(宁夏专版)2018中考数学总复习第三轮压轴题突破重难点突破1选填题解题技巧课件

合集下载

2018年度宁夏回族自治区中考~数学试卷~含内容答案

2018年度宁夏回族自治区中考~数学试卷~含内容答案

宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟。

满分120分。

2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:的结果是A. 1B.C.0D.-12.下列运算正确的是A. B. (a2)3=a5 C.a2÷a-2=1 D.(-2a3)2=4a63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和20B. 30和25C. 30和22.5D. 30和17.54.若是方程x2-4x+c=0的一个根,则c的值是A.1B.C.D.5.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5076.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A.10 B.20 C.10π D.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m2-n2= .11.反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)12.已知:,则的值是 .13.关于x的方程有两个不相等的实数根,则c的取值范围是 .14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数的图象经过点M,交AC于点N,则MN的长度是 .15.一艘货轮以㎞/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A 0纸长度方向对折一半后变为A 1纸;A 1纸长度方向对折一半后变为A 2纸;A 2纸长度方向对折一半后变为A 3纸;A 3纸长度方向对折一半后变为A 4纸……A 4规格的纸是我们日常生活中最常见的,那么有一张A 4的纸可以裁 张A 8的纸.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x18.先化简,再求值:;其中,.19.已知:△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)24.抛物线经过点A和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数. (3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)26.如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题参考答案及评分标准.............说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。

2018年宁夏中考数学试卷及解析

2018年宁夏中考数学试卷及解析

宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟.满分120分.2.考生作答时,将答案写在答题卡上,在本试卷上答题无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:|−12|−√14 的结果是A. 1B.12 C .0 D.-12.下列运算正确的是A.(−a)3=a 3B. (a 2)3=a 5C.a 2÷a -2=1D.(-2a 3)2=4a 63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和 20B. 30和25C. 30和22.5D. 30和17.54.若2−√3是方程x 2-4x+c =0的一个根,则c 的值是A.1B. 3−√3C.1+√3D. 2+√35.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x .应列方程是A.300(1+x )=507B.300(1+x )2=507C.300(1+x )+300(1+x )2=507D.300+300(1+x )+300(1+x )2=507 6.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( )A .10 B.20 C.10π D.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h (cm)与注水时间t (s)之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m 2-n 2= .11.反比例函数 y =k x (k 是常数,k ≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y 的值随x 值的增大而 .(填“增大”或“减小”)12.已知:a b =23,则 a−2b a+2b 的值是 .13.关于x 的方程 2x 2−3x +c =0 有两个不相等的实数根,则c 的取值范围是 .14.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数 y =kx (k 是常数,k ≠0)的图象经过点M ,交AC 于点N ,则MN 的长度是 .15.一艘货轮以 18√2 ㎞/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A 0纸长度方向对折一半后变为A 1纸;A 1纸长度方向对折一半后变为A 2纸;A 2纸长度方向对折一半后变为A 3纸;A 3纸长度方向对折一半后变为A 4纸……A 4规格的纸是我们日常生活中最常见的,那么有一张A 4的纸可以裁 张A 8的纸.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x18.先化简,再求值:(1x+3−13−x )÷2x−3;其中,x =√3−3.19.已知:△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?。

宁夏2018年中考数学参考答案及评分标准

宁夏2018年中考数学参考答案及评分标准

宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题参考答案及评分标准.............说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。

2. 涉及计算的题,允许合理省略非关键步骤。

3. 以下答案中右端所注的分数,表示考生正确做到这步应得的累积分。

一、 选择题(3分×8=24分)二、 填空题(3分×8=24分)9.52; 10. 24; 11. 减小; 12. 21-; 13. 89<c ; 14. 5 ; 15. 18 ; 16. 16.三.解答题(每小题6分,共36分)17. 解:解不等式①得:x ≤-1, …………………………………………………………………………2分解不等式②得:x >-7, …………………………………………………………………………4分 所以,原不等式组的解集为 -7<x <x ≤-1 6分 18. 解:原式=323)3)(3(223)3131(+=-⋅-+=-⋅-++x xx x x x x x x ……………………………4分 当33-=x 时,原式31333-=-=……………………………………………………6分19. 解:(1)正确画出轴对称图形△A 1B 1C 1……………………………………………………………2分(2)正确画出位似图形图形△A 2B 2C 2(3分); B 2(10,8)………………………………6分20. 解:(1)120=a ,正确补全频数分布直方图……………………………………………………2分(2)8000×(0.05+0.3)=2800(名)…………………………………………………………3分 (3)由列表法或树状图法可知,随机抽取两名同学的可能性共有12种,其中抽到1名男生和1名女生的可能性有6种.∴P (抽到1名男生和1名女学生)=21126= ………………………………………………6分21.(1)证明:∵四边形ABCD 为正方形∴AB =BC ,∠A =∠CBN =90°,∠1+∠2=90° ∵CM ⊥BE ∴∠2+∠3=90° ∴∠1=∠3在△ABE 和△BCN 中 ∠ ∠∠ ∠∴△ABE ≌△BCN (ASA )…………………………………………………………………3分 (2)解: ∵N 为AB 中点 ∴BN 21=AB 又∵△ABE ≌△BCN ∴AE = BN 21=AB 在Rt △ABE 中,tan ∠ABE =212===AE AE AB AE …………………………………………6分22. 解:(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x +10)元 根据题意,得:1.2(x +10)+x ≤34 解得,x ≤10答:购入B 种原料每千克的价格最高不超过10元. ……………………………………………2分 (2)设这种产品的批发价为a 元,则零售价为(a +30)元 根据题意,得:301600010000+=a a ,解得,a =50 经检验,a =50是原方程的根,且符合实际.答:这种产品的批发价为50元. …………………………………………………………………… 6分 四、解答题(23题、24题每题8分,25题、26题每题10分,共36分)23.解:(1)连接OC∵PC 为⊙O 的切线 ∴∠OCP =90° 即∠2+∠P =90°∵OA =OC ∴ ∠CAO =∠1 ∵AC=CP ∴∠P =∠C AO 又∵∠2是△AOC 的一个外角 ∴∠2=2∠C AO =2∠P ∴ 2∠P +∠P =90° ∴∠P =30°………………………………………………………………………………………… 4分 (2)连接AD∵D 为的中点∴∠ACD =∠DAE∴△ACD ∽△DAE ∴DEADAD DC = 即 AD 2=DC ·DE∵ DC ·DE =20 ∴ AD 52=∵= ∴ AD =BD 52= ∵ AB 是⊙O 的直径 ∴Rt △ADB 为等腰直角三角形∴ AB 102= ∴ OA 21=AB =10∴S ⊙O =π·OA 2=10π=31.4 ………………………………………………………………………… 8分24.解:(1)∵抛物线c bx x y ++-=231经过A ),(033、B (0,3) ∴由上两式解得332=b ∴抛物线的解析式为:3332312++-=x x y ………3分 (2)设线段AB 所在直线为:b kx y +=∵线段AB 所在直线经过点A ),(033、B (0,3) 抛物线的对称轴l 于直线AB 交于点D ∴设点D 的坐标为D ),(m 3 将点D ),(m 3代入333+-=x y ,解得m =2 ∴点D 坐标为),(23 ∴CD =CE -DE =2 过点B 作BF ⊥l 于点F ∴BF =OE =3 ∵BF +AE = OE +AE =OA =33 ∴S △ABC =S △BCD +S △ACD =21CD ·BF +21CD ·AE ∴S △ABC =21CD (BF +AE ) =21×2×33=…………………………………………………………8分 25.解:(1) (2,3,2); 12………………………………………………………………………………2分(2) ① ② ⑤…………………………………………………………………………………………5分 (3))(2222321321),,(xyS xzS yzS xyS xzS yzS S z y x ++=++=………………………………7分(4)当S 1=2, S 2=3, S 3=4时)432(2)(2321),,(xy xz yz xyS xzS yzS S z y x ++=++=欲使S (x ,y ,z )的值最小,不难看出x 、y 、z 应满足x ≤y ≤z (x 、y 、z 为正整数). 在由12个单位长 方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).而 S (1,1,12)=128 , S (1,2,6)=100, S (1,3,4)=96, S (2,2,3)=92所以,由12个单位长方体码放的几何体表面积最小的有序数组为:(2,2,3), 最小面积为S (2,2,3)=92………………………………………………………………………………………………10分 26.解:(1)令点P 的坐标为P (x 0,y 0)∵PM ⊥y 轴∴S △OPM =21OM ·PM =0021y x ⋅⋅ 将34300+-=x y 代入得23)2(83)4(83)343(21200000+--=--=+-=∆x x x x x S OPM∴当x 0=2 时,△OPM 的面积有最大值S max =23∴PM ∥OB ∴OB PM AB AP = 即OB PMAB AP ⋅=∵直线AB 分别交两坐标轴于点A 、B ∴OA =3 , OB =4,AB =5∴AP =25……………………………………………………… 6分(2)①在△BOP 中,当BO = BP 时 BP = BO =4, AP =1∵P 1M ∥OB∴OB PMAB AP = ∴54=MP ,将54=MP 代入代入343+-=x y 中,得512=OM ∴ P 1(54 ,512)……………………………………………8分②在△BOP 中,当OP = BP 时过点P 作PM ⊥OB 于点N ∵ OP =BP ∴ ON =221=OB将ON =2代入343+-=x y 中得,23=MP ∴ 点P 的坐标为P (2,23)……………………………10分。

2018年宁夏中考数学试卷(含解析)

2018年宁夏中考数学试卷(含解析)

宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟,满分120分.2.考生作答时,将答案写在答题卡上,在本试卷上答题无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.(2018·宁夏,1,3)计算:12--( ) A .1 B .12C .0D .-1 【答案】C . 【解析】∵原式=12-12=0,∴选C . 【知识点】实数的运算;绝对值;二次根式2.(2018·宁夏,2,3)下列运算正确的是 ( ) A .(-a )3=a 3 B .(a 2)3=a 5 C .a 2÷a -2=1 D .(-2a 3)2=4a 6 【答案】D .【解析】∵(-a )3=-a 3,(a 2)3=a 6,a 2÷a -2=a 2-(-2)=a 4,(-2a 3)2=(-2)2•(a 3)2=4a 6,∴选D . 【知识点】幂的运算3.(2018·宁夏,3,3)小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是 ( )A .30和20B .30和25C .30和22.5D .30和17.5【答案】C .【解析】由图知10个数据按从小到大排列为10,15,15,20,20,25,25,30,30,30,易知30出现的次最多,为此组数据的众数,排在最中间的两个数为20和25,它们的平均数为22.5,为此组数据的中位数,故选C . 【知识点】统计;折线统计图;众数;中位数4.(2018·宁夏,4,3)若2x 2-4x +c =0的一个根,则c 的值是 ( )A .1B .3C .1D .2【答案】A .【解析】解法一:∵2x 2-4x +c =0的一个根,∴(22-4(2+c =0. ∴c =1,故选A .解法二:令方程的另一个根为x 2,由韦达定理,得2224(2x c x ⎧+=⎪⎨=-⎪⎩,解得221x c ⎧=+⎪⎨=⎪⎩,故选A .【知识点】一元二次方程的根的定义;一元二次方程的根与系数的关系5.(2018·宁夏,5,3)某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x ,应列方程是 ( ) 4.若在此处键入公式。

最新-2018年宁夏中招考试数学试题卷及答案【word版】

最新-2018年宁夏中招考试数学试题卷及答案【word版】

宁夏回族自治区2018年初中毕业暨高中阶段招生数 学 试 卷注意事项:1. 考试时间120分钟,全卷总分120分. 2. 答题前将密封线内的项目填写清楚. 3. 答卷一律使用黑、蓝钢笔或圆珠笔.4. 凡使用答题卡的考生,答卷前务必将答题卡上的有关项目填写清楚. 选择题的每小题选出答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案. 不使用答题卡的考生,将选择题的答案答在试卷上.一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.31-的绝对值是( ) A . -3 B . 31 C . 3 D . 31-2. 根据国务院抗震救灾总指挥部权威发布:截止2018年6月13日12时,全国共接受国内外社会各界捐赠款物总计455.18亿元. 455.18亿元用科学记数法表示为( ) A . 4.5518×108元 B . 4.5518×109元 C . 4.5518×1010元D . 4.5518×1011元3. 下列各式运算正确的是( ) A .21-=2- B .23=6 C .632222=⋅ D .6232)2(=4. 下列分解因式正确的是( )A . )1(222--=--y x x x xy xB . )32(322---=-+-x xy y y xy xy C . 2)()()(y x y x y y x x -=--- D . 3)1(32--=--x x x x5. 甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S 甲2=0.018,乙10次立定跳远成绩的方差S 2乙=0.185,则( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .甲、乙两人成绩的稳定性不能比较6. 平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( ) A . AB =BC B .AC =BD C . AC ⊥BD D .AB ⊥BD 7. 反比例函数xky =(k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2 的大小关系为( )A . S 1> S 2B . S 1= S 2C . S 1 <S 2D . 无法确定8.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙1O 的半径为4cm ,则⊙O 2的半径为( )A .5cmB .13cmC .9 cm 或13cmD .5cm 或13cm二、填空题(每小题3分,共24分)9.计算:825-= . 10. 如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,则∠BCD = 度.11.某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天.12. 学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:已知该校七年级学生有800名,那么中号校服应订制 套.13. 从-1,1,2三个数中任取一个,作为一次函数y =k x +3的k 值,则所得一次函数中y随x 的增大而增大的概率是 .14. 制作一个圆锥模型,已知圆锥底面圆的半径为3.5cm ,侧面母线长为6cm ,则此圆锥侧面展开图的扇形圆心角为 度.15. 展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的 正方体______块.16. 已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是 .(只填序号)三、解答题(共24分) 17.(6分)先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .18.(6分)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.19.(6分)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况(1 (2)该班捐款金额的众数、中位数分别是多少?20.(6分)张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.(1)计算张红获得入场券的概率,并说明张红的方案是否公平?(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?四、解答题(共48分)21.(6分)商场为了促销,推出两种促销方式:方式①:所有商品打7.5折销售:方式②:一次购物满200元送60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买;方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买;方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买;方案四:628元和788元的商品均按促销方式②购买.你给杨老师提出的最合理购买方案是.(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是.22.(6分)如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上.(1)以O 为位似中心,将△OAB 放大,使得放大后的△11B OA 与△OAB 对应线段的比为2∶1,画出△11B OA .(所画△11B OA 与△OAB 在原点两侧). (2)求出线段11B A 所在直线的函数关系式.23.(8分)已知二次函数122--=x x y .(1) 求此二次函数的图象与x 轴的交点坐标.(2)二次函数2x y =的图象如图所示,将2x y =的图象经过怎样的平移,就可以得到二次函数122--=x x y 的图象.(参考:二次函数)0(2≠++=a c bx ax y 图象的顶点坐标是(ab ac a b 44,22--))24.(8分)如图,梯形ABCD 内接于⊙O , BC ∥AD ,AC 与BD 相交于点E ,在不添加任何辅助线的情况下:(1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中一对全等三角形进行证明. (2) 若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形.25.(10分)为极大地满足人民生活的需求,丰富市场供应,我区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的矩形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540m 2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?26. (10分)如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ; (2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的61; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P运动到什么位置时,△ADQ 恰为等腰三角形.CBA宁夏回族自治区2018年初中毕业暨高中阶段招生数学试题参考答案及评分标准说明:1. 除本参考答案外,其它正确解法可根据评分标准相应给分.2. 涉及计算的题,允许合理省略非关键步骤.3. 以下解答中右端所注的分数,表示考生正确做到这步应得的累计分.一、选择题(3分×8=24分)二、填空题(3分×8=24分) 9.23 ;10. 25 ;11. 3521500+x ;12. 360 ;13.32;14 .210;15.10 ; 16.①②③ .三、解答题(共24分) 17. 解:)1()1112(2-⨯+--a a a =)1)(1()1)(1()1()1(2-+⨯-+--+a a a a a a 3+=a ············································· 4分当33-=a 时,原式=333+-=3 ········································································ 6分18.解:在Rt △ABC 中, ∠C =90°, AB =15A sin =AB BC =54, ∴ 12=BC ········································ 3分 912152222=-=-=BC AB AC∴△ABC 的周长为36 ······································································ 5分tan A=34=AC BC ··············································································· 6分 19.解:(1) 被污染处的人数为11人 ···························································· 1分设被污染处的捐款数为x 元,则 11x +1460=50×38 解得 x =40答:(1)被污染处的人数为11人,被污染处的捐款数为40元. ························ 4分(2)捐款金额的中位数是40元,捐款金额的众数是50元. (6)20.解:(1)P2163((===白色)阴影)P ∴张红的设计方案是公平的. ·················· 2分 (2)能正确列出表格或画出树状图 ··························· 4分 ∵P 94(=奇数) P 95(=偶数)95>94∴王伟的设计方案不公平- ················· 6分 四、解答题(共48分) 21.(1)方案三··························································································· 2分(2)正确填写下表 ················································································· 4分规律:商品标价接近600元的按促销方式②购买,商品标价接近800元的按促销方式①购买.或商品标价大于600元且小于720元按促销方式②购买,商品标价大于720元且小于800元按促销方式①购买 ·················································································· 6分 (其它表述正确,或能将两种购物方式抽象概括成一次函数并能正确解答的均可给分) 22.解:(1)如图,△11B OA 就是△OAB 放大后的图象 ······································· 2分 (2)由题意得: 1A (4,0),1B (2,-4)设线段11B A 所在直线的函数关系式为)0(≠+=k b kx y则4024x b k b +=⎧⎨+=-⎩, 解得28k b =⎧⎨=-⎩,∴函数关系式为 82-=x y ·········································································· 6分23.解:(1)0122=--x x 解得 211+=x , 212-=x∴图象与x 轴的交点坐标为(21+,0)和(21-,0) ····························· 4分(2)11222=⨯--=-a b 214)2(144422-=⨯--⨯-=-a b ac∴顶点坐标为(1,2-)将二次函数2x y =图象向右平移1个单位,再向下平移2个单位,就可得到二次函数122--=x x y 的图象 ····················································· 8分24.解:(1)图中共有三对全等三角形:①△ADB ≌△DAC ②△ABE ≌△DCE ③△ABC ≌△DCB ······················ 3分选择①△ADB ≌△DAC 证明在⊙O 中,∠ABD =∠DCA ,∠BCA =∠BDA∵BC ∥AD ∴∠BCA =∠CAD ∴∠CAD =∠BDA 又∵AD AD =∴△ADB ≌△DAC ···················· 5分 (2)图中与△ABE 相似的三角形有: △DCE ,△DBA , △ACD . ······ 8分25.解:(1)根据题意西红柿种了(24-x )垄 15x +30(24-x )≤540 解得 x ≥12 ·················· 2分 ∵x ≤14,且x 是正整数 ∴x =12,13,14 ········· 4分 共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄 方案二:草莓种植13垄,西红柿种植11垄 方案三:草莓种植14垄,西红柿种植10垄 ················································ 6分 (2)解法一:方案一获得的利润:12×50×1.6+12×160×1.1=3182(元)方案二获得的利润:13×50×1.6+11×160×1.1=2976(元) 方案三获得的利润:14×50×1.6+10×160×1.1=2880(元)由计算知,种植西红柿和草莓各12垄,获得的利润最大,最大利润是3182元 ······························································· 10分解法二:若草莓种了x 垄,设种植草莓和西红柿共可获得利润y 元,则422496)24(1601.1506.1+-=-⨯+⨯=x x x y∵=k -96<0 ∴y 随x 的增大而减小 又∵12≤x ≤14,且x 是正整数∴当x =12时,最大y =3182(元) ··········································· 10分26.(1)证明:在正方形ABCD 中,无论点P 运动到AB 上何处时,都有AD =AB ∠DAQ =∠BAQ AQ =AQ∴△ADQ ≌△ABQ ······································· 2分(2)解法一:△ADQ 的面积恰好是正方形ABCD 面积的61时, 过点Q 作Q E ⊥AD 于E ,QF ⊥AB 于F ,则QE = QF21QE AD ⨯=ABCD 正方形S 61=38∴QE =34··························································································· 4分由△DEQ ∽△DAP 得 DADEAP QE = 解得2=AP ∴2=AP 时,△ADQ 的面积是正方形ABCD 面积的61··························· 6分解法二:以A 为原点建立如图所示的直角坐标系,过点Q 作QE ⊥y 轴于点E ,QF ⊥x 轴于点F .21QE AD ⨯=ABCD 正方形S 61=38 ∴QE =34∵点Q 在正方形对角线AC 上 ∴Q 点的坐标为44()33,∴ 过点D (0,4),Q ()34,34两点的函数关系式为:42+-=x y 当0=y 时,2=x ∴P 点的坐标为(2,0) ∴2=AP 时,△ADQ 的面积是正方形ABCD 面积的61. ··························· 6分 (3)若△ADQ 是等腰三角形,则有 QD =QA 或DA =DQ 或AQ =AD ①当点P 运动到与点B 重合时,由四边形ABCD 是正方形知 QD =QA 此时△ADQ 是等腰三角形②当点P 与点C 重合时,点Q 与点C 也重合,此时DA =DQ , △ADQ 是等腰三角形 ····························· 8分 ③解法一:如图,设点P 在BC 边上运动到x CP =时,有AD =AQ∵ AD ∥BC ∴∠ADQ =∠CPQ又∵∠AQD =∠CQP ∠ADQ =∠AQD∴∠CQP =∠CPQ∴ CQ =CP =x∵AC =24 AQ = AD =4 ∴424-=-==AQ AC CQ x 即当424-=CP 时,△ADQ 是等腰三角形 ······························· 10分 解法二:以A 为原点建立如图所示的直角坐标系,设点P 在BC 上运动到y BP =时,有AD =AQ .过点Q 作QE ⊥y 轴于点E ,QF ⊥x 轴于点F ,则QF QE =在Rt △AQF 中,4=AQ ,∠QAF =45°∴QF =45sin ⋅AQ °=22∴Q 点的坐标为(22,22)∴过D 、Q 两点的函数关系式:x y )21(-=+4当x =4时,248-=y ∴P 点的坐标为(4,8-42).∴当点P 在BC 上运动到248-=BP 时,△ADQ 是等腰三角形. ···················· 10分。

宁夏2018年中考数学试题(word版含答案解析)

宁夏2018年中考数学试题(word版含答案解析)

一、选择题 <以下每题所给的四个答案中只有一个是正确的,每题 3 分,共 24 分)1、<2018?宁夏)计算 a 2+3a 2的结果是 < )A 、3a 2B 、 4a 24 D 、 4a 4C 、 3a考点 :归并同类项。

剖析: 本题考察整式的加法运算,本质上就是归并同类项,依据运算法例计算即可.2 2 2解答: 解: a +3a =4a .应选 B .评论: 整式的加减运算本质上就是归并同类项,这是各地中考的常考点. 2、<2018?宁夏)如图,矩形ABCD 的两条对角线订交于点O ,∠ AOD=60°, AD=2,则 AB的长是 < )A 、2B 、 4C 、2D 、4考点 :矩形的性质;等边三角形的判断与性质。

剖析: 本题的重点是本题的重点是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答: 解:∵在矩形 ABCD 中, AO= AC ,DO= BD , AC=BD , ∴AO=DO ,又∵∠ AOD=60°, ∴∠ ADB=60°, ∴∠ ABD=30°,∴ =tan30 °,即 = , ∴AB=2 .应选 C .评论: 本题考察了矩形的性质和锐角三角函数关系,拥有必定的综合性,难度不大属于基础性题目.3、<2018?宁夏)等腰梯形的上底是 2cm ,腰长是 4cm ,一个底角是 60°,则等腰梯形的下底是<) A 、5cm B 、 6cm C 、 7cmD 、 8cm考点 :等腰梯形的性质;等边三角形的判断与性质;平行四边形的判断与性质。

专题 :计算题。

剖析:过 D 作 DE∥ AB 交 BC 于 E,推出平行四边形ABED,得出 AD=BE=2cm, AB=DE=DC,推出等边三角形DEC,求出 EC的长,依据BC=EB+EC即可求出答案.解答:解:过 D 作 DE∥AB 交 BC于 E,∵DE∥AB, AD∥ BC,∴四边形 ABED是平行四边形,∴A D=BE=2cm, DE=AB=4cm,∠ DEC=∠ B=60°,AB=DE=DC,∴△ DEC是等边三角形,∴E C=CD=4cm,∴B C=4cm+2cm=6cm.应选 B.评论:本题主要考察平等腰梯形的性质,平行四边形的性质和判断,全等等边三角形的性质和判断等知识点的理解和掌握,把等腰梯形转变成平行四边形和等边三角形是解本题的重点.4、<2018?宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上恰巧成为数字对换后构成的两位数,求这个两位数.设个位数字为x,十位数字为方程组正确的选项是<)18,结果y,所列A、B、C、D、考点:由本质问题抽象出二元一次方程组。

2018宁夏回族自治区中考数学试题含答案解析

2018宁夏回族自治区中考数学试题含答案解析

宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟。

满分120分。

2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:的结果是A. 1B.C.0D.-12.下列运算正确的是A. B. (a2)3=a5 C.a2÷a-2=1 D.(-2a3)2=4a63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和 20B. 30和25C. 30和22.5D. 30和17.54.若是方程x2-4x+c=0的一个根,则c的值是A.1B.C.D.5.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5076.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A.10 B.20 C.10πD.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m2-n2= .11.反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)12.已知:,则的值是 .13.关于x的方程有两个不相等的实数根,则c的取值范围是 .14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数的图象经过点M,交AC于点N,则MN的长度是 .15.一艘货轮以㎞/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A 4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁 张A8的纸.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x18.先化简,再求值:;其中,.19.已知:△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.已知点E为正方形ABCD的边AD上一点,连接BE,过(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)24.抛物线经过点A和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数. (3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)26.如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题参考答案及评分标准.............说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。

宁夏回族自治区2018年中考数学试卷及答案(Word版)

宁夏回族自治区2018年中考数学试卷及答案(Word版)

宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟。

满分120分。

2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:的结果是A. 1B.C.0D.-12.下列运算正确的是A. B. (a2)3=a5 C.a2÷a-2=1 D.(-2a3)2=4a63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和20B. 30和25C. 30和22.5D. 30和17.54.若是方程x2-4x+c=0的一个根,则c的值是A.1B.C.D.5.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5076.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A.10 B.20 C.10π D.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m2-n2= .11.反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)12.已知:,则的值是 .13.关于x的方程有两个不相等的实数根,则c的取值范围是 .14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数(是常数,)的图象经过点M,交AC于点N,则MN的长度是 .15.一艘货轮以㎞/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁张A8的纸.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x18.先化简,再求值:();其中, .19.已知:△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)24.抛物线经过点A和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数. (3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)26.如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题参考答案及评分标准.............说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳中考数学答题技巧一、基础题熟练掌握相关的数学概念、法则、性质是能够完整解题的前提。

解题过程,可先将题目中重要的已知条件标注出,达到节约读题时间,有效防止做题粗心大意,忘记考虑一些条件的目的。

1、选择、填空题:应做到对概念明了、思路清晰、计算准确,力求有100%的正确率,不在简单题目上失分。

解答选择题时主要采用直接推演法、排除法、图解法、特殊值法等。

解答填空题时要填最简的最终答案、多个正确选项做到不要漏选。

要保持大脑清醒,第一遍答题就要保证正确率,防止简单题做错了难于纠正。

2、计算题:主要是绝对值、零指数幂、负整数指数幂、三角函数、二次根式的综合,解答时要注意算理和运算顺序,逐一计算或化简,结果应为最简。

化简求值时必须要注意运算顺序及相关法则,在化成最简结果后,才代入计算。

3、证明题:要求做到每一步都有理有据,答题完整,简单的题目不容失分。

4、统计与概率:能从三种统计图(条形统计图、扇形统计图和折线统计图)及统计表中获取有用的信息,根据要求解答问题。

①根据条形统计图的矩形高度可得各部分数目,进行大小比较,便能计算各部分的比例;②根据扇形统计图的百分数值,可计算各部分的数目;③根据折线统计图可得各部分的数目和它们的变化情况及趋势规律;④对某些特征数要能理解、进行基本的计算和运用:能反映一组数据平均水平的平均数会受某些偏大或偏小数据的影响,应当小心使用;中位数也反映一组数据的平均水平(大多数水平),可以平衡平均数的不足之处;众数目的是提供一些问题的处理方式;通过方差、标准差的大小可以比较数据之间的稳定程度;⑤计算概率的基础是掌握绘制树状图或进行列表,值得注意的是所取出的样品是否有放回。

二、综合题解答综合题时候,经常一个问题需要运用到几个知识点,应当注意大条件跟子条件之间的本质区别,大条件是全解题过程适用,而子条件是有分不同题目的,至于何时不能再适用,应进行考量。

解答时必须计算准备,才不至于影响下一步的解答。

2018年宁夏中考数学试卷及答案 精品

2018年宁夏中考数学试卷及答案 精品

宁夏回族自治区2018年初中毕业暨高中阶段招生考试 数 学 试 题注意事项:1.全卷总分120分,答题时间120分钟 2.答题前将密封线内的项目填写清楚3.使用答题卡的考生,将所有答案全部答在答题卡相应的位置上.一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1.下列运算正确的是( ) A .32a -2a =3 B .32)(a =5a C . 3a 6a =9a D .22)2(a =24a2.根据人民网-宁夏频道2018年1月18日报道,2018年宁夏地区生产总值为2060亿元,比上年增长12%,增速高于全国平均水平.2060亿元保留两个有效数字用科学记数法表示为( )A .2.0×109元B . 2.1×103元C .2.1×1010元D .2.1×1011元3.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( )A .13B .17C .22D .17或22 4、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A.⎩⎨⎧=+=+16120053y x y x B .⎩⎨⎧=+=+162.153y x y x C .⎩⎨⎧=+=+162.153y x y xD .⎩⎨⎧=+=+161200605603y x y x5.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是( ) A.1217πm 2 B.617πm 2 C.425πm 2 D.1277πm 26.如图,AB为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠ACP =( ) A .30 B .45 C .60 D .67.5 7.一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )A .24.0B .62.8C .74.2D .113.08.运动会上,初二 (3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( ).A .20305.140=-x x B.205.13040=-x x C . 205.14030=-x x D.20405.130=-xx二、填空题(每小题3分,共24分)9.当a 时,分式21+a 有意义. 10.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是 .11.已知a 、b 为两个连续的整数,且b a <<11,则a b += . 12. 点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是 . 13.在△ABC 中∠C =90°,AB =5,BC =4,则tanA =_________.14. 如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A 、B 两岛的视角∠ACB =__________度. A A 115.如图,在矩形ABCD 中,对角线AC 、BD 相较于O ,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶2,且AC =10,则DE 的长度是 . 16.如图,将等边△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =3,31=∆C PB S ,则BB 1= .三、解答题(共24分)17.(6分) 计算:20)21(21)2012(45sin 22--+----︒∙18.(6分)化简,求值: 11222+-+--x xx x x x ,其中x =219.(6分)解不等式组 ⎪⎩⎪⎨⎧≤--+-+131211312x x x x )(>20.(6分)某商场为了吸引顾客,设计了一种促销活动,在一个不透明的箱子里放有4个相同的小球,在球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本商场同一天内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和,返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.四、解答题(共48分)21.(6分)商场对每个营业员在当月某种商品销售件数统计如下: 解答下列问题(1)设营业员的月销售件数为x (单位:件),商场规定:当x <15时为不称职;当15≤x <20时为基本称职;当20≤x <25为称职;当x ≥25时为优秀.试求出优秀营业员人数所占百分比;(2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数;(3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档