)原式131511421040=+⨯-=(4)原式()()22lg 52lg 2lg 5lg 52lg 2lg 2=++++()()22lg 5lg 2lg 2lg 5=+++2213=+=13.(1)21023213(2)(9.6)(3)(1.5)48---+;(2)log 535﹣2log 573+log 57﹣log 595.【答案】(1)12;(2)2【详解】解:(1)21023213(2)(9.6)(3)(1.5)48---+1﹣2327()8+2.25=32﹣1﹣2333(2⎡⎤⎢⎥⎣⎦+2.25=32﹣1﹣94+94=12;(2)log 535﹣2log 573+log 57﹣log 595=log 5[35÷(499)×7÷95]=log 5(35×949×7×59)=log 525=2.14.化简求值:(1)2133325-⎛⎫+ ⎪⎝⎭;(2)7log 2log lg 25lg 47++.【答案】(1)12-(2)112【详解】(1)原式1213331182212122-=-⨯+=-+=-.(2)原式331311log 3lg100222222=++=++=.15.化简或求值:(1)0.5207120.1π93-⎛⎫+-+⎪⎝⎭;(2)7lg142lg lg 7lg183-+-;【答案】(1)101;(2)0;(3)1.【详解】(1)0.5207120.1π93-⎛⎫+-+ ⎪⎝⎭1225151100110011019333⎛⎫=+-+=+-+= ⎪⎝⎭;(2)7lg142lg lg 7lg183-+-27lg14lg lg 7lg183⎛⎫=-+- ⎪⎝⎭9lg 1471849⎛⎫=⨯⨯÷ ⎪⎝⎭lg1=0=;(3211-=.16.计算:(1))()1211610.259-⎛⎫-- ⎪⎝⎭(2)25lg 42lg 5log 5log 8lg10++⨯+.【答案】(1)23-(2)6【详解】(1)原式4214333=--+=-(2)原式2lg 5lg8lg 4lg 51lg 2lg 5=++⨯+3222log 813log 26=++=+=17.计算下列各式的值:(1)()6221103321642e 453π-⎛⎫⎛⎫+--+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)ln 2352log 27lg2lg5log 16log e ---⋅.【答案】(1)2023(2)2【详解】(1)()6221103321642e π453-⎛⎫⎛⎫+--+⨯ ⎪⎪⎝⎭⎝⎭611223243245⎛⎫=+-+⨯ ⎪⎝⎭232345=+⨯2023=.(2)()ln 235log 27lg2lg5log 16log e-+-⋅ln25=31log 16log e --⋅()ln 2521=24log 2log 5e =2222-⋅+-+=2.18.计算下列各题:(1)()20.5312816410.751627---⎛⎫⎛⎫+-÷+ ⎪ ⎪⎝⎭⎝⎭;(2)()70log 23log lg 25lg 479.8+++-.【答案】(1)94(2)132【详解】(1)原式20.523814279999116364416164⎛⎫⎛⎫⎛⎫=-÷+=-+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)原式323100313log 3lg lg 4212lg 4lg 43422=++++=+-++=.19.化简求值(1)1131227(0.002)2)8--⎛⎫+- ⎪⎝⎭;(2)()266661log 3log 2log 18log 4⎡⎤-+⨯÷⎣⎦.【答案】(1)372-(2)1【详解】(1)原式)113131232271350010285002-⨯⎛⎫⎛⎫⎛⎫=+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3372022=+-=-.(2)原式()()266666612log 3log 3log log 63log 43⎡⎤=-++⋅⨯÷⎢⎥⎣⎦()()()26666612log 3log 31log 31log 3log 4⎡⎤=-++-+÷⎣⎦()()22666612log 3log 31log 3log 4⎡⎤=-++-÷⎣⎦()666666621log 3log 6log 3log 212log 2log 2log 2--====.20.(1)计算:1222301322(2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)已知7log 23log 27lg252lg27x a =++-,求33x xx xa a a a--++的值.【答案】(1)12;(2)739.【详解】(1)原式123232223333391991122222444212⎛⎫⎛⎫⎛⎫⎛⎫+=--+=-+=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎡⎤⎡⎤=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎭⎦⎝⎭.(2)()33log 32lg52lg2232lg5lg223223x a =++-=++-=+-=,所以()()()()3322331xx xx x xx xx x x xx xa a aa a a a a a a a a a a -------++⋅-++==+++()()()22222222117311131.39xxxxxx aaaa aa --⎛⎫⎛⎫=+-=+-=+-=+-= ⎪ ⎪⎝⎭⎝⎭21.求值:(1))1213250.02719-⎛⎫+-⎪⎝⎭;(2)2350.2log 27log 82log 10log 4⨯--.【答案】(1)4(2)7【详解】(1))()12131121233255351020.02710.31149310333---⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤+-=+-=+-=+=⎢⎥ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)()13322350.25555ln 3ln 23ln 33ln 2log 27log 82log 10log 42log 25log 22log 212log 292ln 2ln 3ln 2ln 3-⨯--=⨯-⨯-=⨯-++=-=.22.求值:()1220348π49-⎛⎫+-+ ⎪⎝⎭;(2)3323log 54log 2log 3log 4-+⋅.【答案】(1)172;(2)5.【详解】(11215321022532233317(2)(2)1[(]22122248(π4)()9-=++++-+=++=+.(2)322332332322log 454log 54log 2log 3log 4log log 3log 3log 23252log 3-+⋅=+⋅=+=+=.23.计算下列式子(1)()7l 0o 2g lg25+lg4l 79og .8+++-2334lo g log ⨯【答案】(1)132(2)8-【详解】(1)()7l 0o 2g lg25+lg4l 79og .8+++-3233133lg1002122122log =+++=+++=.(22334lo g log ⨯()222log lo 4lg100036281312g log =-⨯=--=-⨯-.24.计算:()031438162-⎛⎫---+ ⎪ ⎪⎝⎭;(2)223lg 2lg 5log log 64++-.【答案】(1)118(2)-2【详解】(1)原式()13314334311111122124488⨯⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=---+=-++= ⎪⎝⎭(2)原式()22lg 25log 32log 312=⨯+---=-25.计算:223327-⋅+;(2)()()()221004lg 2log 2lg 5lg 23++-.【答案】(1)27-(2)1【详解】(1)依题意,223327⋅+()22233433=--⋅+(2224332=--⋅+(224272=--+231227=-+=-(2)()()()221004lg 2log 2lg 5lg 23++-()()4lg 2lg 2lg 5lg 2lg 5lg 23lg100⎛⎫=+++- ⎪⎝⎭4lg 2lg 2lg 5lg 232⎛⎫=++- ⎪⎝⎭43lg 25lg 322=⋅+52lg 2lg2=+25lg 2lg 2=+5lg 412⎛⎫=⋅= ⎪⎝⎭26.求值:(1)01310.0277-⎛⎫+- ⎪⎝⎭;(2)ln 21lg20lg4lg e 5-++.【答案】(1)73;(2)2.【详解】(1)()()111341334170.0270.3120.31273---⎛⎫+-+-=+-=⎪⎝⎭;(2)ln 21201lg20lg4lg e lg 2lg122545⎛⎫-++=⨯+=+= ⎪⎝⎭.27.求值:(1)))2202220223272264-⎛⎫-+-+ ⎪⎝⎭;(2)()9log 1620427log 9log 643lg 2lg 5lg 12022lg 5⨯++⨯+++.【答案】(1)3(2)7【详解】(1)原式()20222162113999++-=++=.(2)原式()3log 4223log 3log 43lg 2lg 5lg 2lg 524lg 2lg 5lg 2lg 5=⨯++⨯++=++++6lg 2lg5617=++=+=.28.计算(1))2log 3lg12lg1001-+-(2))0.523124-⎛⎫+⎪⎝⎭【答案】(1)2;(2)1π3-.【详解】(1))2log 3lg12lg1001-+-)32lg101=-+-321=-+2=;(2))0.523124-⎛⎫+ ⎪⎝⎭20.5233233π22-⎡⎤⎛⎫⎛⎫=+-+⎢⎥ ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦13π322-⎛⎫=+-+ ⎪⎝⎭1π3=-.29.计算下列各式的值:(1)11421481⎛⎫+ ⎪⎝⎭;(2)33252log 2log 12l 8og 5log -+⨯.【答案】(1)143(2)2【详解】(1)114211423314813⎛⎫ ⎪⎝⎭=+-=.(2)33252log 2log 12l 8og 5log -+⨯321log log 32381==-+=+.30.求下列各式的值:(1)134440.06425--⎛⎫---⋅⎪⎝⎭(2)2log 3232lg25lg8log 27log 223+-⨯+.【答案】(1)1516(2)2【详解】(1)原式1159151910.41621616=--⨯=--=.(2)原式()232lg52lg23log 3log 232lg5lg2332=+-⨯+=+-+=.31.求解下列问题:(1)2433641)27--⎛⎫++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100--⋅.【答案】(1)2916(2)74-【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=.(2)2log 3491lg2log 27log 8100--⋅221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.32.计算下列各式的值:(1)2log 23log lg 5lg 22++.(2)cos 20sin 50cos50cos70︒︒-︒︒.【答案】(1)72(2)12【详解】(1)2log 2317log lg 5lg 22lg10222++=++=;(2)cos 20sin 50cos50cos70cos 20sin 50cos50sin 20︒︒-︒︒=︒︒-︒︒()1sin 50202=︒-︒=.33.计算下列各式,写出演算过程(1)1222318324272-⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)5525lg 42lg 52log 10log 20log 5log 8++---⋅.【答案】(1)72(2)12-【详解】(1)解:原式23324344722392992⎡⎤⎛⎫=-+=+-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(2)解:原式()225101ln 53ln 211lg 45log 213202ln 2ln 522=⨯+--⋅=+--=-.34.化简求值:(1)213240330.250.53π)0.0648---⎛⎫⨯--+ ⎪⎝⎭(2)2log 314319lg 25lg 2log 9log 822-++-⨯++.【答案】(1)7318;(2)4.【详解】(1)213240330.250.53π)0.0648---⎛⎫⨯---++ ⎪⎝⎭212433331132124225---⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯--++⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦45731129218=--++=;(2)2log 314319lg 25lg 2log 9log 822-++-⨯++2221221log 322233312log 3lg 5lg 2log 3log 2ln e 22=++-⨯++323314log 3lg 5lg 2log 33log 222=++-⨯++()32314lg 52log 33log 222=+⨯-⨯++41324=+-+=.35.求值:(1)()11202929.3log 443-⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭(2)5log 2lg2lg5lg15+++【答案】(1)1(2)3【详解】(1)()111222029233339.3log 412121432222-⎡⎤⎛⎫⎛⎫⎛⎫---+=--+=--+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)5log 2lg 2lg 5lg15lg1002123+++=++=+=.36.化简求值:1020.5+(2)0.21log 53212lg5log 25lg 4-⎛⎫-++ ⎪⎝⎭.【答案】(1)3(2)2【详解】(1)原式3322=++=(2)原式155log 522lg5log 22lg 25=-++()15log 52112lg 5lg 2log 255-⎛⎫=+-+ ⎪⎝⎭151log 511552⎛⎫-+ ⎪⎝⎭=11255=-+2=37.计算下列各式的值:(1)1013352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭(2)1433log lg 253log 3lg 43+-+【答案】(1)3(2)1【详解】(1)解:113352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭112133334413355⎛⎫⎛⎫=⨯+⨯- ⎪ ⎪⎝⎭⎝⎭11213333443355+⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭;(2)1433log lg 253log 3lg 4+-+343331log 3log 32lg53log 32lg 24=-+-⨯+3312(lg5lg 2)44=-++-12lg101=-+=.38.化简求值:(1)312log 14lg 2lg529-⎛⎫++- ⎪⎝⎭;(2)71113sin cos tan 634πππ++.【答案】(1)32(2)1【详解】(1)原式()1220233lg 25211322-⎡⎤⎛⎫=+⨯-=+-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(2)原式πππsin πcos 4πtan2ππ634⎛⎫⎛⎫⎛⎫=++-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭πππsincos tan π634⎛⎫=-+++ ⎪⎝⎭11πtan 1224=-++=39.化简或求值(1)11034781(0.064)()()|0.1|816---++-(2)7lg142lg lg 7lg183-+-【答案】(1)3110(2)0(3)5π-【详解】(1)11034781(0.064)()()|0.1|816---++-1310.10.42=-++53112210=-++1310=+31.10=(2)27lg142lg lg 7lg1837lg14lg lg 7lg1839lg 1471849lg10.-+-⎛⎫=-+- ⎪⎝⎭⎛⎫=⨯⨯÷ ⎪⎝⎭==(3)325.πππ+=-+-=--=-40.计算求值(1)2ln 38916log 27log 6log 6e ⨯÷+;(2)419log 8log 34--【答案】(1)11(2)2-【详解】(1)2ln 38916log 27log 6log 6e⨯÷+ln92361log 3log 64log 2e 2=⨯⨯+62236log 22log 392log 3log 2911log 3=⨯+=⨯+=;(2)419log 8log 34--2331log 2log 322=---314222=+-=-.41.计算:(1)()110520.01321π---+;(2)3log 22log 8lg 2lg53++-.【答案】(1)5(2)2【详解】(1)()110520.01321102125π---+=---=;(2)()3log 22log 8lg 2lg 53lg 25223=+++-⨯-=.42.计算:(1)1123182427-⎛⎫-+ ⎛⎫ ⎪⎝⎪⎭⎝⎭(2)2lg 2lg 2lg5(lg5)+⋅+.【答案】(1)94(2)1【详解】(1)解:1123182427-⎛⎫-+ ⎛⎫ ⎪⎝⎪⎭⎝⎭1132233223-⎡⎤⎛⎫-⎢⎥ =⎪⎝⎭⎢⎥⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎣⎦1123223323232⎛⎫⨯⨯- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎛⎫= ⎪⎝⎝⎭⎭⎝⎭33992244-+==.(2)解:2lg 2lg 2lg5(lg5)+⋅+()lg 2lg5lg 2lg5=++()lg 2lg 5lg 25=+⋅⨯()lg 2lg 5lg 251=+=⨯=.43.化简求值:)2138227--⎛⎫++⎪⎝⎭;(2)3log 211lg 9lg 240292361lg 27lg 35+-+-+.【答案】π(2)3【详解】(1)原式2335259π32π3π4344⎛⎫⨯- ⎪⎝⎭⎛⎫=-+-=-+++-= ⎪⎝⎭.(2)原式32log 21lglg10lg 3lg 24083414336lg8lg10lg 9lg 5+-=+=+=-+=-+.44.求值:(1)230323(8)π)-+-;(2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯.【答案】(1)2(2)0【详解】(1)2331032223(π)3313212-=-+⨯=-+=(2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯32322222log 3(lg 5)(lg 2)2lg 5lg 2log 3=+-+⨯2(lg 5lg 2)1110=+-=-=45.计算:(1)ln 2lg252lg2e ++(2)()20.5133890.1252749--⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭【答案】(1)4(2)19【详解】(1)原式lg25lg42lg1002224=++=+=+=.(2)原式2132(0.5)3()332313724712939⨯⨯-⨯-⎛⎫⎛⎫⎛⎫=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.46.(1)求值:3204161)++;(2)求值:5log 2lg25lg45log +++.【答案】(1)12;(2)112.【详解】(1)原式()343432132112=++=++=(2)原式()323lg 2542log 3=⨯++3lg10022=++112=47.求值:(1)()1430513π38-⎛⎫-- ⎪⎝⎭;(2)()2273log 8log 7log log 81+⨯.【答案】(1)4(2)5【详解】(1)()143015545143π32312381-+⎛⎫-- =+=⎝+⎭-⎪-=;(2)()2273274log 8log 7log log 813log 7log +⨯=+⨯273log 72l 5og 22==++=⨯.48.(1))1334ln 22811e 162022⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭(2)()314163log 4log 2log log 3⎛⎫+ ⎪⎝⎭【答案】(1)5;(2)12.【详解】(1)原式31442433333214152222⨯⎛⎫⎛⎫=++-=++-= ⎪ ⎪⎝⎭⎝⎭.(2)原式()(3344341log 4log 2log log log 2log 32=-=⨯=.49.计算:(1)212232327(1)(()[(3)]28--+⋅+-;(2)232lg5lg 4log 3log 4log +-⋅+【答案】(1)5(2)32【详解】(1)22122233323272349(1)()()[(3)]1()[()]3135283294--+⋅+-=+⋅+=+⨯+=(2)232lg5lg 4log 3log 4log +-⋅+lg 32lg 23332lg 52lg 22(lg 5lg 2)2lg 2lg 3222=+-⨯+=+-+=50.计算下列各式的值:(1)2ln 21elglg 202--;(2)232lg 25lg8log 27log 23+-⨯.【答案】(1)3.(2)1-.【详解】(1)22ln 2ln 2111e lg lg 20e (lg lg 20)4lg(20)4lg10413222--=-+=-⨯=-=-=.(2)2232323232lg 25lg8log 27log 2lg(258)log 27log 2lg103log 3log 22313+-⨯=⨯-⨯=-⨯=-=-.51.化简下列各式:(1)75sincos cos(5)tan 224ππππ++-+;(2)24log 32log 0.252lg 42lg 5⋅++++⋅【答案】(1)-1(2)1592【详解】(1)原式3sincos cos 11011122πππ=+++=-+-+=-.(2)原式421log 322242221log ln e 2lg 4lg55123)log (lg 24lg 4-=++++=++++1159281lg100222=-+++-=.52.计算下列各式的值:(1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)07log 2(9.8)log lg25lg47+-++.【答案】(1)3;(2)132【详解】(1)原式2323334122⎛⎫⨯-- ⎪⎝⎭⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭3=(2)原式()323log 3lg 25421=+⨯++3232=++132=53.计算求值:(1))()140231101108200-⎛⎫-++- ⎪⎝⎭;(2)(42log 923lg 2lg 250082log 9log 4⨯+⨯++⋅.【答案】(1)36(2)9【详解】(1)原式()()43431010220236⎡⎤=++-=+-=⎣⎦;(2)原式()2log 3212lg 32lg 2lg 22lg 528lg 524lg 2lg 3⎛⎫=++⨯++⋅ ⎪⎝⎭()22lg 2lg 52lg 22lg 5342lg 5lg 2lg 52lg 27=++++=+++()2lg 5lg 27279=++=+=.54.计算下列各式的值:(1)(332212234-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭(2)5log 3333322log 4log log 2527-++【答案】(1)1(2)6【详解】(1)(33332221392213424-⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33233233331112222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦(2)5log 3333322log 4log log 2527-++23332log 423log 27333627⎛⎫=÷⨯+=+=+= ⎪⎝⎭55.求下列各式的值:(1)1220.2531222854--⎛⎫⎛⎫+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)158311lglog 9log 125log 10032+--.【答案】(1)56-(2)163-【详解】(1)()112112220.25344311315222812212544266---⎡⎤⎛⎫⎛⎫⎛⎫+⨯-=+⨯-⨯=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)3235158352311516lglog 9log 125log lg10log 9log 5log 22231003233--+--=---=---+=-.56.化简求值:())13320,0a b a b ->>;(2)7log 52225lg5lg 2lg 2lg5log 5log 47+++⨯+.【答案】(1)1(2)7【详解】(1)因为0,0a b >>()31332221b a ab --⎡⎤==⎢⎥⎣⎦,()31333222a a b b --=,所以原式332233221a b a b--==;(2)7log 52225lg5lg 2lg 2lg5log 5log 47+++⨯+()25lg 5lg 2lg 2lg 5log 5log 25=+++⨯+()25lg 5lg 2lg 2lg 5log 5log 25=+++⨯+lg 5lg 2157=+++=.57.计算:(1)21304816π27-⎛⎫-+ ⎪⎝⎭;(2)3ln 22552lg 4lg log 5log 4e 8++⋅+.【答案】(1)154-(2)11【详解】(1)解:原式()231344291521524344-⎡⎤⎛⎫=-+-=--=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(2)解:原式()32ln 25ln 52ln 2lg 4e 128118ln 2ln 5⎛⎫=⨯+⋅+=++= ⎪⎝⎭.58.计算:(1)5log 3311845log 11log 27log 2log 8-⋅++;(2)若33m m --=99m m -+的值.【答案】(1)116(2)9914m m -+=.【详解】(1)原式31122133log 113log 3log 2log 232=-⨯++131133326=-++=.(2)将等式33m m --=99212m m -+-=,则9914m m -+=.。
高考数学专题指数函数、对数函数、幂函数试题及其答案详解
指数函数、对数函数、幂函数专题1.函数()3(02)xf x x =<≤值域为( )A .(0)+∞,B .(19],C .(01),D .[9)+∞,2.给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3xf x =B .()sin f x x =C .2()log f x x =D .()tan f x x =3.以下四个数中的最大者是( )A .(ln2)2B .ln (ln2)C .ln 2D .ln2 4.若A=}822|{2<≤∈-xZ x ,B=}1|log ||{2>∈x R x ,则)(C R B A I 的元素个数为( )A .0个B .1个C .2个D .3个 5.设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(,0)(1,)-∞+∞U6.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A .①③B .①②C .③D .②7.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数8.设,,a b c 均为正数,且11222112log ,log ,log ,22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<9.已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M I N ( ) A .{}1>x x B .{}1<x x C .{}11<<-x x D .∅ 10.设a ∈{-1,1,21,3},则使函数y=x a 的定义域为R 且为奇函数的所有a 值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,311.设函数)(x f 定义在实数集上,它的图象关于直线x =1对称,且当1≥x 时,)(x f =13-x,则有( )A .)31(f <)23(f <)32(fB .)32(f <)23(f <)31(f C .)32(f <)31(f <)23(f D . )23(f <)32(f <)31(f12.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A .4B .3C .2D .1 13.函数)(x f =x 2log 1+与)(x g =12+-x 在同一直角坐标系下的图象大致是( )14.设1>a ,函数)(x f =x a log 在区间]2,[a a 上的最大值与最小值之差为21,则a =( ) A .2 B .2 C .22 D .4 15.若1>a ,且y a x aa y a xlog log -<---,则x 与y 之间的大小关系是( )A .0>>y xB .0>=y xC .0>>x yD .无法确定 16.函数|1|||ln --=x ey x 的图象大致是( )17.函数()y f x =的图象与函数3log (0)y xx =>的图象关于直线y x =对称,则()f x =____________。
指数函数与对数函数的关系专题含答案
指数函数与对数函数的关系专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知a =0.53,b =log 0.73,c =30.6},则a,b,c 的大小关系是( )A.b <a <cB.a <c <bC. a <b <cD. b <c <a2. 若a =20.6,b =log 32,c =ln 0.6,则( ) A.a >b >c B.b >a >c C.c >a >b D.b >c >a3. 给出下列三个等式:f(xy)=f(x)+f(y),f(x +y)=f(x)f(y),f(x +y)=f(x)+f(y)1−f(x)f(y).下列函数中不满足其中任何一个等式的是( )A.f(x)=3xB.f(x)=sin xC.f(x)=log 2xD.f(x)=tan x4. 已知a =log 20.1,b =20.1,c =0.21.1,则a ,b ,c 的大小关系是( ) A.a <b <c B.b <c <a C.c <a <b D.a <c <b5. 若函数y =f (x )图像与y =log a (3x −2)+2图像关于直线y =x 对称,则函数y =f (x )必过定点( ) A.(1, 2) B.(2, 2) C.(2, 3) D.(2, 1)6. 函数y =2x |log 0.5x|−1的图象与x 轴的交点个数为( ) A.1 B.2 C.3 D.47. 已知e 是自然对数的底数,则 (1e)10,101e ,lg 1e的大小关系为( )A.lg 1e <(1e)10<101eB.(1e )10<lg 1e<101eC.lg 1e <101e<(1e )10D.(1e )10<101e<lg 1e8. 如果一个点是一个指数函数的图象与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M(1, 1),N(1, 2),P(2, 1),Q(2, 2),G(2, 0.5)中,“好点”的个数为( )A.0个B.1个C.2个D.3个9. 设方程10x =|lg (−x)|的两根分别为x 1、x 2,则( ) A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1 D.0<x 1x 2<110. 函数y 1=−2x ,y 2=−log 12(−x)的图象与直线y 3=−x −5的交点分别为A(α, f(α))和B (β, f(β)),下列各式成立的是( ) A.α−β=1 B.α−β=2 C.α+β=−5 D.α+β=511. 已知函数y =|log a x|(a >0,a ≠1),与函数y =b (b >0)存在两个不同的交点,两交点的横坐标分别为x 1,x 2(x 1<x 2),则2x 1+x 2的最小值为________.12. 设函数f(x)=a x−1,且f(ln a)=1,则a 的值组成的集合为________.13. 若a >0,a 23=49,则log 23a =________.14. 若点(3,27)在函数y =a x 的图象上,则log a 81=_________.15. 若2a =5b =m ,且1a +1b =2,则m =________.16. 已知a −2=94且a >0,则log 23a =________.17. 设α,β分别是关于x 的方程log 2x +x −4=0和2x +x −4=0的根,则α+β=________.18. 设α,β分别是关于x 的方程log 2x +x −4=0和2x +x −4=0的根,则α+β=________.19. 已知函数f(x)=log a (a x −1)(a >0,a ≠1),有以下命题: ①函数f(x)的图象在y 轴的一侧; ②函数f(x)为奇函数;③函数f(x)为定义域上的增函数;④函数f(x)在定义域内有最大值,则正确的命题序号是________.20. 已知P,Q 分别为函数f (x )=12e x−12,g (x )=ln (2x )+12上两点,则P,Q 两点的距离|PQ |的最小值是________.21. 已知函数f(x)=tan x ,x ∈(0,π2),若x 1,x 2∈(0,π2),且x 1≠x 2,tanx 1+x 22=sin (x 1+x 2)1+cos (x 1+x 2),求证:12[f(x 1)+f(x 2)]>f(x 1+x 22).22. 已知函数f(x)=a x−1(a >0且a ≠1).(1)若函数y =f(x)的图象经过P(3, 4)点,求a 的值;(2)比较f(lg 1100)与f(−2.1)大小,并写出比较过程.23. 设x 、y 、z ∈R +且3x =4y =6z (1)求使2x =py 的p 的值(2)求与(1)中所求P 的差最小的整数(3)求证:1z −1x =12y(4)比较3x 、4y 、6z 的大小.24. 已知函数f(x)是定义在(−∞, 0)∪(0, +∞)上的奇函数,当x >0时,f(x)=log 2x . (1)求当x <0时,函数f(x)的表达式;(2)求满足f(x +1)<−1的x 的取值范围;(3)已知对于任意的k ∈N ,不等式2k ≥k +1恒成立,求证:函数f(x)的图象与直线y =x 没有交点.参考答案与试题解析指数函数与对数函数的关系专题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】指数函数与对数函数的关系【解析】(1)利用指数函数与对数函数的单调性进行求解即可.【解答】解:已知a=0.53<0.50=1,b=log0.73<0,c=30.6>30=1,则b<a<c .故选A .2.【答案】A【考点】指数函数与对数函数的关系【解析】利用对数函数的单调性即可得出.【解答】解:∵a=20.6>1,0<b=log32<1,c=ln0.6<0,∴a>b>c.故选A.3.【答案】B【考点】指数函数与对数函数的关系【解析】依据指、对数函数的性质可以发现A,C满足其中的一个等式,而D满足f(x+y)= f(x)+f(y),B不满足其中任何一个等式1−f(x)f(y)【解答】解:f(x)=3x是指数函数满足f(x+y)=f(x)f(y),排除A.f(x)=logx是对数函数满足f(xy)=f(x)+f(y),排除C2f(x)=tan x满足f(x+y)=f(x)+f(y),排除D.1−f(x)f(y)故选B4.【答案】D【考点】指数函数与对数函数的关系【解析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=log20.1<log21=0,b=20.1>20=1,0<c=0.21.1<0.20=1,∴a<c<b.故选D.5.【答案】D【考点】指数函数与对数函数的关系【解析】由对称关系得到f(x)的解析式,令其中指数x−2=0得到图象必过点(2,1)【解答】:函数y=f(x)图象与函数y=loga3x−2)+2图象关于直线y=x对称y=f(x)=13(a−2+2)则当x=2时,a0=1恒成立,∴函数y=f(x)图象过定点(21).故答案为:D.6.【答案】B【考点】指数函数与对数函数的关系【解析】函数y=2x|log0.5x|−1的图象与x轴的交点个数,就是函数的零点的个数,将方程的解转化为函数图象的交点问题,从而判断函数的零点个数.【解答】解:函数y=2x|log0.5x|−1的图象与x轴的交点个数,就是f(x)=2x|log0.5x|−1的零点个数,即方程2x|log0.5x|−1=0的根,即2x|log0.5x|=1,|log0.5x|=(12)x,在同一坐标系中画出函数y=|log0.5x|与y=(12)x图象,由图象知这两个函数图象有2个交点,即函数f(x)=2x|log0.5x|−1的图象与x轴的交点个数为2,故选:B.7.【答案】A【考点】指数函数与对数函数的关系【解析】此题暂无解析【解答】解:由指数函数和对数函数的单调性可知,lg1e <lg1=0,101e>100=1,0<(1e)10<(1e)0=1,∴ lg1e <(1e)10<101e.故选A.8.【答案】C【考点】指数函数与对数函数的关系【解析】利用对数函数的性质,易得M,N不是好点,利用指数函数的性质,易得N,P不是好点,利用“好点”的定义,我们易构造指数方程和对数方程,得到Q(2, 2),G(2, 0.5)两个点是好点,从而得到答案.【解答】解:当X=1时,对数函数y=logax(a>0, a≠1)恒过(1, 0)点,故M(1, 1),N(1, 2),一定不是好点,当Y=1时,指数函数y=a x(a>0, a≠1)恒过(0, 1)点,故P(2, 1)也一定不是好点,而Q(2, 2)是函数y=√2x与y=log√2x的交点;G(2, 0.5)是函数y=√12x与y=log4x的交点;故好点有2个,故选C.9.【答案】D【考点】指数函数与对数函数的关系【解析】作出函数对应的图象,判断两个根的取值的大体范围,然后利用对数的运算法则和指数函数的性质进行判断大小即可.【解答】解:作出函数y=10x,y=|lg(−x)|的图象,由图象可知,两个根一个小于−1,一个在(−1, 0)之间,不妨设x1<−1,−1<x2<0,则10x1=lg(−x1),10x2=|lg(−x2)|=−lg(−x2).两式相减得:lg(−x1)−(−lg(−x2)=lg(−x1)+lg(−x2)=lg(x1x2)=10x1−10x2<0,即0<x1x2<1.故选:D.10.【答案】C【考点】指数函数与对数函数的关系【解析】根据指数函数和对数函数之间的关系,得到函数y1=−2x,y2=−log12(−x)为反函数,两个函数的图象关于y=x对称,然后利用数形结合即可得到结论.【解答】解:∵y2=−log12(−x)=log2(−x),∴函数的反函数为y=−2x,即函数y1=−2x,y2=−log12(−x)的图象关于y=x轴对称.即(α+β2,α+β2)在直线线y3=−x−5上,∴α+β2=−α+β2−5,即α+β2+α+β2=−5,∴α+β=−5,故选:C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】2√2【考点】指数函数与对数函数的关系【解析】此题暂无解析【解答】解:如图所示,y=|logax|与y=b有两个交点,且横坐标分别为x1,x2(x1<x2),即|log a x1|=|log a x2|.∴loga x1=−logax2,x2=1x1,x1∈(0,1).∴ 2x1+x2=2x1+1x1≥2√2x1⋅1x1=2√2,当且仅当2x1=1x1,即x1=√22或−√22(舍)时,2x1+x2取得最小值为2√2. 故答案为:2√2.12.【答案】{e}【考点】函数的零点指数函数与对数函数的关系【解析】利用已知条件推出方程,然后求出a的值.【解答】解:函数f(x)=a x−1,且f(ln a)=1,∴a ln a−1=1,即ln a−1=0,解得a=e.∴a的值组成的集合为:{e}.故答案为:{e}.13.【答案】3【考点】指数函数与对数函数的关系【解析】先解出a的值,然后代入即可.【解答】解:由a 23=49得a=(49)32=(23)3,所以log23a=log23(23)3=3故答案为:314.【答案】【考点】指数函数与对数函数的关系【解析】此题暂无解析【解答】此题暂无解答15.【答案】√10【考点】指数函数与对数函数的关系 【解析】本题主要考查指数与指数函数和对数与对数函数。
全国通用版高中数学第四章指数函数与对数函数必须掌握的典型题
(名师选题)全国通用版高中数学第四章指数函数与对数函数必须掌握的典型题单选题1、我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c(t)(单位:mg/L)随着时间t(单位:h)的变化用指数模型c(t)=c0e−kt描述,假定某药物的消除速率常数k=0.1(单位:h−1),刚注射这种新药后的初始血药含量c0=2000mg/L,且这种新药在病人体内的血药含量不低于1000mg/L时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln2≈0.693,ln3≈1.099)A.5.32hB.6.23hC.6.93hD.7.52h答案:C分析:利用已知条件c(t)=c0e−kt=2000e−0.1t,该药在机体内的血药浓度变为1000mg/L时需要的时间为t1,转化求解即可.解:由题意得:c(t)=c0e−kt=2000e−0.1t设该要在机体内的血药浓度变为1000mg/L需要的时间为t1c(t1)=2000e−0.1t1≥1000e−0.1t1≥1 2故−0.1t≥−ln2,t≤ln20.1≈6.93故该新药对病人有疗效的时长大约为6.93ℎ故选:C2、化简√a 3b 2√ab 23(a 14b 12)4⋅√b a 3 (a >0,b >0)的结果是( )A .b aB .a bC .a 2bD .b 2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a 3b 2√ab 23(a 14b 12)4⋅√b a 3=a 32b⋅a 16b 13(a 14b 12)4⋅a −13⋅b 13 =a 32+16−1+13b 1+13−2−13=ab −1=ab故选:B3、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5)C .(32,5)D .(1,5)答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x+3,x ≥1 是定义在R 上的增函数, 所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B4、化简(1og 62)2+log 62⋅log 63+2log 63−6log 62的值为( )A .−log 62B .−log 63C .log 63D .-1答案:A分析:运用对数的运算性质即可求解.解析:(log 62)2+log 62⋅log 63+2log 63−6log 62=log 62(log 62+log 63)+2log 63−2=log 62+2log 63−2=2(log 62+log 63)−log 62−2=2−log 62−2=−log 62故选:A.5、log 318−log 32=( )A .1B .2C .3D .4答案:B解析:利用对数的运算性质计算即可得答案.log 318−log 32=log 3182=log 39=2.故选:B.6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( )A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增 答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0 ,得x ≠±12. 又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ),∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|,∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图, 在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增,又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增,在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .7、设alog 34=2,则4−a =( )A .116B .19C .18D .16 答案:B分析:根据已知等式,利用指数对数运算性质即可得解由alog 34=2可得log 34a =2,所以4a =9,所以有4−a =19, 故选:B.小提示:本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.8、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.9、2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v =v 0⋅ln M m 计算火箭的最大速度v(m /s ),其中v 0(m /s )是喷流相对速度,m(kg )是火箭(除推进剂外)的质量,M(kg )是推进剂与火箭质量的总和,M m 称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge ≈0.434,lg2≈0.301)A .5790m /sB .6219m /sC .6442m /sD .6689m /s答案:C分析:根据对数的换底公式运算可得结果.v =v 0 ln M m =1000×ln625=1000×4lg5lg e =1000×4(1−lg2)lg e ≈6442m/s .故选:C .10、已知函数f(x)=2x −x −1,则不等式f(x)>0的解集是( ).A .(−1,1)B .(−∞,−1)∪(1,+∞)C .(0,1)D .(−∞,0)∪(1,+∞)答案:D分析:作出函数y =2x 和y =x +1的图象,观察图象可得结果.因为f (x )=2x −x −1,所以f (x )>0等价于2x >x +1,在同一直角坐标系中作出y =2x 和y =x +1的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式2x >x +1的解为x <0或x >1.所以不等式f (x )>0的解集为:(−∞,0)∪(1,+∞).故选:D.小提示:本题考查了图象法解不等式,属于基础题.11、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a −(14)b =(12)a −(12)b ,即[(12)a −(12)b ][(12)a +(12)b ]=(12)a −(12)b ≠0, 所以(12)a +(12)b =1, 故选:B .12、用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( )A .0.9B .0.7C .0.5D .0.4答案:B分析:利用二分法求函数零点的近似值的条件及方法分析判断即得.依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.7∈(0.68,0.72),且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7.故选:B填空题13、已知函数f (x )={2x +1,x ≤02,x >0,若f (a 2−2a )≤f (a −1),则实数a 的取值范围是_________. 答案:[3−√52,+∞)分析:根据函数单调性分段处理即可得解.由题函数f (x )={2x +1,x ≤02,x >0在(−∞,0]单调递增,在(0,+∞)为常数函数, 且f (0)=2若f (a 2−2a )≤f (a −1)则a 2−2a ≤a −1≤0或a 2−2a ≤0≤a −1或{a 2−2a ≥0a −1≥0则{a 2−3a +1≤0a ≤1 或{a 2−2a ≤00≤a −1 或{a 2−2a ≥0a −1≥0解得:3−√52≤a ≤1或1≤a ≤2或a ≥2,综上所述:a∈[3−√52,+∞)所以答案是:[3−√52,+∞)14、函数f(x)满足以下条件:①f(x)的定义域为R,其图像是一条连续不断的曲线;②∀x∈R,f(x)=f(−x);③当x1,x2∈(0,+∞)且x1≠x2,f(x1)−f(x2)x1−x2>0;④f(x)恰有两个零点,请写出函数f(x)的一个解析式________答案:f(x)=x2−1(答案不唯一)分析:由题意可得函数f(x)是偶函数,且在(0,+∞)上为增函数,函数图象与x轴只有2个交点,由此可得函数解析式因为∀x∈R,f(x)=f(−x),所以f(x)是偶函数,因为当x1,x2∈(0,+∞)且x1≠x2,f(x1)−f(x2)x1−x2>0,所以f(x)在(0,+∞)上为增函数,因为f(x)恰有两个零点,所以f(x)图象与x轴只有2个交点,所以函数f(x)的一个解析式可以为f(x)=x2−1,所以答案是:f(x)=x2−1(答案不唯一)15、函数y=a x−1+1图象过定点A,点A在直线mx+ny=3(m>1,n>0)上,则1m−1+2n最小值为___________.答案:92##4.5分析:根据指数函数过定点的求法可求得A(1,2),代入直线方程可得(m−1)+2n=2,根据1m−1+2n=1 2(1m−1+2n)((m−1)+2n),利用基本不等式可求得最小值.当x=1时,y=a0+1=2,∴y=a x−1+1过定点A(1,2),又点A在直线mx+ny=3上,∴m+2n=3,即(m−1)+2n=2,∵m>1,n>0,∴m−1>0,∴1m−1+2n =12(1m−1+2n )((m −1)+2n)=12(5+2n m−1+2(m−1)n )≥ 12(5+2√2n m−1⋅2(m−1)n )=92(当且仅当2n m−1=2(m−1)n,即m =53,n =23时取等号), ∴1m−1+2n 的最小值为92. 所以答案是:92.16、若x +x −1=3,则x 12+x −12x 2+x −2=__________.答案:√57分析:将目标式分子、分母转化为含已知条件x +x −1的代数式,进而求值x +x −1=3,易知x >0而(x 12+x −12)2=x +x −1+2=5∴x 12+x −12=√5又由x 2+x −2=(x +x −1)2−2=7综上,有:x 12+x−12x 2+x −2=√57所以答案是:√57小提示:本题考查了利用指数幂运算化简求值,应用指数幂运算化简含x a +x −a 形式的代数式并求值17、函数f (x )=log 12(x 2−5x +6)的单调递减区间为___________. 答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x 2−5x +6>0,解得x >3或x <2.令t =x 2−5x +6,则y =log 12t 为减函数. 所以t ∈(−∞,2),t =x 2−5x +6为减函数,f (x )=log 12(x 2−5x +6)为增函数,t∈(3,+∞),t=x2−5x+6为增函数,f(x)=log12(x2−5x+6)为减函数.所以函数f(x)=log12(x2−5x+6)的单调递减区间为(3,+∞).所以答案是:(3,+∞)解答题18、数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.对数运算与指数幂运算是两类重要的运算.(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a>0,且a≠1,M>0,那么log a M n= nlog a M(n∈R);(2)计算lg3lg4(lg8lg9+lg16lg27)的值;(3)因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫作位数).请你运用所学过的对数运算的知识,判断20222023的位数.(注:lg2022=3.306)答案:(1)答案见解析(2)1712(3)位数为6689.分析:(1)根据指数与对数之间的转换证明即可;(2)根据对数的运算性质将真数转化为指数幂的形式再化简求值,亦可通过换底公式化简求值;(3)通过对数的运算公式分析20222023的值的范围进而确定其位数.(1)方法一:设x=log a M,所以M=a x,所以M n=(a x)n=a nx,所以log a M n=nx=nlog a M.方法二:设x=nlog a M,所以xn=log a M,所以a x n=M,所以a x=M n,所以x=log a M n,所以nlog a M=log a M n.方法三:因为a log a M n=M n,a nlog a M=(a log a M)n=M n,所以a log a M n=a nlog a M,所以log a M n=nlog a M.(2)方法一:lg3lg4(lg8lg9+lg16lg27)=lg3lg22(lg23lg32+lg24lg33)=lg32lg2(3lg22lg3+4lg23lg3)=34+23=1712.方法二:根据换底公式可得lg3lg4(lg8lg9+lg16lg27)=log43(log98+log2716)=log223(log3223+log3324)=12log23(32log32+43log32)=12log23⋅176log32=1712.(3)方法一:设10k<20222023<10k+1,k∈N∗,所以k<lg20222023<k+1,所以k<2023lg2022<k+1,所以k<2023×3.306<k+1,所以6687.038<k<6688.038,因为k∈N∗,所以k=6688,所以20222023的位数为6689.方法二:设20222023=N,所以2023lg2022=lgN,所以2023×3.306=lgN,所以lgN=6688.038,所以N=106688.038=100.038×106688,因为1<100.038<10,所以N的位数为6689,即20222023的位数为6689.19、若函数y=3x2−5x+a的两个零点分别为x1,x2,且有−2<x1<0,1<x2<3,试求出a的取值范围.答案:−12<a<0.分析:根据题意,利用二次函数的性质和根的分布,列出不等式组,即可求出实数a 的取值范围. 令f (x )=3x 2−5x +a ,则{f(−2)>0f(0)<0f(1)<0f(3)>0得a 的取值范围是−12<a <0. 故实数a 的取值范围为−12<a <0.小提示:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.20、运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.答案:(1) y =130×18x +2×130360x ,x ∈[50,100] (或y =2340x +1318x ,x ∈[50,100]).(2) 当x =18√10千米/时,这次行车的总费用最低,最低费用的值为26√10元.分析:(1)先确定所用时间,再乘以每小时耗油与每小时工资的和得到总费用表达式,(2)利用基本不等式求最值即得结果.(1)设所用时间为t =130x (h), y =130x ×2×(2+x 2360)+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100] (或y =2340x +1318x ,x ∈[50,100]). (2)y =130×18x +2×130360x ≥26√10,当且仅当130×18x =2×130360x , 即x =18√10时等号成立.故当x=18√10千米/时,这次行车的总费用最低,最低费用的值为26√10元.小提示:本题考查函数解析式以及利用基本不等式求最值,考查综合分析求解能力,属中档题.。
指数函数与对数函数专项练习(含答案)
指数函数与对数函数专项练习1 设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是[ ] (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a2 函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是[ ]3.设525bm ==,且112a b +=,则m =[ ](A (B )10 (C )20 (D )100 4.设a=3log 2,b=In2,c=125-,则[ ]A. a<b<cB. b<c<aC. c<a<b D . c<b<a 5 .已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是[ ] (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 6.函数()()2log 31x f x =+的值域为[ ]A.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣7.下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f (x +y )=f (x )f (y )”的是 [ ](A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 8. 函数y=log2x 的图象大致是[ ]PS(A) (B) (C) (D)8.设554a log 4b log c log ===25,(3),,则[ ] (A)a<c<b (B) b<c<a (C) a<b<c (D) b<a<c 9.已知函数 1()log (1),f x x =+若()1,f α= α=[ ](A)0(B)1(C)2(D)310.函数y =的值域是[ ](A )[0,+∞) (B) [0,4] (C) [0,4) (D) (0,4) 11.若372log πlog 6log 0.8a b c ===,,,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>12.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<<13.若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y<14.已知01a <<,log log a a x =,1log 52a y =,log log a a z =,则( )A .x y z >>B .z y x >>C .y x z >>D .z x y >>15.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a16.已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<< B .101b a-<<<C .101ba -<<<-D .1101ab --<<<18. 已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.19.已知m x f x +-=132)(是奇函数,求常数m 的值;20.已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.指数函数与对数函数专项练习参考答案1)A【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
2023-2024学年高考数学指数函数与对数函数专项练习题(含答案)
2024....二、多选题.函数,若对任意实数、,,则下列结论错误的是()(32log f x x x =++a b 0a b +>A .方程有且只有6个不同的解B .方程()()0f g x =解C .方程有且只有5个不同的解D .方程()()0f f x =解的零点个数为 .()4log =-y f x x16.已知函数,若方程有4个不同的实根,,,22log (1),13()1357,322x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩()34f x =1x 2x 3x 且,则.4x 1234x x x x <<<()341211x x x x ⎛⎫++=⎪⎝⎭答案:1.C【分析】根据函数的单调性,借助中间值比较大小.【详解】因为函数在单调递增,且,所以,即,2log y x =()0,∞+π2>22log π>log 21=1a >因为函数在单调递减,且,所以,即,0.5log y x =()0,∞+π1>0.50.5log π<log 1=00b <因为函数在单调递增,且,所以,即,πxy =(),-∞+∞20-<200<ππ1-<=01c <<所以,a c b >>故选:C 2.A【分析】由提供的数据知,描述西红柿种植成本与上市时间的变化关系函数不可能是单Q t 调函数,故选取二次函数进行描述,将表格所提供的三组数据代入,即得函2Q at bt c =++Q 数解析式,进而求解.【详解】因为随着时间的增加,种植成本先减少后增加,所以函数不单调,所以选取,且开口向上,2Q at bt c =++将表格中的三组数据分别代入,2Q at bt c =++得解得116360060,8410000100,11632400180,a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩0.01,2.4,224,a b c =⎧⎪=-⎨⎪=⎩即,对称轴,开口向上,20.01 2.4224Q t t =-+ 2.412020.01t -=-=⨯在对称轴处即120天时函数取最小值.∴t =西红柿种植成本最低时的上市天数是120天.∴故选:A.3.C【分析】由指数函数的性质分别对和的情况讨论单调性并求值域,从而列方程组01a <<1a >即可得到答案.【详解】函数(且)的值域为,2x y a =-0a >1,11a x ≠-≤≤5,13⎡⎤-⎢⎥⎣⎦又由指数函数的单调性可知,当时,函数在上单调递减,值域是01a <<2xy a =-[]1,1-12,2a a -⎡⎤--⎣⎦所以有,即,解得;110152321a a a -<<⎧⎪⎪-=-⎨⎪-=⎪⎩101133a a a -<<⎧⎪⎪=⎨⎪=⎪⎩13a =当时,函数在上单调递增,值域是1a >2x y a =-[]1,1-12,2a a -⎡⎤--⎣⎦所以有,即 ,解得.11152321a a a ->⎧⎪⎪-=-⎨⎪-=⎪⎩11133a a a ->⎧⎪⎪=⎨⎪=⎪⎩3a =综上所述,或.13a =3a =故选:C.4.B【分析】结合已知条件,利用抽象函数的定义域以及对数、分式的定义域求法求解即可.【详解】因为函数的定义域是,()f x [1,2022]所以对于有:,(1)()lg f x g x x +=1120220lg 0x x x ≤+≤⎧⎪>⎨⎪≠⎩解得:且,02021x <≤1x ≠故函数的定义域是,()()1ln f x g x x+=(01)(1],,2021⋃故选:B .5.A【分析】根据题意,求得,得到,结合零点的存在性定理,3()0,(2)02f f >>3(1)()02f f ⋅<即可求解.【详解】由函数,且,可得,()348f x x x =+-()()10,30f f <>3()70,(2)2602f f =>=>所以,根据零点的存在性定理,3(1)()02f f ⋅<可得方程的近似解落在区间为.3480x x +-=31,2⎛⎫⎪⎝⎭故选:A.6.C【分析】根据给定条件,可得函数在R 上单调递增,再利用分段函数及对数函数单调性()f x 列出不等式求解即得.【详解】函数的定义域为R ,(2)1,1()log ,1a a x x f x x x --≤⎧=⎨>⎩由对任意,都有,得函数在R 上单调递增,12x x ≠1212()()f x f x x x ->-()f x 于是,解得,20130a a a ->⎧⎪>⎨⎪-≤⎩23a <≤所以实数的取值范围为.a (]2,3故选:C 7.B【分析】利用对数的换底公式和运算法则即可得解.【详解】,,,230x y k ==>Q 23log ,log x k y k ==∴11log 2,log 3k k x y ∴==,,则.12log 2log 3log 61k k k x y ∴=+=+=∴26k =6k =故选:B.8.A【分析】由函数的定义域排除C ,由函数的奇偶性排除D ,由特殊的函数值排除B ,结合奇偶性和单调性判断A.【详解】由得,则函数的定义域为,排除选项C ;30x ->33x -<<()ln 3y x =-()3,3-又,所以为偶函数,则图象关于y 轴对称,排除选项D ;()()ln 3ln 3x x --=-()ln 3y x =-当时,,排除选项B ,52x =1ln 02y =<因为为偶函数,且当时,函数单调递减,()ln 3y x =-30x >>()()ln 3ln 3y x x =-=-选项A 中图象符合.故选:A 9.ACD【分析】分析函数的奇偶性与单调性,由已知可得出,结合函数的奇偶性()f x a b >-()f x与单调性可得出合适的选项.【详解】令,对任意的,,即,()()22log 1g x x x =++x ∈R 21x x x+>≥-210x x ++>所以,函数的定义域为,()g x R 则.()()()()2222221log 1log 1log1g x x x x x g x x x⎛⎫-=+--=+-==- ⎪⎝⎭++所以,函数是定义域为的奇函数,()g x R 因为函数、为上的增函数,1u x =221u x =+[)0,∞+所以,内层函数在上为增函数,21u x x =++[)0,∞+外层函数在上为增函数,2log y u =()0,∞+所以,函数在上为增函数,()()22log 1g x x x =++[)0,∞+由于函数是定义域为的奇函数,则该函数在上为增函数,()g x R (],0-∞所以,函数在上单调递增,()()22log 1g x x x =++R 因为的定义域为,则,()f x R ()()()()()33f x x g x x g x f x -=-+-=--=-所以,函数为奇函数,()f x 又因为函数为上的增函数,所以,函数在上单调递增.3y x =R ()f x R 因为,所以,则,即,A 错B 对,0a b +>a b >-()()()f a f b f b >-=-()()0f a f b +>又、的大小不确定,故CD 错.a b 故选:ACD.方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度;(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.10.ABC【分析】根据题意,由函数的定义,只需满足集合中的每一个元素在集合中都有唯一一P Q 个元素与之对应即可,再结合选项逐一分析,即可得到结果.【详解】选项A ,,集合中的每一个元素在集合中都有唯一一个元素与之1:2f x y x→=P Q 对应,故A 正确;选项B ,,集合中的每一个元素在集合中都有唯一一个元素与之对应,故13:f x y x →=P Q B 正确;选项C ,,集合中的每一个元素在集合中都有唯一一个元素与之对应,1:2xf x y ⎛⎫→= ⎪⎝⎭P Q 故C 正确;选项D ,,集合中的1,在集合中没有元素与之对应,故D 错误;:ln f x y x →=P Q 故选:ABC 11.ABD【分析】根据奇偶性的定义即可判断A,根据基本函数的单调性即可判断BC ,根据反函数的性质即可判断D.【详解】对于A ,定义域为,关于原点对称,又由于()f x R ()()e e e e ,,22x x x xf x f x --++=-=,所以为偶函数,A 正确,()()=f x f x -()f x 对于B ,,由于函数在单调递增,所以在()e 121e 1e 1x x x f x -==-++e 1xy =+x ∈R 1e 1x y =+单调递减,因此在单调递增,B 正确,x ∈R ()21e 1xf x =-+x ∈R 对于C ,由于函数为定义域上的偶函数,当时,在区间上单调递lg y x=0x >lg y x =()0,∞+增,故C 错误,对于D ,由于函数与互为反函数,所以两者图象关于,D 正13xy ⎛⎫= ⎪⎝⎭133log log y x x ==-y x =确,故选:ABD 12.ACD【分析】令,结合图象可得有3个不同的解,,,不妨设,()t x g =()0f t =1t 2t 3t 123t t t <<则可知,,,令,结合图象可得有2个不同的解121t -<<-2t =312t <<()m f x =()0g m =,,不妨设,则可知,,再数形结合求出复合函数的解的1m 2m 12m m <121m -<<-201m <<个数.【详解】A 选项,令,结合图象可得有3个不同的解,,,()t x g =()0f t =1t 2t 3t 不妨设,则可知,,,123t t t <<121t -<<-20t =312t <<由图可知有2个不同的解,有2个不同的解,有2个不同的解,()1g x t =()2g x t =()3g x t =即有6个不同的解,A 正确;()()0f g x =B 选项,令,结合图象可得有2个不同的解,,()m f x =()0g m =1m 2m 不妨设,则可知,,12m m <121m -<<-201m <<由图可知有1个解,有3个不同的解,()1f x m =()2f x m =即有4个不同的解,B 错误;()()0g f x =C 选项,令,结合图象可得有3个不同的解,,()m f x =()0f m =1m 2m 3m 且,,,121m -<<-20m =312m <<由图可知有1个解,有3个不同的解,有1个解,()1f x m =()2f x m =()3f x m =即有5个不同的解,C 正确;()()0f f x =D 选项,令,结合图象可得有两个不同的解,()t x g =()0g t =1t2t 不妨设,则可知,,12t t <121t -<<-201t <<由图可知有2个不同的解,有2个不同的解,()1g x t =()2g x t =即有4个不同的解,D 正确.()()0g g x =故选:ACD .13.193【分析】利用位数的定义,结合对数运算法则即可得解.k故答案为.14。
指数函数与对数函数高考题及答案
指数函数与对数函数(一)选择题(共15题)1.(安徽卷文7)设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a【答案】A【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
【方法总结】根据幂函数与指数函数的单调性直接可以判断出来.2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是【答案】D【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1<ba <0,矛盾,对于C 、D 两图,0<|b a |<1,在C 图中两根之和-b a <-1,即ba >1矛盾,选D 。
3.(辽宁卷文10)设525bm ==,且112a b +=,则m =(A(B )10 (C )20 (D )100 【答案】D解析:选A.211log 2log 5log 102,10,m m m m a b +=+==∴=又0,m m >∴=4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=125-,则A. a<b<cB. b<c<aC. c<a<b D . c<b<a 【答案】C【解析】 a=3log 2=21log 3, b=In2=21log e ,而22log 3log 1e >>,所以a<b,c=125-=,而222log 4log 3>=>,所以c<a,综上c<a<b.【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.5.(全国Ⅰ卷理10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞【答案】A【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 2a a =+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a +又0<a<b,所以0<a<1<b ,令2()f a a a =+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是(A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞【答案】C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a +≥,从而错选D,这也是命题者的用苦良心之处. 7.(山东卷文3)函数()()2log 31x f x =+的值域为A.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣ 【答案】A【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
(完整版)指数函数与对数函数高考题(含答案)
指数函数与对数函数高考题1、(2009湖南文)2log )A .BC .12-D . 122、(2012安徽文)23log 9log 4⨯=( )A .14B .12C .2D .43、(2009全国Ⅱ文)设2lg ,(lg ),lg a e b e c === ( )A.a b c >>B.a c b >>C.c a b >>D.c b a >>4、(2009广东理)若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像经过点)a ,则()f x =( )A. 2log xB. 12log x C.12xD. 2x 5、(2009四川文)函数)(21R x y x ∈=+的反函数是( )A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y6、(2009全国Ⅱ理)设323log ,log log a b c π=== )A. a b c >>B. a c b >>C. b a c >>D. b c a >>7、(2009天津文)设3.02131)21(,3log ,2log ===c b a ,则( )A.c b a <<B. b c a <<C. a c b << D .c a b <<8、(2009湖南理) 若2log a <0,1()2b >1,则 ( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <09、(2009江苏)已知集合{}2log 2,(,)A x x B a =≤=-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c =10、(2010辽宁文)设25a b m ==,且112a b+=,则m =( )11、(2010全国文)函数)1)(1ln(1>-+=x x y 的反函数是( )A.y=1x e +-1(x>0)B. y=1x e -+1(x>0)C. y=1x e +-1(x ∈R)D.y=1x e -+1 (x∈R)12、(2012上海文)方程03241=--+x x 的解是_________ .13、(2011四川理)计算21100)25lg 41(lg -÷-_______ .14、(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________ 。
高考数学专题指数函数、对数函数、幂函数试题及其答案
指数函数、 对数函数、曷函数专题1.函数 f(x) 3x (0 x w 2)值域为( A. (0,) B. (1,9] C. (0,1) D. [9,2.给出以下三个等式:f (xy) f(x) f(y), f(x y) f(x)f(y), f (x y)f (x) f(y)以下1 f(x)f(y)函数中不满足其中任何一个等式的是 A. f(x) 3x B. f (x) sin x C.f (x) log 2 x D . f(x) tan x3. 以下四个数中的最大者是( A . (ln2) 2 B. In (ln2)C. ln<2D. ln24. 假设 A= { x Z |2 B={x R||log 2x| 1},那么 A (C R B)的元素个数为(5. A . 0个设f(x)1gsB, 1个C. 2个D. 3个6. 假: a)是奇函数,那么使 f (x) 0的x 的取值范围是 A. ( 1,0)对于函数①f(x)命题甲: 命题乙: 命题丙: B. (0,1)C.(,0)D.(,0) (1,)lg(x 2| 1),②f(x 2)是偶函数; f(x)在(,)上是减函数, f(x 2) f(x)在(,f(x) (x在(2,2)2 ,③ f (x))上是增函数; )上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是 A.①③ B.①② 7.函数y=- 2 (A)奇函数 (B)偶函数 (C)既奇又偶函数cos(x2),判断如下三个命题的真(D)非奇非偶函数8.设a,b,c 均为正数,且 2alog 1 a,2log 1 b, 12 2log 2 c,那么A. a b cB. c b aC. cD. b一 ........... 1 9 .函数f(x) ___________ ^的定义域为 M, g(x) ln(1 x)的定义域为N,那么M N (),1 xA. XX 1B. xx 1C. x 1 x 1D.10 .设a { — 1,1, 1, 3},那么使函数y=x a 的定义域为R 且为奇函数的所有 a 值为()2A. 1, 3B, - 1, 1C. - 1, 3D, -1, 1, 311 .设函数f(x)定义在实数集上,它的图象关于直线 x =1对称,且当x 1时,f(x)=3x 1 ,那么有()A. f(l) f(3) f(-)B. f(-)f(3) f(1)vQ 7 'O'VQ 7vQ 7'O'VQ 732 33 2 3 213 3 2 1 C. f(-) f(-)f(-) D,f(-) f(-) f(-) 33 2 23 34x 4, x 1 12.函数f x 2的图象和函数g x log 2x 的图象的交点个数是()x 4x 3, x 1A. 4B. 3C. 2D. 1A. J2 B, 2 C, 2<2 D, 415.假设a 1 ,且a x log a x a y log a y ,那么x 与y 之间的大小关系是()A. x y 0B. x y 0C. y x 0D.无法确定13.函数f (x) =1 log 2x 与g(x) = 2 x 1在同一直角坐标系下的图象大致是()14.设a 1,函数f(x)=log a x 在区间[a,2a ]上的最大值与最小值之差为;,那么a =()16.函数y e |lnx| |x 1 |的图象大致是()17.函数y f (x)的图象与函数y log3x (x 0)的图象关于直线y x对称,那么f(x)lg 4 x ....................函数f x ------- ----------的定义域为 x 3设函数y 4 log 2(x 1)(x > 3),那么其反函数的定义域为24.将函数y log 2 x 的图象向左平移一个单位,得到图象 C I ,再将C I 向上平移一个单位得到图象 C 2,那么C 2的解析式为假设函数y=lg (ax 2+2x+1)的值域为R,那么实数a 的取值范围为 假设函数y=log 2 (kx 2+4kx+3)的定义域为 R,那么实数k 的取值范围是 给出以下四个命题: xxa (a 0且a 1)与函数y log a a (a 0且a 1)的定乂域相同;(x 1)2与y 2x1在区间[0,)上都是增函数.四点,那么这四点从上到下的排列次序是 18. 19. 20.方程9x6 3x7 0的解是21. 假设函数f(x) e (x)2................................................. ..... .) (e 是自然对数的底数)的最大值是,且f(x)是偶函数,那么m22. 函数y(a 0且a 1)的图象如图,那么函数x的图象可能是23. 设 f (x) log a x (a 0且 a 1),假设 f (x 1) f (x 2)F R , i 1,2, ,n),那么 f(x 13) f(x 23)一, 3、f(% )的值等于25.26. 27. ②函数x 3和y 3x 的值域相同;③函数1 1匚——x —与 y2 2x 1(1 2x )x?2x 2一都是奇函①函数④函数其中正确命题的序.(把你认为正确的命题序号都填上)28. 直线x a ( a 0)与函数y 2x 、y 10x 的图像依次交于 A 、B 、C 、D29.假设关于x 的方程25 |x 1| 4?5 |x1|m 有实根,那么实数 m 的取值范围是Ixlax ..30.lgx+lgy=2lg (x —2y),求log 区一的值.y................................... _ x x . . 31 .根据函数y |2 1|的图象判断:当实数m为何值时,方程|2 1 | m无解?有一解?有两解?32.x1是方程xlgx=2021的根,x2是方程x - 10x=2021的根,求x1x2的值.33.实数a、b、c满足2b=a+c,且满足21g (b—1) =lg (a+1) +lg (c— 1),同时a+b+c=15,求实数a、b、c的值.. 1 x34.f(x) log a------------------- (a 0,a 1).1 x(1)求f(x)的定义域;(2)判断f (x)的奇偶性;(3)求使f(x).. ........................... 1、〜35.函数f(x) 1 f(—)?10g2乂. x(1)求函数f(x)的解析式;(2)求f(2)的值;(3)解方程f(x)36.函数f (x) log a(a a x) ( a 1).(1)求f(x)的定义域、值域;(2)判断f(x)的单调性;(3)解不等式f 1(x2 2) f(x).0的x的取值范围. f(2)o指数函数、对数函数、曷函数专题1 .函数 f (x) 3x(0 xw 2)值域为()A. (0, )B..9]C. (01)D. [9,)B;[解析]函数f (x) 3x (0 xW 2)的反函数的定义域为原函数的值域,原函数的值域为(1,9].2 .给出以下三个等式: f(xy) f (x) f(y), f (x y) f (x)f(y), f(x y) fx-fiy) .下1 f(x)f(y)列函数中不满足其中任何一个等式的是()xA. f (x) 3B. f(x) sinxC. f(x) log 2xD. f (x) tan xB ;[解析]依据指、对数函数的性质可以发现A 满足f (x y) f(x) f (y) ,C 满足f(xy) f (x) f(y), 而D 满足f(x y) f (x) f (y), B 不满足其中任何一个等式.1 f(x)f(y)3 .以下四个数中的最大者是( )A. (ln2) 2B. ln (ln2)C. ln 〞D. ln2D;[解析]:. ln2 1 , ln (ln2) <0, (ln2) 2<ln2 ,而 ln 72 =工 ln2<ln2 , • .最大的数是 ln2.2[考点透析]根据对数函数的根本性质判断对应函数值的大小关系,一般是通过介值( 0, 1等一些特殊值)结合对数函数的特殊值来加以判断.4 .假设 A={x Z |2 22 x 8}, B={x R||log 2x| 1},那么 A (C R B)的元素个数为( )A.0个B. 1个C. 2个D. 3个2 xC ;[解析]由于 A={x Z |2 2 8} ={x Z|1 2 x 3} ={x Z| 1 x 1} = {0, 1},而 一 _一一—1 ,、B={x R||log 2x| 1} ={x R|0 x—或x 2},那么 A (C R B) = {0, 1},那么 A(C R B)的兀素个2数为2个.[考点透析]从指数函数与对数函数的单调性入手,解答相关的不等式,再根据集合的运算加以分析和 判断,得出对应集合的元素个数问题.25.设f(x) lg(—— a)是奇函数,那么使f (x) 0的x 的取值范围是()1 x A. ( 1,0) B. (0,1)C. (,0) D. (,0)U(1,)1 x 1 x1 xA;[解析]由 f(0) 0得a1, f(x) lg —— 0,得 ।x1 x1 x 1 x[考点透析]根据对数函数中的奇偶性问题,结合对数函数的性质,求解相关的不等式问题,要注意首要 条件是对数函数的真数必须大于零的前提条件.6.对于函数① f(x) lg(x 2 1),②f(x) (x 2)2,③f(x) cos(x 2),判断如下三个命题 的真假: 命题甲:f(x 2)是偶函数;命题乙:f(x)在(,)上是减函数,在(2,)上是增函数; 命题丙:f(x 2) f (x)在(,)上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③B.①②C.③D.②2…•2) cos(x 2)不是偶函数,排除函数③,只有函数② f (x) (x 2)符合要求.[考点透析]根据对数函数、哥函数、三角函数的相关性质来分析判断相关的命题,也是高考中比拟常见 的问题之一,正确处理对应函数的单调性与奇偶性问题.7.函数y=-21. 1一 b 1 ,由一 log 2 c 可知 c 0 2 2D ;[解析]函数①f(x) lg(x 2 1),函数f(x2) = lg(|x| 1)是偶函数;且f (x)在(,)上是 减函数,在(2,)上是增函数;但对命题丙:f(x 2)f(x) = lg(|x| 1) lg(| x 2| 1)lg|x| 1 |x 2| 1在…一⑼时,1g(|f^1g工2lg(1 ^^)为减函数,排除函数①,对于函数③, x 3f (x) cos(x 2)函数 f (x(A)奇函数(B)偶函数(C)既奇又偶函数b...........-a ,18.设a,b,c 均为正数,且2a log 1 a,一2 2c1log 1 b, - log 2C,贝U2 2A. a b cB. c b aC. c a bA ;[解析]由2a log 1 a 可知a 022a 1log 1 a 12(D)非奇非偶函数 ) D. b a cb- 1 . 10 a -,由 一 log 1b 可知2 2〞b 0 0 log 1 b 120 log 2 c 1[考点透析]根据指、对数函数的性质及其相关的知识来处理一些数或式的大小关系是全面考察多个基 本初等函数比拟常用的方法之一.关键是掌握对应函数的根本性质及其应用.,一,,一、 1 ............. .................................................. 一 9 .函数f(x) , 的定义域为 M, g(x) ln(1 x)的定义域为N,那么M N (),1 xA. XX 1B. xx 1C. x 1 x 1D.1 C ;[解析]依题息可彳#函数 f(x) / 的7E 义域M={x|1 x 0}二{x|x 1},,1 xg(x) ln(1 x)的定义域N={x|1 x 0}={x|x 1},[考点透析]此题以函数为载体,重点考查募函数与对数函数的定义域,集合的交集的概念及其运算等 根底知识,灵活而不难.10 .设a { — 1,1, 1, 3},那么使函数y=x a 的定义域为R 且为奇函数的所有 a 值为()2A. 1, 3 B, - 1, 1 C. - 1, 3D, -1, 1, 3A ;[解析]观察四种哥函数的图象并结合该函数的性质确定选项.[考点透析]根据募函数的性质加以比拟,从而得以判断.熟练掌握一些常用函数的图象与性质,可以 比拟快速地判断奇偶性问题.特别是指数函数、对数函数、哥函数及其一些简单函数的根本性质.11 .设函数f(x)定义在实数集上,它的图象关于直线 x =1对称,且当x 1时,f(x)=3x 1,那么有()132 23 1 A. f(-)f ㈠ f(-) B. f(-)f(3) f(-) 3 2 3 3 2 3 C. f(2)f(1) f(3) D. f(-)f(-) f(1) 3322 3 3B;[解析]当x 1时,f(x) =3x 1,其图象是函数 y 3x 向下平移一个单位而得到的x 1时图象部分,如下图,又函数f (x)的图象关于直线x =1对称,那么函数f (x)的图象如以下图中的实线局部,所以 M N={x | x 1}{ x | x1}= x1x1.即函数f (x)在区间(,1)上是单调减少函数,3. 1 1 又 f (2)= f (2),而 32 ,那么有f (;) f (1) f (旨,即 f (-2) f e f (3)•根据以上图形,可以判断两函数的图象之间有三个交点.[考点透析]作出分段函数与对数函数的相应图象,根据对应的交点情况加以判断. 指数函数与对数函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工 具作用.特别注意指数函数与对数函数的图象关于直线 y X 对称.在求解过程中注意数形结合可以使解题过程更加简捷易懂.13.函数f (X ) =1 唠2*与g(x) = 2 X 1在同一直角坐标系下的图象大致是()log 2x 的图象向上平移1个单位而得来的;又由于g(x) = 2 X 1 = 2 (X 1) ,那么函数g(x)=2 X 1的图象是由函数y 2 x 的图象向右平移1个单位而得来的; 故两函数在同一直角坐标系下的图象大致是:Co[考点透析 的性质关利用指数函数的图象结合题目中相应的条件加以分析,通过图象可以非常直观地判断对应 12.函数f4x 2X4, 4X X 3,x的图象和函数g X log 2X 的图象的交点个数是(A. 4B.B ;[解析] 函数f3 4X 2X4, 4X X 3,x C. 21D. 1的图象和函数gX log 2X 的图象如下:1] C;[解析]函数f (X ) = 1 log 2*的图象是由函数 y[考点透析]根据函数表达式与根本初等函数之间的关系,结合函数图象的平移法那么,得出相应的正确 判断. 、— -, ,一、1,、 14.设a 1 ,函数f(x)=log a x 在区间[a,2 a ]上的最大值与最小值之差为那么a =()A.应B. 2C. 2yp2D. 41D ;[解析]由于a 1,函数f(x) = log a X 在区间[a,2a ]上的最大值与最小值之差为-,111c那么 log a 2a log a a =—,即 log a 2 = _ ,解得 a 22 ,即 a =4.2 2[考点透析]根据对数函数的单调性,函数 f(x)=log a X 在区间[a,2a ]的端点上取得最值,由 a 1知 函数在对应的区间上为增函数.15 .假设a 1 ,且a x log a x a y log a y ,那么x 与y 之间的大小关系是()A. x y 0B. x y 0C. y x 0D.无法确定A;[解析]通过整体性思想,设 f(x) a x log a x ,我们知道当 a 1时,函数y 1 a x 与函数y log a x 在区间(0,)上都是减函数,那么函数f(x) a x log a x 在区间(0,)上也是减函数,那么问题就转化为 f(x) f(y),由于函数f(x) a x log a x 在区间(0,)上也是减函数,那么就有[考点透析]这个不等式两边都由底数为 a 的指数函数与对数函数组成,且变量又不相同,一直很难下 手.通过整体思维,结合指数函数与对数函数的性质加以分析,可以巧妙地转化角度,到达判断的目的. 16 .函数y e |lnx| |x 1 |的图象大致是()又当0 x 1时,y 0 ,可排除(B),应选(D).[考点透析]把相应的含有指数函数和对数函数的关系式,加以巧妙转化,转化成相应的分段函数,结D ;[解析]函数y e |lnx| |x 1|可转化为y1-1 0x1,— ................................ .x 1, 0 x[根据解析式可先排除(A),(C), 1, x 1b合分段函数的定义域和根本函数的图象加以分析求解和判断.17 .函数y f(x)的图象与函数y log 3 x (x 0)的图象关于直线 y x 对称,那么f(x) .x ,f (x) 3 (x R);[解析]函数y f(x)的图象与函数y log 3 x (x 0)的图象关于直线y x 对 称,那么f(x)与函数y log 3x (x 0)互为反函数,f (x) 3x (x R) o[考点透析]对数函数与指数函数互为反函数, 它们的图象关于直线 y=x 对称,在实际应用中经常会碰到, 要加以重视.lg 4 x ) 18 .函数f x ---------- ------------的定义域为.x 3厂4 x 0 । 厂x x 4 且 x 3 ;[解析]x x 4且 x 3 .x 3 0[考点透析]考察对数函数中的定义域问题,关键是结合对数函数中的真数大于零的条件,结合其他相 关条件来分析判断相关的定义域问题.19 .设函数y 4 log 2(x 1)(x > 3),那么其反函数的定义域为 .[5, +8);[解析]反函数的定义即为原函数的值域,由 x>3得x-1>2,所以log 2(x 1) 1 ,所以y >5,反函数的定义域为[5, +°°),填[5, +8).[考点透析]根据互为反函数的两个函数之间的性质: 反函数的定义即为原函数的值域, 结合对应的对数函数的值域问题分析相应反函数的定义域问题. xx20 .方程96 37 0的解是.x log 37;[解析](3x )2 6 3x 7 03x 7或3x1 (舍去),x 10g 37.[考点透析]求解对应的指数方程,要根据相应的题目条件,转化为对应的方程加以分析求解,同时要注 意题目中对应的指数式的值大于零的条件.值是m10 1,又f(x)是偶函数,那么 0,,me[考点透析]根据函数的特征,结合指数函数的最值问题,函数的奇偶性问题来解决有关的参数,进而 解得对应的值.研究指数函数性质的方法,强调数形结合,强调函数图象研究性质中的作用 ,注意从特殊到一般的思想方法的应用,渗透概括水平的培养.1 |x 22 .函数 y a |x| (a 0且a 1)的图象如图,那么函数 y — 的图象可能是 .a21.假设函数f(x) e (x )2 ( e 是自然对数的底数)的最大值是 m ,且f (x)是偶函数,那么m(x )2( )2I 1;[解析]f (x) e一 ,仅 t xet 0,此时f(x)』t 是减函数,那么最大e1 IXD;[解析]根据函数y a3的图象可知a 1,那么对应函数y —的图象是D.a[考点透析]根据对应指数函数的图象特征,分析对应的底数a 1 ,再根据指数函数的特征分析相应的图象问题.23 .设f (x) log a x ( a 0且a 1),假设f (x1) f (x2) f (x n) 1 ( x i R , i 1,2, ,n ),一,3、,3、, 3、那么f(x1 ) f(x2 ) f (x n )的值等于3;[解析]由于f(x1) f(x2) f (x n) = log a x1 log a x2 log a x n = log a(x1x2 xj =1 ,而3 3 3 3 3 33f(x1 ) f(x2 ) f(x n ) = log a x1 log a x2 log a x n =log a(x1x2 x n) =3log a ('x? x n) =3[考点透析]根据对数函数的关系式,以及对数函数的特征加以分析求解对应的对数式问题, 关键是加以合理地转化.24 .将函数y log 2 x的图象向左平移一个单位,得到图象C1,再将C1向上平移一个单位得到图象C2,那么C2的解析式为.y log 2(x 1) 1;[解析]将函数y log2 x的图象向左平移一个单位, 得到图象C1所对应的解析式为y log 2(x 1);要此根底上,再将C1向上平移一个单位得到图象C2,那么C2的解析式为y 1 log 2(x 1).[考点透析]根据函数图象平移变换的规律加以分析判断平移问题, 一般可以结合“左加右减,上减下加〞的规律加以应用.25 .假设函数y=lg (ax2+2x+1)的值域为R,那么实数a的取值范围为.[0, 1];[解析]由于函数y=lg (ax2+2x+1)的值域为R (0, + ) {u (x) |u (x) =ax2+2x+1},a 0当a=0时,u (x) =2x+1的值域为R,符合题意;当时,即0 a 1时也符合题意.4 4a 0[考点透析]通过引入变元,结合原函数的值域为R,转化为u (x)的问题来分析,要根据二次项系数的取值情况加以分类解析.26 .假设函数y=log 2 (kx2+4kx+3)的定义域为R,那么实数k的取值范围是.0,-;[解析]函数y=log 2 (kx2+4kx+3)的定义域为R kx2+4kx+3>0恒成立,当k=0时,3>0恒成立;4[考点透析]把函数的定义域问题转化为有关不等式的恒成立问题,再结合参数的取值情况加以分类解析.27 .给出以下四个命题:①函数y a x 〔 a 0且a 1〕与函数y log a a x 〔 a 0且a 1〕的定义域相同; ②函数y x 3和y 3x 的值域相同;_ x 2一〞 1 1. 〔1 2x 〕2③函数y ——与y 3 ----------- J 都是奇函数;2 2x 1 x?2xC — e,2x 1............................④函数y 〔x 1〕与y 2 在区间[0,〕上都是增函数.其中正确命题的序号是: .〔把你认为正确的命题序号都填上〕①、③;[解析]在①中,函数y a x 〔a 0且a 1〕与函数y log a a x 〔a 0且a 1〕的定义3xy x 3的值域为R, y 3x 的值域为R ,那么结论错误;在③中,函■ ■ ,, / x 、2y — —一与y 〔 ------------- 都是奇函数,那么结论正确;在④中,函数y 〔x 1〕2在[1,2 2x 1x?2xx 1............ ..............................数,y 2 在R 上是增函数,那么结论错误.[考点透析]综合考察指数函数、对数函数、哥函数的定义、定义域、值域、函数性质等相关内容.xx… … 一,1 1 -x -x ................................... ......28.直线x a 〔 a 0〕与函数y 一、y -、y2、y10的图像依次交于 A 、B 、C 、D 32四点,那么这四点从上到下的排列次序是 .D 、C 、B 、A;[解析]结合四个指数函数各自的图象特征可知这四点从上到下的排列次序是 D 、C 、B 、Ao[考点透析]结合指数函数的图象规律, 充分考察不同的底数情况下的指数函数的图象特征问题, 加以判断对应的交点的上下顺序问题.29.假设关于x 的方程25 |x 1| 4?5 |x 1| m 有实根,那么实数 m 的取值范围是 .{m| m 4 };[解析]令 y 5 |x 1| ,那么有 0 y 1 ,那么可转化 25 |x1| 4?5 |x 1| m 得22. ......................... 一2^ 一 . 一.y 4ym 0 ,根据题意,由于 y 4y m 0有实根,那么 〔4〕4〔 m 〕 0 ,解得m 4.[考点透析]通过换元,把指数方程转化为一元二次方程来分析求解, 关键要注意换元中对应的参数y 的取值范围,为求解其他参数问题作好铺垫.x ..k 0 16k 2 12k时,即0 k-时也符合题意.4域都是R,那么结论正确;在②中,函数〕上是增函30.lgx+lgy=2lg (x —2y),求log行一的值. y[分析]考虑到对数式去掉对数符号后,要保证 x 0, y 0, x —2y 0这些条件成立.假设 x=y ,那么有 x —2y=—x 0,这与对数的定义不符,从而导致多解.[解析]由于 lgx+lgy=2lg (x —2y),所以 xy= (x —2y) 2, 即 x 2—5xy+4y 2=0,所以(x —y) (x —4y) =0,解得 x=y 或 x=4y , 又由于x 0, y 0, x- 2y 0,所以x=y 不符合条件,应舍去,_ xx所以 一二4,即 log 2 — = log 2 y y[考点透析]在对数式log a N 中,必须满足a 0, a 1且N 0这几个条件.在解决对数问题时,要重 视这几个隐含条件,以免造成遗漏或多解.31 .根据函数y |2x 1|的图象判断:当实数 m 为何值时,方程|2x 1 | m 无解?有一解?有两解? [分析]可以充分结合指数函数的图象加以判断.可以把这个问题加以转换,将求方程 的个数转化为两个函数 y |2x 1|与y m 的图象交点个数去理解.xx[解析]函数y |2 1|的图象可由指数函数 y 2的图象先向下平移一个单位,然后再作 x 轴下方的局部关于x 轴对称图形,如以下图所示,函数y m 的图象是与x 轴平行的直线, 观察两图象的关系可知:当m 0时,两函数图象没有公共点,所以方程|2x 1| m 无解;当m 0或m 1时,两函数图象只有一个公共点,所以方程 |2x 11 m 有一解;当0 m 1时,两函数图象有两个公共点,所以方程|2x 11 m 有两解.[考点透析]由于方程解的个数与它们对应的函数图象交点个数是相等的,所以对于含字母方程解的个数讨论,往往用数形结合方法加以求解,准确作出相应函数的图象是正确解题的前提和关键. 32.x 1是方程xlgx=2021的根,x 2是方程x - 10x =2021的根,求x 1x 2的值.[分析]观察此题,易看到题中存在lgx 和10x ,从而联想到函数 y 1gx 与y 10x ,而x 1可以看成2021 ........................................................ x 2021 .................................y 1gx 和y 己竺 交点的横坐标,同样 X 2可看成y 10、和y 三丝女交点的横坐标,假设利用函数4 =4.|2x 1| m 的解x xy 1gx与y 10x的对称性,此题便迎刃而解了.…人 . 2021 、…、,[解析]令y a 1gx, y b -------------------------- ,设其交点坐标为(x[,y i),xx 2021同样令y c 10 ,它与y b -------------------------- 的交点的横坐标为(x2,y2),x由于反比例函数关于直线y x对称,那么有(为,y1)和(x2, y2)关于直线y x对称,一........ 2021 ......................点(x[,y i)即点(x1,x2)应该在函数y b -------------------- 上,所以有x1x2=2021.x[考点透析]中学数学未要求掌握超越方程的求解,故解题中方程是不可能的.而有效的利用指数函数和对数函数的性质进行解题此题就不难了,否那么此题是一个典型的难题.以上求解过程不能算此题超纲.33.实数a、b、c满足2b=a+c,且满足21g (b—1) =lg (a+1) +lg (c— 1),同时a+b+c=15,求实数a、b、c的值.[分析]在解题过程中,遇到求某数的平方根时,一般应求出两个值来,再根据题设条件来决定取舍, 如果仅仅取算术平方根,那么往往会出现漏解.[解析]由于2b=a+c, a+b+c=15,所以3b=15,即b=5,由于2b=a+c=10 ,那么可设a=5— d, c=5+d ,由于2lg (b—1) =lg (a+1) +lg (c— 1),所以21g4=lg (6—d) +lg (4+d),即16=25— (d—1) 2,那么有(d—1) 2=9,所以d—1= 3,那么d=4 或d= — 2,所以实数a、b、c的值分别为1, 5, 9或7, 5, 3.1 x _ _34.f (x) log a ----------------- (a 0,a 1).1 x(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求使f(x) 0的x的取值范围.1 x x 1[解析](1) 0,即乙」0,等价于(x 1)(x 1) 0,得1 x 1,1 x x 1所以f(x)的定义域是(1,1);1 x 1 x⑵ f (x) f ( x) log a-- log a-- = log a 1 = 0 ,1 x 1 x所以f( x) f (x),即f (x)为奇函数;1 x _(3)由f (x) 0,得log a ——0,1 x, ,一, , 1 x , 一r 一 ,当a 1时,有1 ,解得0 x 1;1 x一 , . 1 x当0 a 1时,有0 —— 1 ,解得1 x 0;1 x故当a 1 时,x (0,1);当0 a 1 时,x ( 1,0).1、~35.函数 f(x) 1 f(—)?10g 2X .X(1)求函数f(x)的解析式;(2)求f(2)的值;(3)解方程f(x) f(2).[解析](1)由于 f(x) 1 f (-) ?1og 2 X , Xf(-) 1 f(x)?10g 21,那么有 f (1) 1x x x把 f(1) 1 f(x)?10g 2x 代入 f (x) 1 f (1)?1og 2 x 可得: x xf (x) 1 [1 f (x) ? 10g 2 x] ?10g 2 x ,解得 f (x)⑵由(1)得 f(x)Ld0^,那么 f(2) 1;1 10g2 x1 10g2 2(3)由(1)得 f(x)1 10g22x ,那么(2)得 f(2) 1,1 10g2 x那么有 f(x) -一10g22xf (2) 1,即 1 10g 2 x 1 10g 22 x,1 10g2 x解得10g 2 x 0或10g 2x 1,所以原方程的解为:x 1或x 2.[考点透析]对于给定抽象函数关系式求解对应的函数解析式,要合理选取比拟适合的方法加以分析处 1 ..................... ………理,关键是要结合抽象函数关系式的特征,这里用到的是以 一代x 的方式来到达求解函数解析式的目的.x36.函数 f (x)10g a (a a x ) ( a 1).(1)求f (x)的定义域、值域;(2)判断f(x)的单调性; (3)解不等式 f 1(x 2 2) f(x).[分析]根据对数函数的特征,分析相应的定义域问题,同时结合指数函数的特征,综合分析值域与单调 性问题,综合反函数、不等式等相关内容,考察相关的不等式问题.[解析](1)要使函数f(x) 10g a (a a x ) (a 1 )有意义,那么需要满足 a a x 0, 即a x a ,又a 1 ,解得x 1 ,所以所求函数f(x)的定义域为(,1); 又10g a (a a x ) 10g a a 1,即f(x) 1 ,所以所求函数 f(x)的值域为(,1);(2)令a a x ,由于a 1 ,那么 a a x 在(,1)上是减函数,x又y 10g a 是增函数,所以函数 f (x) 10g a (a a )在(,1)上是减函数;1 上式中,以1代x 可得: xf (x)?10g 2x, 1 10g 2 x-; 2~ ;1 10g2 x(3)设y log a(a a x),那么a y a a x,所以a x a a y,即x log a(a a y),所以函数f(x)的反函数为f 1(x) log a(a a x),2由于f (x 2) f(x),得log a(a a ) log a(a a ),2 2由于a 1 ,那么a a' a a",即a' a x,所以x2 2 x,解得1 x 2,而函数f(x)的定义域为(,1),故原不等式的解集为{x| 1 x 1}.[考点透析]主要考查指数函数与对数函数相关的定义域、值域、图象以及主要性质,应用指数函数与对数函数的性质比拟两个数的大小,以及解指数不等式与对数不等式等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数与对数函数注意事项:1.考察内容:对数与对数函数 2.题目难度:中等难度题型3.题型方面:8道选择,4道填空,4道解答。
4.参考答案:有详细答案5.资源类型:试题/课后练习/单元测试一、选择题1.三个数0.377,0.3,ln0.3a b c ===大小的顺序是( )A .a b c >> B. a c b >>C .b a c >> D. c a b>>2.已知2x =72y=A ,且1x +1y=2,则A 的值是A .7B .7 2C .±7 2D .983.若a>0且a ≠1,且143log a<,则实数a 的取值范围是( ) A .0<a<1 B .43a 0<<C .43a 043a <<>或D .43a 0<<或a>14.函数y = log 2 ( x 2– 5x –6 )单调递减区间是( )A .⎪⎭⎫ ⎝⎛∞-25, B .⎪⎭⎫⎝⎛+∞,25C .()1,-∞-D .(+∞,6)5.巳知等比数列{}n a 满足0,1,2,na n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++= ( )A.(21)n n - B.2(1)n + C.2n D. 2(1)n -6.若)1()1(32log ,log ,10+-+-==<<a a aa a aQ P a ,则P 与Q 的大小关系是 ( ) A .P >QB .P <QC .P =QD .P 与Q 的大小不确定7.若函数y = log 12| x + a |的图象不经过第二象限,则a 的取值范围是( )(A )( 0,+ ∞ ), (B )[1,+ ∞ ) (C )( – ∞,0 ) (D )( –∞,– 1 ]8.已知函数6s i n c o s 2111)(++⎪⎭⎫ ⎝⎛+-=x b x a x f x (a 、b 为常数,且1>a ),8)1000o (l g 8=g l f ,则)2lg (lg f 的值是( )(A) 8 (B) 4 (C) -4 (D) 与a 、b 有关的数二、填空题9.对于实数,,a b c ,若在⑴lg 21a c =--⑵lg32a b =-⑶lg 4222a c =--⑷lg5a c =+⑸lg61a b c =+--中有且只有两个式子是不成立的,则不成立的式子是 10.已知函数()log (0,1)a f x x a a =>≠,若12()()3f x f x -=,则2212()()f x f x -= . 11.函数2()log (2)f x x =-的单调减区间是 .12.已知函数()()()[]111lg 22+++-=x a x a x f 的定义域为()+∞∞-,,则实数a 的取值范围是________________________.三、解答题13.设方程x 2-10x +2=0的两个根分别为α,β,求log 4α2-αβ+β2(α-β)2的值.14.设关于x 的方程(m+1)x 2-mx+m-1=0有实根时,实数m 的取值范围是集合A ,函数f(x)=lg[x 2-(a+2)x+2a]的定义域是集合B. (1)求集合A ;(2)若A B=B ,求实数a 的取值范围.15.已知函数()ln()(10)x x f x a b a b =->>>.(1) 求函数()f x 的定义域I ;(2) 判断函数()f x 在定义域I 上的单调性,并说明理由; (3)当,a b 满足什么关系时,()f x 在[)1+∞,上恒取正值。
16.已知曲线)0(1)1(log )(2>++=x x x x f 上有一点列))(,(*N n y x P n n n ∈,点n P 在x 轴上的射影是)0,(n n x Q ,且)(12*1N n x x n n ∈+=-,11=x .(Ⅰ)求数列}{n x 的通项公式;(Ⅱ)设四边形11++n n n n P Q Q P 的面积是n S ,求证:4121121<+++nnS S S答案一、选择题 1.A2.B 解析:由2x=72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 98=2,A 2=98.又A>0,故A =98=7 2. 3.D 4.C 5.C 6.B 7.D8.B.解析:∵x b x sin cos 211a 1g(x)x+⎪⎭⎫⎝⎛+-=为奇函数,8)1000o (lg 8=g l f , 2lg lg 10lglog 1000o lg 28-==g l .∴=)1000o (lg g 8g l =-)2lg lg (g )2lg (lg g -=2,∴)2lg (lg f =)2lg (lg g +6=-2+6=4.二、填空题9.⑵⑸ 10.611.(-∞,2) 12.53a >或1a ≤- 三、解答题13.解析:由题意可知,α+β=10,αβ=2.于是α2-αβ+β2=(α+β)2-3αβ=10-6=4,(α-β)2=(α+β)2-4αβ=10-8=2.所以,原式=log 442=12.14.解析:(1)当m+1=0即m=-1时,方程为x-2=0,此时x=2…………………………(2分)当m+1≠0即m ≠-1时,方程有实根⇒△=m 2-4(m+1)(m-1)≥0⇒m 2-4m 2+4≥0⇒3m 2≤4⇒-3≤m≤3且m ≠-1…(6分)由上可知:A =[-,]33……………………………………………………(7分) (2)∵A B=B ,∴A ⊆B ………………………………………………………………(8分)而B={x|x 2-(a+2)x+2a>0}={x|(x-2)(x-a)>0}当a>2时,B={x|x>a 或x<2},此时A ⊆B ,∴a>2适合 当a=2时,B={x|x ≠2},此时A ⊆B ,∴a=2也适合 当a<2时,B={x|x>2或x<a},要使A ⊆B<a ≤2………………(13分) 由此可知:……………………………………………………………(14分) 15.解析:(1)()ln()(10)x x f x a b a b =->>>要意义,0x x a b ->-----------2分(只要学生得出答案,没有过程的,倒扣一分,用指数函数单调性或者直接解出)01(101)xxxa a ab a b b b ⎛⎫->⇒>>>>⇒> ⎪⎝⎭∴所求定义域为()0,+∞-----------------------------------------4分(2)函数在定义域上是单调递增函数------------------------------5分 证明:1212,,0x x x x ∀<<---------------------------------------6分10a b >>>1212,x x x x a a b b ∴<>-----------------------------------------7分1122112212ln()ln()()()x x x x x x x x a b a b a b a b f x f x ∴-<-∴-<-∴<-----------------------------------9分 所以原函数在定义域上是单调递增函数-------------------------10分 (3)要使()f x 在[)1+∞,上恒取正值须()f x 在[)1+∞,上的最小值大于0--------------------------11分 由(2)max (1)ln()y f a b ==-------------------------------12分ln()01a b a b ->∴->所以()f x 在[)1+∞,上恒取正值时有1a b ->-------------------14分16.解析:(1)由)(12*1N n x x n n∈+=-得)1(211+=+-n n x x ………………2分∵11=x , ∴01≠+n x ,故}1{+n x 是公比为2的等比数列112)1(1-⋅+=+⇒n n x x∴)(12*N n x n n ∈-=.…………………………………………………………4分(2)∵n nn n n nx f y 2112)112(log )(2=+-+-== , ∴n n n n n Q Q 2)12()12(||11=---=++, 而nn n nQ P 2||= , …………………8分 ∴四边形11++n n n n P Q Q P 的面积为:4132)221(21|||)||(|211111+=⋅++=⋅+=++++n n n Q Q Q P Q P S n n n n n n n n n n ∴)111(4)33131(12)13131(12)13(312)13(41+-=+-<+-=+=+=n n n n n n n n n n nS n , 故1211114(1)421n S S nS n +++<-<+.……………………………………………12分。