高等数学函数的极值及其求法4

合集下载

高等数学《函数的极值与最大、最小值》课件

高等数学《函数的极值与最大、最小值》课件

3) 若 f ( x)在开区间内定义,这时最值不一定存 在 ,有些实际应用问题根据实际可确定问题一 定有解 .
设 f ( x)在开区间内定义且可导, f ( x)在开区间内 有唯一驻点 x0 ,若 f ( x0 )是 f ( x)的极小值(极大值) , 则 f ( x0 )是 f ( x)的最小值 (最大值) .
f (0) 1为极大值 , 即为最大值 .
x 1时, f ( x) f (0) 1 , 即当 x 1时, 有 e x 1 . 1 x
小结
注意最值与极值的区别. 最值是整体概念而极值是局部概念. 实际问题求最值的步骤. 利用最大、小值证明不等式
思考题
若 f (a) 是 f ( x) 在[a, b] 上的最大值或最 小值,且 f (a)存在,是否一定有 f (a) 0 ?
当x 2时,f ( x) 0;
M
当x 2时,f ( x) 0.
f (2) 1为f ( x)的极大值.
定理2(第二充分条件)
设 f ( x) 在 x0处具有二阶导数,且 f ( x0 ) 0 , f ( x0 ) 0 ,则 (1) 若 f ( x0 ) 0 ,则 f ( x0 )为 f ( x)的极大值 .
f
( xk ),
f
(a),
f
(b)
}.
min
x[ a ,b ]
f (x)
min{
f ( x1) ,,
f ( xk ),
f (a),
f (b) }.
例1 求函数 y 2x3 3x2 12x 14 的在[3,4] 上的最大值与最小值.
解 f ( x) 6( x 2)(x 1)
解方程 f ( x) 0,得 x1 2, x2 1.

高等数学:函数的单调性及其极值

高等数学:函数的单调性及其极值

函数的单调性及其极值单调性是函数的重要性态之一,它既决定着函数递增和递减的状况,又能帮助我们研究函数的极值,还能证明某些不等式和分析函数的图形。

本节将以导数为工具,给出函数单调性的判别法及极值的求法。

一、函数的单调性1、函数单调性的判定为利用导数研究函数的单调性,我们首先来看图133--)(a 、)(b 。

图133--)(a 中函数)(x f y =的图像在),(b a 内沿x 轴的正向上升,除点))(,(ξξf 处的切线平行于x 轴外,)(a )(b 图133--曲线上其余点处的切线与x 轴的夹角均为锐角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为正;而图133--)(b 中函数)(x f y =的图像在),(b a 内沿x 轴的正向下降,除个别点外,曲线上其余点处的切线与x 轴的夹角均为钝角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为负。

由此可见函数的单调性与导数的符号有着密切的联系。

反过来,能否用导数的符号来判定函数的单调性呢?下面我们利用拉格朗日中值定理来讨论。

设函数)(x f 在区间I 内可导,在I 内任取两点1x 和2x (21x x <),在区间],[21x x 上应用拉格朗日中值定理,得)()()()(1212x x f x f x f -'=-ξ (21x x <<ξ) (1)由于在(1)式中012>-x x ,因此,若在I 内导数)(x f '的符号保持为正,即0)(>'x f ,那么也有0)(>'ξf ,于是0)()()()(1212>-'=-x x f x f x f ξ即 )()(21x f x f <表明函数)(x f 在区间I 上单调增加。

同理,若在I 内导数)(x f '的符号保持为负,即0)(<'x f ,那么也有0)(<'ξf ,于是0)()()()(1212<-'=-x x f x f x f ξ即 )()(21x f x f > 表明函数)(x f 在区间I 上单调减少。

函数的极值与最大值最小值

函数的极值与最大值最小值
极值点是否一定是驻点? 驻点是否一定是极值点? 考察x=0是否是函数y=x3的 驻点, 是否是函数的极值点.
x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导, 且在x0处取得极值, 那么f ′(x0)=0. •驻点 使导数f ′(x)为零的点(方程f ′(x)=0的实根)称为函数 f(x)的驻点. 观察与思考: (1) 观察曲线的升降与极值
x1 x2
x3 x4 x5
定理2(第一充分条件)
设函数f(x)在x0处连续, 且在(a, x0)∪(x0, b)内可导. (1)如果在(a, x0)内f ′(x)>0, 在(x0, b)内f ′(x)<0, 那么函数f(x) 在x0处取得极大值; (2)如果在(a, x0)内f ′(x)<0, 在(x0, b)内f ′(x)>0, 那么函数f(x) 在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f ′(x)的符号相同, 那么函数f(x) 在x0处没有极值.
1 2 所以当b= d 时, 抗弯截面模量 W 最大, 这时 h = d . 3 3
讨论:
函数f(x)=x4, g(x)=x3在点x=0是否有极值? >>>
例2 求函数f(x)=(x2−1)3+1的极值. 解 f ′(x)=6x(x2−1)2. 令f ′(x)=0, 求得驻点x1=−1, x2=0, x3=1. f ′′(x)=6(x2−1)(5x2−1). 因为f ′′(0)=6>0, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. 因为f ′′(−1)=f ′′(1)=0, 所以用定理3无法判别. 因为在−1的左右邻域内f ′(x)<0, 所以f(x)在−1处没有极值. 同理, f(x)在1处也没有极值.

高数函数的极值与最大最小值

高数函数的极值与最大最小值
目录 上页 下页 返回 结束
C(x) = x3 例8. 设某工厂生产某产品 x 千件的成本是 − 6x2 +15x, 售出该产品 x 千件的收入是R(x) = 9x, 问是否 存在一个取得最大利润的生产水平? 如果存在, 找出它来. 解: 售出 x 千件产品的利润为 p(x) = R(x) − C(x) = −x3 + 6x2 − 6x p′(x) = −3x2 +12x − 6 = −3(x2 − 4x + 2) 令p′(x) = 0, 得 x1 = 2 − 2 ≈ 0.586 y x2 = 2 + 2 ≈ 3.414 p(x) 又 p′′(x) = −6x +12, 2− 2 p′′(x1) > 0, p′′(x2 ) < 0 2+ 2 x O 故在 x2 = 3.414千件处达到最大利润, 而在 x1= 0.586千件处发生局部最大亏损.
第三章 三 第五节 函数的极值与 最大值最小值
一、函数的极值及其求法 函数的极值及其求法 二、最大值与最小值问题 最大值与最小值问题
目录
上页
下页
返回
结束
一、函数的极值及其求法 函数的极值及其求法
定义: 定义 在其中当 (1) 则称 称 (2) 则称 称 为 为 时, 的极大值点 , 极大值点 为函数的极大值 ; 极大值 的极小值点 , 极小值点 为函数的极小值 . 极小值
最小值
f (a), f (b)}
目录
上页
下页
返回
结束
特别: 特别 •当 在 内只有一个极值可疑点时,
若在此点取极大 (小) 值 , 则也是最大 (小)值 . •当 在 上单调 单调时, 最值必在端点处达到. 单调

4多元函数的极值

4多元函数的极值

4多元函数的极值及其求法一、无条件极值1、f(x,y)=sin x+cos y+cos(x-y)(0≤x,y≤π/2)P116 8.8.4解:f x= cos x-sin(x-y)f y= -sin y+sin(x-y)⇒cos x=sin y解得驻点:P1(0,π/2)、P2(π/2,0)、P3(π/3,π/6)、P4(π/6,π/3)、P5(π/4,π/4)只有P3上A= f xx= -sin x-cos(x-y)|P3=-√3B= f xyx= cos(x-y)|P3=√3/2C= f yy= -cos y-cos(x-y)|P3=-1AC-B2= (-√3)(-1)-(√3/2)2=√3-3/4>0,P3极大值点极大值f(π/3,π/6)=3√3/22、求由x2+y2+z2-2x+2y-4z-10 = 0 确定的隐函数z=z(x,y)的极值解:P116 8.8.5[一] 2x+2zz x-2-4z x= 0 z x=(1-x)/(z-2)2y+2zz y-2y-4z y= 0 z y=(1+y)/(z-2)⇒驻点(1,-1)对应P(1,-1,6)、Q(1,-1,-2)A= z xx= [-(z-2)-(1-x) z x ]/(z-2)2|P=-1/4B= z xyx=-(1-x) z x/(z-2)2|P=0C= z yy= [-(z-2)-(1+y)z y]/(z-2)2|P=-1/4AC-B2= (-1/4)(-1/4)-02>0,A<0,在P达到极大值6A= z xx= [-(z-2)-(1-x) z x ]/(z-2)2|Q =1/4B= z xyx=-(1-x) z x/(z-2)2|Q =0C= z yy= [-(z-2)-(1+y)z y]/(z-2)2|Q=1/4AC-B2= (1/4)(1/4)-02>0,A>0,在Q达到极小值-2[二] (x-1)2+(y+1)2+(z-2)2=42z极大=2+4=6,z极小=2-4=-2二、条件极值1、求z=x2+y2,在条件x+y=1下的条件极值。

§4[1].3.2函数的极值及其求法

§4[1].3.2函数的极值及其求法

的极大(小)点。(证明从略)
[ 注: (1)若 f ( x ) 在a,b]
[a 上连续,则f ( x ) 在 ,b]
上必
有最大值和最小值。
(2) f ( x ) 在(a,b) 内某点取得“最值” x 是 f ( x ) ,则 的极值点,从而 x 一定是 f ( x ) 的驻点或导数不 存在的点。
2 x2 1 而 f (1) , lim f ( x ) lim x 2e x lim 2 0, x x x e x e
1 ∴最大值是 f (1) 。 e
例 4.设某银行中的总存款量与银行付给存户年利率的平 方成正比。若银行以 20%的年利率把总存款的 90%贷出, 问银行给存户的年利率定为多少,它才能获得最大利润?
解:设银行付给存户的年利率为 x ,
T 总存款量为Q( x ) ,总利润为 ( x ) ,则
Q( x ) kx 2 ( k 为 常数) ,
T ( x )900 0200 0Q( x ) xQ( x ) ,即
T ( x ) 0.18kx 2 kx 3 ( 0 x 1) ,
T ( x ) 0.36 kx 3kx 2 3kx (0.12 x ) ,
当 x( x , x ) 时, f ( x ) 0 ,
则 f ( x ) 在点 x 取得极大值;
(2)若当 x( x , x ) 时, f ( x ) 0 ,
当 x( x , x ) 时, f ( x ) 0 ,
则 f ( x ) 在点 x 取得极小值; (3)若 f ( x ) 在点 x 的左、右邻域内保持同号,
x 0 是 f ( x ) x 3 的驻点,但 x 0 不是极值点。 例如:
(3) 称为可能极值点 。 导数不存在的点 驻点

函数的极值与最大值最小值

函数的极值与最大值最小值
第五节 函数的极值与最大值最小值
一、函数的极值及其求法 二、最大值与最小值问题
一、函数的极值及其求法
极值定义 设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
如果对 x U ( x0 ) ,有 f ( x ) f ( x0 ) ( 或 f ( x ) f ( x0 ) ),
求函数 f ( x ) x 2 3 x 2 在 [3,4] 上的 例3 最大值与最小值 .
解: 显然
一定取得最大值与最小值.
f ( x) ( x 2)( x 1)

x 1, x 2为不可导点
x [3,1] [2,4] x (1,2).
x 2 3 x 2, f ( x) 2 x 3 x 2,

2 5
0 0.33
2 ( 5 , )
其极大值为 是极大点,
是极小点, 其极小值为
确定函数极值点和极值的步骤
(1) 确定函数定义域 , 并求导数 f ( x );
(2) 求出 f ( x ) 的全部驻点与不可导点;
(3)驻点和不可导点将定义域区间分成若干个区间, 列表考察导函数在各个区间内的符号,以便确定该点
x 最大(小)值若在区间内部取得,则它一定是极大(小)值. o a x1 x2 x3x4 b x 2 , x4 为极小值点
费马( Fermat )引理
设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
若 (1) f ( x)在 x0 点可导
则 f ( x0 ) 0.
(2) f ( x)在 x0 点取得极大值或极小值
点处的切线与直线 y 0 及 x 8 所围成的三角形

高数 函数的单调性与极值

高数 函数的单调性与极值

(x) (x)
2xarcx tlan 1n (x2)2arctxan
式中 在 0 与 x 之间,由于 arctan与 x 同号,
则无论 x为什么值,总有 fБайду номын сангаас(x)0
则不等式 2xarcxt aln 1 (x2) 成立
9
例5 证明 f (x) (1 1)x 在 (0, ) 内单调增加。
x 证明 此函数为幂指函数,两边取对数
定理2告诉我们,可导函数的极值点必定是驻点, 但驻点未必是极值点。寻求函数的极值点首先要找 y f (x) 的驻点以及不可导的点,再判断其是否为
极值点。
14
定理 3 (极值第一判别法)
设函f数 (x)在x0的某邻域,内 且在连 空心续 邻域 内有导数, 当x由小到大x通 0时,过
(1) (2)
f f
高等数学
第十八讲
主讲教师: 王升瑞
1
第九节
第二章
函数的单调性与极值
一、函数的单调性 二、函数的极值及其求法
2
一、 函数的单调性
定理 1. 设函数 f (x) 在开区间 I 内可导, 若 f(x)0
(f(x)0),则 f (x) 在 I 内单调递增 (递减) .
I 称为单调递增(递减) 区间。
证: 无妨设 f(x) 0 ,x I,任取 x 1 ,x 2 I(x 1 x 2 )
例4 求证 2xarcxt aln 1 (x2) 证法一:设 f(x)2xarcx tlan 1n (x2) f (0)0
f(x)2arcx t1 a 2x x n 21 2x x22arcxtan
当 x0 时 f(x)0 f(x)
f(x)f(0)0
当 x0 时 f(x)0 f(x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cos
1 x
在–1和1之间振荡
因而 f ( x)在x 0的两侧都不单调.
故命题不成立.
三、小结
极值是函数的局部性概念:极大值可能小于极小 值,极小值可能大于极大值.
驻点和不可导点统称为临界点.
函数的极值必在临界点取得.
第一充分条件;
判别法
(注意使用条件)
第二充分条件;
思考题
下命题正确吗?
如果x0 为 f ( x) 的极小值点,那么必存在 x0的某邻域,在此邻域内, f ( x) 在x0 的左侧 下降,而在x0 的右侧上升.
思考题解答
不正确.

f
(
x)
2
x2(2
sin
1 ), x
x0
2,
x0
当x
0时,f ( x)
f (0)
x2(2 sin
1 x
)
0
于是x 0为 f ( x)的极小值点
当x 0时,
f ( x) 2x(2 sin 1 ) cos 1
x
x
当 x 0时,
2x(2 sin 1 ) 0, x
(1) 求导数 f ( x);
(2) 求驻点,即方程 f ( x) 0的根; (3) 检查 f ( x) 在驻点左右的正负号,判断极值点;
(4) 求极值.
例1 求出函数 f ( x) x3 3x2 9x 5 的极值. 解 f ( x) 3x2 6x 9 3( x 1)(x 3) 令 f ( x) 0, 得驻点 x1 1, x2 3. 列表讨论
f 2( x) f 2(a)
所以 f 2( a ) 是 f 2( x ) 的极小值
②设f ( a ) 是f ( x )的极小值,且 f (a) 0
1 0,使当 x (a 1,a 1 )时,有
f (x) f (a) 又f ( x )在 x = a 处连续,且 f (a) 0
2 0,使当 x (a 2 ,a 2 )时,有

(1)
f
( x0 )
lim
x0
f
( x0
x) x
f ( x0 ) 0,
故f ( x0 x) f ( x0 )与x异号,
当x 0时, 有f ( x0 x) f ( x0 ) 0,
当x 0时, 有f ( x0 x) f ( x0 ) 0,
所以,函数 f ( x)在x0 处取得极大值
例2 求出函数 f ( x) x3 3x2 24x 20 的极值. 解 f ( x) 3x2 6x 24 3( x 4)(x 2)
令 f ( x) 0, 得驻点 x1 4, x2 2. f ( x) 6x 6, f (4) 18 0, 故极大值 f (4) 60,
x 0时, f ( x)
f ( x) f (0) 0 即 x2 2ax 1 e x
例5 设f ( x )连续,且f ( a )是f ( x )的极值,问 f 2( a )是否是 f 2( x )的极值
证 分两种情况讨论 ① 设 f ( x) f (a),且f (a) 0
0,使当 x (a ,a )时,有
但函数的驻点却不一定是极值点.
例如, y x3, y x0 0, 但x 0不是极值点.
注 ①这个结论又称为Fermat定理
②如果一个可导函数在所论区间上没有驻点 则此函数没有极值,此时导数不改变符号
③不可导点也可能是极值点
可疑极值点:驻点、不可导点
可疑极值点是否是真正的极值点,还须进一步 判明。由单调性判定法则知,若可疑极值点的左、 右两侧邻近,导数分别保持一定的符号,则问题 即可得到解决。
定理2(第一充分条件)
(1)如果 x ( x0 , x0 ),有 f '( x) 0;而 x ( x0 , x0 ),
有 f '( x) 0,则 f ( x)在x0 处取得极大值.
(2)如果 x ( x0 , x0 ),有 f '( x) 0;而 x ( x0 , x0 )
函数的极值及其求法
由单调性的判定法则,结合函数的图形可知, 曲线在升、降转折点处形成“峰”、“谷”,函 数在这些点处的函数值大于或小于两侧附近各点 处的函数值。函数的这种性态以及这种点,无论 在理论上还是在实际应用上都具有重要的意义, 值得我们作一般性的讨论。
一、函数极值的定义
y
y f (x)
a o x1
(在x与x0之间)
lim
x x0
f (n)(x)
f (n)( x0 ) 0
因此存在x0的一个小邻域,使在该邻域内
f (n)( x)与 f (n)( x0 )同号
f (n)( )与 f (n)( x0 )同号
下面来考察两种情形
①n为奇数,当x 渐增地经过x0时 ( x x0 )n 变号
f (n)( ) 不变号

f
(
x)
2
(
x
1
2) 3
( x 2)
3
当x 2时, f ( x)不存在. 但函数f ( x)在该点连续.
当x 2时,f ( x) 0;
M
当x 2时,f ( x) 0.
f (2) 1为f ( x)的极大值.
例4 证明x 0时, x2 2ax 1 e x (a 0) 证 记 f ( x) x2 2ax 1 e x
f ( x0 ) f ( x0 ) f (n1)( x0 ) 0,但 f (n)( x0 ) 0
证明当n为偶数时, f(x0)是f(x)的极值 当n为奇数时, f(x0)不是f(x)的极值
证 由Taylor公式,得
f (x)
f ( x0 )
f
(n) (
n!
)(
x
x0
)n
又 f (n)( x)在x0处连续
如果存在着点x0的一个邻域,对于这邻域内的 任何点x,除了点x0外, f ( x) f ( x0 )均成立,就称 f ( x0 )是函数f ( x)的一个极小值.
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
二、函数极值的求法
定理1(必要条件) 设 f ( x)在点x0 处具有导数,且 在 x0处取得极值,那末必定 f '( x0 ) 0. 定义 使导数为零的点(即方程 f ( x) 0 的实根)叫 做函数 f ( x) 的驻点. 注意: 可导函数 f ( x) 的极值点必定是它的驻点,
x2 x3
x4
b x5 x6
x
y
y
o
x0
x
o
x0
x
定义 设函数f ( x)在区间(a,b)内有定义, x0是 (a , b)内 的 一 个 点,
如果存在着点x0的一个邻域,对于这邻域内的 任何点x,除了点x0外, f ( x) f ( x0 )均成立,就称 f ( x0 )是函数f ( x)的一个极大值;
x (,1) 1 (1,3) 3 (3,)
f ( x)
0
0


f (x)


小 值
极大值 f (1) 10, 极小值 f (3) 22.
f ( x) x3 3x2 9x 5图形如下
M
m
定理3(第二充分条件)设 f ( x)在x0 处具有二阶导数, 且 f '( x0 ) 0, f ''( x0 ) 0 , 那末 (1)当 f ''( x0 ) 0时, 函数 f ( x)在x0 处取得极大值; (2)当 f ''( x0 ) 0时, 函数 f ( x)在x0 处取得极小值.
f (x) 0
令 min{ 1, 2 } 则当 x (a ,a )时,有
f (a) f (x) 0 f 2(x) f 2(a)
f 2( a )是 f 2( x )的极大值
同理可讨论f ( a ) 是f ( x )的极大值的情况
例6 假定f(x)在x=x0处具有直到n阶的连续导数,且
f (2) 18 0, 故极小值 f (2) 48. f ( x) x3 3x2 24x 20 图形如下
M
m
注意: f ( x0 ) 0时, f ( x)在点x0处不一定取极值, 仍用定理2.
注意:函数的不可导点,也可能是函数的极值点.
2
例3 求出函数 f ( x) 1 ( x 2)3的极值.
n! f ( x) f ( x0 ) 变号
f ( x0 ) 不是极值
②n为偶数,当x 渐增地经过x0时
( x x0 )n 不变号
f (n)( ) 不变号
n!
f ( x) f ( x0 ) 不变号
f ( x0 ) 是极值
且当 f (n)( x0 ) 0 时 f ( x0 ) 是极小值 当 f (n)( x0 ) 0 时 f ( x0 ) 是极大值
有 f '( x) 0,则 f ( x)在x0 处取得极小值.
(3)如果当 x ( x0 , x0 )及 x ( x0 , x0 )时, f '( x)
符号相同,则 f ( x) 在x0 处无极值.
y
y
o
x0
xo
x0
x (是极值点情形)
y
y
o
x0
xo
求极值的步骤:
x0Leabharlann x(不是极值点情形)
则 f ( x) 2x 2a ex (不易判明符号) f ( x) 2 ex 令 f ( x) 0 得 x ln 2
当 x ln 2 时, f ( x) 0 当 x ln 2 时, f ( x) 0 x ln 2是 f ( x)的一个极大值点 而且是一个最大值点,
f ( x) f (ln2) 2ln 2 2a 2 0
相关文档
最新文档