推荐中考数学冲刺复习第3章一元一次方程01从算式到方程(无答案)
北京市第四中学中考数学冲刺复习第3章一元一次方程01从算式到方程(无答案)
方法1:
方法2:
〖问题3〗李白街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,问原来有多少斗酒?
例2、已知方程 ,试确定下列各数
,谁是此方程的解?
例3、已知x=3是方程2x +(m-1)x=6的解,求m的值。
3、求方程的解的过程或说明方程无解的过程叫做解方程。
例4、解Hale Waihona Puke 程:4、一元一次方程的有关概念
(1)、只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根。
例如:(1)x2—x-2=0是一元方程,它的根是x1=2,x2=—1;
性质2:等号两边同时乘以同一个数,或除以同一个不为零的数,等号依然成立。
符号表示:a=bac=bc。
例6、判断正误:
例7、用适当的数或整式填空:
(1)如果a+1=1,那么a=.
(2)如果0。6x=2—0.4x,那么x=.
(3)如果13x=12x-2,那么x=.
(4)如果x—1=y-1,那么x=.
(5)如果 ,那么a=。
从算式到方程
一、导入新课
•Why-—为什么要学习方程?
•What—-方程是什么?
•How--怎么学习?
先学习如何解方程,再谈应用
〖问题1 〗汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米. 王家庄到翠湖的路程有多远?
人教版七年级数学上册第三章《一元一次方程》知识点复习练习
人教版七年级数学上册第三章《一元一次方程》知识点复习练习3.1 从算式到方程3.1.1 一元一次方程基础题知识点1 方程的概念含有未知数的等式叫做方程.1.下列各式中,是方程的是(A ) A .7x -3=3x +5B .4x -7C .22+3=7D .2x <52.下列各式中,不是方程的是(C ) A .2x +3y =1B .-x +y =4C .3π+4≠5D .x =8知识点2 一元一次方程只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.3.(昆明月考)下列关于x 的方程中,是一元一次方程的是(B )A .ax =5B .x =0C .3x -2=yD .-2x =3 4.如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是(B )A .m≠0B .m≠1C .m =-1D .m =0 5.若方程2x a -2-3=0是关于x 的一元一次方程,则a =3.知识点3 方程的解6.(临沧期中)方程1-3y =7的解是(C )A .y =-12B .y =12C .y =-2D .y =27.在0,1,2,3中,0是方程13x -12=-12的解. 8.x =3是方程①3x =6;②2(x -3)=0;③x -2=0;④x +3=5中②的解.(填序号)知识点4 列方程9.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8 C.12x -3=8 D.12x +3=8 10.(杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为(C )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )11.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x 元,根据题意,列出方程为50-8x =38. 易错点 对一元一次方程概念理解不透而致错12.(昆明月考)若方程(a -1)x |a|-2=3是关于x 的一元一次方程,则a 的值为-1.中档题13.(民大附中月考)下列是一元一次方程的有(A )①23-x =23-y ;②2x -4=x -1;③x +1-3;④3x -2x =3;⑤2x -4>5.A.2个B.3个C.4个D.5个14.以x=-3为解的方程是(C)A.3x-7=5-x B.6x+7=1-12xC.2-8x=20-2x D.11x+2=5(1+2x)15.检验下列各题括号内的值是否为相应方程的解:(1)2x-3=5(x-3){x=6,x=4};(2)4x+5=8x-3{x=3,x=2}.解:(1)x=4是方程的解.(2)x=2是方程的解.16.已知y=1是方程my=y+2的解,求m2-3m+1的值.解:把y=1代入方程my=y+2中,得m=3,当m=3时,m2-3m+1=1.17.(教材P80练习变式)根据下列问题,设未知数,列出方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方程,得0.5x+0.4(15-x)=7.(2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得10x+60%×10(128-x)=912.综合题18.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株.设乙班植树x株.(1)列两个不同的含x的式子,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.解:(1)根据甲班植树的株树比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数是25株,从上面检验过程可得甲班植树的株数是30株,而不是35株.3.1.2 等式的性质基础题知识点1 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a±c =b±c.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么a c =b c . 1.下列等式变形中,错误的是(D )A .由a =b ,得a +5=b +5B .由a =b ,得a -3=b -3C .由x +2=y +2,得x =yD .由-3x =-3y ,得x =-y2.若x =y ,且a≠0,则下面各式中不一定正确的是(D )A .ax =ayB .x +a =y +a C.x a =y a D.a x =a y3.已知m +a =n +b ,根据等式的性质变形为m =n ,那么a ,b 必须符合的条件是(C )A .a =-bB .-a =bC .a =bD .a ,b 可以是任意有理数或整式4.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质以及是怎样变形的.(1)如果-x 10=y 5,那么x =-2y ,根据等式的性质2,两边乘-10; (2)如果-2x =2y ,那么x =-y ,根据等式的性质2,两边除以-2;(3)如果23x =4,那么x =6,根据等式的性质2,两边乘32; (4)如果x =3x +2,那么x -3x =2,根据等式的性质1,两边减3x .知识点2 利用等式的性质解方程解以x 为未知数的方程,就是把方程逐步转化为x =a (常数)的形式,等式的性质是转化的重要依据.5.解方程-23x =32时,应在方程两边(C ) A .同乘-23B .同除以23C .同乘-32D .同除以326.利用等式的性质解方程x 2+1=2的结果是(A ) A .x =2B .x =-2C .x =4D .x =-47.(梧州中考)方程x -5=0的解是x =5.8.由2x -1=0得到x =12,可分两步,按步骤完成下列填空: 第一步:根据等式的性质1,等式两边加1,得到2x =1;第二步:根据等式的性质2,等式两边除以2,得到x =12. 9.(教材P83习题T4变式)利用等式的性质解方程:(1)8+x =-5;解:两边减8,得x =-13.(2)4x =16;解:两边除以4,得x =4.(3)3x -4=11.解:两边加4,得3x =15.两边除以3,得x =5.易错点 对等式性质理解不透致错10.有两种等式变形:①若ax =b ,则x =b a ;②若x =b a,则ax =b.其中(B ) A .只有①对B .只有②对C .①②都对D .①②都错中档题11.下列是等式2x +13-1=x 的变形,其中根据等式的性质2变形的是(D ) A.2x +13=x +1 B.2x +13-x =1 C.2x 3+13-1=x D .2x +1-3=3x 12.(贵阳中考)方程3x +1=7的解是x =2.13.若x =1是关于x 的方程3n -x 2=1的解,则n =12. 14.利用等式的性质解下列方程:(1)-3x +7=1;解:两边减7,得-3x =-6.两边除以-3,得x =2.(2)-y 2-3=9; 解:两边加3,得-y 2=12. 两边乘-2,得y =-24.(3)512x -13=14; 解:两边加13,得512x =712. 两边乘125,得x =75.(4)3x +7=2-2x.解:两边减7,得3x =2-2x -7.两边加2x ,得5x =-5.两边除以5,得x =-1.15.有只狡猾的狐狸,它平时总喜欢戏弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x -2=2x -2.等式两边同时加上2,得5x -2+2=2x -2+2, ①即5x =2x.等式两边同时除以x ,得5=2.” ②老虎瞪大了眼睛,听傻了.你认为狐狸的说法正确吗?如果正确,请说明上述①、②步的理由;如果不正确,请指出错在哪里?并加以改正. 解:不正确.①正确,运用了等式的性质1.②不正确,由5x =2x ,两边同时减去2x ,得5x -2x =0,即3x =0,所以x =0.综合题16.能不能从(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能从x =b -1a +3得到等式(a +3)x =b -1,为什么?解:当a =-3时,从(a +3)x =b -1不能得到x =b -1a +3,因为0不能为除数. 从x =b -1a +3可知,a +3≠0.根据等式的性质2可知,从x =b -1a +3可以得到等式(a +3)x =b -1.3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项基础题知识点1利用合并同类项解简单的一元一次方程将方程中的同类项进行合并,把以x为未知数的一元一次方程变形为ax=b(a≠0,a、b为已知数)的形式,.然后利用等式的性质2,方程两边同时除以a,从而得到x=ba如:(1)合并同类项:x-2x+4x=3x;4y-2.5y-3.5y=-2y.(2)解方程-7x+2x=9-4的步骤是:①合并同类项,得-5x=5;②系数化为1,得x=-1.1.对于方程8x+6x-10x=8,合并同类项正确的是(B)A.3x=8 B.4x=8C.-4x=8 D.2x=82.方程x+2x=-6的解是(D)A.x=0 B.x=1C.x=2 D.x=-23.下列是小明同学做的四道解方程题,其中错误的是(B)A.5x+4x=9→x=1B.-2x-3x=5→x=1C.3x-x=-1+3→x=1D.-4x+6x=-2-8→x=-54.解下列方程:(1)6x-5x=3;解:合并同类项,得x=3.(2)-x+3x=7-1;解:合并同类项,得2x=6. 系数化为1,得x=3.(3)x2+5x2=9;解:合并同类项,得3x=9.系数化为1,得x=3.(4)6y+12y-9y=10+2+6.解:合并同类项,得9y=18.系数化为1,得y=2.知识点2列方程解决“总量=各部分量之和”问题5.某数的3倍与这个数的2倍的和是30,这个数为(C)A.4 B.5C.6 D.76.一个两位数,个位上的数字是十位上数字的3倍,且它们的和为12,则这个两位数是39.7.三个连续奇数的和为27,则这三个数分别为7、9、11.8.一条长1 210 m的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m,乙队每天挖90 m,则挖好水渠需要几天?解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x =5.5.答:挖好水渠需要5.5天.9.(教材P88练习T2变式)麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?解:设麻商集团第二季度销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台.根据总量等于各部分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二季度销售冰箱400台.中档题10.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是(C ) A .0B .2C .-2D .-611.已知某三角形的周长为60 cm ,三边长之比为3∶4∶5,则最短边的长为15cm.12.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为3、10、17.13.解下列方程:(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53.(3)x-25x=3+6;解:合并同类项,得35x=9.系数化为1,得x=15.(4)16x-3.5x-6.5x=7-(-5).解:合并同类项,得6x=12.系数化为1,得x=2.14.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x+5x=32.解得x=4.所以3x=3×4=12,5x=5×4=20.答:黑色皮有12块,白色皮有20块.15.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡,中、美两国人均淡水资源占有量之和为13 800 m3,问中、美两国人均淡水资源占有量各为多少水资源占有量的15(单位:m3)?解:设中国人均淡水资源占有量为x m3,则美国人均淡水资源占有量为5x m3.根据题意,得x+5x=13 800,解得x=2 300.则5x=11 500.答:中国人均淡水资源占有量为2 300 m3,美国人均淡水资源占有量为11 500 m3.综合题16.(教材P87例2变式)有这样一列数,按一定规律排列成-1,2,-4,8,-16,…,其中某三个相邻数的和是768,则这三个数各是多少?解:设所求三个数分别为-x,2x,-4x,由题意,得-x+2x+(-4x)=768.解得x=-256.所以-x=256,2x=2×(-256)=-512,-4x=-4×(-256)=1 024.答:这三个数分别是256、-512、1 024.第2课时 移项基础题知识点1 利用移项解一元一次方程把等式一边的某项变号后移到另一边,叫做移项.1.下列变形中属于移项的是(C )A .由2x =2,得x =1B .由x 2=-1,得x =-2 C .由3x -72=0,得3x =72D .由2x -1=3,得2x =3-12.解方程2x -5=3x -9时,移项正确的是(B )A .2x +3x =9+5B .2x -3x =-9+5C .2x -3x =9+5D .2x -3x =9-53.关于x 的方程3x =4x +5的解是(C )A .x =5B .x =-3C .x =-5D .x =3 4.解方程6x +90=15-10x +70的步骤是:①移项,得6x +10x =15+70-90;②合并同类项,得16x =-5;③系数化为1,得x =-516. 5.解下列方程:(1)4x =9+x ;解:移项,得4x-x=9.合并同类项,得3x=9.系数化为1,得x=3.(2)4-35m=7;解:移项,得-35m=7-4.合并同类项,得-35m=3.系数化为1,得m=-5.(3)8y-3=5y+3;解:移项,得8y-5y=3+3.合并同类项,得3y=6.系数化为1,得y=2.(4)4x+5=3x+3-2x.解:移项,得4x-3x+2x=-5+3.合并同类项,得3x=-2.系数化为1,得x=-23.知识点2根据“表示同一个量的两个不同的式子相等”列方程6.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是10,调往乙队的人数是18.7.(教材P91习题T5变式)小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.解:设小华现在的年龄为x岁,则妈妈现在的年龄为(x+25)岁.根据题意,得x+25=3x+5.解得x=10.答:小华现在的年龄为10岁.易错点 解方程时,移项不变号或误将不移动的项也变号8.解方程:x -3=-12x -4. 解:移项,得x +12x =-4+3. 合并同类项,得32x =-1. 系数化为1,得x =-23.中档题9.某同学在解方程5x -1=■x +3时,把■处的数字看错了,解得x =-43,则该同学把■看成了(D ) A .3B .-1289C .-8D .810.(昆明期末)若方程2x -kx +1=5x -2的解为-1,则k 的值为-6.11.如果5m +14与m +14互为相反数,那么m 的值为-112. 12.“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x 棵,通过分析题意,鸦的只数不变,则可列方程:3x +5=5(x -1).13.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x =13. 14.解下列方程:(1)2x -19=7x +6;解:移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.(2)x -2=13x +43.解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.15.(教材P88问题2变式)(天门中考改编)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.16.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?解:(1)设小明在买x 元的书的情况下办会员卡与不办会员卡一样.则x =20+80%x.解得x =100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱.综合题17.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x的方程4x-2m=3x+1的解是x=6m. 将x=6m代入4x-2m=3x+1中,得24m-2m=18m+1.移项、合并同类项,得4m=1.所以m=14.3.3 解一元一次方程(二)——去括号与去分母第1课时 去括号基础题知识点1 利用去括号解一元一次方程解方程时的去括号和有理数运算中的去括号类似,都是利用乘法分配律,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.1.将方程2x -3(4-2x )=5去括号,正确的是(C )A .2x -12-6x =5B .2x -12-2x =5C .2x -12+6x =5D .2x -3+6x =52.方程2(x -3)+5=9的解是(B )A .x =4B .x =5C .x =6D .x =73.解方程4(x -1)-x =2(x +12)的步骤如下:①去括号,得4x -1-x =2x +1;②移项,得4x -2x -x =1+1;③合并同类项,得x =2,其中做错的一步是(A )A .①B .②C .③D .①②4.解方程:5(x -4)-3(2x +1)=2(1-2x )-1.解:去括号,得5x -20-6x -3=2-4x -1.移项,得5x -6x +4x =2-1+20+3.合并同类项,得3x =24.系数化为1,得x =8.5.解下列方程:(1)3(x +4)=x ;解:去括号,得3x +12=x.移项,得3x -x =-12.合并同类项,得2x =-12.系数化为1,得x =-6.(2)1-(2x +3)=6;解:去括号,得1-2x -3=6.移项,得-2x =6-1+3.合并同类项,得-2x =8.系数化为1,得x =-4.(3)12(x -2)=3-12(x -2). 解:去括号,得12x -1=3-12x +1. 移项,得12x +12x =3+1+1. 合并同类项,得x =5.知识点2 去括号解方程的应用6.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时骑(C )A .20千米B .17.5千米C .15千米D .12.5千米7.父亲今年30岁,儿子今年4岁,9年后父亲的年龄是儿子年龄的3倍.易错点 去括号时漏乘某些项或弄错符号导致错解8.解方程:2(3-4x )=1-3(2x -1).解:去括号,得6-4x =1-6x -1.(第一步)移项,得-4x +6x =1-1-6.(第二步)合并同类项,得2x =-6.(第三步)系数化为1,得x =-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.中档题9.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是(A )A .2x -4-12x +3=9B .2x -4-12x -3=9C .2x -4-12x +1=9D .2x -2-12x +1=910.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为(B )A .-1B .1 C.12 D .-1211.若式子4-3(x -1)与式子x +12的值相等,则x =-54. 12.解下列方程:(1)3x -2(10-x )=5;解:去括号,得3x -20+2x =5.移项,得3x +2x =20+5.合并同类项,得5x =25.系数化为1,得x =5.(2)3(2y +1)=2(1+y )+3(y +3);解:去括号,得6y +3=2+2y +3y +9.移项,得6y -2y -3y =-3+2+9.合并同类项,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.13.若方程3(2x -2)=2-3x 的解与方程6-2k =2(x +3)的解相同,求k 的值.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.14.(教材P94例2变式)一架飞机在两城市之间飞行,风速为24 km/h ,顺风飞行需要2 h 50 min ,逆风飞行需要3 h .求无风时飞机的飞行速度和两城之间的航程.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h,两城之间的航程为2 448 km.综合题15.某次义务劳动,有甲、乙两个工地,甲工地有27人在劳动,乙工地有19人在劳动.现在又有20人来参加义务劳动,要使甲工地人数为乙工地人数的2倍,问应分别调往甲、乙两工地各多少人?解:设应调往甲工地x人,则调往乙工地(20-x)人.根据题意,得27+x=2[19+(20-x)].解得x=17.则20-x=3.答:应调往甲工地17人,调往乙工地3人.第2课时 去分母基础题知识点1 利用去分母解一元一次方程(1)去分母的方法:依据等式的性质2,方程两边各项都乘所有分母的最小公倍数,将分母去掉.(2)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.1.解方程3y -14-1=2y +76去分母时,方程两边都乘(B ) A .10 B .12 C .24 D .62.(曲靖期末)解方程x -14=3-1+2x 8去分母正确的是(A ) A .2(x -1)=24-1-2xB .2(x -1)=24-1+2xC .2(x -1)=3-1-2xD .2(x -1)=3-1+2x3.解方程13-x -12=1的结果是(D ) A .x =12 B .x =-12C .x =13D .x =-134.(济南中考)若式子4x -5与2x -12的值相等,则x 的值是(B ) A .1 B.32 C.23D .2 5.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的基本性质2)去括号,得9x +15=4x -2.(去括号法则或乘法分配律)(移项),得9x -4x =-15-2.(等式的基本性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的基本性质2)6.解下列方程:(1)2x -13=x +24; 解:去分母,得4(2x -1)=3(x +2).去括号,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.(2)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(3)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.知识点2 去分母解方程的应用7.某工厂计划每天烧煤5吨,实际每天比计划少烧2吨,若m 吨煤多烧了20天,则m =150.8.王强参加了一场3 000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,问王强以6米/秒的速度跑了多少米?解:设王强以6米/秒的速度跑了x 米,则王强以4米/秒的速度跑了(3 000-x )米.根据题意,得x 6+3 000-x 4=10×60. 解得x =1 800.答:王强以6米/秒的速度跑了1 800米.易错点 去分母时,漏乘不含分母的项9.(株洲中考改编)在解方程x -13+x =3x +12时,方程两边同时乘6,去分母后,得2(x -1)+6x =3(3x +1).中档题10.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是(B ) A .27B .1C .-1311D .011.(民大附中月考)式子x +24的值比2x -36的值大1,则x 的值是0. 12.(昆明月考)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3 h ,若静水时船速为26 km/h ,水速为2 km/h ,则A 港和B 港相距504km.13.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x ).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25; 解:去分母,得10x -5(x -1)=20-2(x +2). 去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117.(3)x +12=6-2x -13; 解:去分母,得3(x +1)=36-2(2x -1). 去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417.14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求去时甲、乙两地路长. 解:设去时甲、乙两地的路长为x 千米,则 x 8+18=x +39.解得x =15. 答:去时甲、乙两地的路长为15千米.综合题15.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2.小专题5 一元一次方程的解法题组1 移项、合并同类项解一元一次方程1.解下列方程:(1)56-8x =11+x ;解:-8x -x =11-56,-9x =-45,x =5.(2)43x +1=5+13x. 解:43x -13x =5-1, x =4.题组2 去括号解一元一次方程2.解下列方程:(1)4x -3(20-2x )=10;解:4x -60+6x =10,4x +6x =60+10,10x =70,x =7.(2)4y -3(20-y )=6y -7(9-y ); 解:4y -60+3y =6y -63+7y , 4y +3y -6y -7y =60-63,-6y =-3,y =12.(3)4x -8(x +1)=4-2(x +3). 解:4x -8x -8=4-2x -6, 4x -8x +2x =4-6+8,-2x =6,x =-3.题组3 去分母解一元一次方程3.解下列方程:(1)2x -13-2x -34=1; 解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90,15x -12x =-90+30,3x =-60,x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8.(4)2x -13-10x +16=2x +12-1; 解:2(2x -1)-(10x +1)=3(2x +1)-6,4x -2-10x -1=6x +3-6,4x -10x -6x =3-6+2+1,-12x =0,x =0.(5)0.1-2x 0.3=1+x 0.15. 解:原方程整理,得1-20x 3=1+100x 15. 去分母,得5(1-20x )=15+100x.去括号,得5-100x =15+100x.移项,得-100x -100x =15-5.合并同类项,得-200x =10.系数化为1,得x =-0.05.周周练(3.1~3.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是(B )A.2x +2=3B.3x -12+4=3x C .y 2+3y =0D .9x -y =2 2.方程3x +6=2x -8移项后,正确的是(C )A .3x +2x =6-8B .3x -2x =-8+6C .3x -2x =-6-8D .3x -2x =8-63.解方程2(x -3)-3(x -4)=5时,下列去括号正确的是(D )A .2x -3-3x +4=5B .2x -6-3x -4=5C .2x -3-3x -12=5D .2x -6-3x +12=54.下列说法中,正确的是(D )A .若a =b ,则a c =b dB .若a =b ,则ac =bdC .若ac =bc ,则a =bD .若a =b ,则ac =bc5.方程2-2x -43=-x -76去分母,得(C ) A .2-2(2x -4)=-(x -7)B .12-2(2x -4)=-x -7C .12-2(2x -4)=-(x -7)D .12-(2x -4)=-(x -7)6.(咸宁中考)方程2x -1=3的解是(D )A .x =-1B .x =-2C .x =1D .x =27.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是(A ) A .15B .13C .7D .-18.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100二、填空题(每小题4分,共24分)9.已知x =-2是方程3(x +a )=15的解,则a =7.10.若式子2-k 3-1的值是1,则k =-4. 11.(临沧期中)如果5x +3与-2x +9互为相反数,那么x 的值是-4.12.(文山期中)已知(x -2)2+|3y -2x|=0,则x =2,y =43. 13.轮船从甲地顺流而行9小时到达乙地,原路返回11小时才能到达甲地,已知水流速度为2千米/时,则轮船在静水中的速度是20千米/时.14.已知a 、b 、c 、d 为4个数,现规定一种新的运算,⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,那么当⎪⎪⎪⎪⎪⎪ 2 4(1-x ) 5=18时,x =3.三、解答题(共44分)15.(24分)解方程:(1)(曲靖期末)x +12-1=43x ; 解:3(x +1)-6=8x ,3x +3-6=8x ,3x -8x =-3+6,-5x =3,x =-35.(2)3x -2(20-x )=6x -4(9+x );解:3x -40+2x =6x -36-4x ,3x =4,x =43.(3)2-2x +13=1+x 2; 解:12-2(2x +1)=3(1+x ),12-4x -2=3+3x ,-7x =-7,x =1.(4)x -10.3-x +20.5=1.2. 解:10x -103-10x +205=1.2, 5(10x -10)-3(10x +20)=1.2×15,50x -50-30x -60=18,20x =128,x =325.16.(8分)学校分配学生住宿,如果每室住8人,那么还少12个床位;如果每室住9人,那么空出两个房间.求房间的个数和学生的人数.解:设房间数为x,由题意,得8x+12=9(x-2).解得x=30.则学生人数为8×30+12=252.答:房间的个数为30,学生的人数为252.17.(12分)有一叠卡片,自上而下按规律分别标有6,12,18,24,30,…这些数.(1)你能发现这些卡片上的数有什么规律吗?请将它用一个含有n(n≥1)的式子表示出来;(2)小明从中抽取相邻的3张,发现其和是342,你能知道他抽出的卡片是哪三张吗?(3)你能拿出相邻的3张卡片,使得这些卡片上的数字之和是86吗?为什么?解:(1)6n.(2)设中间一张标有数字6n,那么前一张为6(n-1)=6n-6,后一张为6(n+1)=6n+6.根据题意,得6n-6+6n+6n+6=342.解得n=19.则6(n-1)=6×18=108,6n=6×19=114,6(n+1)=6×20=120.答:所抽的卡片为标有108、114、120数字的三张卡片.(3)不能,因为当6n-6+6n+6n+6=86时,n=43,不是整数,所以不可能抽到相邻3张卡片,使得这些卡片9上的数字之和为86.3.4 实际问题与一元一次方程第1课时 产品配套问题与工程问题基础题知识点1 产品配套问题解决配套问题时,关键是明确题目中的相等关系,它是列方程的依据.一般来说,题目中有两个等量关系,根据其中一个等量关系设未知数,根据另一个等量关系列方程. 1.有一个专项加工茶杯的车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?设安排加工杯身的人数为x ,则加工杯盖的为(90-x )人,每小时加工杯身12x 个,杯盖15(90-x )个,则可列方程为12x =15(90-x ),解得x =50.间接设法:设共生产杯身x 个,共生产杯盖x 个.则生产杯身的工人为x 12个,生产杯盖的工人为x 15个,则可列方程为x 12+x 15=90.解得x =600.x 12=60012=50,x 15=60015=40. 2.(教材P101练习T1变式)(曲靖中考)某种仪器由1个A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1 000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?解:安排x 人生产A 部件,安排(16-x )人生产B 部件.由题意,得1 000x =600(16-x ).解得x =6.所以16-x =10.答:安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B 部件配套.知识点2 工程问题(1)解决工程问题时,常把总工作量看作1,并利用“工作量=人均效率×人数×时间”的关系考虑问题.(2)用一元一次方程分析和解决实际问题的基本步骤是:①设未知数;②分析问题中的数量关系,找出其中的等量关系,并由此列出方程;③解方程;④检验解的正确性与合理性,并写出答案.3.(教材P101练习T2变式)一件工作,甲单独做需要10小时完成,乙单独做需要15小时完成,甲、乙合作需要x 小时完成,则可列方程为x 10+x 15=1,解得x =6. 4.一批文稿,若由甲抄30小时可以抄完,若由乙抄20小时可以抄完,现由甲抄3小时后改由乙抄余下部分,则乙还需抄18小时.5.(昆明月考)整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人用1 h 整理,随后又增加6人和他们一起又做了2 h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少? 解:设先安排整理的人员有x 人,由题意,得130x +130(x +6)×2=1, 解得x =6.答:先安排整理的人员有6人.中档题6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是(D )A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为(54-x )人,根据题意,可列方程为8x =10(54-x ),解得x =30.8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.若8只茶杯和1只茶壶为一套,则安排40人生产茶壶可使每天生产的瓷器配套.9.学校图书管理员整理一批图书,由一个人做要80小时完成,现在计划由一部分人先做8小时,再增加2人和他们一起做16小时完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作8小时?解:设应先安排x 人工作8小时,根据题意,得8x 80+16(x +2)80=1. 解得x =2.答:应先安排2人工作8小时.10.(民大附中月考)某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x 名工人生产螺母,则(22-x )名工人生产螺钉,由题意,得2 000x =2×1 200(22-x ),解得x =12.则22-x =10.答:应安排生产螺钉和螺母的工人分别为10名,12名.综合题11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?解:(1)能履行合同.设甲、乙合作x 天完成,则(130+120)x =1,解得x =12. 因为12<15,所以两人能履行合同.(2)调走甲更合适.由(1)知,两人合作完成这项工程的75%需要的时间为12×75%=9(天).剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=124,因为130<124<120,故调走甲合适.。
一元一次方程复习讲义
第三章一元一次方程复习讲义知识点1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.例1(1)怎样从等式x-5=y-5得到等式x=y?(2)怎样从等式3+x=1得到等式x=-2?(3)怎样从等式4x=12得到等式x=3?例2利用等式的性质解下列方程:(1)x+7=26(2)-5x=203.方程:只含有一个未知数,未知数的次数是1,等号两边都是整式,这样的方程叫做一元一次方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、匕是已知数,且aW0).8.一元一次方程解法的一般步骤:化简方程分数基本性质去分母同乘(不漏乘)最简公分母去括号先去小括号,再去中括号,最后去大括号.依据是去括号法则和乘法分配律,注意符号变化移项把含有未知数的项移到一边,常数项移到另一边.“过桥变号”,依据是等式性质一合并同类项将未知数的系数相加,常数项相加.依据是乘法分配律合并后注意符号系数化为1在方程的两边除以未知数的系数.依据是等式性质二.例1解下列方程[1]用合并同类项的方法解一元一次方程(1)2x-£%=6-8;(2)7x—2.5x+3x-1.5x=-15x4—6x3.[2]用移项的方法解一元一次方程(1)7-2x=3-4x(2)4x+10=6x[3]利用去括号解一元一次方程去括号法则:去掉“+()”,括号内各项的符号不变.去掉“-()”,括号内各项的符号改变.用三个字母a、b、c表示去括号前后的变化规律:a+(b+c)=a+b+ca-(b+c)=a—b—c(1)2x-(x+10)=5x+2(x—1)(2)3x—7(x—1)=3—2(x+3)[4]利用去分母解一元一次方程(总结:像上面这样的方程中有些系数是分数,如果能化去分母,把系数化为整数,则可以使解方程中的计算更方便些.)2x+2x+7x+x=33(2)3x+x-1=3-2x-1(1)^要点归纳1.去分母时,应在方程的左右两边乘以分母的最小公倍数;2.去分母的依据是等式性质2,去分母时不能漏乘没有分母的项;3.去分母与去括号这两步分开写,不要跳步,防止忘记变号.10.列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出 未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程(组)的应用题的一般步骤:审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x.列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案(包括单位).[注意]审题是基础,找等量关系是关键.11.解实际应用题:知识点1:市场经,^、打折销售问题(1)商品利润=商品售价一商品成本价(3)商品销售额=商品销售价X 商品销售量(4)商品的销售利润=(销售价一成本价)X 销售量例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?变式1.某琴行同时卖出两台钢琴,每台售价为960元.其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?例2一件服装先将进价提高25%出售,后进行促销活动,又按标价的8折出售,此时售价为60元.请问商家是盈是亏,还是不盈不亏?例3.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出 售,但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?(2) 商品利润率= 商品利润 商品成本价X 100%例4.某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200元但不超过500元的优惠10%,超过500元,其中500元按9折优惠,超过的部分按8折优惠。
必刷知识点【第3章《一元一次方程》章节复习巩固】(原卷版)
2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)第3章《一元一次方程》章节复习巩固知识点一:一元一次方程的概念1.方程:叫做方程.2.一元一次方程:只含有(元),未知数的次数都是,这样的方程叫做细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个,未知数的次数为;②是整式,即分母中不含3.方程的解:叫做这个方程的解.4.解方程:叫做解方程.知识点二:等式的性质与去括号法则1.等式的性质:等式的性质1:等式的性质2:2.合并法则:合并时,把系数3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号.知识点三:一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的.(2)去括号:依据乘法分配律和去括号法则,先去,再去,最后去.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用 ,分别合并含有未知数的项及常数项,把方程化为ax =b(a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四:用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×2.和差倍分问题:增长量=原有量×3.利润问题:商品利润=商品售价-4.工程问题:工作量=工作效率× ,各部分劳动量之和=5.银行存贷款问题:本息和=本金+利息,利息=本金×6.数字问题:多位数的表示方法:例如:. b x a =32101010abcd a b c d =⨯+⨯+⨯+。
中考数学冲刺复习第3章一元一次方程02一元一次方程的解法(无答案)
一元一次方程的解法
一、基本概念
1、利用等式性质:把等式一边的某项后移到另一边,叫做移项.
2、解一元一次方程的一般步骤是通过去分母、去括号、移项、合并同类项把原方程逐步化简变形,转化为一元一次方程的最简形式(如ax=b, 其中a≠0),只要把未知数的系数化为,就可求得原方程的解.
二、典型例题
例1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?
例2、解方程:
(1)
例3、若关于x的方程(k-4)x=6有正整数解,求自然数k的值.。
2021年人教版中考复习——3章 一元一次方程综合复习
2021年人教版中考复习——3章一元一次方程综合复习一、选择题1.在解方程时,下列变形正确的是()A.B.C.D.2.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x3.下列各选项正确的是A. 由移项得B. 由去分母C. 由去括号得D. 由去括号、移项、合并同类项得4.是关于的方程的解,则的值是A. B. C. D.5.已知是关于的一元一次方程,则( )A.=2 B.=C.=±3 D.=l6.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3 B.4 C.5 D.67. 若关于的方程有三个整数解,则的值为A. B. C. D.8.方程|x+1|+|x-3|=4的整数解有()A.2个B.3个C.个D.无穷多个9.一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为10cm2,请你根据图中标明的数据,计算瓶子的容积是()cm3.A.80 B.70 C.60 D.5010.解方程时,去分母正确的是A. B.C. D.二、填空题11.某商品提价20%后售出,现在售价为元,则原价为元。
12.若2a+1与1互为相反数,则a2019=.13. 若与互为相反数,则的值是.14.已知关于x的一元一次方程ax+b=cx+d无解,则a,b,c,d应满足的条件是。
15.定义“⊙”是种运算符号,规定a⊙b=ab+b,则(x﹣4)⊙3=﹣6的解为.16. 小明从家里骑自行车到学校,每小时骑,可早到分钟,每小时骑就会迟到分钟,则他家距离学校.三、解答题17.解方程(1)x ﹣2(x ﹣4)=3(1﹣x ) (2)1﹣=18.先化简,再求值:(x+1)(x-1)+x(2-x),其中x=21.19. 为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格岀售同种品牌的足球队服和足球,已知毎套队服比每个足球多 元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过 套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少? (2)若城区四校联合购买套队服和 ()个足球,请用含 的式子分别表示出到甲商场和乙商场购买装备所花的费用. (3)在()的条件下,若 假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?20.一架飞机在两城市之间飞行,风速为24千米/小时,顺风飞行需 2小时50分,逆风飞行需要3小时。
七年级数学 第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质复习
12/8/2021
第十二页,共二十八页。
2.[2016·沈丘县期末]下列利用等式的性质进行的变形,错误的是( D ) A.由 a=b,得到 5-2a=5-2b B.由ac=bc,得到 a=b C.由 a=b,得到 ac=bc D.由 a=b,得到ac=bc
12/8/2021
第十三页,共二十八页。
3.把方程12x=1 变形为 x=2,其依据是( B ) A.等式的性质 1 B.等式的性质 2 C.分数的基本性质 D.以上都不是
12/8/2021
第十四页,共二十八页。
4.下列变形正确的是( D ) A.4x-5=3x+2 变形,得 4x-3x=-2+5 B.23x-1=12x+3 变形,得 4x-1=3x+3 C.3(x-1)=2(x+3)变形,得 3x-1=2x+6 D.3x=2 变形,得 x=23
12/8/2021
第十五页,共二十八页。
确定a是否为0的情况(qíngkuàng)下,方程两边就同时除以a,所以错误
.
12/8/2021
第二十页,共二十八页。
8.运用等式的性质解下列方程:
(1)x+2=-6;
(2)-3x=3-4x;
(3)12x=3;
(4)-6x=2.
解:(1)x=-8;(2)x=3;(3)x=6;(4)x=-13.
12/8/2021
12/8/2021
第十一页,共二十八页。
当堂测评
1.如果用“a=b”表示一个等式,c 表示一个整式,d 表示一个数,那么等 式的第一条性质就可以表示为“a±c=b±c”,以下借助符号正确地表示出等式的 第二条性质的是( D )
A.a·c=b·d,a÷c=b÷d B.a·d=b÷d,a÷d=b·d C.a·d=b·d,a÷d=b÷d D.a·d=b·d,a÷d=b÷d(d≠0)
2023七年级数学上册第三章一元一次方程3.1从算式到方程3.1.1一元一次方程教案(新版)新人教版
(7)建议学生参加数学竞赛或活动,提高学生的数学水平和解决问题的能力。
七、课堂小结,当堂检测
课堂小结:
本节课我们学习了什么?
1. 我们学习了什么是一元一次方程,它包括未知数、系数和常数项,并且它的形式是ax + b = 0(a、b是常数,且a≠0)。
五、教学过程设计
1. 导入新课(5分钟)
目标: 引起学生对一元一次方程的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道一元一次方程是什么吗?它与我们的生活有什么关系?”
展示一些关于一元一次方程的应用场景,如购物时计算价格等,让学生初步感受一元一次方程的魅力和实用性。
简短介绍一元一次方程的基本概念和重要性,为接下来的学习打下基础。
其次,在讲解一元一次方程的基础知识时,我使用了图表和示意图来帮助学生理解,但是有些学生仍然感到难以理解。为了改善这种情况,我计划在未来的教学中增加一些实例或案例,通过具体的例子来解释一元一次方程的组成部分和功能,帮助学生更好地理解和掌握一元一次方程的知识。
再次,在分析一元一次方程的案例时,我发现有些学生对案例的理解不够深入。为了改善这种情况,我计划在未来的教学中增加一些小组讨论环节,让学生分组讨论案例的背景、特点和意义,通过小组合作来加深学生对一元一次方程的理解和应用。
词:未知数、系数、常数项、一般形式。
句:一元一次方程是只含有一个未知数的一次方程,它的形式是ax + b = 0(a、b是常数,且a≠0)。
② 解决一元一次方程的步骤和技巧
重点知识点:移项、合并同类项、化简。
词:移项、合并同类项、化简。
句:解一元一次方程的步骤是移项、合并同类项、化简。
七年级数学 第三章 一元一次方程 3.1 从算式到方程 3.1.1 一元一次方程复习
12/8/2021
第二十三页,共二十六页。
15.某学校七年级四个班为“希望工程”捐款的情况为:七(1)班捐的钱数是 四个班的捐款总和的16;七(2)班捐的钱数是四个班的捐款总和的13;七(3)班捐的钱 数是四个班的捐款总和的14;七(4)班捐了 169 元.求这四个班捐款的总和.若设这 四个班捐款的总和为 x 元,那么你能列出方程吗?并检验 x=676 是不是所列方程 的解.
12/8/2021
第二十页,共二十六页。
12.[2017·永州]x=1 是关于 x 的方程 2x-a=0 的解,则 a 的值是( B )
A.-2
B.2
C.-1
D.1
【解析】 把 x=1 代入方程 2x-a=0,得 2-a=0,解得 a=2.
12/8/2021
第二十一页,共二十六页。
13.已知(a-2)x2+ax+1=0 是关于 x 的一元一次方程,求这个方程的解. 解:由一元一次方程的概念知 a-2=0, 解得 a=2, 故原方程可化为 2x+1=0, 解得 x=-12.
方程中以确定其是不是方程的解.
12/8/2021
第八页,共二十六页。
类型之三 列方程 根据下列条件列出方程:
(1)某数与 8 的和的 6 倍是 45; (2)某数的 36%减去 19 的值比这个数大 7; (3)某煤矿预计今年比去年增产 15%,达到年产煤 60 万吨,求去年产煤多少 万吨.
12/8/2021
A.x-2y=4
B.xy=4
C.3y-1=4
D.1x-4 4
12/8/2021
第十五页,共二十六页。
2.[2017·阜新]在“爱护环境,建我家乡”的活动中,七(1)班学生回收饮料瓶
中考数学一轮复习 基础考点专题03一元一次方程(含解析)-人教版初中九年级全册数学试题
专题03 一元一次方程【思维导图】、【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。
注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。
2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。
方程的概念:含有未知数的等式叫做方程。
特征:它含有未知数,同时又是—个等式。
一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。
方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。
一元方程的解又叫根。
1.(2017·某某中考模拟)设某数是x,若比它的2倍大3的数是8,可列方程为()A.2x–3=8 B.2x+3=8C.12x–3=8 D.12x+3=8【详解】试题解析:根据文字表述可得到其等量关系为:x的2倍+3=8,根据此列方程:2x+3=8.故选B.2.(2018·某某中考真题)用代数式表示:a的2倍与3 的和.下列表示正确的是()A.2a-3 B.2a+3 C.2(a-3) D.2(a+3)【详解】“a的2倍与3 的和”是2a+3.故选:B.3.(2018·某某中考模拟)下列各方程中,是一元一次方程的是()A.x﹣2y=4 B.xy=4 C.3y﹣1=4 D.【详解】各方程中,是一元一次方程的是3y-1=4, 故选C .考查题型一 一元一次方程概念的应用1.(2019·某某中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C .2.(2019·某某中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=, 解得:x 2=或x 2=-, 当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.3.(2017·某某某某纪念中学中考模拟)若方程120k kx ++=是关于x 的一元一次方程,则k =___________. 【详解】根据一元一次方程的特点可得:011k k ≠⎧⎨+±⎩=,解得:k=-2.故答案是:-2.考查题型二 利用方程的解求待定字母的方法1.(2019·某某中考模拟)已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4 D .5∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选:D .2.(2019·某某中考模拟)若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4 B .4C .﹣8D .8【详解】根据方程的解,把x=1代入2x+m-6=0可得2+m-6=0,解得m=4. 故选:B.3.(2019·某某中考模拟)已知7x =是方程27x ax -=的解,则a =( ) A .1 B .2C .3D .7【详解】解:∵x =7是方程2x ﹣7=ax 的解, ∴代入得:14﹣7=7a , 解得:a =1, 故选:A .4.(2019·某某中考模拟)若11x m=-是方程mx ﹣2m +2=0的根,则x ﹣m 的值为( ) A .0 B .1 C .﹣1D .2【详解】 解:把x =1﹣1m 代入方程得:m (1﹣1m)﹣2m +2=0, 解得:m =1, ∴x =0,∴x ﹣m =0﹣1=﹣1, 故选C .5.(2019·某某中考模拟)若x =2是关于x 的一元一次方程ax -2=b 的解,则3b -6a +2的值是( ). A .-8B .-4C .8D .4把x=2代入ax-2=b,得2a- 2= b.所以3b-6a=-6.所以,3b-6a+2=-6+2=-4.故选B.知识点二等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
中考数学冲刺班复习资料 代数部分第三章 方程和方程组
第三章:方程和方程组一、基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程 1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0) (2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0) (3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根; 当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解; 当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:ab x x -=+21,ac x x =⋅21 (6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
七年级数学上册必刷知识点【3.1 从算式到方程】(原卷版)
2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)第3章《一元一次方程》3.1 从算式到方程1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.知识点1:方程的有关概念1.定义:含有的等式叫做方程.细节剖析:判断一个式子是不是方程,只需看两点:一.是;二.是含有.2.方程的解:使方程左右两边的值的未知数的值,叫做方程的解.细节剖析:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中的值;②将它(或它们)分别代入方程的和,若左边右边,则它们是方程的,否则不是.3.解方程:求方程的的过程叫做解方程.4.方程的两个特征:(1).方程是;(2).方程中必须含有(或).知识点2:一元一次方程的有关概念定义:只含有一个(元),并且未知数的次数都是,这样的方程叫做一元一次方程.要点诠释:“元”是指,“次”是指未知数的,一元一次方程满足条件:①首先是一个 ;②其次是必须只含有一个 ;③未知数的指数是 ;④分母中不含有.知识点3:等式的性质1.等式的概念:用符号“=”来表示的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍 .即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍 .即:如果,那么;如果,那么.细节剖析:(1)根据等式的两条性质,对等式进行,等式两边必须同时进行完全的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式 ;(3) 等式的性质2中等式两边都除以时,这个除数不能为.。
七年级数学 第3章 一元一次方程 3.1 从算式到方程 3.1.1一元一次方程1
含有未知数的等式叫做(jiàozuò)方程.
①
②
判断(pànduàn)下列各式是不是方程,是的打“√”,不是的打 “x”。
(1) -2+5=3 ( x)
(3) 2a+b (5) χ+y=8
( x) ( √)
提前1小时走的路程。等量关系:已用时间+再用时间=检修时间.。列方程:0.52x- (1- 0.52)x=80。(1)怎样将一个实际问题转化(zhuǎnhuà)为方程问题。归纳
Image
12/9/2021
第二十一页,共二十一页。
X=420是
12/9/2021
x 60
x 70
方1 程的解吗?
第十七页,共二十一页。
χ=2判0断00一是个方数程值0.是52不χ 是-(方1-程0.的52解)χ =80的 解的吗步?骤:
1.将数值(shùzí)代入方程左边进行计算,
2.将数值代入方程右边进行(jìnxíng)计算,
3. 若左边=右边,则是方程(fāngchéng)的解,反之,则
(2)(3)是一元(yī yuán)一次方程.
12/9/2021
第十二页,共二十一页。
精练(jīngliàn)精讲,重难突破
1、 练习:根据下列问题,找出等量关系,设未知数,列出方 程,并指出是不是一元一次方程:
(1)环形跑道一周长400 m,沿跑道跑多少周,可以跑3 000 m?
(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用9 元钱买 了两种铅笔共20 支,两种铅笔各买了多少支?
路程关系中找到等量关系,从而列出方程吗?
第三章 一元一次方程
第三章一元一次方程
一、从算式到方程
1. 方程与方程的解
(1)含有未知数的等式叫做方程。
方程有两个要素:
①含有未知数。
②方程是一个等式。
(2)解方程与方程的解:
解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解。
2. 一元一次方程
(1)定义:只含有一个未知数,且未知数的次数是1,系数不等于0的方程是一元一次方程。
(2)满足条件:
①只有一个未知数;
②未知数的次数为1;
③未知数的系数不等于0.
(3)表达式:()
=≠.
ax b a
+=≠或()0
ax b a
00
3. 等式的性质
二、解一元一次方程
解一元一次方程的步骤:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从算式到方程
一、导入新课
•Why——为什么要学习方程?
•What——方程是什么?
•How——怎么学习?
先学习如何解方程,再谈应用
〖问题1 〗汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米. 王家庄到翠湖的路程有多远?
方法1:
方法2:
〖问题2 〗希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是,儿子只活了他父亲全部生命的一半;儿子死后,他又在极度的悲伤中度过了四年,也与世长辞了。
”根据以上的信息,请你计算出丢番图的寿命. 方法1:
方法2:
〖问题3〗李白街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,问原来有多少斗酒?
方法1:
方法2:
二、基本概念
1、方程的有关概念:含有未知数的等式叫做方程.
例1、下列(1)至(6)的式子中,哪些是方程?
哪些是等式?
(1) y=2x (2) 3x2-4x+5=0
(3) (4) 3a-a=2a(a是常数)
(5) 5x+7- (6) m+1=0.
2、能使方程左、右两边式子的值相等的未知数的值叫做方程的解. 例2、已知方程,试确定下列各数
,谁是此方程的解?
例3、已知x=3是方程2x+(m-1)x=6的解,求m的值.
3、求方程的解的过程或说明方程无解的过程叫做解方程.
例4、解方程:
4、一元一次方程的有关概念
(1)、只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根.
例如:(1) x2-x-2=0是一元方程,它的根是x1=2, x2=-1;
(2) 是一元方程,它的根是x=-6;
(3) 是一元方程,它的根是x1=-1, x2=-2;
(4) 2x+3y=7 不是一元方程.
(2)、在一个方程中,只含有一个未知数,并且未知数的次数是1(系数不为零)的方程叫做一元一次方程.
(3)、形如ax+b=0 (其中a≠0,a,b为已知数)的方程叫做一元一次方程的标准形式.
(4)、形如ax=b(其中a≠0,a,b为已知数)的方程叫做一元一次方程的最简形式.
例5、(1)若关于x的方程
是一元一次方程,求a的值.
(2)若关于x的方程是一元一次方程,求n的值.
三、解方程的依据——等式的性质
性质1:等号两边同时加上(或减去)同一个数(或式子),等号依然成立.
符号表示:a=b a±c=b±c.
性质2:等号两边同时乘以同一个数,或除以同一个不为零的数,等号依然成立. 符号表示:a=b ac=bc.
例6、判断正误:。