八年级(上)数学期中测试卷.doc

合集下载

人教版数学八年级上学期《期中测试卷》含答案解析

人教版数学八年级上学期《期中测试卷》含答案解析
【答案】D
【解析】
【分析】
要熟悉三角形中的概念及其分类方法和三角形的内角和定理及其推论.
【详解】A、正确,符合线段的定义;
B、正确,符合三角形内角和定理;
C、正确;三角形的分类;
D、三角形的一个外角大于任何一个和它不相邻的内角,错误.
故选D.
【点睛】考查了三角形的高、中线、角平分线的概念;三角形的内角和定理及其推论;三角形的分类方法.
B. AOB、 BOC、 COA都是等腰三角形
C. OAB+ OBC+ OCA=
D.点O到AB、BC、CA的距离相等
8.如图 中, ,且 为 上一点.今打算在 上找一点 ,在 上找一点 ,使得 与 全等,以下是甲、乙两人的作法:
(甲)连接 ,作 的中垂线分别交 、 于 点、 点,则 、 两点即为所求
(乙)过 作与 平行的直线交 于 点,过 作与 平行的直线交 于 点,则 、 两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A. 两人皆正确B. 两人皆错误
C. 甲正确,乙错误D. 甲错误,乙正确
9.如图,己知在 中, ,点 是 边的中点,分别以 , 为圆心,大于线段 长度一半的长为半径作弧,两弧在直线 上方的交点为 ,直线 交 于点 ,连接 ,则下列结论:① ;② ;③ 平分 .其中一定正确的是()
1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()
A.诚B.信C.友D.善
【答案】D
【解析】
【分析】
根据轴对称图形的概念逐一进行分析即可得.
【详解】A.不是轴对称图形,故不符合题意;
B.不是轴对称图形,故不符合题意;
C.不是轴对称图形,故不符合题意;

八年级数学上册期中试卷【含答案】

八年级数学上册期中试卷【含答案】

八年级数学上册期中试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知三角形ABC中,∠A=90°,AB=3,AC=4,则BC的长度为( )。

A. 5B. 6C. 7D. 83. 有理数-3/5、-5/7、-7/9的大小关系是( )。

A. -3/5 < -5/7 < -7/9B. -7/9 < -5/7 < -3/5C. -3/5 > -5/7 > -7/9D. -7/9 > -5/7 > -3/54. 下列哪个图形不是轴对称图形?( )A. 等边三角形B. 矩形C. 圆D. 梯形5. 如果一个多项式能被(x-1)整除,那么这个多项式( )。

A. 必定有实数根B. 必定有复数根C. 必定是偶数次的多项式D. 必定能被(x+1)整除二、判断题1. 两个负数相乘的结果一定是正数。

( )2. 平行四边形的对边相等且平行。

( )3. 任何两个有理数之间都存在无数个无理数。

( )4. 二次函数的图像一定经过原点。

( )5. 对角线互相垂直的四边形一定是菱形。

( )三、填空题1. 若 |x-3| = 5,则 x = _______ 或 _______。

2. 已知a = 2 + √3,b = 2 √3,则a² + b² = _______。

3. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是 _______。

4. 若一个等差数列的首项为2,公差为3,则第10项的值是 _______。

5. 若一个函数的图像关于y轴对称,则这个函数是 _______ 函数。

四、简答题1. 解释什么是算术平方根,并给出一个例子。

2. 描述平行线的性质。

人教版数学八年级上学期《期中检测试卷》含答案解析

人教版数学八年级上学期《期中检测试卷》含答案解析
人 教 版 数 学 八年级上学期
期中测 试 卷
学校________班级________姓名________成绩________
考试时间120分钟 满分120分
一、选择题:
1.下列图形中,属于轴对称图形的是( )
A. B.
C. D.
2.下列运算正确的是()
A. B. C. D.
3.在平面直角坐标系中,点 关于 轴对称 点 的坐标为()
故选:C.
【点睛】本题考查了等边三角形的性质,三角形全等的判定和性质,掌握三角形全等的判定和性质是解题的关键.
12.如图所示,在平面直角坐标系中 , , 是直角三角形,且 , , 到 轴距离为 ,把 绕点 顺时针旋转 ,得到 ;把 绕点 顺时针旋转 ,得到 .以此类推,则旋转第2017次后,得到的直角三角形的直角顶点 的坐标为()
【答案】C
【解析】
【分析】
根据轴对称图形 概念求解.
【详解】根据轴对称图形的概念求解,A不是轴对称图形,故本选项错误;B不是轴对称图形,故本选项错误;C是轴对称图形,故本选项正确;D不是轴对称图形,故本选项错误,故本题C为正确答案.
【点睛】本题考查了轴对称图形的概念,掌握一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形,这条直线叫做对称轴是解决本题的关键.
A. B. C. D.
10.如图,等腰 的底边 长为4,腰长为6, 垂直平分 ,点 为直线 上一动点,则 的最小值为()
A.10B.6C.4D.2
11.如图, 和 均为等边三角形,点 , , 在同一条直线上,连接 ,若 ,则 的度数是()
A. B. C. D.
12.如图所示,在平面直角坐标系中 , , 是直角三角形,且 , , 到 轴距离为 ,把 绕点 顺时针旋转 ,得到 ;把 绕点 顺时针旋转 ,得到 .以此类推,则旋转第2017次后,得到 直角三角形的直角顶点 的坐标为()

【人教版】数学八年级上学期《期中检测卷》含答案解析

【人教版】数学八年级上学期《期中检测卷》含答案解析
8.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()
A. 4.5cmB. 5.5cmC. 6.5cmD. 7cm
【答案】A
【解析】
试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=4cm,得出NQ=MN-MQ=4-2.5=1.5(cm),即可得出QR的长RN+NQ=3+1.5=4.5(cm).
【解析】
考点:线段垂直平分线的性质;等腰三角形的性质.
分析:根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.
求证:△AEC≌△CDB
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB’,连接B’C,求△AB’C的面积
(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连接OP,将线段OP绕点O逆时针旋转120°得到线段OF,设点P运动 时间为t秒.
理由:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE,
∴∠ABC=∠ABD,
在△ABC和△ABD中,
,
∴△ABC≌△ABD(ASA),
11.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_____°.
【答案】45°.

【人教版】数学八年级上册《期中考试题》附答案

【人教版】数学八年级上册《期中考试题》附答案
∵3+3=6<8,不能组成三角形,
∴不合题意,舍去;
若3cm为底边长,8cm为腰长,
则此三角形的周长为:3+8+8=19(cm).
故选A.
【点睛】此题考查了三角形的三边关系定理.比较简单,注意掌握分类讨论思想的应用.
5.如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE等于( )
A.20°B.18°C.45°D.30°
6.如图,AD是△ABC的中线,E是AD的中点,S△AEC=3cm2,则S△ABC=()cm2
A. 10B. 11C. 12D. 13
7.如图,在 中, ,点 是两条角平分线的交点,则 的大小为()
A. B. C. D.
8.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()
11.在正方形网格中, 的位置如图所示,到 的两边距离相等的点应是( )
A.点MB.点QC.点PD.点N
12.如图,直线AC上取点B,在其同一侧作两个等边三角形△ABD和△BCE,连接AE,CD与GF,下列结论正确的有()
①AEDC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
即B点到AE和DC的距离相等,
∴BH平分∠AHC,所以④正确;
∵△AGB≌△DFB,
∴BG=BF,
∵∠GBF=60°,
∴△BGF 等边三角形,
∴∠BGF=60°,
∴∠ABG=∠BGF,
∴GF∥AC,所以⑤正确.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

人教版数学八年级上册期中测试题及答案(一)

人教版数学八年级上册期中测试题及答案(一)

人教版数学八年级上册期中测试题(一)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.243.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.117.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB 于点G.求证:CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【考点】待定系数法求正比例函数解析式.【专题】待定系数法.【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选D.2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.24【考点】一次函数图象上点的坐标特征.【专题】数形结合.【分析】求出直线y=3x+6与两坐标轴的交点坐标,画出函数图象,再根据三角形的面积公式求出三角形的面积.【解答】解:设直线与x轴交点坐标为A(x,0),与y轴交点为B(0,y).将A、B两点分别代入解析式得,x=﹣2,y=6.故A、B两点坐标为A(﹣2,0)、B(0,6).于是S=×2×6=6.△ABC如图:3.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o【考点】直角三角形的性质.【专题】计算题.【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:直角三角形中,两锐角三角形度数和为90°,则两锐角的各一半度数和为45°,根据三角形内角和为180°,可得钝角度数为135°,故选B.4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)【考点】坐标与图形性质.【专题】计算题.【分析】因为四边形为正方形,四条边相等,根据正方形的性质与边长为:|AB|=4,从而可计算出D的坐标.【解答】解:设D点的坐标为(x,y),已知四边形为正方形,四条边相等,且易知|AB|=4,AB∥CD,∴C,D两点的从坐标相等,∴y=﹣3,又∵AD∥BC,∴A,D两点的横坐标相等,∴x=﹣3,∴D的坐标为(﹣3,﹣3),故选A.5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【考点】函数的图象.【专题】计算题;应用题;函数及其图像.【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【考点】角平分线的性质;三角形内角和定理.【专题】计算题.【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.13.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【考点】轴对称的性质.【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【考点】角平分线的性质.【专题】压轴题.【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【考点】等边三角形的性质;全等三角形的判定;角平分线的性质.【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO和∠ABO,最后由三角形外角的性质求得∠AOF=75°.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【考点】等腰三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】作CE⊥AB,利用直角三角形性质求出CE长,和15海里比较即可看出船不改变航向是否会触礁.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】求证△AFC≌△CEB可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【考点】作图—基本作图;等边三角形的性质.【专题】作图题.【分析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D,则根据三角形外角性质得到∠ACB=2∠D,即∠D=∠ACB=30°,然后利用FB=FD得到∠FBD=∠D=30°,则BF平分∠ABC,于是根据等边三角形的性质可得到点F为AC的中点;(2)如图,过点F作FE⊥BD于E,利用含30度的直角三角形三边的关系得到CF=2CE,而CD=CF,则CF=2CE,再利用BC=2CF,所以BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BC=4CE,∴BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

八年级上册数学期中考试(时刻:90分钟总分:100分)一.选择题(36分)1.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()AB C3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2图14.如图2,AD是ABC△的中线,E,F别离是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则那个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,5ADCB图2EFCOAB图411.等腰三角形的一个角是80°,则它的底角是 ( )A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则那个等腰三角形的底角是 ( )A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)13.若是△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 若是△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“必然”或“不必然”或“必然不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= . 16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必需知足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。

人教版八年级数学上学期期中考试复习测试题(含答案)

人教版八年级数学上学期期中考试复习测试题(含答案)

人教版八年级数学上学期期中考试复习测试题(含答案)一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.5,12,13 D.6,7,83.到△ABC的三边距离相等的点是△ABC的()A.三边中线的交点 B.三条角平分线的交点 C.三边上高的交点 D.三边垂直平分线的交点4.如图,一棵大树在一次强台风中于离地面10m处折断倒下,倒下部分的树梢到树的距离为24m,则这棵大树折断处到树顶的长度是()A.10m B.15m C.26m D.30m5.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC的长度为()A.6 B.7 C.8 D.9(第4题)(第5题)(第6题)(第7题)6.如图,已知∠ABC=∠DCB,AC、BD交于点E,添加以下条件,不能判定△ABC≌△DCB的是()A.AB=DC B.BE=CE C.AC=DB D.∠A=∠D7.如图,在△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,E是AD中点,若BD=9,则CE的长为()A.3 B.3.5 C.4 D.4.58.在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共 10 小题,每小题 3 分,共 30 分)9.已知图中的两个三角形全等,则∠α的度数是°.10.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.(第9题)(第10题)(第13题)(第14题)11.已知一个等腰三角形的两边分别为5和10,则它的周长为.12.若一直角三角形两直角边长分别为6和8,则斜边长为.13.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠B的度数为°. 14.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m、n于点B,C,连接AB,BC.若∠1=40°,则∠ABC=°.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3= .(第15题)(第16题)(第17题)(第18题)16.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.17.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是.18.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是.三、解答题(本大题共 10 小题,共 96 分)19.(8分)如图,已知点B、E、C、F在一条直线上,且AB=DF,BE=CF,∠B=∠F.求证:△ABC≌△DFE.20.(8分)如图,△ABC中,DE,FG分别为AB、AC的垂直平分线,E、G分别为垂足,若△DAF的周长为16,求BC的长.21. (8分)如图,在8×8的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点均在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)在直线l上找一点P,使PA+PB的长最短;(3)△A1B1C1的面积为________.22.(8分)如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)求证:DE=DF;(2)如果S△A BC=14,AC=7,求DE的长.23.(10分)如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?24.(10分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.25. (10分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,点E、F分别是BD和AC的中点,连接EF.(1)求证:EF⊥AC;(2)若BD=26,EF=5,求AC的长.26.(10分)如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.27. (12分)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC 于点F.(1)如图1,当点D为线段AB的上任意一点时,用等式表示线段EF、CF、AC的数量关系,并说明理由;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2;(3)在(2)的条件下猜想线段EF、CF、AC的数量关系是否发生改变,若不变,请说明理由;若改变,写出它们的数量关系,并加以证明.28. (12分)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)请用t的代数式表示BP和BQ的长度:BP=,BQ=.(2)若点Q在到达点A后继续沿三角形的边长向点C移动,同时点P也在继续移动,请问在点Q从点A到点C的运动过程中,t为何值时,直线PQ把△ABC的周长分成4:5两部分?(3)若P、Q两点都按顺时针方向沿△ABC三边运动,请问在它们第一次相遇前,t为何值时,点P、Q能与△ABC的一个顶点构成等边三角形?直接写出答案。

【人教版】数学八年级上学期《期中检测试卷》带答案

【人教版】数学八年级上学期《期中检测试卷》带答案
A. 38°B. 48°C. 62°D. 70°
【答案】D
【解析】
【分析】
运用△ABC≌△ECD求出∠ACB=∠D=62°,再运用三角形内角和定理求出∠B即可.
【详解】∵△ABC≌△ECD,∠A=48°,∠D=62°,∴∠ACB=∠D=62°,∴∠B=180°-∠ACB-∠A=180°-62°-48°=70°.
10.若△ABC≌△A1B1C1,且∠A=100°,∠B=50°,则∠C1=_______.
【答案】30°
【解析】
【分析】
根据三角形的内角和等于180°求出∠C,再根据全等三角形对应角相等解答即可.
【详解】∵∠A=100°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=180°﹣100°﹣50°=30°.
14.Rt△ABC两直角边的长分别为6cm和8cm,则斜边上的中线长为______
15.在△ABC中,若三条边的长度分别为3、4、5,则这个三角形的面积是______
16.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_____厘米.
17.在等腰三角形中,马虎同学做了如下探究:已知一个角是60°,则另两个角是唯一确定的(60°,60°);已知一个角是90°,则另两个角也是唯一确定的(45°,45°);已知一个角是120°则另两个角也是唯一确定的(30°,30°).由此马虎同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数是唯一确定的,马虎同学的结论是_______的.(填”正确”或”错误”)
A.38°B.48°C.62°D.70°
5.下列轴对称图形中,对称轴条数最多的是()
A.线段B.角C.等腰三角形D.等边三角形

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个等腰三角形的底边相等,则这两个三角形全等。

()2. 任何两个奇数之和都是偶数。

()3. 一个数的平方和它的立方一定相等。

()4. 任何两个负数相乘的结果都是正数。

()5. 若一个数的平方是36,则这个数一定是6。

()三、填空题(每题1分,共5分)1. 若一个等边三角形的边长为6cm,则它的面积是______平方厘米。

2. 若一个等差数列的首项为3,公差为2,则第5项是______。

3. 一个圆的直径是10cm,则这个圆的周长是______厘米。

4. 若一个数的立方是64,则这个数的平方根是______。

5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______立方厘米。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是等差数列?给出一个等差数列的例子。

3. 简述圆的周长和面积的计算公式。

4. 什么是质数?给出5个质数的例子。

5. 什么是因式分解?给出一个多项式因式分解的例子。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的周长。

人教版2022--2023学年度第一学期八年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期八年级数学上册期中测试卷及答案
【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的对应边相等.
5. C
【解析】
【分析】根据全等三角形的判定定理即可一判定.
【详解】解: , ,
当 时,根据ASA可判定 ,故该选项不符合题意;
当 时,根据SAS可判定 ,故该选项不符合题意;
当 时,不能判定 ,故该选项符合题意;
当 时,可得 ,根据AAS可判定 ,故该选项不符合题意;
参考答案与试题解析
一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. B
【解析】
【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.
【详解】解:设第三边长度为a,根据三角形三边关系
解得 .
故选:B.
【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.
∴∠AOC=∠BOC=30°,
∴∠AOB=60°,
故答案为60°.
【点睛】题目主要考查角平分线的性质定理,熟练掌握运用角平分线的性质定理是解题关键.
14.3
【解析】
【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再由30°角所对的直角边等于斜边的一半即可求出结果.
2. C
【解析】
【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
【详解】解:图(1)有一条对称轴,是轴对称图形,符合题意;
图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;

人教版八年级数学(上)期中测试试题及答案

人教版八年级数学(上)期中测试试题及答案

人教版八年级数学(上)期中测试试题及答案一、选择题(每小题2分,共20分)1.如果一个三角形有两边长分别是3和5,那么第三边长可能是( )A.1 B.2 C.4 D.82.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( ) A.B.C.D.3.等腰三角形的一个底角是50°,则它的顶角是( )A.50°B.50°或65°C.65°D.80°4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC5.能将三角形面积平分的是三角形的( )A.角平分线B.高C.中线D.外角平分线6.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°7.如图,甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形10.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF二、填空题(每小题3分,共18分)11.一个等边三角形的对称轴有__________条.12.如图是一个活动的衣帽架,它应用了四边形的__________性.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=__________.14.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=__________.15.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为__________cm2.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为__________.三、解答题(62分)17.完成下列证明过程:如图,∠CAE是△ABC的一个外角,∠1=∠2,AD∥BC,求证:AB=A C.证明:∵AD∥BC(已知)∴∠1=∠__________(两直线平行,同位角相等)∠2=∠__________(__________)又∵∠1=∠2(已知)∴__________=__________(等量代换)∴AB=AC(__________).18.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.19.如图,AC=AE,AB=AD,∠1=∠2,求证:∠B=∠D.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.21.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?22.如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.23.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.24.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.参考答案一、选择题(每小题2分,共20分)1.如果一个三角形有两边长分别是3和5,那么第三边长可能是( )A.1 B.2 C.4 D.8【考点】三角形三边关系.【分析】根据三角形的三边关系可得5﹣3<x<5+3,解不等式,确定x的取值范围,然后可得答案.【解答】解:设第三边长为x,由题意得:5﹣3<x<5+3,即2<x<8,故选:C.【点评】此题主要考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.2.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.等腰三角形的一个底角是50°,则它的顶角是( )A.50°B.50°或65° C.65°D.80°【考点】等腰三角形的性质.【分析】由等腰三角形的性质可知两底角相等,再根据三角形内角和为180°,即可求出顶角的度数.【解答】解:∵等腰三角形的一个底角是50°,∴它的顶角=180°﹣50°﹣50°=80°,故选D.【点评】本题考查了等腰三角形的性质以及三角形内角和定理的运用,解题的关键是熟记等腰三角形的各种性质并且能够灵活运用.4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【考点】直角三角形全等的判定.【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选D.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.5.能将三角形面积平分的是三角形的( )A.角平分线 B.高C.中线 D.外角平分线【考点】三角形的面积.【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.6.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.7.如图,甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【分析】根据全等三角形的判定定理作出判断与选择.【解答】解:在△ABC中,∠B=50°.甲:只有一个对应边与一个对应角相等,故甲不符合条件;乙:由两个对应边与这两个边的夹角相等,符合两个三角形全等的定理SAS;丙:由两个对应角与一条边对应相等,符合两个三角形全等的定理AAS.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【专题】探究型.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】等边三角形的判定;轴对称的性质.【专题】应用题.【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.【点评】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.10.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF【考点】角平分线的性质.【分析】根据角平分线的性质,可证△AFD≌△AED,找到图中相等的关系即可.【解答】解:∵AD是∠BAC的平分线,∴DE=DF,DE⊥AB,DF⊥AC,∴△AFD≌△AED(HL),∴DE=DF,AE=AF,∠ADE=∠ADF.故选B.【点评】本题主要考查角平分线的性质,由已知能够注意到△AFD≌△AED,是解决的关键.二、填空题(每小题3分,共18分)11.一个等边三角形的对称轴有3条.【考点】轴对称的性质.【分析】根据对称轴:如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.对称轴绝对是一条点化线,可得答案.【解答】解:如图:一个等边三角形的对称轴有3条,故答案为:3.【点评】本题考查了轴对称的性质,如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.对称轴绝对是一条点化线.12.如图是一个活动的衣帽架,它应用了四边形的不稳定性.【考点】多边形;三角形的稳定性.【分析】根据四边形具有不稳定性解答.【解答】解:一个活动的衣帽架,它应用了四边形的不稳定性,故答案为:不稳定.【点评】本题考查三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,解决本题的关键是熟记四边形的不稳定性.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=90°.【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质求出∠DAE=∠BAC,求出即可.【解答】解:∵在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵△ABC≌△ADE,∴∠DAE=∠BAC=90°,故答案为:90°.【点评】本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.14.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,得出a,b的值即可.【解答】解:∵点M(﹣3,b)与点N(a,2)关于x轴对称,∴a=﹣3,b=﹣2,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.15.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为πcm2.【考点】多边形内角与外角.【分析】根据多边形的外角和为360°可得阴影部分的面积为半径为1的圆的面积,再利用圆的面积计算公式可得答案.【解答】解:图中阴影部分的面积为π×12=π.故答案为:π.【点评】此题主要考查了多边形的外角,关键是掌握多边形的外角和为360°.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为2∠α+∠A=180°.【考点】全等三角形的判定与性质.【分析】根据SAS证明△BED与△CDF全等,再利用全等三角形的性质解答即可.【解答】解:∵AB=AC,∴∠C=∠B,在△BED与△CDF中,,∴△BED≌△CDF(SAS),∴∠BED=∠FDC,∵∠α+∠FDC=∠B+∠BED,∴∠α=∠B,∵∠A+∠B+∠C=180°,∴2∠α+∠A=180°.故答案为:2∠α+∠A=180°.【点评】本题考查了全等三角形的判定和性质,三角形外角的性质和三角形内角和定理,熟练掌握性质定理是解题的关键.三、解答题(62分)17.完成下列证明过程:如图,∠CAE是△ABC的一个外角,∠1=∠2,AD∥BC,求证:AB=A C.证明:∵AD∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∠2=∠C(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠B=∠C(等量代换)∴AB=AC(等角对等边).【考点】平行线的性质.【专题】推理填空题.【分析】根据平行线的性质和等角对等边的性质填空.【解答】证明:∵AD∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∠2=∠C(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠B=∠C(等量代换)∴AB=AC(等角对等边).【点评】本题主要利用平行线的性质和等角对等边的性质,书写证明过程是本题练习的重点.18.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.【考点】利用轴对称设计图案.【分析】本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.【解答】解:如图所示;【点评】本题主要考查的是利用轴对称设计图案,掌握轴对称图形的性质是解题的解题的关键.19.如图,AC=AE,AB=AD,∠1=∠2,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由SAS证明△BAC≌△DAE,得出对应角相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴∠B=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.【考点】三角形的外角性质.【分析】根据三角形外角性质求出∠ECD,根据角平分线定义求出∠ACD,根据三角形外角性质求出即可.【解答】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE是△ABC的外角∠ACD的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.【点评】本题考查了三角形外角性质,角平分线定义的应用,能灵活运用定理进行推理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.21.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?【考点】多边形内角与外角.【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题可用整式方程求解.【解答】解:设边数为n,根据题意,得(n﹣2)×180°=360°+540°(n﹣2)×180°=900°n﹣2=5∴n=7.900÷7=.答:这个多边形的每一个内角等于度、它是正七边形.【点评】此题较难,考查比较新颖,涉及到整式方程.22.如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】证明△ADE≌△ADF即可,然后可得DF=DE=2.【解答】解:如图,∵AB=AC,D为BC中点,∴∠ADB=∠ADC=90°,∠1=∠2,∵DE、DF分别是∠ADB,∠ADC的平分线,∴∠ADE=∠ADB=45°,∠ADF=∠ADC=45°,∴∠ADE=∠ADF,在△ADE和△ADF中,,∴△ADE≌△ADF(ASA),∴DF=DE=2.【点评】本题考查了等腰三角形三线合一的性质、全等三角形的判定与性质,比较基础.对于全等三角形的证明,差什么条件就去寻找什么条件,如果条件不是明显的,则先通过推导得出所需要的条件.23.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由于AB=AC,AD=AE,所以只需证∠BAD=∠CAE即可得结论;(2)证明∠ACE和∠ECF都等于60°即可;(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当AD⊥BC 时,AD最小,此时BD就是BC的一半.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠DAE=60°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE.(2)证明:∵△ABC是等边三角形,∴∠B=∠BCA=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠ECF=180﹣∠ACE﹣∠BCA=60°,∴∠ACE=∠ECF,∴CE平分∠ACF.(3)解:∵△ABD≌△ACE,∴CE=BD,∵△ABC是等边三角形,∴AB=BC=AC=2,∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+AD,根据垂线段最短,当AD⊥BC时,AD值最小,四边形ADCE的周长取最小值,∵AB=AC,∴BD===1.【点评】此题主要考查了全等三角形的判定和性质定理以及垂线段最短原理,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.24.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.【考点】一次函数综合题.【分析】(1)在OA上取一点D,根据等边三角形的性质进行解答即可;(2)①分∠PQB=90°时和∠QPB=90°时两种情况进行解答即可;②分a<5和a>5两种情况,利用等腰三角形和等边三角形的性质进行解答即可.【解答】解:(1)如图1:在OA上取一点D,使得OD=OB,连接CD,则BD=2OB=4,∵CO⊥BD,∴CD=CB=4,∴CD=CB=BD,∴△DBC是等边三角形,∴∠OBC=60°;(2)①由题意,得AP=2t,BQ=t,∵A(﹣3,0),B(2,0),∴AB=5,∴PB=5﹣2t,∵∠OBC=60°≠90°,∴下面分两种情况进行讨论,Ⅰ)如图2:当∠PQB=90°时,∵∠OBC=60°,∴∠BPQ=30°,∴BQ=,∴,解得:t=;Ⅱ)当∠QPB=90°时,如图3:∵∠OBC=60°,∴∠BQP=30°,∴PB=,∴,解得:t=2;②如图4:当a<5时,∵AP=a,BQ=b,∴BP=5﹣a,∵△PQB是等腰三角形,∠OBC=60°,∴△PQB是等边三角形,∴b=5﹣a,即a+b=5,如图5:当a>5时,∵AP=a,BQ=b,∴BP=a﹣5,∵△PQB是等腰三角形,∠QBP=120°,∴BP=BQ,∴a﹣5=b,即a﹣b=5.【点评】本题是一次函数的综合题,考查了一次函数图象上点的坐标特征,等边三角形的判定和性质,等腰三角形的应用等,根据题意作出图形是解题的关键.。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

2023-2024学年度上学期八年级期中测试题数学附详细答案

2023-2024学年度上学期八年级期中测试题数学附详细答案

2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷姓名班级学号成绩一、单项选择题(每小题2分, 共12分)1.下列银行标志中,不是轴对称图形的为()A. B. C. D.2.点(﹣2,3)关于y轴的对称点的坐标为()A.(﹣2,﹣3) B.(2,3) C.(﹣2,3) D.(2,﹣3)3.已知等腰三角形的一个内角为40°,则这个等腰三角形的底角为()A.40° B.100° C.40°或100° D.40°或70°4.如图,△ABC与△A′B′C′关于直线l对称,若∠A=68°,∠C′=38°,则∠B的度数为()A.74° B.38° C.94° D.68°(第4题图)(第5题图)(第6题图)AB长为半径画弧,两弧交点的连线交5.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于12AC于点D,交AB于点E,连接BD,若∠A=40°,则∠DBC=()A.40° B.30° C.20° D.10°6.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.280°B.290° C.285° D.295°二、填空题(每小题3分, 共24分)7.如图,在已知的△ABC中,按以下步骤作图:BC的长为半径作弧,两弧相交于两点M,N;①分别以B,C为圆心,以大于12②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=.8.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.9.若点P(﹣3,4)和点Q(a,b)关于x轴对称,则2a+b=.10.如图,∠ADB=90°,∠DAB=∠BAC,BD=4,AC=10,则△ABC的面积是.(第7题图)(第10题图)(第11题图)11.如图,AB∥CF,E为DF的中点,若AB=7cm,CF=5cm,则BD=cm.12.如图,△ABC中AB=AC,AB的垂直平分线交AC于点D.若∠A=40°,则∠DBC=.(第12题图)(第13题图)(第14题图)13.如图,把一张长方形纸片ABCD沿EF折叠,∠1=55°,则∠2=度.14.如图,已知△ABC中∠A=43°,∠B=73°,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题(每小题5分,共20分)15.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.16.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为;点B关于y轴对称的点坐标为;(2)若网格上的每个小正方形的边长为1则△ABC的面积是.17.如图,在△ABC中,AB=AC,AD是BC上边的中线,BE⊥AC于点E,求证:∠CBE=∠BAD.18.如图,四边形ABCD中,AD∥BC,∠ABD=30°,AB=AD,DC⊥BC于点C,若BD=2,求CD的长.四、解答题(每小题7分,共28分)19.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.20.如图,在△ABC中,AC=BC.(1)尺规作图:在AC上找一点M,使得∠MBC=∠C;(不写作法,保留作图痕迹)(2)在(1)的条件下,若满足BM=AB时,求∠C的度数.21.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).22.如图所示,△ABC和△A′BC存在着某种对应关系(它们关于BC对称),其中A的对应点是A′,A(3,6),A′(3,0),△ABC内部的点M(4,4)的对应点是N(4,2).(1)你知道它们的对应点的坐标有什么关系吗?(2)如果△ABC内有一点P(x,y),那么在△A′BC内P的对应点P′的坐标是什么?五、解答题(每小题8分,共16分)23.(1)证明角平分线具有的性质:角平分线上的点到角的两边的距离相等.为了更直观、清楚地表达题意,我们通常在证明之前画出图形,并用符号表示已知和求证.如图1,已知:OC平分∠AOB,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.(2)如图2,在△OAB中,OP平分∠AOB,交AB于点P,PD⊥OA于点D,PE⊥OB于点E,OA=OB=6,若S△OAB=15,求PD的长.24.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°求:(1)此时轮船与小岛P的距离BP是多少海里.(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?说明理由.六、解答题(每小题10分,共20分)25.感知:如图①,点E为等边三角形ABC中AC边上一点,连接BE,以BE为边在BE的左侧作等边三角形BDE,连接AD。

八年级数学上册期中测试题

八年级数学上册期中测试题

八年级上册数学期中测试卷1. 下列汽车标志中,不是轴对称图形的是()A .B .C .D .2. 下列每组数分别是三根木棒的长庋,能用它们摆成三角形的是()A.3,4,8 B.13,12,20 C.8,7,15 D.5,5,113. 若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7 B.8 C.9 D.104. 在平面直角坐标系中,点(4,﹣3)关于x轴对称的点的坐标是()A.(4,3)B.(﹣4,3)C.(3,﹣4)D.(﹣3,﹣4)5. 等腰三角形的周长是20cm,其中一边长4cm,则腰长为()A.4cm B.8cm C.4cm或8cm D.无法确定6. 如图,四个图形中,线段BE是△ABC的高的图是()A .B .C .D .7. 已知图中的两个三角形全等,则∠α的度数为()A.105°B.75°C.60°D.45°第7题图第8题图8. 如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,AB=5cm,BC=8cm,则△ABD的周长等于()A.16cm B.13 cm C.10 cm D.无法确定9. 将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°第9题图第10题图10. 如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=()°A.90 B.135 C.180 D.27011. 如图,△ABC中,AB=AC,AD平分∠CAB,则下列结论中:①AD⊥BC;②AD=BC;③∠B=∠C;④BD=CD.正确的结论有()A.①②③B.②③④C.①②④D.①③④12. 如图,已知EA∥DF,AE=DF,要使△AEC≌△DFB,则需要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC13. 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.614.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=()A.4 B.8 C.4或8 D.615. 两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB.小明在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO =AC;③△ABD≌△CBD;④四边形ABCD的面积=AC×BD.其中正确的结论有()A.1个B.2个C.3个D.4个16. (6分)已知正多边形的一个外角的度数比一个内角度数的多12°,请求出这个正多边形的一个内角的度数和它的边数.17. (6分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,BF=CE.求证:AE∥DF.18.(7分)如图,△ABC在平面直角坐标系中,其中,点A,B,C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于x轴对称的图形△A1 B1 C1;(2)画出△ABC关于直线x=﹣1对称的图形△A2 B2 C2;八年级数学试题卷共2页第1页八年级数学试题卷 共2页 第2页CA B(3)在x 轴上找一点P ,使△ACP 的周长最小(保留作图痕迹).19.(7分)如图,在△ABC 中,∠C =90°. (1)尺规作图:作斜边AB 的垂直平分线DE ,分别交 AB ,BC 于D 、E (不写作法,保留作图痕迹);(2)连接AE ,若∠CAE =∠B +30°,求∠AEC 的度数.20. (8分)如图,点C 在线段AB 上,△DAC 和△DBE 都是等边三角形. (1)求证:△DAB ≌△DCE ;(2)求证:DA ∥EC .21. (8分)如图,BE ⊥AC ,CF ⊥AB 于点E ,F ,BE 与CF 交于点D ,DE =DF ,连接AD . (1)求证:∠F AD =∠EAD ;(2)连接BC ,判断线段AD 与线段BC 的位置关系,并说明理由.22. (10分)如图,Rt △ACB 中,∠ACB =90°,△ABC 的角平分线AD , BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H . (1)求∠APB 度数;(2)求证:△ABP ≌△FBP ; (3)求证:AH +BD =AB .9. 已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,于E F ,.当MBN ∠绕B 点旋转到AE CF ≠时,(在图2), 求证AE CF EF +=. 当MBN ∠绕B 点旋转到AE CF ≠时,(在图3);探究AE,CF ,EF 之间的关系23.(11分)如图1,两个不全等且有公共的直角顶点O 的等腰直角三角形OAB 和OCD 叠放在一起. (1)在图1中,你发现线段AC ,BD 的数量关系是 ,直线AC ,BD 相交成 度角.(2)将图1中的△COD 绕点O 顺时针旋转一个锐角,得到图2,这时(1)中的两个结论是否成立? 请做出判断并说明理由.(3)将图1中的△COD 绕点O 顺时针旋转一个钝角,得到图3,这时(1)中的两个结论是否还成立? 请作出判断并说明理由.24. (12分)如图1,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴与G ,连OB 、OC .(1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO ;(3)在(2)的条件下,如图2,点M 为OA 上一点,且∠ACM =45°,BM 交y 轴于P ,若点B 的坐标为(3,1),求点M 的坐标.(图1) A B CD E FM N(图2)A B CD E FM N图3A BCDE FMN。

人教版数学八年级上册期中测试卷

人教版数学八年级上册期中测试卷

人教版数学八年级上册期中考试数学试卷一、选择题(每小题3分,共36分)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.4个B.3个C.2个D.1个2.(3分)一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4 cm C.7 cm D.11cm3.(3分)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°5.(3分)等腰三角形一边等于5,另一边等于8,则其周长是()A.18 B.21 C.18或21 D.不能确定6.(3分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去7.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm8.(3分)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.9.(3分)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm10.(3分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°11.(3分)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm12.(3分)若等腰三角形的底边长为6cm,一腰上的中线把它的周长分成差为2cm的两部分,则腰长为()A.4cm B.8cm C.4cm或8cm D.以上都不对二、填空题(每小题3分,共18分)13.(3分)角是轴对称图形,是它的对称轴.14.(3分)在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为.15.(3分)每个内角都为144°的多边形为边形.16.(3分)如图,已知AC=BD,∠A=∠D,请你添一个直接条件,,使△AFC ≌△DEB.17.(3分)如图,是从镜中看到的一串数字,这串数字应为.18.(3分)如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于.三、作图题(共18分)19.(5分)“西气东输”是造福子孙后代的创世工程,现有两条高速公路L1、L2和两个城镇A,B,准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置.(保留画图痕迹,不写画法)20.(5分)如图,某住宅小区拟在休闲场地的三条道路m,n,l上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在道路l上的什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹)21.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)请画出△ABC关于y轴对称的图形;(2)写出点A,点B,点C分别关于y轴对称点的坐标;(3)计算△ABC的面积.四、解答题(共28分)22.(6分)一个多边形的外角和是内角和的,求这个多边形的边数.23.(6分)如图,△ABC中,AB=AC,∠A=50°,P为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.24.(8分)如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.25.(8分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD 于点P,求证:BP=2PQ.参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)(2015•冠县校级模拟)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形的概念对各图形分析判断后即可得解.【解答】解:(1)是轴对称图形;(2)不是轴对称图形;(3)是轴对称图形;(4)是轴对称图形;所以,是轴对称图形的共3个.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,本题仔细观察图形是解题的关键.2.(3分)(2016秋•静宁县校级期中)一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4 cm C.7 cm D.11cm【分析】首先设第三边长为xcm,根据三角形的三边关系可得7﹣3<x<7+3,再解不等式即可.【解答】解:设第三边长为xcm,根据三角形的三边关系可得:7﹣3<x<7+3,解得:4<x<10,故选:C【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.3.(3分)(2002•淮安)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出对称点的坐标,再根据各象限内点的坐标特点解答.【解答】解:∵点P(3,﹣2)关于y轴的对称点是(﹣3,﹣2),∴点P(3,﹣2)关于y轴的对称点在第三象限.故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.【点评】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.5.(3分)(2016秋•独山县校级期中)等腰三角形一边等于5,另一边等于8,则其周长是()A.18 B.21 C.18或21 D.不能确定【分析】因为等腰三角形的两边分别为5和8,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当5为底时,其它两边都为8,5、8、8可以构成三角形,周长为21;当5为腰时,其它两边为5和8,5、5、8可以构成三角形,周长为18,所以周长是18或21.故选C.【点评】本题考查了等腰三角形的性质及三角形三边关系,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.6.(3分)(2005•广元)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.【点评】主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.7.(3分)(2016秋•独山县校级期中)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm【分析】由角平分线的性质可得DE=EC,则AE+DE=AC,可求得答案.【解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴DE=EC,∴AE+DE=AE+EC=AC=3cm,故选B.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.8.(3分)(2008•张家界)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.9.(3分)(2016秋•独山县校级期中)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,代入数据进行计算即可得解.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18+10=28cm.故选B.【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,把△ABD的周长转化为AB、BC的和是解题的关键.10.(3分)(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.11.(3分)(2016春•灵石县期末)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵P点关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵△PMN的周长是5cm,∴P1P2=5cm.故选:C.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.(3分)(2016秋•独山县校级期中)若等腰三角形的底边长为6cm,一腰上的中线把它的周长分成差为2cm的两部分,则腰长为()A.4cm B.8cm C.4cm或8cm D.以上都不对【分析】首先根据题意画出图形,由题意可得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,即可得AB﹣BC=2cm或BC﹣AB=2cm,又由等腰三角形的底边长为6cm,即可求得答案.【解答】解:如图,AB=AC,BD是中点,根据题意得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,则AB﹣BC=2cm或BC﹣AB=2cm,∵BC=6cm,∴AB=8cm或4cm.∴腰长为:4cm或8cm.故选C.【点评】此题考查了等腰三角形的性质.注意根据题意得到AB﹣BC=2cm或BC﹣AB=2cm是关键.二、填空题(每小题3分,共18分)13.(3分)(2016春•灵石县期末)角是轴对称图形,角平分线所在的直线是它的对称轴.【分析】根据角的对称性解答.【解答】解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.【点评】本题考查了角的对称轴,需要注意轴对称图形的对称轴是直线,此题容易说成是“角平分线”而导致出错.14.(3分)(2016秋•静宁县校级期中)在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为10cm .【分析】根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵直角三角形中30°角所对的直角边长是5cm,∴斜边的长=2×5=10cm.故答案为:10cm.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.15.(3分)(2016秋•独山县校级期中)每个内角都为144°的多边形为十边形.【分析】根据n边形的内角和等于(n﹣2)×180°解答.【解答】解:设这个多边形的边数是n,由题意得,=144°,解得,n=10,故答案为:十.【点评】本题考查的是多边形的内角与外角的计算,掌握n边形的内角和等于(n ﹣2)×180°是解题的关键.16.(3分)(2014秋•花垣县期末)如图,已知AC=BD,∠A=∠D,请你添一个直接条件,∠ACF=∠DBE ,使△AFC≌△DEB.【分析】证明△AFC≌△DEB,已知AC=BD,∠A=∠D,一边一角对应相等,故添加一组角∠ACF=∠DBE可利用ASA证明全等.【解答】解:在△AFC和△DEB中,,∴△AFC≌△DEB(ASA).故答案为:∠ACF=∠DBE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.(3分)(2013秋•栾城县期末)如图,是从镜中看到的一串数字,这串数字应为810076 .【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为 810076,故答案为:810076.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.18.(3分)(2016秋•独山县校级期中)如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△ABO :S△BCO:S△CAO=2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.三、作图题(共18分)19.(5分)(2016秋•独山县校级期中)“西气东输”是造福子孙后代的创世工程,现有两条高速公路L1、L2和两个城镇A,B,准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置.(保留画图痕迹,不写画法)【分析】连接AB,作出∠EOF的平分线OH及线段AB的垂直平分线ED,两线的交点即为所求.【解答】解:①连接AB,②先作∠EOF的平分线OH,再作线段AB的垂直平分线ED,ED与OH相交于点D,则D点即为所求点.【点评】本题考查的是作图﹣应用与设计作图,涉及到最短路线问题、线段垂直平分线及角平分线的性质,具有一定的综合性.20.(5分)(2016秋•独山县校级期中)如图,某住宅小区拟在休闲场地的三条道路m,n,l上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B 的位置己经选定,那么凉亭C建在道路l上的什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹)【分析】工程造价最低,那么三个凉亭间的距离最短,又在直线l上,那么应作出点A关于直线l的对称点A′,连接A′B交直线l于点C,点C就是所求的点.【解答】解:三个凉亭间的距离实际相当于A'B的距离,两点之间,线段最短,所以符合题意.【点评】本题考查的是作图﹣应用与设计作图,涉及到在同一条直线的一旁的两点与这条直线上的一点的最短路线问题,一般属于点关于直线对称问题.21.(8分)(2016秋•静宁县校级期中)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)请画出△ABC关于y轴对称的图形;(2)写出点A,点B,点C分别关于y轴对称点的坐标;(3)计算△ABC的面积.【分析】(1)作出各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据三角形的面积公式进行计算即可.【解答】解:(1)如图,△A′B′C′即为所求;(2)由图可知,A′(1,5),B′(1,0),C′(4,5);(3)S=×5×3=.△ABC【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.四、解答题(共28分)22.(6分)(2013春•翠屏区期末)一个多边形的外角和是内角和的,求这个多边形的边数.【分析】一个多边形的外角和是内角和的,任何多边形的外角和是360°,因而多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.23.(6分)(2016秋•独山县校级期中)如图,△ABC中,AB=AC,∠A=50°,P 为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.【分析】根据等腰三角形的两个底角相等,即可求得∠ACB=∠ABC,则∠PBC+∠PCB即可求得,根据三角形的内角和定理即可求解.【解答】解:∵在△ABC中,AB=AC,∠A=50°,∴∠ACB=∠ABC=65°.又∵∠PBC=∠PCA,∴∠PBC+∠PCB=65°,∴∠BPC=115°.【点评】本题考查了等腰三角形的性质:等腰三角形的两个内角相等,以及三角形的内角和定理.24.(8分)(2009春•福鼎市校级期末)如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.【点评】本题考查了全等三角形的判定;能够熟练掌握三角形的判定方法来证明三角形的全等问题,由∠1=∠2得∠CAE=∠BAD是解决本题的关键.25.(8分)(2016秋•独山县校级期中)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,求证:BP=2PQ.【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,再利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应角相等可得∠1=∠2,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半证明即可.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图求出△BPQ 是含30°角的直角三角形是解题的关键.考试前——放松自己,别给自己太大压力我们都知道,在任何大考中,一个人的心态都十分重要。

八年级数学上册期中测试卷 新课标人教版

八年级数学上册期中测试卷 新课标人教版

人教实验版八年级上册期中测试卷一、填空题(每小题3分 共30分) 1. 我国进出口贸易总额为a (亿美元) 与时间t (年)间的关系如图所示, 其中 是自变量, 是的函数。

2. 函数123y x =-的自变量x 的 取值X 围是.3.函数232+-=x y ,当0<y 时,x 的取值X 围是 。

4.在一次抛一枚硬币的实验中,某小组的数据统计如下表所示,请将此表填完整:抛掷次数 50 100 150 200 出现正面的频数 26 53 94 出现正面的频率53.0%48.0%5.如图,⊿ABC ≌⊿DEC ,则CA 和 是对应边; =∠ACD 。

=∠B 。

6.如图,要测量河两岸相对的两点A ,B 的距离, 在AB 的垂线BF 上取两点C ,D ,使BC =CD ,再定 出BF 的垂线DE ,使A ,C ,E 在一条直线上, 这时测得DE =16米,则AB = 米。

7. 厂家为了宣传某种品牌的彩电几年的出厂价在 逐年降低,你认为厂家用 统计图来表示数据最恰当。

8.如图4,在世界人中扇形统计图中,关于 中国部分的圆心角的度数为 度。

9.%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是.10.地表以下岩层的温度y (C o)随着所处深度x (km)的变化而变化,在某个地点y 与x 之间的关系式可近似地用关系式1035-=x y 来表示,根据这个关系式可知:当16525<<y 时,x 的取值X 围是 。

二、选择题 (每小题3分 共18分)11.一辆公共汽车从车站开出,到达下一个站点停下,乘客上下车后双继续行驶,结合你的生活经验判断,以下选项中能大致地表示公共汽车在这段时间内速度变化情况的是( )12.一次函数53+-=x y 的图象经过( )(A )第一、三、四象限 (B )第二、三、四象限 (C )第一、二、三象限 (D )第一、二、四象限13.如图,已知ND MB =,NDC MBA ∠=∠,下列条件中不能判定⊿ABM ≌⊿CDN 的是( )(A )N M ∠=∠ (B )CD AB = (C )CN AM = (D )AM ∥CN14.在某扇形统计图中,其中某一部分扇形面积所对的圆心角是045,那么它所代表的部分占总体的( )(A )31 (B )41 (C )61 (D )81 15.右图中两条直线1l 和2l 和交点坐标 可以看作下列方程组中( )的解。

八年级上期中数学试卷7

八年级上期中数学试卷7

第一学期期中测试卷一、选择题目(每题3分,共30分)1.下列图形中,不是轴对称图形的是()INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G10.tif" \*MERGEFORMATINET2.如果等腰三角形的两边长分别为3和6,那么它的周长为() A.9 B.12 C.15 D.12或153.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为() A.(-2,-3) B.(2,-3) C.(-3,-2) D.(3,-2)4.已知一个正多边形的内角是140°,则这个正多边形的边数是() A.6 B.7 C.8 D.95.如图,在△ABC中,边AC的垂直平分线交边AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°7.如图,在△ABC中,∠C=90°,BC=35,∠BAC的平分线AD交BC于点D.若DC DB=25,则点D到AB的距离是()A.10 B.15 C.25 D.208.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为()A.4 B.3 C.2 D.19.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD上的动点,E是AC边上一点.若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15°B.22.5°C.30°D.45°10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题目(每题3分,共24分)11.一木工师傅有两根木条,木条的长分别为40 cm和30 cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是____________.12.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________.13.如图,在△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是________.14.如图,已知P A⊥ON于A,PB⊥OM于B,且P A=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.15.由于木制衣架没有柔性,在挂置衣服的时候不大方便操作,小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图①,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图②,则此时A,B两点之间的距离是________ cm.16.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.17.如图,在2×2的正方形网格中,有一个以格点为顶点的△ABC,请你找出网格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个.18.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从点B出发,以1 cm/s的速度沿B→A→C的方向运动.设运动时间为t s,当t=____________时,过点D,P两点的直线将△ABC的周长分成两部分,使其中一部分是另一部分的2倍.三、解答题(19~21题每题6分,23,24题每题8分,26题12分,其余每题10分,共66分)19.如图,在五边形ABCDE中,∠A=∠C=90°.求证∠B=∠DEF+∠EDG.INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G23.tif" \*MERGEFORMATINET20.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4 cm.求BP的长.INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G24.tif" \*MERGEFORMATINET21. 已知:如图,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E.求证OB=OC.INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G25.tif" \*MERGEFORMATINET22.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)求△A1B1C1的面积;(4)在y轴上画出点P,使PB+PC最小.INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G26.tif" \*MERGEFORMATINET23.如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.(1)试判断DF与EF的数量关系,并给出证明;(2)若CF的长为2 cm,试求等边三角形ABC的边长.INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G27.tif" \*MERGEFORMATINET24.如图,在等腰直角三角形ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC,交DE的延长线于点F,连接CF,交AD于点G.(1)求证AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G28.tif" \*MERGEFORMATINET25.如图,把三角形纸片A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含x或y的式子表示)?(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G29.tif" \*MERGEFORMATINET26.如图,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点.(1)如果点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,1 s后,△BPD与△CQP是否全等?请说明理由.②若点Q的运动速度与点P的运动速度不相等,则点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以第(1)题②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,经过多少时间,点P与点Q第一次在△ABC的哪条边上相遇?INCLUDEPICTURE "F:\\18秋全国版\\点训八数R\\点训8R\\G30.tif" \*MERGEFORMATINET答案一、1.C 2.C 3.A 4.D 5.B 6.A 7.A8.D9.C10.D二、11.10<x<7012.25°13.10.514.55°15.1816.108°17.518.7或17三、19.证明:在五边形ABCDE中,∠A+∠B+∠C+∠EDC+∠AED=180°×(5-2)=540°.∵∠A=∠C=90°,∴∠B+∠AED+∠EDC=360°.又∵∠AED+∠DEF=180°,∠EDC+∠EDG=180°,∴∠AED+∠EDC+∠DEF+∠EDG=360°.∴∠B=∠DEF+∠EDG.20.解:∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°-∠BAC)=30°.∵∠P AC=∠BAC-∠BAP=120°-90°=30°,∴∠C=∠P AC.∴AP=CP=4 cm.在Rt△ABP中,∵∠B=30°,∴BP=2AP=8 cm.21.证明:∵点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,∴OE=OD,∠BEO=∠CDO=90°.在△BEO与△CDO中,∴△BEO≌△CDO(ASA).∴OB=OC.22.解:(1)△A1B1C1如图所示.(2)(3,2);(4,-3);(1,-1)(3)△A1B1C1的面积=3×5-×2×3-×1×5-×2×3=6.5.(4)如图,P点即为所求.23.解:(1)DF=EF.证明:∵△ABC是等边三角形,∴∠BAC=60°.又∵AD⊥BC,∴AD平分∠BAC.∴∠DAC=30°.∵△ADE是等边三角形,∴∠DAE=60°.∴∠DAF=∠EAF=30°.∴AF为△ADE的中线,即DF=EF.(2)∵AD⊥DC,∴∠ADC=90°.∵△ADE是等边三角形,∴∠ADE=60°.∴∠CDF=∠ADC-∠ADE=30°.∵∠DAF=∠EAF,AD=AE,∴AF⊥DE.∴∠CFD=90°.∴CD=2CF=4 cm.∵AD⊥BC,AB=AC,∴BD=CD,∴BC=2CD=8 cm.故等边三角形ABC的边长为8 cm.24.(1)证明:∵BF∥AC,∠ACB=90°,∴∠CBF=180°-90°=90°.∵△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°.又∵DE⊥AB,∴∠BDF=45°,∴∠BFD=45°=∠BDF.∴BD=BF.∵D为BC的中点,∴CD=BD.∴BF=CD.在△ACD和△CBF中,∴△ACD≌△CBF(SAS).∴∠CAD=∠BCF.∴∠CGD=∠CAD+∠ACF=∠BCF+∠ACF=∠ACB=90°.∴AD⊥CF.(2)解:△ACF是等腰三角形.理由如下:由(1)可知BD=BF.又∵DE⊥AB,∴AB是DF的垂直平分线.∴AD=AF.又由(1)可知△ACD≌△CBF,∴AD=CF,∴AF=CF.∴△ACF是等腰三角形.25.解:(1)△EAD≌△EA′D,其中∠EAD与∠EA′D,∠AED与∠A′ED,∠ADE 与∠A′DE是对应角.(2)∵△EAD≌△EA′D,∴∠A′ED=∠AED=x,∠A′DE=∠ADE=y.∴∠AEA′=2x,∠ADA′=2y.∴∠1=180°-2x,∠2=180°-2y.(3)规律为∠1+∠2=2∠A.理由:由(2)知∠1=180°-2x,∠2=180°-2y,∴∠1+∠2=180°-2x+180°-2y=360°-2(x+y).∵∠A+∠AED+∠ADE=180°,∴∠A=180°-(x+y).∴2∠A=360°-2(x+y).∴∠1+∠2=2∠A.26.解:(1)①△BPD与△CQP全等.理由如下:运动1 s时,BP=CQ=3×1=3(cm).∵D为AB的中点,AB=10 cm,∴BD=5 cm.∵CP=BC-BP=5 cm,∴CP=BD.又∵AB=AC,∴∠B=∠C.在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ.又∵∠B=∠C,∴两个三角形全等需BP=CP=4 cm,BD=CQ=5 cm.∴点P,Q运动的时间为4÷3=(s).∴点Q的运动速度为5÷=(cm/s).(2)设x s后点Q第一次追上点P.根据题意,得x=10×2.解得x=.∴点P共运动了3×=80(cm).∵△ABC的周长为10×2+8=28(cm),80=28×2+24=28×2+8+10+6,∴点P与点Q第一次在△ABC的AB边上相遇.祝福语祝你考试成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级(上)数学期中测试卷
时间120分钟总分150分
一、细心填一题:(每小题3分,共36分)
1、当x=3时,函数y=2x-1的函数值是________
2、若一次函数()1
2+
-
=k
kx
y是正比例函数,则k的值为。

3、函数
中自变量x的取值范围是___________.
4、直线3
2-
=x
y可由直线x
y2
=向平移得到
5、分析数据时,为了能清楚地表示出各部分在总体中所占的百分比,通常选用_______图;
6、小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是60升,最小数据是33升,若取组距为4,则应分为_________组绘制频数分布表.
7、在对25个数据进行整理的频数分布表中,各组的频数之和等于______,各组的频率之和等于__________.
8、已知△ABC≌△DEF,且△ABC中最大角的度数为100度,则△DEF中最大角的度数是_______________
9、在△ABC和△FED,AD=FC,AB=FE,当添加条件__________时,就可得到△ABC≌△FED.(只需填写一个你认为正确的条件)
10、如图是某校九年级一班50名学生的一次数学测验成绩的扇形统计图,按图中划分的分数段,这次测验成绩中所占百分比最大的分数段是_________________
11、已知直线6
+
=x
y与x轴,y轴围成一个三角形,则这个三角形面积为__________
12、函数y=kx+b(k≠0)的图象平行于直线y=2x+3,且交y轴于点(0,-1),•则其解析式是______________________
二、精心选一选:(每小题4分,共24分)
13、下列点一定在函数y=1
x
的图象上的是()
A.(-2,2) B.(1,-1) C.(-1,-1) D.(0,0)14、.一天,王老师从学校坐车去开会,由于途中塞车,他只好步行赶
60分—69分
70分—79分
80分—84分
85分以上
22%
28%
36%
14%
到会场,•开完会后,他直接回到学校,下图中能体现他离学校的距离y
(千米)与时间x(•时)的关系的图象是()
A
O x(时)
y(千米)
B
O x(时)
y(千米)
C
O x(时)
y(千米)
O
D
x(时)
y(千米)
15、一次函数5
3+
-
=x
y的图象经过()
(A)第一、三、四象限(B)第二、三、四象限
(C)第一、二、三象限(D)第一、二、四象限
16、如下图,甲校女生占全校总人数的50%,
男生占全校总人数的50%,比较两校女生人数
( ).
A.甲校乙校一样多B.甲校多于乙数
C.甲校少于乙校D.不能确定
17、要清楚地表明一病人的体温变化情况,应选择的统计图是( )
A.扇形统计图 B.条形统计图 C.折线统计图 D.以上都不是
18、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是
()
三细心解一解: (本大题共计90分)
19(9分)如图,是一位护士统计一位病人的体温变化图:根据统计图回
答下列问题:
⑴病人的最高体温是达多少?
⑵什么时间体温升得最快?
⑶如果你是护士,你想对病人说:
_____________________________
____________.
20、(12分)如图,已知:M 是AB 的中点,MC=MD ,∠1=∠2. 求证:AC=BD.
21、(12分)某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度? (3)补全频数分布折线图.
2
A
C
D
1
其它
娱乐
40%
运动
20% 阅读
图1 图2
22、(12分)矩形的周长是8cm 设一边长为xcm,另一边长为ycm. (1) 求y 关于x
(2) 作出函数图象.
23、(12分)请根据表中信息填空.
某班60人的期中成绩(成绩为整数)的频率分布表如下:
(1)在表中,成绩在69.5-79.5分范围内的频数是_________; (2)在表中,频率m =_________,频数n =_________; (3)根据频数分布表绘制出相应的频数分布直方图;
(4)成绩优秀的学生有_______人(成绩大于或等于80分为优秀)。


24、(16分)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图是反映所挖河渠长度()
y米与挖掘时间()
x时之间关系的部分图象.请解答下列问题:
(1)乙队开挖到30米时,用了小时.开挖6小时时,甲队比乙队多挖了米;
(2)请你求出:
①甲队在06
x
≤≤的时段内,y与x之间的函数关系式;
②乙队在26
x
≤≤的时段内,y与x之间的函数关系式;
③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?
(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?25、(17分)(本题10分)已知:在直角坐标系中,直线2
2+
=x
y与x轴交于点A,与y轴交于点B。

⑴画出这个函数的图象,并写出B
A,两点的坐标;
⑵若点C是第二象限内的点,且到x轴的距离为1,到y轴的距离为
2
1,请判断点C是否在这条直线上?(写出判断过程)
⑶在第⑵题中,作x
CD⊥轴于D,那么在x轴上是否存在一点P,使△CDP ≌△AOB?若存在,请写直接出点P的坐标;若不存在,请说明理由。

相关文档
最新文档