最新人教版初中初三九年级数学上册24.3_正多边形和圆(优质课件)

合集下载

人教版数学九年级上册24.3正多边形和圆课件(36张PPT)

人教版数学九年级上册24.3正多边形和圆课件(36张PPT)
24.3 正多边形和圆
人教版·九年级上册
学习目标
(1)理解正多边形及其半径、边长、边心距、中心 角等概念. (2)会进行特殊的与正多边形有关的计算,会画某 些正多边形.
新课导入
问题1:观察下面多边形,它们的边、角有什么特点?
都是各边相等,各内角相等的多边形
问题2:观看这些美丽的图案,都是在日常生活中我们 经常能看到的.你能从这些图案中找出类似的图形吗?
动手操作
操作一:自己动手试一试,你能画出什么正多边 形?你是怎么画的? 操作二:画一个半径是1.5cm的圆,并画出它的正 六边形。
解:方法 1 (1)作一个半径是1.5cm的圆⊙O ; (2)用量角器依次作∠AOB=∠BOC=∠COD= ∠DOE=∠EOF=∠FOA= 360 =60°,将360°圆心角六
想一想
有没有对称轴?
正多边形都是 轴对称 图形,一个正n边形共有
n 条对称轴,每条对称轴都通过n边形的 中心 .
边数3是条偶数的正4多条边形还是 5中条心对称图形6条,它的中 心就是对称中心.
你知道正多边形与圆的关系吗?
把一个圆分成相等的弧?依次连接各等分点,得到一个什 么图形? 如果五、六、七…等分?如果将圆n等分呢?
思考 什么叫正多边形?图中有哪些正多边形? 正多边形与圆有哪些关系?
探索新知
图形 ……
名称 正三角形 正四角形 正五角形 正六角形
……
边的关系
角的关系
三条边相等 三个角相等(60°)
四条边相等 四个角相等(90°)
五条边相等 五个角相等(108°)
六条边相等 六个角相等(120°)
……
……
正多边形的概念:
< 针对训练 >

最新人教版初中数学九年级上册《24.3 正多边形和圆(第1课时)》精品教学课件

最新人教版初中数学九年级上册《24.3 正多边形和圆(第1课时)》精品教学课件
2.一个正多边形的各个顶点在同一个圆上? 一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这 个圆的一个内接正多边形,圆叫做这个正多边形的外接圆. 3.所有的多边形是不是都有一个外接圆和内切圆? 多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意 三角形都有外接圆和内切圆.
探究新知
正多边形的外接圆和内切圆的公
(n 2)180
n
中心角
120 ° 90 ° 60 °
360 n
外角
120 ° 90 ° 60 °
360 n
正多边形的外
角=中心角
A
F
中心
中心角
B
O半径R E
边心距r
C
D
探究新知
知识点 3 正多边形的有关计算
如图,已知半径为4的圆内接正六边形ABCDEF:
①它的中心角等于 60 度 ;
② OC=BC (填>、<或=); F
探究新知
AC是∠DAB及∠DCB的角平
E A
B 分线,BD是∠ABC及∠ADC
的角平分线,
O
G
H ∴OE=OH=OF=OG.
DF
∴正方形ABCD还有一个以点O
C
为圆心的内切圆.
探究新知 想一想
1.所有的正多边形是不是也都有一个外接圆和一个内切圆?
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
F
抽象成
A
E
O
D
PC
探究新知
解:过点O作OM⊥BC于M.
在Rt△OMB中,OB=4,
MB=B2C
4 2, 2
利用勾股定理,可得边心距
r 42 22 2 3.
亭子地基的面积:

人教版九年级数学上册24.3 正多边形和圆精品课件(共31张PPT)

人教版九年级数学上册24.3 正多边形和圆精品课件(共31张PPT)

轴对称图形, 什么叫中心? 一个正n边形共有n条对称轴, 每条对称轴都通过n边形的中心.
正多边形的性质
正八边形
正六边形
边数是偶数的正多边形 是中心对称图形, 它的中心就是对称中心.
小练习
菱形是正多边形吗?矩形是正多边形吗?
×
菱形的四个角不相等.
×
矩形的四条边不相等.
正多边形和圆的关系非常密切, 把一个圆分成相等的一些弧,就可以 作出这个圆的内接正多边形,这个圆 就是这个正多边形的外接圆.
F
E
O . .
D
r R
B P C
∴亭子的周长 L=6×4=24(m)
在RtOPC中,OC 4,PC BC 4 2 2 2
根据勾股定理,可得边 心距r 亭子的面积S
4
2
2 2 3
2
1 1 2 Lr 24 2 3 41.6(m ) 2 2
内接正多边形与外接圆的联系 A D
教学重难点
• 正多边形的概念与正多边形和圆的关系的第
一个定理.
• 对定理的理解以及定理的证明方法.
正多边形的性质 每条边都相等 每个角都相等
60°
108°
135° 正n边形内角和: (n-2)180°
正多边形的性质
正五边形
正八边形
正三边形
正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心。
24.3 正多边形和圆
回顾旧知
正多边形
各边相等,各角也相等的多边形.
几种常见的正多边形
生活中的正多边形图案
生活中的正多边形图案
教学目标
【知识与能力】
• 使学生理解正多边形概念,初步掌握正 多边形与圆的关系的第一个定理. • 通过正多边形定义教学,培养学生归纳、 观察、推理、迁移能力.

人教版九年级数学上24.3正多边形和圆(共32张PPT)

人教版九年级数学上24.3正多边形和圆(共32张PPT)
24.3正多边形和圆
E
A
D
B
C
三条边相等,
四条边相等,
三个角相等
正三 角形
(60度)。
正方形
四个角相等 (900)。
一 .正多边形定义
各边相等,各角也相等的多边形叫做正多边形.
二、说说下列多边形的名称
正五边形
正六边形
正八边形
1、正多边形的各边相等 2、正多边形的各角相等
3、正多边形都是轴对称图形,一个正n边形 共有n条对称轴,每条对称轴都通过n边形 的中心。
E
D
一个正多边形的外接
圆的圆心.
正多边形的半径: 外接圆的半径
F
.半径R O
中心角
C
正多边形的中心角:
360
n
边心距r
正多边形的每一条
A
B
边所对的圆心角.
正多边形的边心距: 中心到正多边形的一边 的距离.
正多边形的周长= 正多边形的面积=
中心角 360
中心角 E
D
n
边心距把△AOB分成 F
2个全等的直角三角形
AOG BOG 180 n
.. O R
AG
C a
B
正n边形被相邻周半径长分为成L=na
___n___个全等的等腰三角
形.被边心距边分心成距__r_2_n个全R 2
等的直角三角形,
(1 2
a )2
设正多边形面的积S边长 为12 aar,n边心12距lr为r,半经为R.
1、O是正△ABC的中心,它是△ABC的_外__接__圆__ 与__内__切__圆___圆的圆心。
B

E
边形是正六边形。
C

人教版数学九年级上册24.正多边形和圆经典课件

人教版数学九年级上册24.正多边形和圆经典课件

6
A
OBC是等边三角形,从而正
六边形的边长等于它的半径. B
∴亭子的周长 L=6×4=24(m)
E
.. O
D
r R=4
PC
在RtOPC中,OC 4,PC BC 4 2 22
根据勾股定理,可得边 心距r 42 22 2 3
亭子的面积 S 1 Lr 1 24 2 22
3 41.6(m2)
正多边形对称性
1、正多边形都是轴对称图形,一个正n边 形共有n条对称轴,每条对称轴都通过n边 形的中心。
2、边数是偶数的正多边形还是中心 对称图形,它的中心就是对称中心。
两个正六边形的边 长分别是3和4,这 两个正六边形的面 积之比等于_______
圆内接正方形的 半径与边长的比 值是________
下列图形中:①正五边形;②等 腰三角形;③正八边形;④正 2n(n为自然数)边形;⑤任意 的平行四边形。是轴对称图形的
有①__②__③__④____,是中心对称图形 的有③__④__⑤____,既是中心对称图
形,又是轴对称图形的有
__③__④___。
已知正三角形ABC的边长为 4,则它的内切圆和外接圆 组成的圆环面积是多C 少?
D
O
A
B
A、B、C在⊙O上,且B在弧AC 上,AB、AC分别是正九边形和 正六边形的一边。请问:BC是 此圆内接正几边形的一边?
A
B
O
C
B.互补
C.互余或互补 D.不能确定
正多边形的性质
各边相等,各角相等
圆的内接正n边形的各个顶点把圆分成n等分 圆的外切正n边形的各边与圆的n个切点把圆分成n
等分
每个正多边形都有一个内切圆和外接圆,这两个圆 是同心圆,圆心就是正多边形的中心

最新人教版九年级数学上册《正多边形和圆》精品教学课件

最新人教版九年级数学上册《正多边形和圆》精品教学课件
A
B
E

状元成才路
C
D
我们以圆的接正五边形为例证明.
如图,把⊙O分成相等的5段弧,依次连接各分点
得到正五边形ABCDE.
∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A
A
∴ AB=BC=CD=DE=EA,
∴B⌒CE=C⌒DA=3A⌒B
∴ ∠A=∠B.
B
E
·O
同理∠B=∠C=∠D=∠E.
C
D
又∵五边形ABCDE的顶点都在⊙O上,
正三 角形
正方形
三条边相等,
四条边相等,
三个角相等(60°) 四个角相等(90°)
状元成才路
正多边形定义
各边相等,各角也相等的多边形是正多边形. 正n边形:如果一个正多边形有n条边, 那么 这个正多边形叫做正n边形.
状元成才路
观察下列图形,从这些图形中找出相 应的正多边形.
状元成才路
菱形是正多边形吗?矩形是正多边形吗? 为什么?
基础巩固
1.下列说法中正确的是( C ) A.各边都相等的多边形是正多边形 B.正多边形既是轴对称图形,又是中心对称图形 C.各边都相等的圆内接多边形是正多边形 D.各角都相等的圆内接多边形是正多边形
状元成才路
2.如果一个正多边形的每个外角都等于36°,则这个
多边形的中心角等于( A )
A.36°
状元成才路
知识点3 有关正多边形的作图
怎样画一个正多边形呢?
问题1:已知⊙O的半径为2cm,求作圆的内接正三
角形. A
①用量角器度量,使∠AOB=
120° ∠BOC=∠COA=120°.
O
②用量角器或30°角的三角板度
C

《正多边形和圆》九年级初三数学上册PPT课件(第24.3课时)

《正多边形和圆》九年级初三数学上册PPT课件(第24.3课时)
证:五边形ABCDE是圆内接正五边形.
证明:
提示:正五边形的五边相等,五个内角也相等。
∵AB=BC=CD=CE=AE
∴AB=BC=CD=CE=AE
而BCE=BC+CD+DE
A
B
E
O
CDA=CD+DE+AE
∴∠A=∠B 同理∠B=∠C=∠D=∠E
又五边形ABCDE的顶点都在⊙O上
所以五边形ABCDE是圆内接正五边形, ⊙O是五边形
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y=cosx
关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
第一章 三角函数
(2) 首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分对称
到x轴的上方.如图(2)所示.
第一章 三角函数
探索正多边形和圆的位置关系
如图所示,把⊙O分成相等的3段弧,依次连接各分点得到▲ABC.求证:
▲ABC是圆内接正三边形.
证明:
A
∵AB=BC=AC
O
∴AB=BC=AC
所以▲ABC是圆内接正三边形
C
B
探索正多边形和圆的位置关系
如图所示,把⊙O分成相等的5段弧,依次连接各分点得到五边形ABCDE.求
2.正弦曲线和余弦曲线的关系
1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.
(1)作正弦函数和余弦函数的图象时,所取的“五点”是相同的.( × )
(2)正弦曲线和余弦曲线都介于直线 y=1 和 y=-1 之间.( √ )
(3)正弦曲线与余弦曲线都关于原点对称.( × )

人教版数学九年级上册24.3.1正多边形和圆经典课件(共34张PPT)

人教版数学九年级上册24.3.1正多边形和圆经典课件(共34张PPT)

6
A
OBC是等边三角形,从而正
六边形的边长等于它的半径. B
∴亭子的周长 L=6×4=24(m)
E
.. O
D
r R=4
PC
在Rt OP中 C , OC4,PCBC42 22
根据勾股定理,心 可距 r得边 4222 2 3
亭子的面 S积1Lr1242 22
341.6(m2)
正多边形对称性
1、正多边形都是轴对称图形,一个正n边 形共有n条对称轴,每条对称轴都通过n边 形的中心。
边数相同的正多边形相似,周长比、边长比、半径 比、边心距比、对应对角线比都等于相似比,面积 比等于相似比平方
求证:各边相等的圆内接多边形是 正多边形。
求证:各角相等的圆外切多边形是 正多边形。
思考: 各边相等的圆外切多边形是否是正多边形? 各角相等的圆内接多边形是否是正多边形?
下列图形中:①正五边形;②等 腰三角形;③正八边形;④正 2n(n为自然数)边形;⑤任意 的平行四边形。是轴对称图形的
是轴对称图形的有__________,是中心对称图形的有________,既是中心对称图形,又是轴对称图形的有_______。 下列图形中:①正五边形;
那么边心距是 1、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过n边形的中心。
已知正三角形ABC的边长为4,则它的内切圆和外接圆组成的圆环面积是多少? 求证:各角相等的圆外切多边形是正多边形。
2
面积S 1L•边心距r) ( 1na•边心距r) (
2
2
定理
任何正多边形都有一个外接圆和一个 内切圆,并ቤተ መጻሕፍቲ ባይዱ这两个圆是同心圆。
正多边形的外接圆(或内切圆)的圆心 叫做正多边形的中心,外接圆的半径叫 做正多边形的半径,内切圆的半径叫做 正多边形的边心距。正多边形各边所对 的外接圆的圆心角叫做正多边形的中心 角。正n边形的每个中心角都等于 360°/n。

人教版九年级数学上册《正多边形和圆形》圆PPT优质课件

人教版九年级数学上册《正多边形和圆形》圆PPT优质课件
A. ①②④
B. ①③④
C. ②③④
D. ①②③
课堂练习
题1【解析】首先由垂径定理确定③正确,再由在OO中
,OA=AB,确定△OAB是等边三角形,即可得到
∠A0B=60°,得到①正确,又由垂径定理,求得
∠AOC=30°,得到②正确,根据同弧所对圆周角等于其
对圆心角的一半,即可求得∠BAC=15°,则问题得解结
第二十四章

24.3 正多边形和圆
情境引入
这些美丽的图案,都是在日常生活中我们经
常能看到的利用正多边形得到的物体,你能
从这些图案中找出正多边形吗?
你还能举出一些这样正多边形的例子吗?
情境引入
你知道正多边形和圆有关系吗?怎样就能作出一个正
多边形来?
正多边形和圆的关系非常密切,只要把一个圆分成相
正多边形的中心
正多边形的半径
正多边形的中心角
正多边的边心距。
知识要点
正多边形的半径R、正多边形的中心角、边长a、
正多边的边心距r之间的等量关系:①正n边形的
360⁰
2
中心角=
;②( ) +r2=R2;③正n边形的面

2
积=n个等于三角形面积或者2n个直角三角形面
积。
知识要点
画正多边形的方法。
360⁰
方法一:用量角器作一个等于
的圆心角。

方法二:尺规作正方形、正六边形等。
课堂练习
例1:如图所示,以半径为1的圆内接正三角形、正方形、正六边形的边长
为三边作三角形,( B )。
A. 这个三角形是等腰三角形
B. 这个三角形是直角三角形
C. 这个三角形是锐角三角形

新人教版九年级上册24[1].3正多边形与圆 PPT课件

新人教版九年级上册24[1].3正多边形与圆 PPT课件

弦相等(多边形的边相等) 弧相等—
圆周角相等(多边形的角相等)
—多边形是正多边形
证明:∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A
∴AB=BC=CD=DE=EA
⌒⌒ ⌒
∵BCE=CDA=3AB ∴∠1=∠2
A1B2同理∠ Nhomakorabea=∠3=∠4=∠5
3
又∵顶点A、B、C、D、E都在⊙O上, C
∴五边形ABCDE是⊙O的内接五边形.
A
2它、是O正B半△叫径A正BC△的ABC的

外接 圆的半径。
3、OD叫作正△ABC
.O
的 边心距,它是正△ABC
的 内切 圆的半径。 B
D
C
4、正方形ABCD的外接圆圆心O叫做
正方形ABCD的
中心
5、正方形ABCD的内切圆的半径OE叫做
正方形ABCD的 边心距
A
D
.O
B EC
6、⊙O是正五边形ABCDE的外接圆,弦AB的
E
D
F
.O
C
A
B
1、正多边形的各边相等 2、正多边形的各角相等
3、正多边形都是轴对称图形,一个正n边形 共有n条对称轴,每条对称轴都通过n边形 的中心。
4、边数是偶数的正多边形还是中心 对称图形,它的中心就是对称中心。
画正多边形的方法
1.用量角器等分圆 2.尺规作图等分圆
(1)正四、正八边形的尺规作图 (2)正六、正三 、正十二边形的尺规作图
5E
4
D
正多边形的中心:一个正多边形的外接圆的圆心.
正多边形的半径:
E
D
外接圆的半径
. 正多边形的中心角: 正多边形的每一条
F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
半径 R 60 边心距 r
O
半径 R 45 边心距 r
O
半径 R 30 边心距 r
A C
M
A C
M
A C
M
360 中心角
n

中心角
E
D
边心距OG把△AOB分成
2个全等的直角三角形
F
R
. .O
a A
C
B G 设正多边形的边长为a,半径为R,它的周长为L=na.
边心距r 面积S
180 AOG BOG n
1 1 360 180 当n 3时,AOM 中心角 60 2 2 3 3 1 1 360 180 当n 4时,AOM 中心角 45 2 2 4 4 1 1 360 180 当n 6时,AOM 中心角 30 2 2 6 6
E
D
F
.O
C
A
B
探索新知
连接OC,由垂径定理(运用圆的有关知识)得
1 1 360 180 AOM 中心角 2 2 n n
1 AM AB 2
E
D
F
.O A
半径 R
C
在Rt ΔAOM中,有 OA OM AM .
2 2 2
M
O
B
中心角一半
边心距 r
C 边长一半 M
探索新知
4.已知正六边形的边心距为 3 ,则它的 12 周长是_____.
巩固练习
5.如图,正六边形ABCDEF的半径为2,以它 的中心O为坐标原点,顶点B、E在x轴上,求 正六边形ABCDEF的各顶点的坐标. A(-1, 3 ) y B(-2,0 ) C(-1, 3) D(1, 3)
A B O C D F E
2
a , ) R( 2
2
1 1 L 边心距(r) na 边心距(r) 2 2
例题讲解
例. 有一个亭子,它的地基半径为4 m的正六边形 ,求地基的周长和面积(精确到0.1 m2). 解: 如图由于ABCDEF是正六边形,所以它的中心 360 角等于 ,△OBC是等边三角形,从而正 60 6 六边形的边长等于它的半径.
F E O
因此,亭子地基的周长
l =4×6=24(m).
A D R P C
r
B
例题讲解
在Rt△OPC中,OC=4, PC=
利用勾股定理,可得边心距
BC 4 2, 2 2
F O r R P C
E
r 4 2 2 3.
2 2
A
D
亭子地基的面积
B
1 1 2 S lr 24 2 3 41.6(m ). 2 2
A F O
27 3 2 S cm 2
B C
E D
例题选讲
分别求出半径为R的圆内接正三角形,正方形 的边长,边心距和面积.
解:作等边△ABC的BC边上的高AD,垂足为D 连接OB,则OB=R,BC=a 在Rt△OBD中 ∠OBD=30°, 1 a R . 边心距=OD= BD= 2 2
B A
a 2
巩固练习
1.正八边形的每个内角是______ 度. 135° 2.如图,正六边形ABCDEF内接于⊙O,则 ∠CFD的度数是( C ) A. 60° B. 45° C. 30° D. 22.5°
巩固练习
3.如果一个正多边形绕它的中心旋转90°就与 原来的图形重合,那么这个正多边形是( B ) A.正三角形 B.正方形 C.正五边形 D.正六边形
BD2 OD2 OB2
a 1 ( ) 2 ( R) 2 R 2 2 2 解之得 : a 3R S 1 1 R 3 BC AD a ( R ) 3R 2 2 2 4
O · 1 R a 2 R. 2 D
④中心到正多边形的一边的距离
F

半径R
B
中心角
E
边心距r
叫做正多边形的边心距(内切圆 的半径、即OM)
C M
D
同步练习
(n 2) 180 n 正n边形的每一个内角的度数都是____________;
360 n 中心角是___________;
正多边形的中心角与外角的大小关系 相等 是________.
x
E(2,0 ) F( 1, 3 )
巩固练习
6.如图,有一圆内接正八边形ABCDEFGH, 若△ADE的面积为10,则正八边形 ABCDEFGH的面积为( A ) A. 40 B .50 C. 60
A B
D. 80
H
G
C D E
F
巩固练习
7.边长为6的正三角形的半径是________. 2 3
8.如图,⊙O的周长EF的面积.
同步练习
1、正方形ABCD的外接圆圆心O叫做 中心 正方形ABCD的 2、正方形ABCD的内切圆的半径OE叫做 正方形ABCD的 边心距
A
.O
D
B
E
C
同步练习
3、图中正六边形ABCDEF的中心角是 ∠AOB 它的度数是 60度 4、你发现正六边形ABCDEF的半径与边长具有 什么数量关系?为什么?
A B E

C
D
又∵五边形ABCDE的顶点都在⊙O上, ∴ 五边形ABCDE是⊙O的内接正五边形 ,
探索新知
你能作出正五边形的内切圆吗?
A B E
O· C D
概念学习
①我们把一个正多边形的外接圆(内切圆) 的圆心叫做这个正多边形的中心(即点O)
②外接圆的半径叫做正多边形的半径(即OA)
③正多边形每一边所对的圆心角叫 A 做正多边形的中心角(即∠AOB )
菱形是正多边形吗?矩形是正多边形吗? 为什么?
探索新知
你知道正多边形与圆的关系吗? 正多边形和圆的关系非常密切,只要把一个圆 分成相等的一些弧,就可以作出这个圆的内接 正多边形,这个圆就是这个正多边形的外接圆 . A
A
B B O· C
E
D
我们以圆内接正五边形为例证明. 如图,把⊙O分成相等的5段弧,依次连接 各分点得到正五边形ABCDE. ∵AB=BC=CD=DE=EA ∴ AB=BC=CD=DE=EA, ∴BCE=CDA=3AB ∴ ∠A=∠B. 同理∠B=∠C=∠D=∠E.
想一想
正三 角形
三条边相等, 三个角相等 正方形 (60°)
四条边相等, 四个角相等 (90°)
正多边形定义
各边相等,各角也相等的多边形是正多边形. 正n 边形:如果一个正多边形有n 条边, 那么这个正多边形叫做正n 边形.
人教版九年级上册
找一找
观察下列图形,从这些图 形中找出相应的正多边形.
想一想
相关文档
最新文档