经济类概率统计 随机变量及其分布
随机变量及其分布
随机变量及其分布随机变量是概率论和统计学中的重要概念,它是描述随机现象结果的数学量。
随机变量可以是离散的,也可以是连续的。
在统计学中,我们通常用随机变量来描述随机试验的结果。
随机变量的分布则是描述随机变量可能取值的概率规律。
本文将介绍随机变量及其分布的基本概念,以帮助读者更好地理解这一重要的统计学概念。
**随机变量的定义**随机变量是一个函数,将样本空间中的每个事件映射到实数上。
简而言之,随机变量就是能够描述随机现象结果的一个变量。
例如,投掷一枚硬币,正面朝上可以用随机变量X=1表示,反面朝上可以用随机变量X=0表示。
在这个例子中,随机变量X的取值只能是1或0,因此X是一个离散的随机变量。
**随机变量的分类**根据随机变量的取值范围不同,可以将随机变量分为离散随机变量和连续随机变量两类。
离散随机变量的取值是有限个或可列无穷个,例如上面提到的投硬币问题;而连续随机变量的取值是连续的,通常对应于实数轴上的某个区间,例如一个人的身高、体重等。
在统计学中,我们常常使用概率密度函数(probability density function)来描述连续随机变量的分布。
**随机变量的分布**随机变量的分布是描述随机变量取各种值的概率规律。
对于离散随机变量,我们可以通过概率质量函数(probability mass function)来描述其分布。
概率质量函数给出了随机变量取每个可能值的概率。
例如,对于一个掷骰子的随机变量,其概率质量函数可以表示为P(X=x),其中X是随机变量,x是取值。
而对于连续随机变量,我们则使用概率密度函数来描述其分布。
概率密度函数在某一区间内的取值越大,该区间的概率越大。
常见的连续分布包括正态分布、均匀分布等。
**常见的随机变量分布**1. **离散分布**- 伯努利分布:伯努利分布是最简单的离散分布,只有两个可能的取值,例如抛硬币的结果。
- 二项分布:二项分布描述了n次独立重复的伯努利试验中,成功次数的概率分布,例如n次抛硬币后正面朝上的次数。
04183概率论与数理统计(经管类)基础知识
D(aX b) a2 D( X )
,
D(Y ) [ x j E(Y )]2 p j
j
D( X ) [ x E( X )]2 f X ( x)dx
协方差与 相关系数
3、二维随机变量关系特征 协方差 cov(x,y) 相关系数 cov(X,Y)=E((X-E(X))(Y-E(Y)))=E(XY)-E(X)E(Y)
p j , i 1,2,
,
5、分布函数 F(x,y)的基本性质: ⑴ 0 F ( x, y) 1; 其中 x=h(y)为 y=g(x)的反函数 ⑵F(x,y)分别对 x 和 y 是非减的,即当 x2>x1,F(x2,y)≥F(x1,y);当 y2>y1,有 F(x,y2) ≥F(x,y1); ⑶F(x,y)分别对 x 和 y 右连续,即 F ( x, y) F ( x 0, y), F ( x, y) F ( x, y 0); ⑷ F (,) F (, y) F ( x,) 0, F (,) 1. ⑸当 x
i 1 i i
k
n
f ( x) 0 ;
②
f ( x)dx 1。
xk x
③ P(a ;
X b) F (b) F (a) =
F ( x)
Pn(k ) Cn p k q nk
二、随机变量及其分布
④对于离散型随机变量,
F ( x)
p
⑤对于连续型随机变量,
2 2 N (, 2 ) ,则①aX+b~N(aµ+b,a σ ), ②(X-µ)/σ~N(0,1)
X X
b(n, p) P( )
《概率论与数理统计》课件-第2章随机变量及其分布 (1)
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)
概率论与数理统计第二章 随机变量及其分布
15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
概率论与数理统计课件:随机变量及其分布
随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律
为
k
P X k p(
1 p)1k k 0,1
(0 p 1)
经济数学——概率论与数理统计 3.1 二维随机变量及其分布
其中和式是对一切满足xi≤x , yj≤y求和。
例 若(X,Y)的分布律如下表,求(X,Y)的分布函数。 Y 0 1 X 0 1/2 0 y 1 解 0 1/2
1
1 x
四、 二维连续型随机变量
1.定义:设(X,Y)的联合分布函数为F(x,y),若存在一非负 函数f(x,y),使得对于任意的实分布
二维随机变量及其分布 第二节 边缘分布 第三节 随机变量的独立性 第四节 二维随机变量函数的分布
第一节 二维随机变量及其分布
一、二维随机变量的定义
1.定义: 随机试验E的样本空间Ω={e},设X1(e), X2(e)为定 义Ω上的随机变量,由它们构成的一个向量(X1,X2)叫做 二维随机变量或二维随机向量。 对于二维随机变量, 需要考虑 ①二维随机变量作为一个整体的概率分布或称联合分布; ②还要研究每个分量的概率分布或称边缘分布; ③并且还要考察各分量之间的联系,比如是否独立等。
利用极坐标计算可得
从而有 Aπ=1,即可得A=1/π。
(2)依题意需求概率
下面我们介绍两个常见的二维分布.
设G是平面上的有界区域,其面积为A.若二 维随机变量( X,Y)具有概率密度
则称(X,Y)在G上服从均匀分布.
例
向平面上有界区域G上任投一质点,若质点落 在 G内任一小区域 B的概率与小区域的面积成正比, 而与B的形状及位置无关. 则质点的坐标 (X,Y)在G 上服从均匀分布.
0≤F(x,y)≤1。
因为{X≤x1,Y≤y}{X≤x2,Y≤y}. (2). 对于任意固定的y, F(-∞,y)=0;
对于任意固定的x, F(x,-∞)=0;
概率论与数理统计-随机变量及其分布
解
直接对上式求导有
二、连续型随机变量函数的分布
81
例 18
解
二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2
求
三、离散型随机变量及其分布律
18
解
四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
2023考研概率统计全考点精讲-第二讲 随机变量及其分布
第二讲 随机变量及其分布【考试要求】1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤−∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.(数一了解,数三掌握)泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为λ的指数分布()λE 的概率密度为()e ,00,0x x f x x λλ−⎧>=⎨≤⎩.5.会求随机变量函数的分布.考点:随机变量与分布函数1.随机变量:设试验E 的样本空间为Ω,如果对于每一个样本点Ω∈ω,都有一个实数)(ωX 与之对应,则称定义在Ω上的单值实值函数)(ωX 为随机变量,简记为X . 通常用,,X Y Z 等表示随机变量.【注】随机变量的等式和不等式可表示随机事件. 2.分布函数(1)定义:设X 是一个随机变量,x 是任意实数,称(){}()F x P X x x =≤−∞<<+∞为X 的分布函数.(2)基本性质①单调不减,即若12x x <,则12()()F x F x ≤;②lim ()0x F x →−∞=,lim ()1x F x →+∞=; ③()F x 是右连续,即(0)()F x F x +=.【注】这三条性质是一个函数作为某随机变量的分布函数的充分必要条件. (3)其他性质(用分布函数()F x 求概率)①)()(}{a F b F b X a P −=≤<; ②)0(}{−=<a F a X P ;③)0()(}{−−==a F a F a X P ;④)0()0(}{−−−=<≤a F b F b X a P ; ⑤)()0(}{a F b F b X a P −−=<<; ⑥{}()(0)P a X b F b F a ≤≤=−−. 【注】分布函数在处连续.【例1】 下述函数中,可以作为某个随机变量的分布函数的是( ) (A ) ()211F x x =+ (B )()x x F sin = (C ) ()11arctan π2F x x =+ (D ) ()1e ,020,0xx F x x −⎧−>⎪=⎨⎪≤⎩【例2】 设随机变量X 的分布函数为()00πsin 02π12,x F x A x,x ,x ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩,则A _____=,6P X ______π⎧⎫<=⎨⎬⎩⎭.【例3】 已知随机变量X 的分布函数为()0,11,18,111,1x x F x ax b x x <−⎧⎪⎪=−⎪=⎨⎪+−<<⎪≥⎪⎩,且()F x a {}0P X a ⇔=={}114P X ==,则_____,_____a b ==. 【例4】 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥−<≤<=−1,110,210,0)(x e x x x F x,则{}1P X ==( )(A )0 (B )21(C )121−−e (D )11e −−考点:离散型随机变量及其分布1.离散型随机变量定义:若随机变量X 所有可能取值是有限或可列无限个,则称X 为离散型随机变量.2.分布律(1)定义:设离散型随机变量X 的所有可能取值为()12i x i ,,=,且X 取ix 的概率为i p ,则称{}()12i i P X x p i ,,===为离散型随机变量X 的分布律.X(2)基本性质:①0,1,2,i p i ≥=;②11ii p∞==∑.【注】这两条性质也是一个数列可以作为某随机变量分布律的充分必要条件. 3.离散型随机变量的分布函数若离散型随机变量X 的分布律为{}()12i i P X x p i ,,===,则X 的分布函数为(){}{}()i i i i x xx xF x P X x P X x p x ≤≤=≤===−∞<<+∞∑∑.若123x x x <<<,则()111212230,,,x x p x x x F x p p x x x <⎧⎪≤<⎪=⎨+≤<⎪⎪⎩. 【注】若已知X 的分布函数()F x (阶梯函数),则X 的分布律为{}()()0i i i P X x F x F x ==−−,12i ,,=.【例1】 (1)做n 次伯努利实验,已知每次成功的概率均为()10<<p p ,令X 表示n 次试验中成功的次数,求X 的分布律.(2)做伯努利试验,已知每次成功的概率均为()10<<p p ,令X 表示直到第一次成功为止所进行的实验次数,求X 的分布律.【例2】 设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X 表示3个球中新球个数,求X 的分布律与分布函数.考点:连续型随机变量及其分布1.连续型随机变量及其概率密度(1)定义:设随机变量X 的分布函数为()F x ,若存在非负可积函数()f x ,使得对于任意实数x ,有()()xF x f t dt −∞=⎰,则称X 为连续型随机变量,()f x 称为X 的概率密度函数,简称概率密度(简写为.f .d .p ).【注】①只有存在概率密度的随机变量才能称为连续型随机变量,分布函数连续的随机变量不一定是连续型随机变量.②存在既非连续型又非离散型的随机变量.③(),()()0()F x x F x f x x F x '⎧=⎨⎩为的可导点,为的不可导点. (2)概率密度的基本性质:①()0f x ≥;②()1f x dx +∞−∞=⎰.【注】这两条性质是一个函数可以作为概率密度函数的充分必要条件.(3)连续型随机变量的其他性质: ①)(x F 处处连续.②对()+∞∞−∈∀,a ,有{}.0==a X P ③若()f x 在x 处连续,则有()()F x f x '=. ④对于任意的实数()1212x ,x x x ≤,有{}()()211221()x x P x X x F x F x f x dx <≤=−=⎰.【例1】 设随机变量X 的概率密度为()x f ,则下列函数中必为某随机变量的概率密度的是( )(A )()x f 2 (B )()x f 2 (C )()x f −1 (D )()x f −1【例2】 设随机变量X 的概率密度为()cos ,||20,||2A x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,求(1)常数A ; (2)X 的分布函数为()x F . 【例3】 设随机变量X 的概率密度为()1||,||10,x x f x else −<⎧=⎨⎩,则______412=⎭⎬⎫⎩⎨⎧<<−X P .考点:常见分布1.常见的离散型随机变量 (1) 0-1分布若随机变量X 的分布律为{}()()110101kk P X k p p ,k ,p −==−=<<,则称X 服从0-1分布,记为),1(~p B X .(2) 二项分布若随机变量的分布律为{}C (1),0,1,2,k k n kn P X k p p k n −==−=,其中01p <<,则称X 服从二项分布,记为~(,)X B n p .(3) 几何分布若随机变量X 的分布律为{}1(1)k P X k p p −==−⋅,1,2,3k =,其中01p <<,则称X 服从参数为p 的几何分布,记为()~X G p .(4) 超几何分布(从未考过)若随机变量X 的分布律为{}C C C k n kM N MnNP X k −−==,其中N k ∈,且{}{}n M k N n M ,min ,0max ≤≤−+,则称X 服从超几何分布.【注】:此公式的数学模型为:设N 件产品中含M 件次品,现从中任取n 件产品,则所取的n 件产品恰有k 件次品的概率.(5) 泊松分布 ①定义若随机变量X 的分布律为{}e !kP X k k λλ−==,0,1,2,k =,其中0λ>,则称X 服从参数为λ的泊松分布,记为~()X P λ.X②泊松定理(数一了解;数三掌握)设0λ>是一个常数,n 是任意正整数,若lim n n np λ→∞=,则对于任意的非负整数k ,有()e lim 1.!nk n kkknn n C p p k λλ−−→∞−=【例1】 设随机变量X 服从参数为()2,p 的二项分布,随机变量Y 服从参数为()3,p 的二项分布,若{}519P X ≥=,则{}1_______P Y ≥=. 【例2】 设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为1e,则这段时间内至少有两辆汽车通过的概率为___________. 2.常见的连续型随机变量 (1) 均匀分布若X 的概率密度为1,()0,a xb f x b a⎧<<⎪=−⎨⎪⎩其它,则称X 在()a,b 上服从均匀分布,记为()~,X U a b ,其分布函数为0,(),1,x a x aF x a x b b a x b<⎧⎪−⎪=≤<⎨−⎪⎪≥⎩. (2) 指数分布若X 的概率密度为e ,0()0,0x x f x x λλ−⎧>=⎨≤⎩,其中0λ>,则称X 服从参数为λ的指数分布,记为()XE λ,其分布函数为1e ,0()0,0x x F x x λ−⎧−≥=⎨<⎩.(3) 正态分布若随机变量X的概率密度为22()2()()x f x x μσ−−=−∞<<+∞,其中0σ>,μ与σ均为常数,则称X 服从参数为,μσ的正态分布,记为2~(,)X N μσ,其分布函数为22()2()d ()t xF x t x μσ−−=−∞<<+∞⎰.特别地,当0,1μσ==,即~(0,1)X N ,称X 服从标准正态分布,其概率密度为22(),x x x ϕ−=−∞<<+∞,分布函数22()d t xx t −Φ=⎰,x −∞<<+∞.【注】(1)指数分布的无记忆性:若()~X E λ,则对任意的0,0s t >>,有{}{}|.P X s t X s P X t >+>=>【例3】 设随机变量()6,1~U X ,则方程012=++Xy y 有实根的概率为____.【例4】 设随机变量()~2,5X U ,现对X 进行三次独立重复观测,求至少有两次观测值大于3的概率.【例5】 设随机变量Y 服从参数为12λ=的指数分布,求关于未知量x 的方程2230x Yx Y ++−=没有实根的概率.【例6】 设随机变量的概率密度函数为()221e ()x x f x k x −+−=−∞<<+∞X则常数=_______k .【例7】 设随机变量()22,X N σ且{}240.3P X <<=,则{}0_______P X <=.【例8】 设随机变量()2,X N μσ,则概率{}P X μσ−<的值随着σ的增大而( )(A )增大 (B )减小 (C )保持不变 (D )无法确定考点:随机变量函数的分布1.离散型随机变量函数的分布设X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,函数()g x 连续,则随机变量()Y g X =的分布律为{}(),1,2,i k k i g x y P Y y p k ====∑.做法:找到Y 全部可能的取值,算出相应值的概率.【例1】 设随机变量X 在()1,2−上服从均匀分布,1,01,0X Y X −<⎧=⎨≥⎩,求Y 的分布律.【例2】(课后作业)设随机变量X 的概率分布为,求常数和的概率分布. 2.连续型随机变量函数的分布情形一:Y 为离散型. 做法:找到Y 全部可能的取值,算出相应值的概率. 情形二:Y 为连续型.(1)分布函数法(代数法和几何法)先求出()Y g X =的分布函数()Y F y ,即()(){}()()Y g x y F y P g X y f x dx ≤=≤=⎰,再对()YF y 求导得到Y 的概率密度()Y f y .(2)公式法 若()y g x =在X 的取值区间内有连续导数()g x ',且()0g x '>或者()0g x '<,则()Y g X =是连续型随机变量,且其概率密度为{}(1,2,)3k c P X k k ===c sin()2Y X π=()()()',0,X Y f h y h y y f y αβ⎧<<⎡⎤⎪⎣⎦=⎨⎪⎩其他其中(),αβ为()y g x =的值域,()h y 是()g x 的反函数.情形三:Y 既非连续型又非离散型 做法:分布函数法求其分布函数.【例3】 设随机变量X 服从()0,2上的均匀分布,则随机变量2Y X =在()0,4内的概率密度()Y f y _______=.【例4】 设随机变量X 的概率密度为()22,00,x x f x ππ⎧<<⎪=⎨⎪⎩其它,求sin Y X =的概率密度()Y f y .。
概率统计 第二章 随机变量及其分布
引入适当的随机变量描述下列事件: 例1:引入适当的随机变量描述下列事件: 个球随机地放入三个格子中, ①将3个球随机地放入三个格子中,事件 A={有 个空格} B={有 个空格} A={有1个空格},B={有2个空格}, C={全有球 全有球} C={全有球}。 进行5次试验, D={试验成功一次 试验成功一次} ②进行5次试验,事件 D={试验成功一次}, F={试验至少成功一次 试验至少成功一次} G={至多成功 至多成功3 F={试验至少成功一次},G={至多成功3次}
例2
xi ∈( a ,b )
∑
P( X = xi )
设随机变量X的分布律为 设随机变量X
0 1 2 3 4 5 6 0.1 0.15 0.2 0.3 0.12 0.1 0.03
试求: 试求:
P( X ≤ 4), P (2 ≤ X ≤ 5), P ( X ≠ 3)
0.72 0.7
F ( x) = P{ X ≤ x} =
k : xk ≤ x
∑p
k
离散型随机变量的分布函数是阶梯函数, 离散型随机变量的分布函数是阶梯函数 分布函数的跳跃点对应离散型随机变量的 可能取值点,跳跃高度对应随机变量取对应 可能取值点 跳跃高度对应随机变量取对应 值的概率;反之 反之,如果某随机变量的分布函数 值的概率 反之 如果某随机变量的分布函数 是阶梯函数,则该随机变量必为离散型 则该随机变量必为离散型. 是阶梯函数 则该随机变量必为离散型
X
x
易知,对任意实数a, 易知,对任意实数 b (a<b), P {a<X≤b}=P{X≤b}-P{X≤a}= F(b)-F(a) ≤ = ≤ - ≤ = -
P( X > a) = 1 − F (a)
概率论与数理统计-随机变量及其分布-随机变量与分布函数
7
01 随机变量
如何描述随机变量的统计规律呢 ?
无论是离散型随机变量,还是连续型随机变量以及其他类型 的随机变量,都需要一种统一的描述工具.
对一个样本空间,当建立了随机变量后,我们感兴趣的随机 变量落在某区间或等于某特定值的概率. 为此给出分布函数的概 念.
8
本讲内容
01 随机变量 02 分布函数
02 分布函数 定义 设 X 为随机变量,x 是任意实数,称函数 为 X 的分布函数.
x
如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的
值就表示 X 落在区间
的概率.
10
02 分布函数
用分布函数计算 X 落在( a ,b ] 里的概率:
因此,只要知道了随机变量X的分布函数, 它的统计特性 就可以得到全面的描述.
分布函数是一个普通的函数,正是通过它,我们可以用数 学分析的分布函数
分布函数的性质
(1) F ( x ) 单调不减,即
(3) F ( x ) 右连续,即 如果一个函数具有上述性质,则一定是某个随机变量X 的分 布函数. 也就是说,性质(1)--(3)是鉴别一个函数是否是某随机变 量的分布函数的充分必要条件.
01 随机变量
随机变量 ( random variable ) 定义 设 S 是试验E的样本空间, 若
按一定法则
ω.
X(ω)
R
4
01 随机变量
随机变量通常用
X,Y,Z或 , ,等表示
随机事件可以通过随机变 量的关系式表达出来 例如 某人每天使用移动支付的次数——随机变量X {某天至少使用1次移动支付} {某天1次也没有使用}
12
02 分布函数
例 解
经济类概率统计 离散型随机变量及其分布律
1, 4 3,
1 x 2, 2 x 3,
4
1, x 3
F(x)的图形如下
F(x) 1
-1
O1
2
3X
P
X
1
2
F
1 2
1 4
,
P
3 2
X
5
2
F
5 2
F
3 2
3 4
1 4
1 2
.
P2 X 3 F 3 F 2 PX 2
1 3 1 3. 42 4
3. 常见离散型分布
问题:固定n和p,当k取何值时,b(k;n,p)取最大值?
由于对0<p<1,
因此
b(k; n, p) (n k 1) p 1 (n 1) p k
b(k 1; n, p)
kq
kq
当k<(n+1)p时,b(k;n,p)>b(k-1;n,p)
当k>(n+1)p时,b(k;n,p)<b(k-1;n,p)
iii) 二项分布
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯 努利试验中事件A发生的次数,X是一个随机变量,我们来求它的分布 律。X所有可能取的值为o,1,2,…,n.由于各次试验是相互独立的, 故在n次试验中,事件A发生k次的概率为
n k
pk (1
p)nk, 记q
1
p, 即 有
X
x1 x2 … xn …
pk
p1 p2 … pn …
称为随机变量X的分布列。
分布律性质:
1 非负性:pi 0
2 完备性: pi 1 i1
例2:设一汽车在开往目的地的道路上需经过四组信号灯,每组信号灯以1 /2的概率允许或禁止汽车通过。以X表示汽车首次停下时,它已通过的信 号灯的组数(设各组信号灯的工作是相互独立的),求X的分布律。
概率论与数理统计随机变量及其分布
2.2 离散型随机变量及其概率分布
二项分布的图形特点: (1)当(n+1)p不为整数时,二项概率 P{X=k}在k=[(n+1)p]时达到最大值 (2)当(n+1)p为整数时,二项概率 P{X=k}在k=(n+1)p和k=(n+1)p-1时达
“未命中目标”;它们都可用(0-1)分布来描述.(0-1)分
布是实际中经常用到的一种分布.
2.2 离散型随机变量及其概率分布
二项分布:若一个随机变量X的概率分布由式
给P出{x,则k称} X服C从nk p参k (数1为pn),np的k , 二k 项0分,1布,..。., n记. 为X~b(n,p)(或
到最大值 讲课本例3和例4 注意二项分布b(n,p)和两点分布的关系
2.2 离散型随机变量及其概率分布
在实际中,我们经常要计算n次独立重 复的贝努利试验中恰好k次成功的概 率 Cnk pk (1 p)nk ,至少有次成功的概
n
率为 Cni pi (1 p)ni 等,当n很大时,要计 i 1
算出它们的确切数值很不容易,那我们 应该怎么做呢?
P{a
xi
b}
P{ {X axi b
xi}}
axi b
pi
而且X所成的任何事件的概率都能够求出来,
P{X I} P{X xi} pi
xi I
xi I
2.2 离散型随机变量及其概率分布
3 常用离散分布
两点分布(0-1分布):若一个随机变量X只有两个可能取值, 且其分布为
概率论与数理统计-第二章-随机变量及其分布函数ppt课件
表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
概率论与数理统计:随机变量及其分布
以X记 A在 n 次试验中发生 的次数,X为一个随机变量 其分布律为
n k P( X = k ) = p (1 p) n k 记 q = 1 p k
n k nk P( X = k ) = p q k
n k n k L p q L k 称这样的分布为二项分布 二项分布.记为 称这样的分布为二项分布 记为 X ~ b(n, p).
X
0
1
1
2
2
3
5 3 2 0.6 0.4 3
4
5
pk (0.4)6 0.4 0.65 4
二项分布随机数演示 二项分布随机数演示
例3 某人进行射击 , 设每次射击的命中率为 0.02, 独立射击 400 次 , 试求至少击中两次的概 率 . 解 设击中的次数为 X ,
X
pk
1 1 6
2 1 6
3 1 6
4 1 6
5 1 6
6 1 6
均匀分布随机数演示 均匀分布随机数演示
3.二项分布 二项分布
n 重伯努利试验
伯努利资料
设试验 E 只有两个可能结果 : A 及 A, 设 P ( A) = p (0 < p < 1), 此时P( A) = 1 p.
将 将 E 独立地重复地进行 n 次 , 则称这一串重 复的独立试验为 n 重伯努利试验 .
(3)随机变量与随机事件的关系 随机变量与随机事件的关系 随机事件包容在随机变量这个范围更广的概 念之内.或者说 : 随机事件是从静态的观点来研究 念之内 或者说 随机现象,而随机变量则是从动态的观点来研究随 随机现象 而随机变量则是从动态的观点来研究随 机现象. 机现象 (4) 随机事件可以用随机变量表示
4. 泊松分布
经管类概率论与数理统计第三章多维随机变量及概率分布
3.1二维随机变量的概念3.1.1二维随机变量及其分布函数到现在为止,我们只讨论了一维随机变量及其他布,但有些随机现象用一个随机变量来描述还不够,而需要用几个随机变量来描述。
例如,在打靶时,以靶心为原点建立直角坐标系,命中点的位置是由一对随机变量(X,Y)(两个坐标)来确定的。
又如考察某地区的气候,通常要考察气温X,风力Y,这两个随机变量,记写(X,Y)。
定义3.12个随机变量X,Y组成的整体Z=(X,Y)叫二维随机变量或二维随机向量。
定义3.2(1)二元函数F(x,y)=P(X≤x,Y≤y)叫二维随机变量(X,Y)的联合分布函数,简称分布函数。
记作(X,Y)~F(x,y)。
(2)二维随机变量(X,Y)中,各分量X,Y的分布函数叫二维随机变量(X,Y)的边缘分布函数。
因为X<+∞,Y<+∞即-∞<X<+∞,-∞<Y<+∞,分别表示必然事件,所以有X~F x(x)=P(X≤x)=P(X≤x,Y<+∞)=F(x,+∞)Y~F Y(y)=P(Y≤y)=P(x<+∞,Y≤y)=F(+∞,y)公式可见X,Y的边缘分布可由联合分布函数求得。
3.1.2二维离散型随机变量定义3-3若二维随机变量(X,Y)只取有限多对或可列无穷多对(x i,y j),(i,j=1,2,…),则称(X,Y)为二维离散型随机变量。
设二维随机变量(X,Y)的所有可能取值为(x i,y j)(i,j=1,2,…),(X,Y)在各个可能取值的概率为:P{X=x i,Y=y j}=P ij(i,j=1,2,…),称P{X=x i,Y=y j}=P ij(i,j=1,2,…)为(X,Y)的分布律。
(X,Y)的分布律还可以写成如下列表形式:(X,Y)的分布律具有下列性质:(1)p ij≥0(i,j=1,2,…);(2)反之,若数集{P ij}(i,j=1,2,…)具有以上两条性质,则它必可作为某二维离散型随机变量的分布律。
概率论与数理统计第二章--随机变量及其分布
第十四页,编辑于星期二:四点 四十二分。
由于 X的取值点 3,4,5,6将R分成五个区间,
因此我们分段讨论可得,
?0,
x ? 3,
F( x )
F (x) ? ????00..02,5,
3 ? x ? 4, 4 ? x ? 5,
1
0.5
?0.5, 5 ? x ? 6,
0.2
?
0.05
??1,
x ? 6.
且每台设备在一天内发生故障的概率都是
0.01. 为保证设备正常工作,需要配备适量 的维修人员.假设一台设备的故障可由一人 来处理,且每人每天也仅能处理一台设备. 试分别在以下两种情况下求该公司设备发生 故障而当天无人修理的概率。 (1)三名修理工每人负责包修 60台 (2)三名修理工共同负责 180台
则称 X服从参数为 p的两点 (或0-1)分布.
第十九页,编辑于星期二:四点 四十二分。
?二项分布
例4. 设射手每一次击中目标的概率为 p,现连 续射击n次,求击中次数 X 的概率分布 .
若随机变量X的概率分布为
Pn (k)
?
P
(
X
?
k)?C
k
n
p
k
(1
?
p)n?k ,
k ? 0,1,? , n
其中 0< p<1,称X服从参数为n和 p的二项分布,
第二十一页,编辑于星期二:四点 四十二分。
?泊松分布
若随机变量 X的概率分布为
P( X ? k) ?e? ? ? k , k?0,1,2,? ? ,
k!
其中λ>0为常数,则称X服从参数为λ的泊松
分布,简记为 X ~ P (? )
经管类概率统计2
正态分布: X ~ N()
f ( x) ( x )2 exp , x 2 2 2 2 1
13
例子
例2.5 (1) 某人向同一目标独立重复射击,每次命中 率为 p, 则此人第四次射击恰好第二次命中的概率为 ( ). (A) 3p(1 – p)2 (B) 6p(1 – p)2 (C) 3p2(1 – p)2 (D) 6p2(1 – p)2 (注: 负二项分布) (2) 设随机变量 X ~ U(–1, 1), A = {0 < X < 1}, B = {|X| < 1/4}, 则( ). (A) P(AB) = 0 (B) P(AB) = P(A) (C) P(A) + P(B) = 1 (D) P(AB) = P(A)P(B)
15
例子
例2.6 设 X ~ P(X = k) = –k – 1, k = 1, 2, …, 若 P(X ≤ 2) = 5/9, 则P(X = 3) = _____, P(X > 4|X > 2) = ____. (注: 几何分布的无记忆性) 例2.7 设随机变量 X 服从泊松分布, 已知 P(X = 4) = 2P(X = 5) , 则 (1) P(X = 0) = _____; (2) 随机变量 X 的众数(即概率达到最大的点)是____. (注: 众数, 中位数, 均值等统计概念)
14
例子
(3) 设随机变量 X 服从正态分布N(1, 12), Y 服从正态分布 N(2, 22), 且
P (| X 1 | 1) P (| Y 2 | 1)
则必有( ). (A) 1 < 2 (B) 1 > 2 (C) 1 < 2
(D) 1 > 2
随机变量与概率分布
随机变量与概率分布随机变量和概率分布是概率论与数理统计中的重要概念。
通过研究随机变量及其概率分布,我们可以描述和分析不确定性事件的发生规律,进而为决策和推断提供可靠的依据。
本文将介绍随机变量和概率分布的基本概念、性质和常见类型。
一、随机变量的概念随机变量是一个在随机试验中可能取得不同值的变量。
它可以是离散的(只能取有限个或可列个值)或连续的(可以取无穷个值)。
在描述随机变量时,我们通常使用大写英文字母(如X、Y)表示。
二、概率分布的概念概率分布是描述随机变量取不同值的概率的函数。
对于离散随机变量,我们可以使用概率质量函数(PMF)来描述其概率分布;对于连续随机变量,我们则使用概率密度函数(PDF)来描述。
概率分布必须满足两个条件:非负性和总和(或积分)为1。
三、离散随机变量及其概率分布1. 伯努利分布伯努利分布是描述在一次随机试验中成功或失败的概率分布。
它的概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),其中p为成功的概率,k 为取值为0或1。
2. 二项分布二项分布是在n次独立的伯努利试验中成功的次数的概率分布。
它的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中p为每次试验成功的概率,k为成功的次数。
3. 泊松分布泊松分布是描述单位时间(或单位面积)内随机事件发生次数的概率分布。
它的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中λ为单位时间(或单位面积)内随机事件的平均发生次数,k为发生的次数。
四、连续随机变量及其概率分布1. 均匀分布均匀分布是指随机变量在一定区间上取值的概率相等的分布。
它的概率密度函数为:f(x) = 1 / (b-a),其中a、b为区间的上下界。
2. 正态分布正态分布是自然界中许多随机现象的分布近似,也是统计学中最重要的分布之一。
它的概率密度函数为:f(x) = (1 / sqrt(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),其中μ为均值,σ^2为方差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
x
(1)-(4) F(x) 为分布函数
(5) P{a<X ≤b}=F(b)-F(a) P{X=b}=F(b)-F(b-0)
称为X的分布函数。
分布函数的基本性质
⑴ 有界性: 0≤F(x)≤1
⑵ 单调性: F(x)为单调不减函数。即对于任意实数x1<x2 ,有
F(x1) ≤F(x2); ⑶ F (x)是右连续的。即F(x+0)=F(x)
(4) 极限性 F() lim F( x) 0, F() lim F( x) 1;
本章小结 习题
随机变量及其分布
随机变量、概率分布、分布函数 离散型随机变量及其分布律 连续型随机变量及其概率密度 随机变量的函数的分布
退出 返回
1. 随机变量:根据实验结果取值的量。X,Y,Z ...... 设随机试验的样本空间为S={e},X=X(e)是定义在样本空
间S上的单值实函数,称X=X(e)为随机变量。
2. 随机变量的引入: 结果有数量性质:
(1) 掷骰子实验中,X表示出现的点数,则X为r.v.;
(2) 观察某市一天的交通事故,Y表示交通事故数,则Y为r.v.;
结果没有数量性质: (3)掷硬币实验中:
X
1, 2,
出现正面时;。 出现反面时
(4)观察某人投篮结果 :规定
X
1, 2,
出现正面时;。 出现反面时
随机变量及其分布
§2.1 随机变量
在概率的研究中为什么需要引入随机变量?
引入随机变量是研究随机现象统计规律性的需要。为了便于数学推 理和计算,有必要将随机试验的结果数量化,使得可以用高等数学课程 中的理论与方法来研究随机试验,研究和分析其结果的规律性,因此, 随机变量是研究随机试验的重要而有效的工具。
3.随机变量的取值表示事件
如: (1) 掷骰子实验中,X表示出现的点数。则 {1≤ X ≤3},{X=2},{X>4},{X∈{2,4,6}}
表示相应的事件。 4. 随机变量的分布:取值规律。
5. 分布函数 : 设X是一个随机变量,x是任意实数,函数 F(x)=P{X≤x}, -∞< x <+ ∞