第八讲 多元函数的极值及其求法

合集下载

第八节多元函数的极值及其求法

第八节多元函数的极值及其求法
(12) 6 02 72 < 0
f (x, y)在点( 3, 0 )没有极值
在点( 3 , 2 )处, A fxx( 3 , 2 ) 12
B fxy ( 3 , 2 ) 0 C f yy (3,2 ) 6
(12) (6) 02 = 72 > 0 又 A 0
f (x, y)在点( 3 , 2 )有极大值 f (3 , 2 ) 31
(极小值) 的某个去心邻域内必有:
f(x,y)<f(x0,y0) 所以,在点(x0 ,y0)的某个邻域内,点(x0 ,y0 , f(x0 ,y0)) 为曲面的最高点.
(最低点)
定理1 (必要条件) 设函数z=f(x,y)在点(x0 ,y0)处具 有偏导数,且在点(x0 ,y0)有极值,则有:
f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0
fx (x0, y0) = [ f (x, y0) ]'|xx0 = 0
同理可证: f y (x0, y0) 0
说明
(1) 几何上,定理1意味着: 在曲面 z f (x, y) 上, 极值点 (x0, y0)所对应的点 (x0, y0, f (x0, y0)) 处的
切平面平行于 xoy 坐标平面.
(2) 定理1的逆命题不成立. 反例: f (x, y) xy, 经计算得: fx (0,0) 0, f y (0,0) 0 但 点 (0,0)不是 f (x, y) 的极值点.
(3) 使 fx (x, y) 0, f y (x, y) 0 同时成立的点
(x0, y0) 称为函数 z f (x, y) 的驻点.
z a2 2xy 2(x y)
代入V 的表达式,得
V xy a2 2xy 2(x y)

多元函数的极值及最大值

多元函数的极值及最大值

例5 求表面积为 a 而体积为最大的长方体 的体积 .
2
三、最小二乘法
作业:P70 1 5 8
要找函数z f ( x, y)在附加条件 ( x, y) 0 下的可能极值点,可以 先构成辅助函数 F ( x, y) f ( x, y) ( x, y) f x ( x, y ) x ( x, y ) 0 由: f y ( x, y ) y ( x, y ) 0 ( x, y ) 0
例3:某厂要用铁板做成一 个体积为2m 的有盖 长方形水箱 .问长、宽、高各取怎样 的尺 寸时,才能使用料最省 ?
例4:有一宽为 24cm的长方形铁板,把它两 边 折起来做成一个断面为 等腰梯形的水槽 . 问怎样折法才能使断面 的面积最大?
3
二、条件极值 拉格郎日乘数法
无条件极值 条件极值 拉格郎日乘数法
(1) AC B 2 0时具有极值,且当 A 0时有极大 值,当A 0时有极小值;
(2) AC B2 0时没有极值;
(3) AC B 2 0时可能有极值,也可能 没有极值, 还需另作讨论 . 3 3 2 2 例2:求函数f ( x, y) x y 3x 3 y 9x的极值 .
驻点:能使 f x ( x, y) 0, f y ( x, y) 0同时成立的点 .
可导:极值点 驻点. 驻点 ?极值点.
定理2(充分条件):设函数z f ( x, y )在点( x0 , y0 )的 某邻域内连续且有一阶 及二阶连续偏导数,又 f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0.令 f xx ( x0 , y0 ) A, f xy ( x0 , y0 ) B, f yy ( x0 , y0 ) C , 则f ( x, y )在( x0 , y0 )处是否取得极值的条件 如下:

多元函数极值及其求法

多元函数极值及其求法

§8.8 多元函数极值及其求法一、多元函数的极值1、多元函数极值定义设函数z f x y =(,)在点(,)x y 00的某个邻域内有定义,对该邻域内异于(,)x y 00的点(,)x y ,如果都适合不等式f x y f x y (,)(,)<00则称函数在点(,)x y 00取极大值;如果都适合不等式f x y f x y (,)(,)>00 则称函数在点(,)x y 00取极小值。

极大值与极小值统称为函数的极值;使函数取得极值的点称为极值点。

注:二元函数的极值是一个局部概念,这一概念很容易推广至元函数。

【例1】讨论下述函数在原点(,)00是否取得极值。

(1)、z x y =+22(2)、z x y =-+22(3)、z x y =⋅解:由它们的几何图形可知:z x y =+22是开口向上的旋转抛物面,在(,)00取得极小值;z x y =-+22是开口向下的锥面,在(,)00取得极大值;z x y =⋅是马鞍面, 在(,)00不取得极值。

2、函数取得极值的必要条件【定理一】设函数z f x y =(,)在点(,)x y 00具有偏导数且取得极值,则它在该点的偏导数必为零,即f x y f x y x y (,)(,)00000==【证明】不妨设z f x y =(,)在点(,)x y 00处有极大值。

依极值定义,点(,)x y 00的某一邻域内的一切点(,)x y 适合不等式f x y f x y (,)(,)<00特殊地,在该邻域内取y y =0,而x x ≠0的点,也应有不等式f x y f x y (,)(,)000<这表明:一元函数z f x y =(,)0在 x x =0处取得极大值,因而必有f x y x (,)000=同理可证f x y y (,)000=【注一】当f x y f x y x y (,)(,)00000==(,)x y 00时, 曲面在点处有切平面z z f x y x x f x y y y x y -=-+-=00000000(,)()(,)()此切平面平行于水平面xoy 面。

高等数学 第九章 第八节 多元函数的极值及其求法

高等数学 第九章 第八节  多元函数的极值及其求法

25
例8 求函数 f ( x , y , z) ln x ln y 3ln z 在球面
x2 y2 z2 5r2 ( x 0 , y 0 , z 0) 上的最 大值。
第九章 第八节
26
内容小结
多元函数的极值 (取得极值的必要条件、充分条件) 多元函数的最值 拉格朗日乘数法
第九章 第八节
解得唯一驻点 (6 , 4 , 2),
故最大值为 umax 63 42 2 6912
第九章 第八节
21
例7
在第一卦限内作椭球面
x2 a2
y2 b2
z c
2 2
1 的切
平面,使切平面与三个坐标面所围成的四面体体
积最小,求切点坐标。
解 设 P( x0 , y0 , z0 ) 为椭球面上一点,
6
6 x0 y0z0
在条件
x02 a2
y02 b2
z02 c2
1 下求
V
的最小值点
令 u ln x0 ln y0 ln z0
G( x0 , y0 , z0 )
ln
x0
ln
y0
ln z0
(
x02 a2
y02 b2
z02 c2
1)

G
x0
0 , Gy0
0 , Gz0
0
x02 a2
y02 b2
A
zxx
|P
1 2
z
,
B
zxy
|P
0
,
C
zyy
|P
2
1
z
AC
B2
1 (2 z)2
0 (z
2)
所以函数在
P

第八节多元函数的极值及其求法

第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。

重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。

难点:求最值实际问题建立模型,充分性判别法的证明。

作业:习题8-8(71P )3,5,8,9,10问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题.一.多元函数的极值定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值.函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点.例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点.例2.函数2243y x z +=在点)0,0(处有极小值.因为对任何),(y x 有0)0,0(),(=>f y x f .从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件.定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y .证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均有),(),(00y x f y x f <,),(),(00y x y x ≠成立.特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.这表明一元函数),(0y x f 在0x x =处取得极大值,因而必有0),(00=y x f x .类似地可证 0),(00=y x f y .几何解释若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为))(,())(,(0000000y y y x f x x y x f z z y x -+-=-是平行于xoy 坐标面的平面0z z =.类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要解方程组⎩⎨⎧==0),(0),(0000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ⋯⋯,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点.注意1.驻点不一定是极值点,如xy z =在)0,0(点.怎样判别驻点是否是极值点呢?下面定理回答了这个问题.定理2(充分条件)设函数),(y x f z =在点),(00y x 的某邻域内连续,且有一阶及二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则(1)当02>-B AC 时,函数),(y x f z =在点),(00y x 取得极值,且当0<A 时,有极大值00(,)f x y ,当0>A 时,有极小值00(,)f x y ;(2)当02<-B AC 时,函数),(y x f z =在点),(00y x 没有极值;(3)当02=-B AC 时,函数),(y x f z =在点),(00y x 可能有极值,也可能没有极值,还要另作讨论.求函数),(y x f z =极值的步骤:(1)解方程组0),(00=y x f x ,0),(00=y x f y ,求得一切实数解,即可求得一切驻点),(),(),,(2211n n y x y x y x ⋯⋯;(2)对于每一个驻点),(i i y x (1,2,)i n =,求出二阶偏导数的值C B A ,,;(3)确定2B AC -的符号,按定理2的结论判定),(i i y x f 是否是极值,是极大值还是极小值;(4)考察函数),(y x f 是否有导数不存在的点,若有加以判别是否为极值点.例3.考察22y x z +-=是否有极值.解 因为22y x x x z +-=∂∂,22y x y y z +=∂∂在0,0==y x 处导数不存在,但是对所有的)0,0(),(≠y x ,均有0)0,0(),(=<f y x f ,所以函数在)0,0(点取得极大值.注意2.极值点也不一定是驻点,若对可导函数而言,怎样?例4.求函数x y x y x y x f 933),(2233-++-=的极值.解 先解方程组⎪⎩⎪⎨⎧=+-==-+=063096322y y f x x f y x ,求得驻点为)2,3(),0,3(),2,1(),0,1(--, 再求出二阶偏导函数66+=x f xx ,0=xy f ,66+-y f yy .在点)0,1(处,0726122>=⨯=-B AC ,又0>A ,所以函数在点)0,1(处有极小值为5)0,1(-=f ;在点)2,1(处,0722<-=-B AC ,所以)2,1(f 不是极值;在点)0,3(-处,0722<-=-B AC ,所以)0,3(-f 不是极值;在点)2,3(-处,0722>=-B AC ,又0<A ,所以函数在点)2,3(-处有极大值为31)2,3(=-f .二.函数的最大值与最小值求最值方法:⑴ 将函数),(y x f 在区域D 内的全部极值点求出;⑵ 求出),(y x f 在D 边界上的最值;即分别求一元函数1(,())f x x ϕ,2(,())f x x ϕ的最值;⑶ 将这些点的函数值求出,并且互相比较,定出函数的最值.实际问题求最值根据问题的性质,知道函数),(y x f 的最值一定在区域D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最值.例4.求把一个正数a 分成三个正数之和,并使它们的乘积为最大.解 设y x ,分别为前两个正数,第三个正数为y x a --,问题为求函数 )(y x a xy u --=在区域D :0>x ,0>y ,a y x <+内的最大值. 因为)2()(y x a y xy y x a y xu --=---=∂∂,)2(x y a x y u --=∂∂, 解方程组⎩⎨⎧=--=--0202x y a y x a ,得3a x =,3a y =. 由实际问题可知,函数必在D 内取得最大值,而在区域D 内部只有唯一的驻点,则函数必在该点处取得最大值,即把a 分成三等份,乘积3)3(a最大.另外还可得出,若令y x a z --=,则33)3()3(z y x a xyz u ++=≤= 即 33z y x xyz ++≤. 三个数的几何平均值不大于算术平均值.例5.由一宽为cm 24的长方形铁板,把它两边折起来做成一断面为等腰梯形的水槽,问怎样折法才能使断面的面积最大?解 设折起来的边长为xcm ,倾斜角为α,那么梯形断面的下底长为x 224-,上底长为αcos 2224x x +-,高为αsin x ,则断面面积ααsin )224cos 2224(21x x x x A ⋅-++-=即 ααααcos sin sin 2sin 2422x x x A +-=,D :120<<x ,02πα<≤,下面是求二元函数),(αx A 在区域 D :120<<x ,02πα<≤上取得最大值的点),(αx . 令 ⎩⎨⎧=-+-==+-=0)sin (cos cos 2cos 240cos sin 2sin 4sin 242222αααααααααx x x A x x A x由于0sin ≠α,0≠x 上式为2122cos 0(1)24cos 2cos (2cos 1)0(2)x x x x αααα-+=⎧⎨-+-=⎩将212cos x x α-=代入(2)式得8x =,再求出1cos 2α=,则有0603==πα,于是方程组的解是0603==πα,cm x 8=. 在考虑边界,当2πα=时,函数2224x x A -=为x 的一元函数,求最值点,由0424=-='x A x,得 6=x . 所以722sin 622sin 624)2,6(2=⨯-⨯=πππA ,833483cos 3sin 83sin 823sin 824)3,8(22≈=+⨯-⨯=πππππA . 根据题意可知断面面积的最大值一定存在,并且在区域D :120<<x ,20πα<<内取得,通过计算得知2πα=时的函数值比060=α,cm x 8=时函数值为小,又函数在D 内只有一个驻点,因此可以断定,当cm x 8=,060=α时,就能使断面的面积最大.三.条件极值,拉格朗日乘数法引例 求函数22y x z +=的极值.该问题就是求函数在它定义域内的极值,前面求过在)0,0(取得极小值;若求函数22y x z +=在条件1=+y x 下极值,这时自变量受到约束,不能在整个函数定义域上求极值,而只能在定义域的一部分1=+y x 的直线上求极值,前者只要求变量在定义域内变化,而没有其他附加条件称为无条件极值,后者自变量受到条件的约束,称为条件极值.如何求条件极值?有时可把条件极值化为无条件极值,如上例从条件中解出x y -=1,代入22y x z +=中,得122)1(222+-=-+=x x x x z 成为一元函数极值问题,令024=-='x z x ,得21=x ,求出极值为21)21,21(=z . 但是在很多情形下,将条件极值化为无条件极值并不这样简单,我们另有一种直接寻求条件极值的方法,可不必先把问题化为无条件极值的问题,这就是下面介绍的拉格朗日乘数法.利用一元函数取得极值的必要条件.求函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件.若函数),(y x f z =在00(,)x y 取得所求的极值,那么首先有00(,)0x y ϕ=.假定在00(,)x y 的某一邻域内函数),(y x f z =与均有连续的一阶偏导数,且00(,)0y x y ϕ≠. 有隐函数存在定理可知,方程0),(=y x ϕ确定一个单值可导且具有连续导数的函数()y x ψ=,将其代入函数),(y x f z =中,得到一个变量的函数(,())z f x x ψ=于是函数),(y x f z =在00(,)x y 取得所求的极值,也就是相当于一元函数(,())z f x x ψ=在0x x =取得极值.由一元函数取得极值的必要条件知道000000(,)(,)0x y x x x x dz dy f x y f x y dx dx ===+=, 而方程0),(=y x ϕ所确定的隐函数的导数为00000(,)(,)x x x y x y dydx x y ϕϕ==-. 将上式代入00000(,)(,)0x y x x dyf x y f x y dx =+=中,得00000000(,)(,)(,)0(,)x x y y x y f x y f x y x y ϕϕ-=, 因此函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件为0000000000(,)(,)(,)0(,)(,)0x x y y x y f x y f x y x y x y ϕϕϕ⎧-=⎪⎨⎪=⎩.为了计算方便起见,我们令0000(,)(,)y y f x y x y λϕ=-,则上述必要条件变为0000000000(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λϕλϕϕ+=⎧⎪+=⎨⎪=⎩,容易看出,上式中的前两式的左端正是函数),(),(),(y x y x f y x F λϕ+=的两个一阶偏导数在00(,)x y 的值,其中λ是一个待定常数.拉格朗日乘数法求函数),(y x f z =在条件0),(=y x ϕ下的可能的极值点.⑴ 构成辅助函数),(),(),(y x y x f y x F λϕ+=,(λ为常数)⑵ 求函数F 对x ,对y 的偏导数,并使之为零,解方程组⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ得λ,,y x ,其中y x ,就是函数在条件0),(=y x ϕ下的可能极值点的坐标;⑶ 如何确定所求点是否为极值点?在实际问题中往往可根据实际问题本身的性质来判定.拉格朗日乘数法推广求函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的可能的极值点. 构成辅助函数12(,,,)(,,,)(,,,)(,,,)F x y z t f x y z t x y z t x y z t λϕλψ=++其中21,λλ为常数,求函数F 对z y x ,,的偏导数,并使之为零,解方程组121212120000(,,,)0(,,,)0x x x y yy z z z t t t f f f f x y z t x y z t λϕλψλϕλψλϕλψλϕλψϕψ++=⎧⎪++=⎪⎪++=⎪⎨++=⎪⎪=⎪=⎪⎩得z y x ,,就是函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的极值点. 注意:一般解方程组是通过前几个偏导数的方程找出,,x y z 之间的关系,然后再将其代入到条件中,即可以求出可能的极值点.例6.求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱长分别为z y x ,,,则问题是在条件0222),,(2=-++=a xz yz xy z y x ϕ下,求函数xyz v = )0,0,0(>>>z y x 的最大值.构成辅助函数)222(),,(2a xz yz xy xyz z y x F -+++=λ,求函数F 对z y x ,,偏导数,使其为0,得到方程组 ⎪⎪⎩⎪⎪⎨⎧=-++=++=++=++02220)(20)(20)(22a xz yz xy y x xy z x xz z y yz λλλ)4()3()2()1( 由)1()2(,得 z y z x y x ++=, 由 )2()3( , 得 zx y x z y ++=, 即有, ()(),x y z y x z x y +=+= ,()(),y x z z x y y z +=+=,可得z y x ==,将其代入方程02222=-++a xz yz xy 中,得 a z y x 66===. 这是唯一可能的极值点,因为由问题本身可知最大值一定存在,所以最大值就是在这可能的极值点处取得,即在表面积为2a 的长方体中,以棱长为a 66的正方体的体积为最大,最大体积为3366a v =. 例7.试在球面2224x y z ++=上求出与点(3,1,1)-距离最近和最远的点.解 设(,,)M x y z 为球面上任意一点,则到点(3,1,1)-距离为d =但是,如果考虑2d ,则应与d 有相同的最大值点和最小值点,为了简化运算,故取 2222(,,)(3)(1)(1)f x y z d x y z ==-+-++,又因为点(,,)M x y z 在球面上,附加条件为222(,,)40x y z x y z ϕ=++-=.构成辅助函数(,,)F x y z 222(3)(1)(1)x y z =-+-++222(4)x y z λ+++-.求函数F 对z y x ,,偏导数,使其为0,得到方程组 2222(3)202(1)202(1)204x x y y z z x y z λλλ-+=⎧⎪-+=⎪⎨++=⎪⎪++=⎩)4()3()2()1( 从前三个方程中可以看出,,x y z 均不等于零(否则方程两端不等),以λ作为过渡,把这三个方程联系起来,有311x y z x y z λ--+-===或311x y z--==, 故3,x z y z =-=-,将其代入2224x y z ++=中,得222(3)()4z z z -+-+=,求出z =,再代入到3,x z y z =-=-中,即可得 11x =,11y =,从而得两点(,, 对照表达式看出第一个点对应的值较大,第二个点对应的值较小,所以最近点为,最远点为(.思考题1.若二元函数),(y x f z =在某区域内连续且有唯一的极值点,那么这个点就是函数在该区域上的最大值点或最小值点吗?2.利用拉格朗日乘数法求函数),,(z y x f u =在条件0),,(,0),,(==z y x z y x ψϕ下极值的方法是怎样的?。

多元函数极值-文档资料

多元函数极值-文档资料
第八节 多元函数的极值及其求法
一、多元函数的极值 二、最值应用问题
第八章
三、条件极值
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉
1
一、 多元函数的极值
定义: 若函数 z 的某邻域内有 f ( x , y ) 在点 ( x , y ) 0 0
f ( x , y ) f ( x , y )( 或 f ( x , y ) f ( x , y )) 0 0 0 0
A
B
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉
C
6
3 3 2 2 2在点(0,0) 例2.讨论函数 zx y 及 z ( x y ) 是否取得极值.
解: 显然 (0,0) 都是它们的驻点 , 并且在 (0,0) 都有
AC B 0
3 3在(0,0)点邻域内的取值
2
zx y o 正 x 可能为 负 , 因此 z(0,0) 不是极值. 0 2 22 2 2 ( x y ) z (0,0) 0 当 x y 0 时 , z
2
B 0 2) 当 AC 时, 没有极值.
2 3) 当 AC 时, 不能确定 , 需另行讨论. B 0
2
证明见 第九节(P65) .
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉 4
3 3 2 2 例1. 求函数 f 的极值. ( x , y ) x y 3 x 3 y 9 x
不是极值; f( 3 ,0 ) AC B 12 6 0 , 在点(3,2) 处 A 12 , B 0 , C 6
2
2 A0 , AC B 12 ( 6 ) 0 ,
为极大值. f( 3 , 2 ) 31

第八节 多元函数的极值及其求法

第八节 多元函数的极值及其求法
第八节 多元函数的极值及其求法
一、多元函数的极值
第九章
二、最值应用问题
三、条件极值
目录
上页
下页
返回
结束
一、 多元函数的极值
定义 设A是一个n n对称矩阵, 即aij a ji , i , j 1,2,..., n.
a11 a21 A a n1
n n i 1 j 1
0
0
得驻点 ( 3 2 , 3 2 )
根据实际问题可知最小值在定义域内应存在, 因此可 断定此唯一驻点就是最小值点. 即当长、宽均为 3 2
高为 3 23
2 2
3 2 时, 水箱所用材料最省.
目录 上页 下页 返回 结束
例4. 有一宽为 24cm 的长方形铁板 , 把它折起来做成 一个断面为等腰梯形的水槽, 问怎样折法才能使断面面 积最大. 解: 设折起来的边长为 x cm, 倾角为 , 则断面面积 1 为 ( 24 2 x 2 x cos ) x sin 2
x
目录
上页
下页
返回
结束
例1. 已知函数 则(
的某个邻域内连续, 且
A
)
(D) 根据条件无法判断点(0, 0)是否为f (x,y) 的极值点.
(2003 考研)
提示: 由题设
目录
上页
下页
返回
结束
定理1 (必要条件) 函数 偏导数, 且在该点取得极值 , 则有
存在
( x0 , y 0 ) 0 f x ( x0 , y0 ) 0 , f y
因而f 在点P 0不取到极值.
目录 上页 下页 返回 结束
实用判定条件 :
若函数 z f ( x, y) 在点( x0 , y0 )的某邻域内 具有一阶和二阶连续偏导数, 且

第八节 多元函数的极值及其求法

第八节 多元函数的极值及其求法
参数 称为拉格朗日乘子, 是一个待定常数.
28
多元函数的极值与拉格朗日乘数法
极值的必要条件 拉格朗日乘数法: 要找函数 zf(x,y)在条件
(x,y)0下的可能极值点, 先构造函数
L ( x ,y ) f ( x ,y ) ( x ,y )
其中 为某一常数, 可由
f x ( x ,y )x ( x ,y ) 0 ,
fy (x ,y )y (x ,y ) 0 ,
(x,y)0.
解出 x,y,,其中x, y就是可能的极值点的坐标.
29
多元函数的极值与拉格朗日乘数法
如何确定所求得的点是否为极值点 实际问题中, 可根据问题本身的性质来 判定. 非实际问题我们这里不做进一步的讨论. 拉格朗日乘数法可推广:自变量多于两个 的情况.
15
多元函数的极值与拉格朗日乘数法
注 由极值的必要条件知,极值只可能在驻点处
取得. 然而,如函数在个别点处的偏导数不存在, 这些点当然不是驻点, 但也可能是极值点.
如: 函数z x2 y2在点(0,0)处的偏导数
不存在,但函数在点(0,0)处都具有极大值. 在研究函数的极值时,除研究函数的驻点外, 还应研究偏导数不存在的点.
7
多元函数的极值与拉格朗日乘数法
推广 如果三元函数 u f ( x ,y ,z ) 在 P ( x 0 ,y 点 0 ,z 0 ) 具有偏导数, 则它在 P(x0,y0,z0)有极值的必要条件 为 fx(x 0,y 0,z0)0 , fy(x0,y0,z0)0,
fz(x 0,y0,z0)0 .
8
仿照一元函数, 凡能使一阶偏导数同时为零的 点,均称为函数的驻点.
注 驻点
极值点(偏导数存在)
如, 点 (0,0)是函 zx数 的 y驻点, 但不是极值点. 如何判定一个驻点是否为极值点

8-8第八节 多元函数的极值及其求法

8-8第八节  多元函数的极值及其求法
学 数
三 条 件 极 值
(1) 其中x,y,z须满足约束条件 xyz=2(米3) (2) 依题意,例6成为求(1)式满足条件(2)的最小值.这类附有
解条件极值问题的一个办法是化为无条件极值,即普通极值 问题.
高 等 数 学 电 子 教 案
例如由(2)得到z=2/xy,代入(1),象例6那样去解普通极值问题. 但是对于一般的条件φ(x,y,z)=0,解出其中的某个变量,有时 是复杂的,困难的,甚至是不可能的.例如,不能显化的隐函数 就是这样.下面我们介绍Lagrange乘数法是求解条件极值的 常用方法. 例如要求函数 u=f(x,y,z,t)
3
2
表面积为 6 3 4。
高 等 数 学 电 子 教 案
例7. 在已知的椭球面内一切内接的长方体(各边分别平行坐 标轴)中,求其体积最大的. 椭球面方程为
x2 y2 z2 + 2 + 2 =1 2 a b c
x2 y2 z 2 长方体体积为V = 8 xyz.而( x, y, z )必须满足 2 + 2 + 2 = 1. a b c
高 等 数 学 电 子 教 案
第八节 多元函数的极值及其求法
在实际问题中常常遇到多元函数的最值问题.在一元函 数的微分学中,我们曾经用导数求解极值和最值问题;现 在讨论如何利用偏导数来求多元函数的极值与最值,讨论 时以二元函数为例,其结论可类似地推广到三元及三元以 上的函数.
学 数
多元函数的极值及最大值,最小值 一. 多元函数的极值及最大值 最小值
高 等 数 学 电 子 教 案 二 最大值和最小值
由连续函数性质知,函数在有界闭区域D上连续,则函数在D上 一定有最大值和最小值.和一元函数一样,多元函数的最大值和 最小值可能在D内取得,也可能在D的边界上取得.因此,求可微 函数的最值的一般方法是:求出函数f(x,y)在D内所有的驻点处 的函数值及在D的边界上的最大值和最小值,把它们加以比较,

多元函数的极值及其求法

多元函数的极值及其求法

的梯度平行
引入辅助函数 L( x , y ) f ( x , y ) ( x , y )
则极值点满足:
拉格朗日 乘数法
推广
拉格朗日乘数法可推广到多个自变量和多个 约束条件的情形.
例如, 求函数 u f ( x, y, z ) 在条件 ( x, y, z ) 0 ,
( x, y, z ) 0下的极值.
( x , y ),
取 y y 0,则 f ( x , y ) f ( x , y ), 0 0 0
一元函数
d f ( x , y0 ) dx
x x0
f ( x , y 0 ) 在 x x 0 取得极大值 .
y
( x0 , y0 )

f x ( x0 , y0 ) 0.
2 2
2 2 2
的最大值和最小值.
0, 0,
解: 由 zx
zy
得驻点(
( x y 1) 2 x ( x y ) ( x y 1)
2 2 2 2
( x y 1) 2 y ( x y ) ( x y 1)
2 2 2
1 2
,
1
)和 (
1 2
f x ( x 0 , y 0 ) 0 , f y ( x 0 , y 0 ) 0 .(驻点)
多元函数的极值点如果有偏导数则必是驻点.
证:
不 妨 设 z f ( x , y )在 点 ( x 0 , y0 ) 处 有 极 大 值 ,
则对于 ( x 0 , y 0 )的某个邻域内的所有点 都有 f ( x , y ) f ( x 0 , y 0 ),
A f xx ( x 0 , y 0 ) , B f xy ( x 0 , y 0 ) , C f yy ( x 0 , y 0 ),

多元函数的极值及其求法(精)

多元函数的极值及其求法(精)
求出实数解,得驻点.
第二步
对于每一个驻点
(
x 0
,
y 0
)

求出二阶偏导数的值 A、B、C.
第三步 定出 AC - B 2 的符号,再判定是否是极值.
2005.5
湖北经济学院数学教研室
3、多元函数的最值
与一元函数相类似,我们可以利用函数的极值来求 函数的最大值和最小值.
求最值的一般方法: 将函数在D内的所有驻点处的函数值及在D的边界
都有
f
(x,
y) <
f (x , 0
y0 ),
2005.5
湖北经济学院数学教研室
故当 y = y0, x x0时,有 f ( x, y0 ) < f ( x0 , y0 ),
说明一元函数 f ( x, y0 )在 x = x0处有极大值,
必有 f x ( x0 , y0 ) = 0;
类似地可证 f y ( x0 , y0 ) = 0.
l j (x, y,z,t) + l y (x, y,z,t)
1
2
其中
l 1
,
l
2 均为常数,可由偏导数为零及条件解出
x , y , z , t ,即得极值点的坐标.
2005.5
湖北经济学院数学教研室
例7 求表面积为 a 2 而体积为最大的长方体的体积。 解 设长方体的三棱长为 x, y, z, 则问题就是在条件下
+
z0 c2
(z
-
z0 )
=
0,
化简为
x x0 a2
+
y y0 b2
+
z z0 c2
= 1,
该切平面在三个轴上的截距各为

08-多元函数的极值及其求法课件

08-多元函数的极值及其求法课件

多元函数的极值及其求法多元函数的极值多元函数的最大值、最小值条件极值拉格朗日乘数法多元函数的极值定义 设函数()z f x y =,的定义域为D ,()000,P x y 则称函数在点()00,x y 有极大值(或极小值) ()00,f x y为D 的内点,若存在0P 的某个邻域()0U P D ⊂,如果对于该邻域内任何异于0P 的点(),x y , 都有()()00,,f x y f x y < (或()()00,,f x y f x y >),极大值、极小值统称为极值. 使函数取得极值的点称为极值点.例 函数2234z x y =+在点(0,0)处有极小值.()0,00z =, 例 函数22y x z +-=在点(0, 0)处有极大值.当()(),0,0x y ≠时, 0z >.=在点(0,0)处既不取得极大值也不取得极小例函数z xy值.()0,00z=,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点.设n 元函数()u f P =在点0P 的某一邻域内有定义,如果对于该邻域内任何异于0P 的点P , 都有则称函数()fP 在点0P 有极大值(或极小值)()0f P .()()0f P f P < (或()()0f P f P >),定理1(必要条件) 设函数()z f x y =,在点()00,x y 具 有偏导数, 且在点()00,x y 处有极值, 则有()00,0x f x y =, ()00,0y f x y =.不妨设()z f x y =,在点()00,x y 处有极大值. 证 依极大值的定义, 对于点()00,x y 的某邻域内异于()00,x y 的点(),x y , 都有不等式特殊地, 在该邻域内取0y y =而0x x ≠的点,也应有()()00,,f x y f x y <()()000,,f x y f x y <这表明一元函数()0,f x y 在0x x =处取得极大值,因而有()00,0x f x y =.类似地可证()00,0y f x y =.从几何上看, 这时如果曲面()z f x y =,在点()000,,x y z 处有切平面, 则切平面()()()()0000000,,x y z z f x y x x f x y y y -=-+-成为平行于xoy 坐标面的平面0z z =.凡是能使()00,0xf x y =, ()00,0y f x y =同时成立的点()00,x y 称为函数()z f x y =,的驻点.具有偏导数的函数的极值点必定是驻点.但函数的驻点不一定是极值点.例如, 函数z xy =在点 (0,0)处的两个偏导数都是零, 但(0,0)不是极值点.定理2(充分条件) 设函数()z f x y =,在点()00,x y 的某邻域内连续且有一阶及二阶连续偏导数,又()00,0x f x y =, ()00,0y f x y =,令()00,xx f x y A =, ()00,xy f x y B =, ()00,yy f x y C =则()f x y ,在()00,x y 处是否取得极值的条件如下:(2)20AC B -<时没有极值;(1) 20AC B ->时具有极值, 且当0A <时有极大值,当0A >时有极小值;(3) 20AC B -=时可能有极值, 也可能没有极值.极值的求法: 第一步 解方程组求得一切实数解, 即可得一切驻点.第二步 对于每一个驻点()00,x y , 求出二阶偏导数的 ()00,0x f x y =, ()00,0y f x y =,值A 、B 和C .第三步 定出2AC B -的符号, 按定理2的结论判定()00,f x y 是否是极值、是极大值 还是极小值.例 求函数()3322,339f x y x y x y x =-++-的极值.解 解方程组⎩⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f yx 得驻点为()1,0、()1,2、()3,0-、()3,2-.求得1,3x =- ; 0,2y =再求出二阶偏导数(),66xx f x y x =+,(),0xy f x y = ,(),66yy f x y y =-+.在点()1,0处,21260AC B -=⋅>, 又0A >,所以函数在()1,0处有极小值()1,05f =-;在点()1,2处, ()21260AC B -=⋅-<,所以()1,2f 不是极值;所以()3,0f -不是极值;所以函数在()3,2-处有极大值()3,231f -=.在点()3,0-处, 21260AC B -=-⋅<,在点()3,2-处,()21260AC B -=-⋅->, 又0A <,不是驻点也可能是极值点.例如,函数220,0处有极大值,=-+在点()z x y0,0不是函数的驻点.但()多元函数的最大值、最小值如果()f x y ,在有界闭区域D 上连续, 则()f x y ,在 D 上必定能取得最大值和最小值.假定函数在D 上连续、在D 内可微分且只有有限个驻 点, 如果函数在D 的内部取得最大值(最小值), 那么这个 最大值(最小值)也是函数的极大值(极小值).求最大值和最小值的一般方法将函数()f x y ,在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较, 其中最大的就是最大 值, 最小的就是最小值.实际问题中如果根据问题的性质, 知道函数()f x y , 的最大值(最小值)一定在D 的内部取得, 而函数在D 内 只有一个驻点, 那么可以肯定该驻点处的函数值就是函数 ()f x y ,在D 上的最大值(最小值).例 某厂要用铁板做成一个体积为38m 的有盖长方体水箱.问当长、宽、高各取多少时, 才能使用料最省.解 设水箱的长为x , 宽为y , 则其高应为xy8. 此水箱所用材料的面积为)0 ,0( )88(2)88(2>>++=⋅+⋅+=y x yx xy xy x xy y xy A令0)8(22=-=x y A x , 0)8(22=-=yx A y , 得2x =, 2y =.当水箱的长为2m 、宽为2m 、高为82m 22=⋅时, 水箱所用的材料最省.条件极值拉格朗日乘数法例如, 对自变量有附加条件的极值称为条件极值.求表面积为2a 的长方体的最大体积.设长方体的三棱的长为x y z 、、, 则体积V xyz =.x y z 、、还必须满足附加条件22()xy yz xz a ++=.由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 有些条件极值问题可以化为无条件极值问题.例如, 求表面积为2a 的长方体的最大体积.函数()z f x y =,在条件()0x y ϕ=,下取得极值的必要 条件.如果函数()z f x y =,在()00,x y 取得所求的极值, 则()00,0x y ϕ=.假定在()00,x y 的某一邻域内()f x y ,与()x y ϕ,均有连续的一阶偏导数, 将其代入目标函数()z f x y =,, 得的函数()y x ψ=, 定理, 由方程()0x y ϕ=,确定一个连续且具有连续导数而()00,0y x y ϕ≠. 由隐函数存在一元函数()()z f x x ψ=,.0x x =是一元函数()()z f x x ψ=,的极值点,由取得极值的必要条件, 有即()()0000d d ,,0d d x y x x x x z yf x y f x y xx--=+=()()()()00000000,,,0,x x y y x y f x y f x y x y ϕϕ-=设λϕ-=),(),(0000y x y x f y y , 则函数()z f x y =,在条件 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ ()0x y ϕ=,下在()00,x y 取得极值的必要条件是拉格朗日乘数法要找函数()z f x y =,在条件()0x y ϕ=,下的可能极值点, 可以先构成辅助函数()()()L x y f x y x y λϕ=+,,,其中λ为某一常数. 然后解方程组(,)(,)(,)0(,)(,)(,)0(,)0L x y f x y x y x x x L x y f x y x y y y y x y λϕλϕϕ⎧=+=⎪=+=⎨⎪=⎩ 由这方程组解出,x y 及λ, 则其中(),x y 就是所要求的可能的极值点.此方法可以推广到自变量多于两个而条件多于一个的情形.例 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱的长为x y z 、、, 构成辅助函数解方程组()()2,222L x y z xyz xy yz xz a λ=+++-,(,,)2()0(,,)2()0(,,)2()02222L x y z yz y z x L x y z xz x z y L x y z xy y x z xy yz xz aλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩ 得a z y x 66===, 这是唯一可能的极值点. 最大值就在这个可能的值点处取得. 此时3366a V =.。

第八节多元函数的极值及其求法

第八节多元函数的极值及其求法

第 八 节 多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题.熟练使用拉格朗日乘数法求条件极值.教学重点:多元函数极值的求法.教学难点:利用拉格朗日乘数法求条件极值.教学内容:一、 多元函数的极值及最大值、最小值1.多元函数的极值定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <(或),(),(00y x f y x f >)则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y (或极小值),(00y x f ).极大值、极小值统称为极值.使函数取得极值的点称为极值点.例1 函数2243y x z +=在点(0,0)处有极小值.因为对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零.从几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面2243y x z +=的顶点.例2 函数22y x z +-=在点(0,0)处有极大值.因为在点(0,0)处函数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负,点(0,0,0)是位于xOy 平面下方的锥面22y x z +-=的顶点. 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值.因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点.定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零:0),(,0),(0000==y x f y x f y x证 不妨设),(y x f z =在点),(00y x 处有极大值.依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f <在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y <.这表明一元函数0(,)f x y 在0x x =处取得极大值,因此必有 0),(00=y x f x .类似地可证 0),(00=y x f y .从几何上看,这时如果曲面),(y x f z =在点),,(000z y x 处有切平面,则切平面))(,())(,(0000000y y y x f x x y x f z z y x -+-=-成为平行于xOy 坐标面的平面00=-z z .凡是能使0),(,0),(==y x f y x f y x 同时成立的点),(00y x 称为函数),(y x f z =的驻点,从定理1可知,具有偏导数的函数的极值点必定是驻点.但是函数的驻点不一定是极值点,例如,点(0,0)是函数的驻点,但函数在该点并无极值.怎样判定一个驻点是否是极值点呢?定理2(充分条件) 设函数在点的某邻域内连续且有一阶及二阶连续偏导数,又,令则在处是否取得极值的条件如下:(1)时具有极值,且当时有极大值,当时有极小值;(2)时没有极值;(3)时可能有极值,也可能没有极值,还需另作讨论.利用定理1、2,我们把具有二阶连续偏导数的函数的极值的求法叙述如下:第一步 解方程组,求得一切实数解,即可以得到一切驻点.第二步 对于每一个驻点,求出二阶偏导数的值,和.第三步 定出的符号,按定理2的结论判定是否是极值、是极大值还是极小值.例1 求函数的极值.解 先解方程组求得驻点为(1,0)、(1,2)、(-3,0)、(-3,2).再求出二阶偏导数(,)66,(,)0,(,)66xx xy yy f x y x f x y f x y y =+==-+在点(1,0) 处,06122>⋅=-B AC 又0>A ,所以函数在(1,0)处有极小值(1,0)5f =-;在点(1,2) 处,0)6(122<-⋅=-B AC ,所以f (1,2)不是极值;在点(-3,0) 处,06122<⋅-=-B AC ,所以f (-3,0)不是极值;在点(-3,2) 处,0)6(122>-⋅-=-B AC 又0<A 所以函数在(-3,2)处有极大值f (-3,2)=31.2.多元函数的最值与一元函数类似,我们可以利用函数的极值来求函数的最值.我们知道,如果函数(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上必能取得最大值和最小值.最大值点和最小值点既可能在D 的内部,也可能在D 的边界上.我们假定,函数在D 上连续、在D 内可微且只有有限个驻点,这时如果函数在D 内部取得最大值(最小值),则这个最大值(最小值)也是函数的极大值(极小值).求函数最大值和最小值的方法:将函数(,)f x y 在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较,最大的就是最大值,最小的就是最小值.在实际问题中,如果知道最大值(最小值)一定在D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数在D 上的最大值(最小值).例2 某厂要用铁板作成一个体积为2m 3的有盖长方体水箱.问当长、宽、高各取怎样的尺寸时,才能使用料最省.解 设水箱的长为(m)x ,宽为(m)y ,则其高应为2(m)xy,此水箱所用材料的面积 )22(2xyx xy y xy A ⋅+⋅+=, 即 )22(2yx xy A ++= (0>x ,0>y ) 可见材料面积A 是x 和y 的二元函数,这就是目标函数,下面求使这函数取得最小值的点),(y x .令 0)2(22=-=x y A x , 0)2(22=-=yx A y 解这方程组,得:32=x ,32=y 从这个例子还可看出,在体积一定的长方体中,以立方体的表面积为最小.二、条件极值 拉格朗日乘数法上面所讨论的极值问题对于函数的自变量除了限制在函数的定义域内以外,并无其它条件,这类极值称为无条件极值.但在实际问题中,有时会遇到对函数的自变量还有附加条件的极值问题称为条件极值.条件极佳值保化为无条件极值,但在很多情形下,将条件极值化为无条件极值并不简单.拉格朗日乘数法 要找函数),(y x f z =在附加条件0),(=y x φ下的可能极值点,可以先构造辅助函数 ),(),(),(y x y x f y x F λφ+=其中λ为某一常数求其对x 与y 的一阶偏导数,并使之为零,然后与方程(2)联立(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λφλφφ+=⎧⎪+=⎨⎪=⎩(1)由这方程组解出x ,y 及λ,则其中x ,y 就是函数),(y x f 在附加条件下0),(=y x φ的可能极值点的坐标.这方法还可以推广到自变量多于两个而条件多于一个的情形.例如,要求函数),,,(t z y x f u =在附加条件0),,,(=t z y x φ,0),,,(=t z y x ψ(2)下的极值,可以先构造辅助函数 12(,,,)(,,,)(,,,)(,,,)L x y z t f x y z t x y z t x y z t λφλψ=++其中1λ,2λ均为常数,求其一阶偏导数,并使之为零,然后与(2)中的两个方程联立起来求解,这样得出的t z y x 、、、就是函数),,,(t z y x f 在附加条件(2)下的可能极值点的坐标.至于如何确定所求得的点是否极值点,在实际问题中往往可根据问题本身的性质来判定.例3 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱长为z y x ,,, 则问题就是在条件 2(,,)2220x y z xy yz xz a ψ=++-= (3)下,求函数xyz V = )000(>>>z y x ,,的最大值.构造辅助函数2(,,,)(222)L x y z xyz xy yz xz a λλ=+++-求其对y x 、、z 的偏导数,并使之为零,得到⎪⎪⎩⎪⎪⎨⎧=++=++=++0)(20)(20)(2z y xy z x xz z y yz(4)再与(3)联立求解. 因y x 、、z 都不等于零,所以由(11)可得y x =z y z x ++, zy =z x y x ++. 由以上两式解得z y x ==将此代入式(3),便得 z y x ===a 66 这是唯一可能的极值点.因为由问题本身可知最大值一定存在,所以最大值就在这个可能的极值点处取得.也就是说,表面积为2a 的长方体中,以棱长为a 66的正方体的体积为最大,最大体积3366a V =. 小结:本节研究多元函数的最大值、最小值与极大值、极小值问题.在介绍多元函数极值的定义后,介绍了二元极值的性质以及利用偏导数求极值的步骤,讨论了二元函数的最值问题和实际问题的最值问题.最后介绍了利用拉格朗日乘数法求条件极值的方法及应用.思考:多元函数的最大值一定是极大值?多元函数的驻点一定是极值点吗?作业:作业卡p20-21。

0808多元函数的极值及其求法

0808多元函数的极值及其求法
f ( x , y ) = x 3 − y 3 − 3 x + 3 y + 1 的极值 . 解 : f x ( x , y ) = 3 x 2 − 3,
f y ( x , y ) = −3 y 2 + 3,
令 f x ( x , y ) = f y ( x , y ) = 0,
得驻点 : (1,1), (1,−1), ( −1,1), ( −1,−1),
. 为 例5 现要用铁皮做一个体积 2m3的有盖长方体水箱
尺寸时 水箱的用料最省 ,水箱的用料最省 . 问当长宽高各取怎样的
解:设水箱的长为 x m,宽为 y m, 高为 z m, 宽为
水箱所用材料的面积为 : A = 2( xy + yz + zx ), ( x > 0, y > 0, z > 0), 其中 : xyz = 2.
令 Ax = A y = 0, 即令 2( y − ) = 0, ) = 2( x − y2 x2
解之得唯一驻点 : ( 3 2 , 3 2 ),
2
2
又由题意 , 最小值一定存在 , 且在开区域内取到 ,
∴ 可断定 当x = y = 3 2时, A最小 , 且此时 z = 3 2 ,
∴ 当长宽高均为 3 2m时, 水箱的用料最省 .
◆无条件极值: 无条件极值: 对自变量除了有定域内的限制,无其它条件. 对自变量除了有定域内的限制,无其它条件
二、条件极值、拉格朗日乘数法 条件极值、 ◆条件极值:对自变量有附加条件的极值. 条件极值:对自变量有附加条件的极值.
. 为 例5 现要用铁皮做一个体积 2m3的有盖长方体水箱
尺寸时 水箱的用料最省 ,水箱的用料最省 . 问当长宽高各取怎样的

8.8 多元函数极值及其求法-文档资料

8.8  多元函数极值及其求法-文档资料
f(P)<f(P0) (f(P)>f(P 0)) 则称函数f(P)在点P0有极大值(极小值)f(P0).
取得极值的必要条件: 定理1 设函数zf (x,y)在点(x0,y0)具有偏导数,且在点
(x0,y0)处有极值,则它在该点的偏导数必然为零: fx(x0,y0)0,fy(x0,y0)0.
类似地可推得,如果三元函数uf (x,y,z)在点(x0,y0,z0) 具有偏导数,则它在点(x0,y0,z0)具有极值的必要条件为
处有极小值f(1,0)5,所以f (1,2)不是极值;
在点(3,0)处,ACB 212·6<0,所以f (3,0)不是极值;
在点(3,2)处,ACB 212·(6)>0,又A<0,所以函数的
(3,2)处有极大值f(3,2)31.
应注意的问题: 不是驻点也可能是极值点. 例 如 函 数 z x 2 y 2 在 点 ( 0 , 0 ) 处 有 极 大 值 , 但 ( 0 , 0 ) 不 是
函数的驻点.因此,在考虑函数的极值问题时,除了考虑函数的 驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑.
z O
y
x
最大值和最小值问题:
解 设 水 箱 的 长 为 x m , 宽 为 y m , 则 其 高 应 为 2 m . xy
此水箱所用材料的面积为
A 2 ( x y y · 2 x · 2 ) , 即 2 ( x y 2 2 ) ( x > 0 , y > 0 ) . x x y y x y
令 A x 2 ( y x 2 2 ) 0 , A y 2 ( x y 2 2) 0 . 得 x 3 2 , y 3 2 . 由题意可知,水箱所用材料面积的最小值一定存在,并在开区域

第八节多元函数的极值及其求法

第八节多元函数的极值及其求法

z a2 2xy 2(x y)
代入V 的表达式,得
V xy a2 2xy 2(x y)
再求它的无条件极值就行了.
这是一种间接求条件极值的方法. 但是,在很多情形,条件极值问题不能或很难化为
无条件极值问题,(比如,从附加条件不能将其中一个 变量由其余变量表示出来),这时, 上述方法就行不 通了. 可是, 实际中又有大量这类问题需要解决, 为此, 下面给大家介绍一种直接求条件极值的方法,
对该邻域内的异于 (x0, y0) 的任意点 (x, y), 都有 f (x, y) f (x0, y0) .
取定 y y0,当0 | x x0 | 时, 点(x, y0) U (P0, ) , 且(x, y0) (x0, y0), 因而应有
f (x, y0) f (x0, y0)
即 当0 | x x0 | 时, 有
第三步 根据极值的充分条件, 对驻点 (x0, y0) 是否为极值点,以及是极大值点还是极小值点
作出判断。
例1 求函数 f (x, y) x3 y3 3x2 3y2 9x 的极值.
解 定义域: 整个平面
fx 3x2 6x 9 0
fy
3y2 6y
0
解得: x 1 x 1 x 3
求 V xyz (x 0, y 0, z 0)
在附加条件 2xy 2yz 2zx a2
下的最大值.
条件极值问题
怎样求条件极值? 有些可以化为无条件极值问题来求。
例如上面的问题:
求 V xyz (x 0, y 0, z 0) 在附加条件 2xy 2yz 2zx a2
下的最大值. 由附加条件解得
f (x, y) f (x0, y0)
( )
则称函数 f (x,y) 在点 (x0 ,y0) 有极大值 f(x0 ,y0), (极小值)

高等数学第九章第八节 多元函数的极值及其求法

高等数学第九章第八节 多元函数的极值及其求法
第一步 解方程组 fx ( x, y) 0, f y ( x, y) 0
求出实数解,得驻点.
第二步 对于每一个驻点( x0 , y0 ),
求出二阶偏导数的值 A、B、C.
第三步 定出AC B2 的符号,再判定是否是极值.
例 3 求函数 f ( x, y) x3 y3 3x2 3 y2 9x 的极值。
练习题答案
一、1、(3,2),大,36; 二、(8 , 16).
55
2、大, 1; 4
练习题
一、
填空题:
1、
函数 f ( x, y) (6x x 2 )(4 y y 2 ) 在
_______点取得极_________值为___________.
2、
函数 z xy 在附加条件 x y 1下
的极______值为_____________.
二、 在 平 面 xOy 上 求 一 点 , 使 它 到 x 0, y 0 及 x 2 y 16 0三平面的距离平方之和为最小.
求函数z f ( x, y)在条件 ( x, y) 0下的极值。
(2)拉格朗日乘数法
要找函数z f ( x, y)在条件 ( x, y) 0下的
可能极值点,
先构造函数F ( x, y) f ( x, y) ( x, y),
其中 为某一常数,可由
f f
x y
( (
x, x,
y y
) )
则 f ( x, y)在点( x0 , y0 )处是否取得极值的条件如下: (1) AC B2 0时具有极值,
当 A 0时有极大值, 当 A 0时有极小值;
(2) AC B2 0时没有极值; (3) AC B2 0时可能有极值,也可能没有极值,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八讲 多元函数的极值及其求法Ⅰ 授课题目:§8. 8 多元函数的极值及其求法Ⅱ 教学目的与要求:了解方向导数与梯度的概念及其计算方法。

Ⅲ 教学重点与难点:重点与难点:方向导数的概念及方向导数的计算Ⅳ 讲授内容:一、多元函数的极值及其求法回顾一元函数的极值及最大值、最小值定义 设函数z =f (x , y )在点(x 0, y 0)的某个邻域内有定义,如果对于该邻域内任何异于(x 0, y 0)的点(x , y ),都有f (x , y )<f (x 0, y 0)(或f (x , y )>f (x 0, y 0)),则称函数在点(x 0, y 0)有极大值(或极小值)f (x 0, y 0).极大值、极小值统称为极值. 使函数取得极值的点称为极值点.例 1 函数z =f (x , y )=1)2()122--+-y x (在点(1, 2)处有极小值1-.因为当0)2()122≠-+-y x (时z =f (x , y )=)2,1(11)2()122f y x =->--+-(当(x , y )=(0, 0)时, z =0, 而当(x , y )≠(0, 0)时, z >0. 因此z =0是函数的极小值.例2 函数z =f (x , y ))sin(2122y x +-=在点(0, 0)处有极大值1/2,因为我们对于在(0,0)的去心领域2022π<+<y x 中的 一起点(x, y )有,所以0)sin(22>+y xz =f (x , y ))00(21)sin(2122,f y x =<+-= 以上关于二元函数的极值概念, 可推广到n 元函数. 设n 元函数u =f (P )在点P 0的某一邻域内有定义, 如果对于该邻域内任何异于P 0的点P , 都有f (P )<f (P 0)(或f (P )>f (P 0)),则称函数f (P )在点P 0有极大值(或极小值)f (P 0).与一元函数一样,关于二元函数极值的判定,我们有定理1(必要条件) 设函数z =f (x , y )在点(x 0, y 0)具有偏导数, 且在点(x 0, y 0)处有极值, 则有f x (x 0, y 0)=0, f y (x 0, y 0)=0.证明 不妨设z =f (x , y )在点(x 0, y 0)处有极大值. 依极大值的定义, 对于点(x 0, y 0)的某邻域内异于(x 0, y 0)的点(x , y ), 都有不等式f (x , y )<f (x 0, y 0).特殊地, 在该邻域内取y =y 0而x ≠x 0的点, 也应有不等式f (x , y 0)<f (x 0, y 0).这表明一元函数f (x , y 0)在x =x 0处取得极大值, 因而必有f x (x 0, y 0)=0.类似地可证f y (x 0, y 0)=0.从几何上看, 这时如果曲面z =f (x , y )在点(x 0, y 0, z 0)处有切平面, 则切平面z -z 0=f x (x 0, y 0)(x -x 0)+ f y (x 0, y 0)(y -y 0)成为平行于xOy 坐标面的平面z =z 0.这里的极值点与驻点类似地可推得, 如果三元函数u =f (x , y , z )在点(x 0, y 0, z 0)具有偏导数, 则它在点(x 0, y 0, z 0)具有极值的必要条件为f x (x 0, y 0, z 0)=0, f y (x 0, y 0, z 0)=0, f z (x 0, y 0, z 0)=0.使f x (x , y )=0, f y (x , y )=0同时成立的点(x 0, y 0)称为函数z =f (x , y )的驻点.这里的极值点与驻点的定义以及极值的必要条件都不难推广到二元以上的多元函数. 与一元函数类似,从定理1可知, 具有偏导数的函数的极值点必定是驻点. 但函数的驻点不一定是极值点.例3 函数z =f (x , y )22y x -有偏导数x x z 2=∂∂,y yz 2-=∂∂,点(0, 0)是函数的驻点,但函数在点(0, 0)处既不取得极大值也不取得极小值,因为f (0,0)=0,而在(0,0)的任意邻域内f (x , y )既能取到正值也能取到负值。

.因为在点(0, 0)处的函数值为零, 而在点(0, 0)的任一邻域内, 总有使函数值为正的点, 也有使函数值为负的点.定理2(充分条件) 设函数z =f (x , y )在点(x 0, y 0)的某邻域内连续且有一阶及二阶连续偏导数, 又f x (x 0, y 0)=0, f y (x 0, y 0)=0, 令f xx (x 0, y 0)=A , f xy (x 0, y 0)=B , f yy (x 0, y 0)=C ,则f (x , y )在(x 0, y 0)处是否取得极值的条件如下:(1) AC -B 2>0时具有极值, 且当A <0时有极大值, 当A >0时有极小值;(2) AC -B 2<0时没有极值;(3) AC -B 2=0时可能有极值, 也可能没有极值.在函数f (x , y )的驻点处如果 f xx ⋅ f yy -f xy 2>0, 则函数具有极值, 且当f xx <0时有极大值, 当f xx >0时有极小值.极值的求法:第一步:解方程组f x (x , y )=0, f y (x , y )=0,求得一切实数解, 即可得一切驻点.第二步:对于每一个驻点(x 0, y 0), 求出二阶偏导数的值A 、B 和C .第三步: 定出AC -B 2的符号, 按定理2的结论判定f (x 0, y 0)是否是极值、是极大值 还是极小值.例4 求函数f (x , y )=x 3+y 3-3x y 的极值.解 解方程组⎪⎩⎪⎨⎧=-==-=033),(033),(22x y y x f y x y x f yx , 求得x =1,0,y =1,0 于是得驻点为(1,1)、(0,0)再求出二阶偏导数f xx (x , y )=6x ,f xy (x , y )=-3,f yy (x , y )=6y .在点(1,1)处, AC -B 2=6⋅6-23)(-=27>0, 又A >0, 所以函数在(1, 1)处有极小值f (1,1)=-1;在点(0, 0)处, AC -B 2=-9<0,所以f (0, 0)不是极值.注:与一元函数类似,不是驻点的点也可能是极值点,例如, 函数22y x z +-=在点(0, 0)处有极大值, 但(0, 0)不是函数的驻点. 因此, 在考虑函数的极值问题时, 除了考虑函数的驻点外, 如果有偏导数不存在的点, 那么对这些点也应当考虑.二、多元函数的最大值、最小值及其求法如果f (x , y )在有界闭区域D 上连续, 则f (x , y )在D 上必定能取得最大值和最小值. 这种使函数取得最大值或最小值的点既可能在D 的内部, 也可能在D 的边界上. 我们假定, 函数在D 上连续、在D 内可微分且只有有限个驻点, 这时如果函数在D 的内部取得最大值(最小值), 那么这个最大值(最小值)也是函数的极大值(极小值). 因此, 求最大值和最小值的一般方法是: 将函数f (x , y )在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较, 其中最大的就是最大值, 最小的就是最小值.例5 求函数f (x , y )=x y -2x 在闭区域B :【0,1;0,1】的最大、最小值.解 f x (x , y )=y -2x , f y (x , y )=x, 令f x (x , y )=0, f y (x , y )=0,得驻点(0,0),它恰好在闭区域B 的边界上,所以函数的最大、最小值只能在B 的边界上取得.边界由四条直线段4321,,,L L L L 组成.在1L :x =0,10≤≤y 上,由于f (0, y )=0,因此f (x , y )在1L 上的值都是0;在2L :y =0,10≤≤x 上,f (x ,0)=2x -,因此,f (x , y )在2L 的最大值为0,最小值为-1;在3L :x=1,10≤≤y 上,f (1,y)=1-y , 因此f (x , y )在3L 上的最大值为0;最小值为-1;在4L :y =1,10≤≤x 上, f (x ,1)=x 2x -,f (x , y )在4L 上的最大值为1/4,最小值为0.综上所述,函数f (x , y )在闭区域B 上的最大值为f (1/2,1)=1/4, 最小值为f (1,0)=-1. 在通常遇到的实际问题中, 如果根据问题的性质, 知道函数f (x , y )的最大值(最小值)一定在D 的内部取得, 而函数在D 内只有一个驻点, 那么可以肯定该驻点处的函数值就是函数f (x , y )在D 上的最大值(最小值).例6 有一宽为24cm 的长方形铁板, 把它两边折起来做成一断面为等腰梯形的水槽. 问怎样折法才能使断面的面积最大?解 设折起来的边长为x cm , 倾角为α, 那末梯形断面的下底长为24-2x , 上底长为24-2x ⋅cos α, 高为x ⋅sin α, 所以断面面积 A αααsin )224cos 2224(21,x x x x x ⋅-++-=)(, 即 A ),(αx =24x ⋅sin α-2x 2sin α+x 2sin α cos α (0<x <12, 0<α≤90︒).这就是目标函数, 要求使这函数取得最大值的点(x , α).令 A x =24sin α-4x sin α+2x sin α cos α=0,A α=24x cos α-2x 2 cos α+x 2(cos 2α-sin 2α)=0,由于sin α ≠0, x ≠0, 上述方程组可化为⎩⎨⎧=-+-=+-0)sin (cos cos 2cos 240cos 21222αααααx x x x . 解这方程组, 得α=60︒, x =8cm .根据题意可知断面面积的最大值一定存在, 并且在D ={(x , y )|0<x <12, 0<α≤90︒}内取得, 通过计算得知α=90︒时的函数值比α=60︒, x =8(cm)时的函数值为小. 又函数在D 内只有一个驻点, 因此可以断定, 当x =8cm , α=60︒时, 就能使断面的面积最大.三、条件极值 拉格朗日乘数法对自变量有附加条件的极值称为条件极值.例如, 求表面积为a 2而体积为最大的长方体的体积问题. 设长方体的三棱的长为x , y , z , 则体积V =xyz . 又因假定表面积为a 2, 所以自变量x , y , z 还必须满足附加条件2(xy +yz +xz )=a 2. 这个问题就是求函数V =xyz 在条件2(xy +yz +xz )=a 2下的最大值问题, 这是一个条件极值问题.对于有些实际问题, 可以把条件极值问题化为无条件极值问题.例如上述问题,由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 只需求V 的无条件极值问题.在很多情形下, 将条件极值化为无条件极值并不容易. 需要另一种求条件极值的专用方法, 这就是拉格朗日乘数法.现在我们来寻求函数z =f (x , y )在条件ϕ(x , y )=0下取得极值的必要条件.如果函数z =f (x , y )在(x 0, y 0)取得所求的极值, 那么有ϕ(x 0, y 0)=0.假定在(x 0, y 0)的某一邻域内f (x , y )与ϕ(x , y )均有连续的一阶偏导数, 而ϕy (x 0, y 0)≠0. 由隐函数存在定理, 由方程ϕ(x , y )=0确定一个连续且具有连续导数的函数y =ψ(x ), 将其代入目标函数z =f (x , y ), 得一元函数z =f [x , ψ(x )].于是x =x 0是一元函数z =f [x , ψ(x )]的极值点, 由取得极值的必要条件, 有0),(),(000000=+===x x y x x x dx dyy x f y x f dx dz,即 0),(),(),(),(00000000=-y x y x y x f y x f y x y x ϕϕ. 从而函数z =f (x , y )在条件ϕ(x , y )=0下在(x 0, y 0)取得极值的必要条件是0),(),(),(),(00000000=-y x y x y x f y x f y x y x ϕϕ与ϕ(x 0, y 0)=0同时成立. 设 λϕ-=),(),(0000y x y x f y y , 上述必要条件变为 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ.拉格朗日乘数法: 要找函数z =f (x , y )在条件ϕ(x , y )=0下的可能极值点, 可以先构成辅助函数F (x , y )=f (x , y )+λϕ(x , y ) ,其中λ为某一常数. 然后解方程组⎪⎩⎪⎨⎧==+==+=0),(0),(),(),(0),(),(),(y x y x y x f y x F y x y x f y x F y y y x x x ϕλϕλϕ.由这方程组解出x , y 及λ, 则其中(x , y )就是所要求的可能的极值点.这种方法可以推广到自变量多于两个而条件多于一个的情形.至于如何确定所求的点是否是极值点, 在实际问题中往往可根据问题本身的性质来判定.例7 求表面积为a 2而体积为最大的长方体的体积.解 设长方体的三棱的长为x , y , z , 则问题就是在条件2(xy +yz +xz )=a 2下求函数V =xyz 的最大值.构成辅助函数F (x , y , z )=xyz +λ(2xy +2yz +2xz -a 2),解方程组⎪⎪⎩⎪⎪⎨⎧=++=++==++==++=22220)(2),,(0)(2),,(0)(2),,(a xz yz xy x y xy z y x F z x xz z y x F z y yz z y x F z y x λλλ, 得a z y x 66===, 这是唯一可能的极值点. 因为由问题本身可知最大值一定存在, 所以最大值就在这个可能的值点处取得. 此时3366a V =.。

相关文档
最新文档