函数的极值及其求法1
函数极值求法及应用
函数极值求法及应用本文将介绍函数极值求法及其应用。
一、函数极值的定义函数极值是指函数在某一区间内的最大值和最小值。
在函数的导数为0或不存在的点处,函数可能取得极值。
二、求函数极值的方法1. 导数法首先,将函数y=f(x)对x求导得到其导函数y'=f'(x)。
然后,解以下方程组:y'=0或y'不存在求得的解即为函数的极值点。
例如,对于函数y=x^2-2x+1,其导函数y'=2x-2。
令y'=0,得到x=1。
此时,函数取得极小值y=0。
注意:在求解时需要注意导数不存在的情况,例如绝对值函数。
2. 二次函数法对于二次函数y=ax^2+bx+c,当a>0时,该函数的最小值为c-b^2/(4a),当a<0时,该函数的最大值也为c-b^2/(4a)。
例如,对于函数y=x^2-2x+1,其a=1,b=-2,c=1。
因为a>0,所以y的最小值为1-(-2)^2/(4×1)=0。
3. 边界法当函数在一定区间内连续时,其取得极值的点只可能在该区间的边界处或导数不存在的点处。
因此,我们只需要求出函数在该区间的两个端点处的函数值,再比较这两个值和导数不存在的值的大小即可确定极值点。
例如,对于函数y=x^3-3x,当x∈[-1,2]时,极值点只可能在x=-1、x=2或导数不存在的点处。
函数在端点处的值为y(-1)=-2和y(2)=2,导数不存在的点为x=0。
因此,函数在x=0处取得极大值y=0,而在x=-1处取得极小值y=-4。
三、应用函数极值可以在优化问题中起到重要作用。
例如,在最小化成本的问题中,需要确定产量x的大小使得成本最小化。
假设某企业的生产成本函数为y=3x^2-4x+8,其中x为产量,y为成本。
该问题可以转化为求函数y的最小值。
通过求出函数的导数为0的点,我们发现函数在x=2/3处取得最小值y=6.67。
因此,该企业应该保持产量在2/3时,成本会最小。
求极值的方法与技巧
求极值的方法与技巧
一、求函数极值的最基本方法
1、用微积分中的导数(Derivatives)法。
即要求函数极值问题,可
以将其转化为求解极值点,也就是求求函数的导函数为0时,函数的值最
大最小的解,即求函数的极值点。
2、用泰勒展开(Taylor Series)法。
这是一种利用因式分解法求函
数极值。
如果一个函数f(x)可以被表示为f(x),则它就可以按一定形式
分解成:f(x)=a₁+a₂x+a₃x2+a₄x3....,在这种分解的基础上,再算出
f'(x)=a₂+2a₃x+3a₄x2....,将f'(x)的值设置为0,即可求出此时函数f(x)的极值点。
3、用函数增减(Functional Increasing and Decreasing)法:研
究函数的单调增减性,通过对函数的单调增减性来判断函数的极大值和极
小值。
根据单调性原理,函数在单调递增的区间或单调递减的区间内,极值
只有一个,该函数极值即为极大值或极小值。
当函数在同一区间内的一些
点发生折点时,这个折点对应的函数值,即为函数在整个区间的极值,此
时的折点为函数的极值点。
二、极值点的确定方法
1、求解函数的单调性。
单调性主要是指函数在其中一区间上的曲线
轨迹是单调递增或者是单调递减的。
当函数在区间内的特定点发生折点时,这个折点就是函数的极值点。
2、求解导函数的。
高数函数的极值与最大最小值课件
(不是极值点情形)
注意:函数的不可导点,也可能是函数的极值点.
例 y=|x|
极小值点x=0
但x=0是y=|x|的不可导点.
驻点和不可导点统称为可疑极值点
01
03
02
04
05
06
求极值的步骤:
以及不可导点;
(4) 求出各极值点的函数值, 就得函数 f (x)的全部极值.
01
例
02
解
*
用开始移动,
例7. 设有质量为 5 kg 的物体置于水平面上 , 受力 作
解: 克服摩擦的水平分力
正压力
即
令
则问题转化为求
的最大值问题 .
为多少时才可使力
设摩擦系数
问力与水平面夹角的大 Nhomakorabea最小?*
令
解得
而
因而 F 取最小值 .
解:
即
令
则问题转化为求
的最大值问题 .
清楚(视角 最大) ?
当 在 上单调时,
最值必在端点处达到.
若在此点取极大 值 , 则也是最大 值 .
(小)
对应用问题 , 有时可根据实际意义判别求出的
可疑点是否为最大值点或最小值点 .
(小)
在闭区间[0,3]上的
解
例
求函数
最大值与最小值.
先求出驻点与不可导点
如,
在x=0处分别属于上述三种情况.
3) 判别
例2. 求函数
的极值 .
解: 1) 求导数
2) 求驻点
令
得驻点
因
故 为极小值 ;
又
故需用第一判别法判别.
*
定理4 (判别法的推广)
函数的极值与最大值最小值
lim
x x0
f (x) f (x0 ) (x x0 )n
2
(n为正整数)
试讨论 f (x)在 x x0 点的极值问题.
解:由于 lim f (x) f (x0 ) 2 0, xx0 (x x0 )n
则
0,当x U (x0, ) 时,有
f
(x) f (x0 ) (x x0 )n
a 1 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 因此,当a 1时,f (a) 0,由第二充分条件可知: f (a) 为极小值.
-11-
例 4 设 f (x)在 x0 的某个邻域内连续,且
切线与直线 y 0 及 x 8所围成的三角形面积最大.
解 如图,设所求切点为 P(x0, y0 ), y
T
则切线PT为:y y0 2x0 (x x0 ),
B
P
y0 x02 ,
oA
Cx
A(
1 2
x0
,
0),
C(8, 0),
B(8, 16x0 x02 )
SABC
1(8 2
1 2 x0 )(16 x0
由极值定义可知:f (x)在 x0 不取得极值.
-13-
二、最大值最小值问题
假定:f (x)在[a,b]上连续,在(a,b)内除有限个点外可导, 且至多有有限个驻点.
讨论:f (x) 在[a,b]上的最大值与最小值的问题.
★ 最值的存在性:
若 f (x)在[a,b] 上连续,则 f (x) 在[a,b]上的最值必定存在.
如:y x3,y x0 0, 但 x 0 不是极值点.
【注 2】函数的极值点只可能是驻点或导数不存在的点.
函数的极值与最大值最小值
x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导, 且在x0处取得极值, 那么f ′(x0)=0. •驻点 使导数f ′(x)为零的点(方程f ′(x)=0的实根)称为函数 f(x)的驻点. 观察与思考: (1) 观察曲线的升降与极值
x1 x2
x3 x4 x5
定理2(第一充分条件)
设函数f(x)在x0处连续, 且在(a, x0)∪(x0, b)内可导. (1)如果在(a, x0)内f ′(x)>0, 在(x0, b)内f ′(x)<0, 那么函数f(x) 在x0处取得极大值; (2)如果在(a, x0)内f ′(x)<0, 在(x0, b)内f ′(x)>0, 那么函数f(x) 在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f ′(x)的符号相同, 那么函数f(x) 在x0处没有极值.
1 2 所以当b= d 时, 抗弯截面模量 W 最大, 这时 h = d . 3 3
讨论:
函数f(x)=x4, g(x)=x3在点x=0是否有极值? >>>
例2 求函数f(x)=(x2−1)3+1的极值. 解 f ′(x)=6x(x2−1)2. 令f ′(x)=0, 求得驻点x1=−1, x2=0, x3=1. f ′′(x)=6(x2−1)(5x2−1). 因为f ′′(0)=6>0, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. 因为f ′′(−1)=f ′′(1)=0, 所以用定理3无法判别. 因为在−1的左右邻域内f ′(x)<0, 所以f(x)在−1处没有极值. 同理, f(x)在1处也没有极值.
求极值的三种方法
求极值的三种方法一、直接法。
先判断函数的单调性,若函数在定义域内为单调函数,则最大值为极大值,最小值为极小值二、导数法(1)、求导数f'(x);(2)、求方程f'(x)=0的根;(3)、检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
举例如下图:该函数在f'(x)大于0,f'(x)小于0,在f'(x)=0时,取极大值。
同理f'(x)小于0,f'(x)大于0时,在f'(x)=0时取极小值。
扩展资料:寻求函数整个定义域上的最大值和最小值是数学优化的目标。
如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。
1、求极大极小值步骤:求导数f'(x);求方程f'(x)=0的根;检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
f'(x)无意义的点也要讨论。
即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。
2、求极值点步骤:求出f'(x)=0,f"(x)≠0的x值;用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。
上述所有点的集合即为极值点集合。
扩展资料:定义:若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。
(完整版)求函数极值的几种方法
求解函数极值的几种方法1.1函数极值的定义法说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件.例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,225x =,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题:Min (,)z f x y =s.t (,)0x y =如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得****(,)(,)0x x f x y g x y λ+=****(,)(,)0y y f x y g x y λ+=利用这一性质求极值的方法称为Lagrange 乘法数例2 在曲线31(0)y x x =>上求与原点距离最近的点.解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函数2231()w x y y x λ=++-然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得43320201x x y y x λλ⎧+=⎪⎪+=⎨⎪⎪=⎩解得x y ⎧=⎪⎨=⎪⎩这是唯一可能取得最值的点 因此x y ==. 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得****(,)(,)0x x f x y g x y λ+=****(,)(,)0y y f x y g x y λ+=这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0p点的Hessene 矩阵H ,判定H 正定或负定,若H 正定则()f p 在0p 点取得极小值;若H 负定则()f p 在0p 点取得极大值.例3 求三元函数222(,,)23246f x y z x y z x y z =++++-的极值解 先求驻点,由 220440660x y zf x f y f z =+=⎧⎪=+=⎨⎪=-=⎩ 得1,1,1x y z =-=-=-所以驻点为0(1,1,1)p ---.再求Hessene 矩阵,因为 2,0,0,4,0,0,0,0,6xx xz xy yy yz yx zx zy zz f f f f f f f f =========所以 200040006H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦由此可知,H 是正定的,所以(,,)f x y z 在0(1,1,1)p ---点取得极小值:222(1,1,1)(1)2(1)312(1)4(1)6166f ---=-+⨯-+⨯+⨯-+⨯--⨯-=-说明:此方法适合多元函数求极值的放法,要注意求偏导数以及 Hessene 矩阵.。
函数的极值与最值的求解方法
函数的极值与最值的求解方法在数学中,函数的极值与最值是我们经常遇到的问题。
极值是指函数在某一区间内达到的最大值或最小值,而最值则是函数在整个定义域内的最大值或最小值。
正确地求解函数的极值与最值对于解决实际问题和优化算法具有重要意义。
本文将介绍一些常见的函数极值与最值的求解方法。
一、导数法求函数极值导数法是求解函数极值的常用方法之一。
对于一元函数,我们可以通过求取其导数来确定函数的极值点。
具体步骤如下:1. 求取函数的导数。
根据函数的表达式,求取其一阶导数。
对于高阶导数存在的情况,可以继续求取导数直到找到导数不存在的点。
2. 解方程求取导数为零的点。
导数为零的点对应着函数的极值点。
将导数等于零的方程进行求解,找到函数的极值点。
3. 判断极值类型。
在找到导数为零的点后,可以通过二阶导数或借助函数图像来判断该点处的极值类型。
若二阶导数大于零,则为极小值;若二阶导数小于零,则为极大值。
二、边界法求函数最值边界法是求解函数最值的一种有效方法。
当函数在闭区间上连续且有界时,最值一定是在该闭区间的端点处取得的。
具体步骤如下:1. 确定函数定义域的闭区间。
根据函数表达式或实际问题,找到函数定义域所对应的闭区间。
2. 计算函数在端点处的取值。
将函数在闭区间的端点处依次带入函数表达式,计算函数的取值。
3. 比较函数取值找到最值。
对于最大值,选取函数取值最大的端点;对于最小值,选取函数取值最小的端点。
三、拉格朗日乘数法求函数约束条件下的极值当函数需要满足一定的约束条件时,可以使用拉格朗日乘数法来求解函数的极值。
该方法适用于带有约束条件的最优化问题,具体步骤如下:1. 设置拉格朗日函数。
将原函数与约束条件构建为一个拉格朗日函数,其中拉格朗日乘子为未知数。
2. 求取拉格朗日函数的偏导数。
对拉格朗日函数进行偏导数运算,得到一组方程。
3. 解方程求取极值点。
将得到的偏导数方程组求解,找到满足约束条件的极值点。
4. 判断极值类型。
§4[1].3.2函数的极值及其求法
的极大(小)点。(证明从略)
[ 注: (1)若 f ( x ) 在a,b]
[a 上连续,则f ( x ) 在 ,b]
上必
有最大值和最小值。
(2) f ( x ) 在(a,b) 内某点取得“最值” x 是 f ( x ) ,则 的极值点,从而 x 一定是 f ( x ) 的驻点或导数不 存在的点。
2 x2 1 而 f (1) , lim f ( x ) lim x 2e x lim 2 0, x x x e x e
1 ∴最大值是 f (1) 。 e
例 4.设某银行中的总存款量与银行付给存户年利率的平 方成正比。若银行以 20%的年利率把总存款的 90%贷出, 问银行给存户的年利率定为多少,它才能获得最大利润?
解:设银行付给存户的年利率为 x ,
T 总存款量为Q( x ) ,总利润为 ( x ) ,则
Q( x ) kx 2 ( k 为 常数) ,
T ( x )900 0200 0Q( x ) xQ( x ) ,即
T ( x ) 0.18kx 2 kx 3 ( 0 x 1) ,
T ( x ) 0.36 kx 3kx 2 3kx (0.12 x ) ,
当 x( x , x ) 时, f ( x ) 0 ,
则 f ( x ) 在点 x 取得极大值;
(2)若当 x( x , x ) 时, f ( x ) 0 ,
当 x( x , x ) 时, f ( x ) 0 ,
则 f ( x ) 在点 x 取得极小值; (3)若 f ( x ) 在点 x 的左、右邻域内保持同号,
x 0 是 f ( x ) x 3 的驻点,但 x 0 不是极值点。 例如:
(3) 称为可能极值点 。 导数不存在的点 驻点
函数的极值及其求解方法
函数的极值及其求解方法数学中,函数是一个非常重要的概念。
其中,自变量可以变化,从而影响函数的取值。
函数的极值是指函数曲线上的最高点或最低点所对应的函数值。
这些极值在数学和科学中具有广泛的应用,因此对于解题人而言,了解它们是非常必要的。
一、函数的极值函数的极值包括两种类型:极大值和极小值。
在函数图像上,极大值和极小值处的切线斜率为0。
极大值是指函数值在某个自变量区间中取得最大值。
极小值是指函数值在某个自变量区间中取得最小值。
二、函数极值的求解方法函数极值可以采用三种方法来求解:导数法、微积分法和图像观察法。
1、导数法导数法是求近邻哪里切线斜率为0。
这种方法非常高效,因为它可以使用函数的导数来快速找到极小值和极大值。
这种方法的主要思想是利用导数找到函数图像上切线斜率为零的点。
首先求出函数的导数,然后令导数等于0,求得解析解即可。
如果函数的导数被定义为正,则函数图像在该点上是开口向上的,也就是说,这个点是函数的极小值;反之,如果函数的导数被定义为负,则函数图像在该点上是开口向下的,也就是说,这个点是函数的极大值;如果函数的导数未定义,则该变量在该点上不存在极值。
2、微积分法微积分法与导数法类似,它也是通过计算导数来找到函数的极值。
但微积分法使用更多的技巧来进行计算,比如利用微积分的几何原理来解析确定极值的上界和下界。
微积分法包括常量法和约束最值法。
常量常数法,即固定其他变量,在某个范围内,确定其中一个变量。
约束最大化法是限制函数的自变量,使其满足约束条件,进而确定极值点(根据Lagrange乘子方法求解)。
3、图像观察法图像观察法是最简单的方法。
通过函数的图像观察函数的极值,特别适合于那些图像比较简单的问题。
这种方法的主要思想是直观地观察函数图像上最高点或最低点的位置。
通过这种方法,可以确定函数的大致极值,但无法精确得到极值点的位置。
一般它只适用于小型景观,因为它不需要带有数学式的增量的较高级导数。
总之,函数的极值在数学和科学中的应用非常广泛。
函数的极值及其求法
4( x 1) lim f ( x ) lim[ 2] , 2 x 0 x 0 x 得铅直渐近线 x 0.
列表确定函数升降区间,凹凸区间及极值点和拐点:
x ( ,3) 3 ( 3,2) 2 ( 2,0)
f ( x ) f ( x )
f ( x)
0
不存在
( 0, )
0
拐点
( 3, 26 ) 9
0
间 断 点
极值点
3
补充点 : (1 3,0), (1 3,0);
A ( 1,2), B (1,6), y C ( 2,1).
作图
6 B
1
C
1 2
3 2 1
o
x
2
A
3
小结
极值是函数的局部性概念:极大值可能小于极小 值,极小值可能大于极大值.
邻近的正负号, 判断是否为极值点; (3) 求极值.
例1 求出函数 f ( x ) x 3 3 x 2 9 x 5 的极值. 解
2 f ( x ) 3 x 6 x 9 3( x 1)( x 3)
令 f ( x ) 0, 得驻点 x1 1, x2 3. 列表讨论
x
f ( x )
f ( x)
( ,1) 1
( 1,3)
3
0
极 小 值
( 3, )
0
极 大 值
极大值 f ( 1) 10,
极小值 f ( 3) 22.
f ( x ) x 3 3 x 2 9 x 5图形如下
M
m
极值的方法与技巧(1)
求极值的方法与技巧极值一般分为无条件极值和条件极值两类。
无条件极值问题即是函数中的自变量只受定义域约束的极值问题;条件极值问题即是函数中的自变量除受定义域约束外,还受其他条件限制的极值问题。
一、求解无条件极值的常用方法1.利用二阶偏导数之间的关系和符号判断取不取极值及极值的类型定理1(充分条件) 设函数z =f (x , y )在点(x 0, y 0)的某邻域内连续且有一阶及二阶连续偏导数, 又f x (x 0, y 0)=0, f y (x 0, y 0)=0, 令f xx (x 0, y 0)=A , f xy (x 0, y 0)=B , f yy (x 0, y 0)=C ,则f (x , y )在(x 0, y 0)处是否取得极值的条件如下:(1) AC -B 2>0时具有极值, 且当A <0时有极大值, 当A >0时有极小值; (2) AC -B 2<0时没有极值;(3) AC -B 2=0时可能有极值, 也可能没有极值。
极值的求法:第一步 解方程组f x (x , y )=0, f y (x , y )=0, 求得一切实数解, 即可得一切驻点。
第二步 对于每一个驻点(x 0, y 0), 求出二阶偏导数的值A 、B 和C 。
第三步 定出AC -B 2的符号, 按定理1的结论判定f (x 0, y 0)是否是极值、是极大值 还是极小值。
应注意的几个问题:⑴对于二元函数z =f (x , y ),在定义域内求极值这是一个比较适用且常用的方法, 但是这种方法对三元及更多元的函数并不适用;⑵AC -B 2=0时可能有极值, 也可能没有极值,还需另作讨论;⑶如果函数在个别点处的偏导数不存在,这些点当然不是驻点,但也可能是极值点,讨论函数的极值问题时这些点也应当考虑。
例1求函数2222()()xy z x y e -+=+的极值。
解 令222222()22()2(1)02(1)0x y x y z x x y e xz y x y e y -+-+∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩得驻点(0,0)及22 1.x y +=又由22222222()2[2(13)4(1)]x y zy x x x y e x-+∂=-----∂22222()4(2)x y zxy x y e x y-+∂=---∂∂22222222()2[2(13)4(1)]x y zx y y x y e y-+∂=-----∂22(0,0)2,z A x∂==∂ 2(0,0)0,zB x y∂==∂∂ 22(0,0)2zC y∂==∂240,0B AC A ∆=-=-<> 故(0,0)0f =为极小值。
函数的极值与最值求解的方法和步骤
函数的极值与最值求解的方法和步骤在数学中,函数的极值与最值是研究函数性质的重要内容之一。
通过求解函数的极值与最值,我们可以找到函数的最高点和最低点,从而更好地理解函数的特性。
本文将介绍一些常见的方法和步骤,帮助读者更好地理解和应用这一概念。
一、函数的极值与最值的定义在开始讨论求解方法之前,我们首先需要明确函数的极值与最值的概念。
对于定义在某个区间上的函数f(x),如果存在一个点c,使得在c的邻域内,对于任意的x都有f(x)≤f(c) 或f(x)≥f(c),那么我们称c为函数f(x)的极值点。
如果函数在整个定义域上的极值点中有一个最大值或最小值,那么我们称之为函数的最值。
二、求解函数极值与最值的方法1. 导数法导数法是求解函数极值与最值的常用方法之一。
通过求解函数的导数,我们可以找到函数的极值点。
具体步骤如下:(1)求出函数f(x)的导函数f'(x);(2)解方程f'(x)=0,求得函数的驻点;(3)通过二阶导数判别法,判断驻点是极大值点还是极小值点;(4)将驻点代入原函数f(x),求得函数的极值。
2. 区间法区间法是一种直观且易于理解的方法。
通过将函数在给定区间内的所有值进行比较,我们可以找到函数的最大值和最小值。
具体步骤如下:(1)确定函数f(x)的定义域;(2)将定义域分成若干个子区间;(3)在每个子区间内求出函数的值,并进行比较;(4)找出子区间中的最大值和最小值,即为函数的最值。
3. Lagrange乘数法Lagrange乘数法是一种用于求解约束条件下的极值问题的方法。
当我们需要求解函数在一定条件下的最值时,Lagrange乘数法可以帮助我们进行求解。
具体步骤如下:(1)建立拉格朗日函数L(x,y,...,λ)=f(x,y,...)-λg(x,y,...),其中f(x,y,...)为目标函数,g(x,y,...)为约束条件;(2)对拉格朗日函数求偏导数,得到一组方程;(3)求解方程组,得到函数的驻点;(4)通过二阶导数判别法,判断驻点是极大值点还是极小值点;(5)将驻点代入原函数f(x,y,...),求得函数的极值。
函数的极值与最值的求解方法
函数的极值与最值的求解方法函数的极值与最值是数学中常见的概念,它们在解决实际问题和优化计算等方面起着重要的作用。
本文将介绍函数的极值与最值的求解方法。
一、函数的极值函数的极值包括极大值和极小值。
要求函数的极值,首先需要找到函数的驻点,即导数为零或不存在的点。
然后,通过判断驻点的二阶导数来确定驻点是极大值还是极小值。
1. 寻找驻点对于给定的函数f(x),我们首先需要求导数f'(x),然后找到导数为零或不存在的点。
这些点就是函数的驻点。
2. 判断驻点的性质驻点的性质可以通过二阶导数f''(x)来判断。
若f''(x)>0,则该驻点为极小值;若f''(x)<0,则该驻点为极大值;若f''(x)=0,则无法判断。
二、函数的最值函数的最值包括最大值和最小值。
要求函数的最值,可以通过以下方法进行求解。
1. 首先,找到函数的定义域。
在定义域内,求出函数的一阶导数f'(x)。
2. 确定导数的零点和边界点。
将导数f'(x)置为零,求解方程f'(x)=0,得到导数的零点。
同时,找到定义域的边界点。
3. 将零点和边界点代入原函数f(x)。
计算这些点对应的函数值,比较大小,即可得到函数的最值。
三、实例分析下面通过一个实例来说明函数的极值与最值的求解方法。
例:求函数f(x)=x^3-3x的极值与最值。
1. 寻找驻点求导得到f'(x)=3x^2-3。
令f'(x)=0,解得x=±1。
所以驻点为x=-1和x=1。
2. 判断驻点的性质求二阶导数f''(x)=6x。
将驻点代入得到f''(-1)=-6<0和f''(1)=6>0。
所以驻点x=-1为极大值点,驻点x=1为极小值点。
3. 求最值由于函数定义域为全体实数,不存在边界点。
代入驻点和边界点得到f(-1)=2和f(1)=-2。
求函数极值的若干方法
求函数极值的若干方法函数极值是数学分析中非常基础和重要的概念之一,研究函数的极值有助于我们了解函数的性质和行为。
在实际应用中,函数的极值问题也具有广泛的应用,比如优化问题、最优化问题等。
下面我将介绍一些常用的方法来求解函数的极值。
1.导数法:导数法是求解函数极值的最常用方法之一、对于定义在开区间上的函数,极值点一定是函数的驻点,也就是导数为零或不存在的点。
因此,我们可以通过求函数的导数来找到极值点。
具体的步骤如下:a.求取函数的导数。
b.令导数等于零,并解方程得到可能的极值点。
c.比较函数在极值点和区间端点处的函数值,找到函数的最大值和最小值。
2.高阶导数法:导数法能够找到函数的驻点,但并不能保证驻点就是极值点。
通过计算函数的高阶导数,我们可以进一步判断驻点的类型,从而确定是否为极值点。
具体步骤如下:a.求取函数的导数。
b.计算导数的导数,即求高阶导数。
c.令高阶导数等于零,并解方程得到可能的极值点。
d.比较函数在极值点和区间端点处的函数值,找到函数的最大值和最小值。
3.二次型理论:对于定义在闭区间上的函数,我们可以通过二次型理论来求解极值点。
a.分别求取函数在区间端点和驻点处的函数值。
b.比较函数值,找到函数的最大值和最小值。
4.单峰函数的分段法:对于单峰函数,即在一些区间上具有唯一的极值点的函数,我们可以通过分段法来求解极值点。
具体步骤如下:a.将函数的定义域分为若干个小区间。
b.求取每个小区间内的驻点,并比较函数值。
c.找到最大值和最小值,即为函数的极值点。
5.约束条件法:对于有约束条件的函数极值问题,我们可以使用拉格朗日乘子法来求解。
具体步骤如下:a.构建拉格朗日函数。
b.求取拉格朗日函数的极值点。
c.比较极值点对应的函数值,找到函数的最大值和最小值。
除了以上方法,还有一些特殊函数的求解方法,如三角函数、指数函数、对数函数等。
对于这些特殊函数,我们可以通过函数的性质和特点来求解极值点。
总结起来,求解函数极值的方法多种多样,不同的函数和问题需要选择不同的方法来求解。
求极值的方法
求极值的方法一、导数法。
求极值的常用方法之一是利用导数。
对于给定的函数,我们可以通过求导数来找到函数的驻点和拐点,进而确定函数的极值点。
具体步骤如下:1. 求出函数的导数;2. 解出导数为0的方程,得到函数的驻点;3. 利用二阶导数的符号来判断驻点的类型,从而确定函数的极值。
二、边界法。
对于定义在闭区间上的函数,我们可以通过边界法来求取函数的极值。
具体步骤如下:1. 求出函数在闭区间端点处的函数值;2. 求出函数在闭区间内部的驻点;3. 比较上述所有点的函数值,最大值即为函数的最大值,最小值即为函数的最小值。
三、拉格朗日乘数法。
对于带有约束条件的极值问题,我们可以使用拉格朗日乘数法来求解。
具体步骤如下:1. 根据约束条件建立拉格朗日函数;2. 求出拉格朗日函数的偏导数,并令其等于0;3. 解方程组,得到极值点。
四、牛顿法。
对于无法通过导数法求解的函数,我们可以使用牛顿法来求取函数的极值。
具体步骤如下:1. 选取一个初始点,计算函数在该点的函数值和导数值;2. 根据函数值和导数值,利用牛顿迭代公式来更新下一个点;3. 重复上述步骤,直到满足精度要求为止。
五、全局优化方法。
对于复杂的多维函数,我们可以利用全局优化方法来求取函数的全局极值。
常见的全局优化方法包括遗传算法、模拟退火算法、粒子群算法等。
总结。
求极值是数学中的一个重要问题,我们可以利用导数法、边界法、拉格朗日乘数法、牛顿法以及全局优化方法来求解。
不同的方法适用于不同的函数和问题,我们需要根据具体情况来选择合适的方法。
希望本文对读者有所帮助,谢谢阅读!。
高中物理-求极值的六种方法
高中物理-求极值的六种方法求极值是数学中的重要问题,解决这个问题不仅有助于我们理解函数的性质,还有助于应用于很多实际问题的求解。
下面介绍六种常用的方法求极值:导数法、辅助线法、割线法、牛顿法、拉格朗日乘数法和试探法。
一、导数法:导数法是最常见,也是最基本的求极值方法。
极值点处的导数为零或不存在。
1.求导数:设函数y=f(x),首先求出导数f'(x)。
2.导数为零:令f'(x)=0,得出x的值。
3.导数不存在:检查导数在f'(x)为零的点附近是否存在极值点。
二、辅助线法:辅助线法是通过构造一条辅助线,将函数转化为一个变量的方程,然后通过解方程来求解极值点。
1.构造辅助线:根据函数的特点,选取一个合适的辅助线方程(比如斜率为1或-1),将函数转化为一个变量的方程。
2.解方程:将辅助线方程和原函数方程联立,解得x的值。
3.求解极值点:将x的值代入原函数方程,求出对应的y值。
三、割线法:割线法是通过构造一条割线,通过不断迭代来逼近极值点。
1.选择初始值:选择一个合适的初始值x0。
2.构造割线:构造一条过(x0,f(x0))和(x1,f(x1))两点的割线,其中x1=x0-λf(x0),λ是一个合适的步长。
3.迭代求值:迭代求解极值点,即不断重复步骤2,直到割线趋近于极值点。
四、牛顿法:牛顿法利用函数的导数和二阶导数的信息来逼近极值点,是一种高效的求解极值的方法。
1.选择初始值:选择一个合适的初始值x0。
2.迭代求值:根据牛顿迭代公式x1=x0-f(x0)/f'(x0),不断迭代求解极值点,直到满足结束条件。
五、拉格朗日乘数法:拉格朗日乘数法是一种求解约束条件下极值问题的方法,适用于那些涉及多个变量和多个约束条件的问题。
1. 列出函数和约束条件:设函数为f(x1, x2, ..., xn),约束条件为g(x1, x2, ..., xn)=c。
2. 构造拉格朗日函数:构造拉格朗日函数L(x1, x2, ..., xn, λ) = f(x1, x2, ..., xn) + λ(g(x1, x2, ..., xn)-c),其中λ是拉格朗日乘数。
函数的极值与最值的求解
函数的极值与最值的求解在数学中,我们经常需要求解函数的极值和最值。
函数的极值指的是函数在某个定义域内取得的最大值或最小值,最值则是函数在整个定义域内的最大值或最小值。
本文将介绍如何求解函数的极值和最值的方法。
一、函数的极值求解方法1. 导数法导数法是求解函数极值的一种常用方法。
根据函数的极值定义,极值点处函数的导数为零或不存在。
因此,我们可以通过以下步骤求解函数的极值:1)求函数的导数;2)令导数等于零,解方程得到极值点的横坐标;3)将极值点的横坐标代入原函数,求得纵坐标。
例如,对于函数f(x) = x^2 - 2x + 1,我们可以进行如下计算:1)求导:f'(x) = 2x - 2;2)令导数等于零:2x - 2 = 0,解得x = 1;3)将x = 1代入原函数:f(1) = 1^2 - 2(1) + 1 = 0,得到极小值0。
2. 二阶导数法在某些情况下,使用二阶导数可以更方便地求解函数的极值。
根据函数的极值定义,当函数的一阶导数为零且二阶导数大于零时,函数取得极小值;当一阶导数为零且二阶导数小于零时,函数取得极大值。
例如,对于函数f(x) = x^3 - 6x^2 + 9x + 2,我们可以进行如下计算:1)求导:f'(x) = 3x^2 - 12x + 9;2)求二阶导数:f''(x) = 6x - 12;3)令一阶导数等于零,解方程得到极值点的横坐标:3x^2 - 12x +9 = 0,解得x = 1;4)将x = 1代入二阶导数:f''(1) = 6 - 12 = -6,表明函数在x = 1处取得极大值。
二、函数的最值求解方法函数的最值即为整个定义域内的最大值或最小值。
求解函数最值的方法有以下几种:1. 导数法和求解极值类似,我们可以通过求解函数在定义域内的导数来找到函数的最值。
例如,对于函数f(x) = -x^2 + 4x - 3,我们可以进行如下计算:1)求导:f'(x) = -2x + 4;2)令导数等于零,解方程得到最值点的横坐标:-2x + 4 = 0,解得x = 2;3)将x = 2代入原函数:f(2) = -(2^2) + 4(2) - 3 = 1,得到函数的最大值1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、导数的应用
函数的极值及其求法
在学习函数的极值之前,我们先来看一例子:设有函数,容易知道点x=1及x=2是此函数单调区间的分界点,又可知在点x=1左侧附近,函数值是单调增加的,在点x=1右侧附近,函数值是单调减小的.因此存在着点x=1的一个邻域,对于这个邻域内,任何点x(x=1除外),<均成立,点x=2也有类似的情况(在此不多说),为什么这些点有这些性质呢?
事实上,这就是我们将要学习的内容——函数的极值,
函数极值的定义设函数在区间(a,b)内有定义,x 0是(a,b)内一点.
若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),<均成立,则说是函数的一个极大值;
若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),>均成立,则说是函数的一个极小值.函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。
我们知道了函数极值的定义了,怎样求函数的极值呢?
学习这个问题之前,我们再来学习一个概念——驻点凡是使的x 点,称为函数的驻点。
判断极值点存在的方法有两种:如下
方法一:设函数在x 0点的邻域可导,且.
情况一:若当x 取x 0左侧邻近值时,
>0,当x 取x 0右侧邻近值时,<0,则函数在x 0点取极大值。
情况一:若当x 取x 0左侧邻近值时,
<0,当x 取x 0右侧邻近值时,>0,则函数在x 0点取极小值。
注:此判定方法也适用于导数在x 0点不存在的情况。
用方法一求极值的一般步骤是:
a):求;
b):求的全部的解——驻点;
c):判断在驻点两侧的变化规律,即可判断出函数的极值。
例题:求极值点
解答:先求导数
再求出驻点:当时,x=-2、1、-4/5
判定函数的极值,如下图所示。