高一数学第九次周考试卷9-37班

合集下载

南京市第九中学2024-2025学年高一上学期第一次月考数学试卷

南京市第九中学2024-2025学年高一上学期第一次月考数学试卷

江苏南京市第九中学2024-2025学年高一数学上第一次月考试卷一.选择题(共4小题)1.若不等式2kx2+kx﹣<0对一切实数x都成立,则k的取值范围为()A.(﹣3,0)B.[﹣3,0)C.[﹣3,0]D.(﹣3,0]2.已知集合,集合,则()A.M∈N B.C.M=N D.3.已知a>b>c,且a+b+c=0,则下列不等式一定成立的是()A.ab2>bc2B.ab2>b2cC.(ab﹣ac)(b﹣c)>0D.(ac﹣bc)(a﹣c)>04.已知正实数a,b满足2a+b=1,则的最小值为()A.3B.9C.4D.8二.多选题(共5小题)(多选)5.下列四个命题中正确的是()A.方程的解集为{2,﹣2}B.由所确定的实数集合为{﹣2,0,2}C.集合{(x,y)|3x+2y=16,x∈N,y∈N}可以化简为{(0,8),(2,5),(4,2)} D.中含有三个元素(多选)6.已知实数a,b∈R+,且2a+b=1,则下列结论正确的是()A.ab的最大值为B.a2+b2的最小值为C.的最小值为6D.(多选)7.下列四个命题是真命题的是()A.若函数f(x)的定义域为[﹣2,2],则函数f(x+1)的定义域为[﹣3,1]B.函数的值域为C.若函数y=x2+mx+4的两个零点都在区间为(1,+∞)内,则实数m的取值范围为(﹣5,﹣4)D.已知f(x)=x2﹣(m+2)x+2在区间[1,3]上是单调函数,则实数m的取值范围是(﹣∞,0]∪[4,+∞)(多选)8.已知集合A={x|﹣1<x<3},集合B={x|x<m+1},则A∩B=∅的一个充分不必要条件是()A.m≤﹣2B.m<﹣2C.m<2D.﹣4<m<﹣3(多选)9.若a<0<b,且a+b>0,则()A.B.C.|a|<|b|D.(a﹣1)(b﹣1)<0三.填空题(共4小题)10.定义在R上的函数f(x)满足,则=.11.若命题“∃x∈[﹣1,2],使得x2+mx﹣m﹣5≥0”是假命题,则m的取值范围是.12.已知关于x的不等式ax+b>0的解集为(﹣3,+∞),则关于x的不等式ax2+bx<0的解集为.13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠B=∠C且7a2+b2+c2=4,则△ABC 的面积的最大值为.四.解答题(共5小题)14.命题p:实数x满足x2﹣4ax+3a2<0(其中a>0),命题q:实数x满足.(1)若a=1,且命题p、q均为真命题,求实数x的取值范围;(2)若q是p的充分不必要条件,求实数a的取值范围.15.已知函数f(x)=是定义域(﹣1,1)上的奇函数,(1)确定f(x)的解析式;(2)用定义证明:f(x)在区间(﹣1,1)上是减函数;(3)解不等式f(t﹣1)+f(t)<0.16.已知函数f(x)=x2+ax+3,a∈R(1)若函数的定义域为R,求实数a的取值范围;(2)若当x∈[﹣2,2]时,函数有意义,求实数a的取值范围.(3)若函数g(x)=f(x)﹣(a﹣2)x+a,函数y=g[g(x)]的最小值是5,求实数a的值.17.若x,y∈(0,+∞),x+2y+xy=30.(1)求xy的取值范围;(2)求x+y的取值范围.18.已知关于x的函数和.(1)若y1≥y2,求x的取值范围;(2)若关于x的不等式(其中0<t≤2)的解集D=[m,n],求证:.参考答案与试题解析一.选择题(共4小题)1.【解答】解:k=0时,﹣<0恒成立,故满足题意;k≠0时,,∴﹣3<k<0.∴实数k的取值范围是(﹣3,0].故选:D.2.【解答】解:={x|x=12k,k∈N*},={x|x=24k,k∈Z},故A错误,C错误,当x=﹣12时,,既不在集合M,也不在集合N,故B错误;当元素满足为24的正整数倍时,比满足为12的正整数倍,故M∩N=,故D正确,故选:D.3.【解答】解:因为a>b>c,且a+b+c=0,所以a>0,c<0,对于A,由于a>c,而当b=0时,ab2=bc2,故A错误;对于B,当b=0时,ab2=b2c,故B错误;对于C,由于a>0,b>c,则b﹣c>0,所以(ab﹣ac)(b﹣c)=a(b﹣c)(b﹣c)>0,故C正确;对于D,因为a>b>c,所以a﹣b>0,a﹣c>0,又c<0,所以(ac﹣bc)(a﹣c)=c(a﹣b)(a﹣c)<0,故D错误.故选:C.4.【解答】解:因为正实数a,b满足2a+b=a+a+b=1,则====5++=9,当且仅当a+b=2a且2a+b=1,即a=b=时取等号.故选:B.二.多选题(共5小题)5.【解答】解:对于A,方程的解集为{(2,﹣2)},故A错误;对于B,当a>0,b>0时,=,当a>0,b<0时,=,当a<0,b>0时,=﹣1+1=0,当a<0,b<0时,=﹣1﹣1=﹣2,故所确定的实数集合为{﹣2,0,2},故B正确;对于C,3x+2y=16,x∈N,y∈N,则或或,故集合{(x,y)|3x+2y=16,x∈N,y∈N}可以化简为{(0,8),(2,5),(4,2)},故C正确;对于D,A=={﹣3,0,1,2}中含有4个元素,故D错误.故选:BC.6.【解答】解:对于A,因为a,b∈R+,2a+b=1,所以,得,当且仅当时,取等号,所以ab的最大值为,所以A正确,对于B,因为a,b∈R+,2a+b=1,所以0<a<1,b=1﹣2a>0,所以,所以,所以当时,a2+b2有最小值,所以B错误,对于C,因为a,b∈R+,2a+b=1,所以,当且仅当,即时,取等号,所以的最小值为,所以C错误,对于D,因为2a+b=1,所以,由选项B知,所以,所以,所以,所以,所以,所以D正确.故选:AD.7.【解答】解:由﹣2≤x+1≤2,解得﹣3≤x≤1,即函数f(x+1)的定义域为[﹣3,1],故A正确;函数的定义域为[2,+∞),易知函数在[2,+∞)上单调递增,则函数的值域为[2,+∞),故B错误;若函数y=x2+mx+4的两个零点x1,x2都在区间为(1,+∞)内,则x1>1,x2>1,∴x1﹣1>0,x2﹣1>0,且x1+x2=﹣m,x1x2=4,故即解得﹣5<m <﹣4,故C正确,若f(x)=x2﹣(m+2)x+2在[1,3]单调递增,则,若f(x)=x2﹣(m+2)x+2在[1,3]单调递减,则,故实数m的取值范围是(﹣∞,0]∪[4,+∞),D正确.故选:ACD.8.【解答】解:根据题意,A={x|﹣1<x<3},集合B={x|x<m+1},若A∩B=∅.则m+1≤﹣1≤﹣2,对于A,m≤﹣2为A∩B=∅的充分必要条件,故A错,对于B,m<﹣2为A∩B=∅的一个充分不必要条件,故B正确,对于C,m<2为A∩B=∅的一个必要不充分条件,故C错,对于D,﹣4<m<﹣3为A∩B=∅的一个充分不必要条件,故D正确,故选:BD.9.【解答】解:A选项:∵a<0<b,且a+b>0,∴b>﹣a>0,可得,即,A正确;B选项,,B错误;C选项,a<0<b即|a|=﹣a,|b|=b,由a+b>0可得|b|>|a|,C正确;D选项,因为当,所以(a﹣1)(b﹣1)>0,D错误.故选:AC.三.填空题(共4小题)10.【解答】解:∵,∴==2+2+2+1=7.故答案为:7.11.【解答】解;由题意原命题的否定“∀x∈[﹣1,2],使得x2+mx﹣m﹣5<0”是真命题,不妨设,其开口向上,对称轴方程为,则只需f(x)在[﹣1,2]上的最大值[f(x)]max<0即可,我们分以下三种情形来讨论:情形一:当即m≥2时,f(x)在[﹣1,2]上单调递增,此时有[f(x)]max=f(2)=m﹣1<0,解得m<1,故此时满足题意的实数m不存在;情形二:当即﹣4<m<2时,f(x)在上单调递减,在上单调递增,此时有[f(x)]max=max{f(2)(﹣1)}<0,只需,解不等式组得﹣2<m<1,故此时满足题意的实数m的范围为﹣2<m<1;情形三:当即m≤﹣4时,f(x)在[﹣1,2]上单调递减,此时有[f(x)]max=f(﹣1)=﹣2m﹣4<0,解得m>﹣2,故此时满足题意的实数m不存在;综上所述:m的取值范围是(﹣2,1).故答案为:(﹣2,1).12.【解答】解:∵关于x的不等式ax+b>0的解集为(﹣3,+∞),∴﹣=﹣3且a>0,∴b=3a,∴不等式ax2+bx<0,可化为ax2+3ax<0,又∵a>0,∴x2+3x<0,解得﹣3<x<0,即原不等式的解集为(﹣3,0).故答案为:(﹣3,0).13.【解答】解:由∠B=∠C得b=c,代入7a2+b2+c2=4得,7a2+2b2=4,即2b2=4﹣7a2,由余弦定理得,cos C==,所以sin C===,则△ABC的面积S===a==×≤××==,当且仅当15a2=8﹣15a2取等号,此时a2=,所以△ABC的面积的最大值为,故答案为:.四.解答题(共5小题)14.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,又a>0,所以a<x<3a;当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3;由,得,解得2<x≤3,即q为真时,实数x的取值范围是2<x≤3;则p、q均为真命题时,实数x的取值范围是(2,3);(2)由(1)知p:a<x<3a,a>0,q:2<x≤3;当q是p的充分不必要条件时,;解得1<a≤2,所以实数a的取值范围是(1,2].15.【解答】解:(1)根据题意,函数f(x)=是定义域(﹣1,1)上的奇函数,则有f(0)==0,则b=0;此时f(x)=,为奇函数,符合题意,故f(x)=,(2)证明:设﹣1<x1<x2<1,f(x1)﹣f(x2)=﹣=﹣又由﹣1<x1<x2<1,则(x1﹣x2)<0,x1x2+1>0,(﹣1)<0,(﹣1)<0,则有f(x1)﹣f(x2)>0,即函数f(x)在(﹣1,1)上为减函数;(3)根据题意,f(t﹣1)+f(t)<0⇒f(t﹣1)<﹣f(t)⇒f(t﹣1)<f(﹣t)⇒,解可得:<t<1,即不等式的解集为(,1).16.【解答】解:(1)若函数的定义域为R,则对任意的x∈R,x2+ax+3≠0,由于函数f(x)=x2+ax+3为开口向上的二次函数,故只需要Δ=a2﹣12<0,解得,故a的范围为{a|};(2)对x∈[﹣2,2]有意义,则对于x∈[﹣2,2],f(x)﹣a=x2+ax+3﹣a≥0恒成立,记h(x)=x2+ax+3﹣a,对称轴为,当时,即a≥4,此时h(x)在x∈[﹣2,2]单调递增,故,与a≥4矛盾,舍去,当,即a≤﹣4,此时h(x)在x∈[﹣2,2]单调递减,故h(2)=4+2a+3﹣a=7+a≥0⇒a≥﹣7,故﹣7≤a≤﹣4,当,即﹣4<a<4,此时,解得﹣6≤a≤2,故﹣4<a≤2,综上可得:{a|﹣7≤a≤2};(3)g(x)=f(x)﹣(a﹣2)x+a=x2+2x+a+3=(x+1)2+a+2≥a+2,令t=g(x),则t≥a+2,y=g[g(x)]=g(t)=(t+1)2+a+2,t≥a+2,则g(t)为开口向上,对称轴为t=﹣1的二次函数,当a+2≤﹣1⇒a≤﹣3,此时g(t)min=g(﹣1)=a+2=5⇒a=3,不符合要求,舍去,当a+2>﹣1⇒a>﹣3,此时或a=﹣6(舍去),故a=﹣1.17.【解答】解:(1)因为x,y∈(0,+∞),x+2y+xy=30,所以30﹣xy=x+2y,当且仅当x=2y时取等号,解可得,0<xy≤18,(2)因为x,y∈(0,+∞),30=x+2y+xy=x+y+y(x+1)≤x+y+()2,当且仅当x+1=y时取等号,所以(x+1+y)2+4(x+1+y)﹣124≥0,解可得,x+y+1或x+y+1(舍),故x+y≥8﹣3,又x+y=x+2+﹣3,0<x<30,所以由对勾函数的性质可得x+y<30,所以8﹣3≤x+y<30.18.【解答】解:(1)y1≥y2可得x2﹣2|x|≥4x2﹣16,即3x2+2|x|﹣16≤0,即(|x|﹣2)(3|x|+8)≤0,即,则﹣2≤x≤2,则实数x的取值范围是[﹣2,2];证明:(2)因为,所以y1≥y2,由(1)知x∈[﹣2,2],所以D=[m,n]⊆[﹣2,2];(i)0<t<1时,当x∈[0,2]时,,所以当x∈[0,2]时,恒成立,当x∈[﹣2,0)时,令=x2+2x﹣(2t﹣2)x+t2=x2+(4﹣2t)x+t2,y=g(x)对称轴x=t﹣2<﹣1,故y=g(x)在[﹣1,0)上为增函数,又g(﹣1)=1+2t﹣4+t2=(t+1)2﹣4<0,g(0)=t2>0,所以存在x0∈(﹣1,0)使得g(x0)=0,故g(x)≥0的解集为[x0,0],所以当x∈[﹣2,2]时,的解集为[x0,2],其中x0∈(﹣1,0),所以D=[m,n]⊆(﹣1,2],则;(ii)当t=1时,y1≥﹣1≥y2,因为,所以y1≥﹣1恒成立,由题意知﹣1≥y2的解集为D=[m,n],所以m,n是方程﹣1=4x2﹣16的两根,所以,所以;(iii)当1<t≤2时,当x∈[0,2]时,由(i)知,当x∈[﹣2,0)时,令,∴在[﹣2,2]恒成立,故只需要考虑(2t﹣2)x﹣t2≥y2在[﹣2,2]的解集即可,由(2t﹣2)x﹣t2≥y2,可得4x2﹣(2t﹣2)x+t2﹣16≤0,由题意m,n是4x2﹣(2t﹣2)x+t2﹣16=0的两根,令φ(x)=4x2﹣(2t﹣2)x+t2﹣16,其对称轴为,φ(2)=16﹣2(2t﹣2)+t2﹣16=t2﹣4t+4=(t﹣2)2≥0,φ(﹣2)=16+2(2t﹣2)+t2﹣16=t2+4t﹣4=(t+2)2﹣8>0,所以m,n∈[﹣2,2],,又h(t)=﹣3t2﹣2t+65在1<t≤2为单调减函数,∴h(t)<h(1)=60,∴,综上,.。

武汉市洪山高级中学2027届高一第一学期9月考试数学答案

武汉市洪山高级中学2027届高一第一学期9月考试数学答案

9月月考答案一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知命题p :,,则命题p 的否定为( )A. , B. ,C. , D. ,【答案】C2.下列各组函数是同一函数的是( )A.与 B. 与C. 与D. 与【答案】D 3.“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D【解析】时,由,解得:,时,解得:,不是必要条件,反之也推不出,比如,不是充分条件,故“”是“”的既不充分也不必要条件.故选:D .4. 若,,且,,则( )A. B. C.D. 【答案】B 解:因为,,所以,又因为,所以或,因为,所以不合要求,所以,x R ∀∈2430x x -++>x R ∀∈2430x x -++…x R ∀∈2430x x -++<x R ∃∈2430x x -++…x R ∃∈2430x x -++<x y x=1y =y =1y x =-2x y x=y x =321x x y x +=+y x=a b >1ba<0a >1ba<a b >0a <a b <a b >1ba<0,1a b ==-a b >1ba<a b >d c >b a c d <<<b c a d<<<b c d a<<<a b >b c a <<d a >d b <d c >d b <d a >综上:故选:B 【解析】5. 已知集合,,则( )A. B. C. D.【答案】A【详解】,当时,表示的整数倍与的和,表示的整数倍与的和,故,故选:A6. 不等式的解集为,则函数的图象大致为( )A. B.C. D.【答案】A【详解】因为的解集为,所以方程的两根分别为和1,且,则变形可得.b c a d <<<12,Z 3A x x k k ⎧⎫==+∈⎨⎬⎩⎭21,Z 3k B x x k ⎧⎫+==∈⎨⎬⎩⎭A B⊆A B ⋂=∅A B=A B⊇1612,Z ,Z 33k A x x k k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭Z k ∈21k +2161k +61A B ⊆20ax bx c -+>{}21x x -<<2y ax bx c =-+20ax bx c -+>{}21x x -<<20ax bx c -+=2-a<0()21,21,b ac a ⎧-+=⎪⎪⎨⎪-⨯=⎪⎩,2,b a c a =-⎧⎨=-⎩故函数的图象开口向下,且与x 轴的交点坐标为和,故A 选项的图象符合.故选:A7. 关于x 的不等式的解集中恰有2个整数,则实数a 的取值范围是( )A .B .C .D .【答案】C【解析】由可得,当时,,即原不等式无解,不满足题意;当时,原不等式解得,由于解集中恰有2个整数,所以该整数解为2和3,因此可得,即;当时,原不等式解得,由于解集中恰有2个整数,所以该整数解为和0,因此由数轴法可得,即;综上:或,所以实数的取值范围为或.故选:C .8. 已知表示不超过x 的最大整数,集合,,且,则集合B 的子集个数为( ).A .4B .8C .16D .32【答案】C【详解】由题设可知,,又因为,所以,而,因为的解为或,的两根满足,()()22221y ax bx c ax ax a a x x =-+=+-=+-()1,0()2,0-()21220x a x a -++<{}2134a a a -≤<-<≤或{}2134a a a -≤≤-≤≤或131222a a a ⎧⎫-≤<-<≤⎨⎬⎩⎭或131222a a a ⎧⎫-≤≤-≤≤⎨⎬⎩⎭或()21220x a x a -++<(1)(2)0x x a --<12a =2(1)(2)(1)0x x a x --=-≥12a >12x a <<324a <≤322a <≤12a <21a x <<1-221a -≤<-112a -≤<-112a -≤<-322a <≤a 1{|12a a -≤<-32}2a <≤[]x []{}03A x x =∈<<Z ()(){}2220B x x ax x x b =+++= R A B ⋂=∅ð[]{}{}Z |031,2A x x =∈<<=()A B ⋂=∅R ðA B ⊆()(){}22|20B x x ax x x b =+++=20x ax +==0x x a =-220x x b ++=12,x x 122x x +=-所以分属方程与的根,若是的根,是的根,则有,解得,代入与,解得或与或,故;若是的根,是的根,则有,解得,代入与,解得或与或,故;所以不管如何归属方程与,集合总是有4个元素,故由子集个数公式可得集合的子集的个数为.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有错选得0分.9.已知非空集合都是R 的子集,满足,,则( )A. B. C. D. 【答案】ABD解:对于A 选项,由 ,可得,故A 选项正确;对于B 选项,由,可得,从而,故B 选项正确;对于C 、D 选项,结合与,可知,又,所以,故C 选项错误,D 选项正确.故选:10. 已知函数,下列关于函数的结论正确的是( )A .的定义域是B .的值域是C .若,则D .的图象与直线有一个交点【答案】BCD1,220x ax +=220x x b ++=120x ax +=2220x x b ++=221+1=02+22+=0a b ⎧⨯⎨⨯⎩=1=8a b -⎧⎨-⎩20x ax +=220x x b ++==0x =1x =2x 4x =-{}0,1,2,4B =-220x ax +=1220x x b ++=222+2=01+21+=0a b ⎧⨯⎨⨯⎩=2=3a b -⎧⎨-⎩20x ax +=220x x b ++==0x =2x =1x 3x =-{}0,1,2,3B =-1,220x ax +=220x x b ++=B B 42=16,,A B C B A ⊆A C ⋂=∅A B A ⋃=()R A C A⋂=ðB C B⋂=()R B C B⋂=ðB A ⊆A B A ⋃=A C ⋂=∅R A C ⊆ð()R A C A ⋂=ðB A ⊆A C ⋂=∅B C ⋂=∅R B A C ⊆⊆ð()R B C B ⋂=ð.ABD 22,1()1,12x x f x x x +≤-⎧=⎨+-<<⎩()f x ()f x R ()f x (),5-∞()3f x=x ()f x 2y =【详解】A 选项,的定义域是,所以A 选项错误.B 选项,当时,,当时,,所以的值域是,所以B 选项正确.C 选项,由B 选项的分析可知,若,则,解得C 选项正确.D 选项,画出的图象如下图所示,由图可知,D 选项正确.故选:BCD11. 已知,则下列正确的是( )A .的最大值为B.C .最大值为8D .的最大值为6【答案】BC【详解】依题意,,A 选项,,解得当且仅当,即时等号成立,所以A 选项错误.B 选项,,,当且仅当时等号成立,所以B 选项正确.()f x (),2∞-1x ≤-21x +≤12x -<<2204,115x x ≤<≤+<()f x (),5∞-()3f x =21213x x -<<⎧⎨+=⎩x =()f x ()0,0,214a b ab a b >>++=ab 11-3322a b +++()1a b +2a b +()0,0,214a b ab a b >>++=()2142ab a b ab ++=≥+⨯2140+-≤02<≤-+()214a bab a b =⎧⎨++=⎩2a b ==-+(20222ab <≤-+=-()214ab a b ++=()()()422218ab a b a b +++=++=()()()3322132222226a b a b a b a b ++++=⨯=+++++++1163≥⨯==22,2a b a b +=+==-+D 选项,,整理得,,当且仅当时等号成立,所以D 选项错误.C 选项,,由D 选项的分析可知:,所以C 选项正确.三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合,,若,则实数的取值范围是______.【答案】13. 函数的定义域是_________.【答案】14. .定义集合的“长度”是,其中a ,R .已如集合,,且M ,N 都是集合的子集,则集合的“长度”的最小值是 ;若,集合的“长度”大于,则n 的取值范围是 .【答案】/ 【详解】集合,,且M ,N 都是集合的子集,由,可得,由,可得.要使的“长度”最小,只有当取最小值、取最大或取最大、取最小时才成立.当,,,“长度”为,当,,,“长度”为,故集合的“长度”的最小值是;若,,()()211221422222222b a ab a b b a b a b a ++⎛⎫=++=+++≤++ ⎪⎝⎭()()221221080b a b a +++-≥()()218260,26b a b a b a +++-≥+≥224b a =+=()()142212ab a b ab b a b b a a b =++=+++=+++()()11421468b a a b +=-+≤-={|1}A x x =>{|}B x x a =>A B ⊆a (,1]-∞1()f x x=+()(],00,1-∞⋃{|}P x a x b =≤≤b a -b ∈1{|}2M x m x m =≤≤+3{|}5N x n x n =-≤≤{|12}x x ≤≤M N ⋂65m =M N ⋃351100.18179,,25105⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦1{|}2M x m x m =≤≤+3{|}5N x n x n =-≤≤{|12}x x ≤≤1122m m ≥⎧⎪⎨+≤⎪⎩312m ≤≤3152n n ⎧-≥⎪⎨⎪≤⎩825n ≤≤M N ⋂m n m n 1m =2n =7352M N x x ⎧⎫⋂=≤≤⎨⎬⎩⎭3712510-=32m =85n =3825M N x x ⎧⎫⋂=≤≤⎨⎬⎩⎭8315210-=M N ⋂11065m =617510M x x ⎧⎫=≤≤⎨⎬⎩⎭要使集合的“长度”大于,故或即或又,故.故答案为:;.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. (13分)已知为全集,集合,集合.(1)求集合A ;(2)若,求实数的取值范围.【答案】(1)(2)(1),即,,等价于,解得:,故;(2)由(1)得:,所以或x >2},因为,所以,又,因为,故,则或,解得:或,综上:实数的取值范围为.16.(15分)已知集合,且.(1)若“命题,”是真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.M N ⋃3531735105n -<-63,55n >+1710n <9,5n >825n ≤≤8179,,25105n ⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦1108179,,25105⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦R R 21|1,1x A x x x -⎧⎫=≤∈⎨⎬+⎩⎭{}11B x a x a =-≤≤+C R B B ⋂A =a {}12A x x =-<≤(](),23,-∞-+∞ 2111x x -≤+21101x x --≤+021x x ≤-+()()21010x x x ⎧-+≤⎨+≠⎩12x -<≤{}12A x x =-<≤{}12A x x =-<≤{1A x x =≤-B A B ⋂=B A ⊆{}11B x a x a =-≤≤+11a a -<+B ≠∅11a ≤-+12a ->2a ≤-3a >a (](),23,-∞-+∞ {}2560A x x x =--<{}121B x m x m =+<<-B ≠∅:p x A ∃∈x B ∈m :s x B ∈:t x A ∈m【答案】(1)(2)【详解】(1)因为,所以命题是真命题,可知,因为,,,,故的取值范围是.(2)若是的充分不必要条件,得是的真子集,,,解得,故的取值范围是.17. (15分已知, 且.(1)证明: .(2)若, 求的最小值.【详解】(1),①②③①+②+③得,即,当且仅当时,等号成立.(2)由,得,即,{}|25m m <<7|22m m ⎧⎫<≤⎨⎬⎩⎭B ≠∅2112m m m ->+⇒>:,p x A x B ∃∈∈A B ≠∅ {}|16A x x =-<<{}|121B x m x m =+<<-2116m m >⎧⎨-<+<⎩25m ∴<<m {}|25m m <<:s x B ∈:t x A ∈B A B ≠∅21111216m m m m ->+⎧⎪+≥-⎨⎪-≤⎩722<≤m m 7|22m m ⎧⎫<≤⎨⎬⎩⎭0a b c >,,234a b c ++=222(23)(3)(2)82233b c a c a b a b b c a c+++++≥+++23b c =11212333aa b c -++++()2(23)22232b c a b b c a b +++≥=++()2(3)232323a c b c a c b c +++≥=++()2(2)3223a b a c a b a c +++≥=++()()222(23)(3)(2)2234232233b c a c a b a b c a b c a b b c a c ++++++++≥+++++()222(23)(3)(2)22382233b c a c a b a b c a b b c a c+++++≥++=+++4233a b c ===23b c =44a b +=44a b =-所以由,得,得,即,所以.所以的最小值为,当且仅当,即时,等号成立.18. (17分)LED 灯具有节能环保的作用,且使用寿命长.经过市场调查,可知生产某种LED 灯需投入的年固定成本为4万元,每生产x 万件该产品,需另投入变动成本万元,在年产量不足6万件时,,在年产量不小于6万件时,每件产品售价为6元.假设该产品每年的销量等于当年的产量.写出年利润万元关于年产量万件的函数解析式.注:年利润=年销售收入-固定成本-变动成本年产量为多少万件时,年利润最大?最大年利润是多少?【答案】解:每件产品售价为6元,万件产品的销售收入为6x 万元,依题意得,当时,,当时,当时,,当时,取得最大值111144114610212333212323212323a b b a b c a b b a b b ---+-+=-+=-++++++++++1922123a b =+-++44a b +=288a b +=()()2142321a b +++=()()121423121a b ⎡⎤+++=⎣⎦()()()()42392119119121423372123212123212123b a a b a b a b a b ⎡⎤++⎛⎫⎡⎤+=++++=++⎢⎥ ⎪⎣⎦++++++⎝⎭⎣⎦17[37213≥+=11212333a abc -++++71233-=()()4239212123b a a b ++=++31,4a b ==()W x ()212W x x x =+()100739.W x x x=+-(1)()(L x )(x )()(2)(1) x ∴06x <<()2211645422L x x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭6x …(2)06x <<()()2117522L x x =--+5x =()L x 17.2当时,,当且仅当,即时,取得最大值,当年产量为10万件时,年利润最大,最大年利润为15万元.19. 问题:正实数a ,b 满足,求的最小值.其中一种解法是:且时,即且时取等号.学习上述解法并解决下列问题:(1)若正实数x ,y 满足,求的最小值;(2)若实数a ,b ,x ,y 满足,求证:;(3)求代数式M 最小的m 的值. 【分析】(1)利用“1”的代换凑配出积为定值,从而求得和的最小值;(2)利用已知,,然后由基本不等式进行放缩:,再利用不等式的性质得出大小.并得出等号成立的条件.(3)令,构造,即以,即,然后利用(2)的结论可得.【详解】(1)因为,,所以当且仅当,即所以的最小值是(2),又,当且仅当时等号成立,6x …()1003535352015L x x x ⎛⎫=-+-=-= ⎪⎝⎭ (100)x x=10x =()L x 15.∴1a b +=12a b+()12121b a b a b a b a ⎛⎫+=++=+ ⎪⎝⎭223a b +++≥2b a a b =1a b +=1a -2b =1x y +=23x y+22221x y a b-=()222a b x y -≤-M =222222222222222222()1()()(x y b x a y a b a b a b x y a b a b-=-⨯=--=+-+2222222b x a y xy a b +≥x y =22221x y a b-=2231x y -=221113x y -=0,0x y >>1x y +=32()()5552323x y x y y x x x y y =+=++≥+=+++32x yy x=2,3x y ==x y +5+222222222222222222()1()((x y b x a y a b a b a b x y a b a b-=-⨯=--=+-+2222222b x a y xy a b +≥=222222b x a y a b =所以,所以,当且仅当且同号时等号成立.此时满足.(3)令,由得,,又,所以,构造,由,可得,因此,由(2)知,取等号时,且同正,结合,解得,.所以时,.综上:.22222222(b x a y x y a b +-+2222222()x y xy x y xy x y ≤+-≤+-=-222()a b x y -≤-222222b x a y a b =,x y ,x y 22221x y a b -=x y =35020m m -≥⎧⎨-≥⎩2m ≥()()22352230x y m m m -=---=->0,0x y >>x y >22221x y a b-=2231x y -=221113x y -=2211,3a b ==M =x y =-≥==22133x y =,x y 2231x y -=x y ===136m =136m =M ()2224b a c +。

高一9月月考(数学)试题含答案

高一9月月考(数学)试题含答案

高一9月月考(数学)(考试总分:150 分)一、 单选题 (本题共计25小题,总分100分) 1.(4分)1.下列语言叙述中,能表示集合的是( )A .数轴上离原点距离很近的所有点B .太阳系内的所有行星C .某高一年级全体视力差的学生D .与ABC 大小相仿的所有三角形2.(4分)2.下列五个写法,其中错误..写法的个数为( ) ①{}{}00,2,3∈; ①∅ {}0; ①{}{}0,1,21,2,0⊆; ①N R ∈; ①0∅=∅;A .1B .2C .3D .43.(4分)3.已知集合{}327A x x =->,B ={}1,2,3,4,5,则A B =( )A .{}1,2,3B .C .{}3,4,5D .{}4,54.(4分)4.设集合{}3A x x =≥,{}14B x x =≤≤,则RBA =( )A. B. C .D . 5.(4分)5.已知集合{}{}U x 010,x 410N x A N x =∈≤≤=∈≤≤,则UA =( )A .{}|03x x ≤≤B .{}|04x x ≤<C .{}0,1,2,3D .{}1,2,36.(4分)6.若集合{}0,1,2A =,则集合{},B x y x A y A =-∈∈中元素的个数是( )A .9B .5C .3D .17.(4分)7.已知全集U ,集合M ,N 满足M N U ⊆⊆,则下列结论正确的是( )A .M N U ⋃=B .()()U U M N ⋂=∅C .()U M N ⋂=∅D .()()U U M N U ⋃=8.(4分)8.设a ,R b ∈,集合 {}10ba b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则 b a -=( )A .1B .1-C .2D .2-9.(4分)9.已知集合{}{}1,21,2,3,4,5,6A ⊆⊆,则满足条件的A 的个数为( ){}1,2{|1}x x ≥{|34}x x ≤≤{|4}x x ≤{}13x x≤<10.(4分)10.已知集合{}13A x N x *=∈-<<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( ) A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0--11.(4分)11.已知M 、N 为R 的子集,若M N ⋂=∅R ,{1,2}N =,则满足题意的M 的个数为( ) A .1B .2C .3D .412.(4分)12.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a的取值范围是( ) A .{a | 3<a ≤4} B .{a | 3≤a ≤4} C .{a | 3<a <4}D .∅13.(4分)13.若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .ABB .B AC .A B =D .A B ≠14.(4分)14.设数集3|4M x m x m ⎧⎫=≤≤+⎨⎬⎩⎭,1|3N x n x n ⎧⎫=-≤≤⎨⎬⎩⎭,且M ,N 都是集合{|01}x x ≤≤的子集.如果把b a -叫做{|}x a x b ≤≤的长度,那么集合M N ⋂的长度的最小值是( ) A .13B .1C .112D .3415.(4分)15.对于集合M ,N ,定义{|M N x x M -=∈,且}x N ∉,()()M N M N N M ⊕=-⋃-,设9{|}4A x x x R =-∈,,{|0}B x x x R =<∈,,则A B ⊕=( ) A .B .C .D . 16.(4分)16.已知非空集合A ,B 满足以下两个条件()1{1A B ⋃=,2,3,4,5,6},A B ⋂=∅; ()2若x A ∈,则1x B +∈.则有序集合对()A B ,的个数为( )9{|0}4x x -≤<9{|0}4x x -<<9{|0}4x x x ≤->或9{|0}4x x x >-≥或17.(4分)17.设{}1,2,3,4,I =,A 与B 是I 的子集,若{}1,3A B =,则称(,)A B 为一个“理想配集”.那么符合此条件的“理想配集”(规定(,)A B 与(,)B A 是两个不同的“理想配集”的个数是( ) A .16B .9C .8D .418.(4分)18.命题“存在0x R ∈,使得00e 0x x +=”的否定是( )A .不存在0x R ∈,使得00e 0xx +≠B .存在0x R ∈,使得00e 0xx +≠C .任意x ∈R ,e 0x x +=D .任意x ∈R ,e 0x x +≠19.(4分)19.设集合{|2}M x x =>.{|3}N x x =<,那么“x M ∈且x ∈N ”是“x M N ∈⋂”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件20.(4分)20.若,a b 为实数,则0ab >是0,0a b >>的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21.(4分)21.如果对于任意实数[],x x 表示不超过x 的最大整数,那么“[][]=x y ”是“1x y -<成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件22.(4分)22.已知命题“ 0R x ∃∈,2040x ax a +-< ”为假命题,则实数 a 的取值范围为( ) A .{|-160}a a B . {|-160}a a << C .{|-40}a a ≤≤D .{|-40}a a <<23.(4分)23.若命题“2,10x R x ax ∃∈-+≤”是真命题,则实数a 的取值范围是( )A .2{|}2a a -≤≤B .2{2}|a a a ≤-≥或C .2{}2|a a a <->或D .2{|2}a a -<<24.(4分)24.已知a b c R ∈、、,则下列语句能成为“a b c 、、都不小于1”的否定形式的个数是( )(1)a b c 、、中至少有一个大于1;(2)a b c 、、都小于1;(3)1a <或1b <或1c < A .0个;B .1个;C .2个;D .3个.25.(4分)25.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( ) A .3,6,9B .6,9,12C .9,12,15D .6,12,15二、 多选题 (本题共计10小题,总分50分)26.(5分)26.已知集合M ,N ,P 为全集U 的子集,且满足M ①P ①N ,则下列结论正确的是( ) A .U N ①U PB .N P ①N MC .(U P ) ∩ M = ① D .(U M ) ∩ N = ①27.(5分)27.已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .AB =∅ B .A B B =C .A B U ⋃=D .()U B A A =28.(5分)28.图中阴影部分用集合符号可以表示为( )A .()ABC ⋂⋃ B .()A B CC .()UA B C ⋂⋂ D .()()A B A C ⋂⋃⋂29.(5分)29.集合{}220,A x mx x m m =++=∈R 中有且只有一个元素,则m 的取值可以是( ) A .1B .1-C .0D .230.(5分)30.设集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,则下列选项中,满足AB =∅的实数a 的取值范围可以是( )A .{|06}a aB .{|2a a 或4}aC .{|0}a aD .{|8}a a31.(5分)31.设集合M ={x |x =2m +1,m ①Z },P ={y |y =2m ,m ①Z },若x 0①M ,y 0①P ,a =x 0+y 0,b =x 0y 0,则( )A .a ①MB .a ①PC .b ①MD .b ①P32.(5分)32.对下列命题进行否定,得到的新命题是全称量词命题且为真命题的有( )A .21,04x R x x ∃∈-+< B .所有的正方形都是矩形C .2,220x x x ∃∈++≤RD .至少有一个实数x ,使210x +=33.(5分)33.下列命题正确的有( )A .2x >是(2)(1)0x x -->的充分不必要条件B .2,10x x ∃∈+=RC .22,4213x R x x x ∀∈>-+D .对于任意两个集合,A B ,关系()()A B A B ⋂⊆⋃恒成立34.(5分)34.下列说法正确的是( )A .命题“2,1x R x ”的否定是“2,1xR x ”B .命题“()23,,9x x ∞∃∈-+”的否定是“()23,,9x x ∀∈-+∞>”C .命题2:,0p x R x ∀∈>,则2:,0⌝∃∈<p x R xD .“5a <”是“3a <”的必要条件35.(5分)35.下列叙述正确的是( )A .()2,R,210a b a b ∃∈-++≤ B .R,R a x ∀∈∃∈,使得2>axC .已知R x ∈,则“0x >”是“11x -<”的必要不充分条件D .:8p a ≥;q :对13x ≤≤不等式20x a -≤恒成立,p 是q 的充分不必要条件答案一、 单选题 (本题共计25小题,总分100分) 1.(4分)1. B 2.(4分) 2. C 3.(4分)3. D 4.(4分) 4. A 5.(4分) 5. C 6.(4分) 6. B 7.(4分) 7. C 8.(4分)8. C9.(4分)9. A 满足条件的集合A 为{}12,,{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,2,4,5,6},{1,2,3,4,5,6}共16个.10.(4分)10. D 因为A B B =,所以B A ⊆,当0a =时,集合{}20B x ax φ=+==,满足B A ⊆; 当0a ≠时,集合{}220B x ax x a ⎧⎫=+===-⎨⎬⎩⎭, 由B A ⊆,{}1,2A =得21a -=或22a-=,解得2a =-或1a =-, 综上,实数a 的取值集合为{}2,1,0--.11.(4分)11. D 可得M N ⊆, 所以{1}M =或{2}M =或M =∅或{1,2}M =, 12.(4分)12. B 因为A ⊇B ,所以⎩⎪⎨⎪⎧a -1≤3,a +2≥5.所以3≤a ≤4.13.(4分)13. C 设任意1x A ∈,则111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+,所以1x B ∈;当121,k n n Z =-∈时,1141(41)999x n n =-=-,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k -=-+,且22k 表示所有的偶数,221k -表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数. 所以2x A ∈.所以B A ⊆ 故A B =.14.(4分)14. C 解:根据新定义可知集合M 的长度为34,集合N 的长度为13,当集合M N ⋂的长度最小时,M 与N 应分别在区间[]01,上的左右两端,故M N ⋂的长度的最小值是31114312+-=. 15.(4分)15. C 集合9{|}4A x x x R =-∈,,{|0}B x x x R =<∈,,则9|4R C A x x x R ⎧⎫=<-∈⎨⎬⎩⎭,,{}|0R C B x x x R =≥∈,,由定义可得:{}{}[)||00R A B x x Ax B A C B x x x R ∞-=∈∉=⋂=≥∈=+,且,,, {|B A x x B -=∈,且9}{|4R x A B C A x x ∉=⋂=<-,9}4x R ∞⎛⎫∈=-- ⎪⎝⎭,, 故A ()()[)904B A B B A ∞∞⎛⎫⊕=-⋃-=--⋃+ ⎪⎝⎭,,,选项 ABD 错误,选项C 正确.16. 16.(4分)C 若A 为单元素集,则{}1A =时,{2B =,3,4,5,6};{}2A =时,{1B =,3,4,5,6};{}3A =时,{1B =,2,4,5,6};{}4A =时,{2B =,3,1,5,6};{}5A =时,{2B =,3,4,1,6};若A 为双元素集合,则{}13A =,时 ,{2B =,4,5,6};{}14A =,时,{2B =,3,5,6};{}15A =,时 ,{2B =,3,4,6};{}24A =,时,{1B =,3,,5,6};{}25A =,时 ,{1B =,3,4,6};{}35A =,时 ,{1B =,2,4,6};若A 为三元素集合,则{1A =,3,5}时,{2B =,4,6},共12个;选项C 正确17. 17.(4分)B 由题意,对子集A 分类讨论:当集合{}1,3A =,集合B 可以是{1,2,3,4},{1,3,4},{1,2,3},{1,3},共4中结果; 当集合{}1,2,3A =,集合B 可以是{1,3,4},{1,3},共2种结果; 当集合{}1,3,4A =,集合B 可以是{1,2,3},{1,3},共2种结果; 当集合{}1,2,3,4A =,集合B 可以是{1,3},共1种结果, 根据计数原理,可得共有42219+++=种结果.18.(4分)18. D 19.(4分) 19. C 20.(4分) 20. B21.(4分)21. A 若“[][]x y =”,设[][]x a y a x a b y a c ===+=+,,, 其中[01b c ∈,,) 1x y b c x y ∴-=-∴-< 即“[][]x y =”成立能推出“[]1x y -<”成立反之,例如 1.2 2.1x y ==, 满足[]1x y -<但[][]12x y ==,,即[]1x y -<成立,推不出[][]x y = 故“[][]x y =”是“|x-y|<1”成立的充分不必要条件22.(4分)22. A 由题意可知“ R x ∀∈,240x ax a +- ”为真命题,所以 2Δ160a a =+,解得 160a -.23. 23.(4分)B24. 24.(4分)B 若“a b c 、、都不小于1”,则1,1,1a b c ≥≥≥, 否定为“至少有一个小于1”, 故(1),(2)错误,(3)正确.25. 25.(4分)B 解:关于x 的方程26(0)x x a a -=>等价于260x x a --=①,或者260x x a -+=①.由题意知,P 中元素的和应是方程①和方程①中所有根的和.0a >,对于方程①,()2(6)413640a a ∆=--⨯⨯-=+>.∴方程①必有两不等实根,由根与系数关系,得两根之和为6.而对于方程①,364a ∆=-,当9a =时,0∆=可知方程①有两相等的实根为3, 在集合中应按一个元素来记,故P 中元素的和为9; 当9a >时,∆<0方程①无实根,故P 中元素和为6;当09a <<时,方程①中0∆>,有两不等实根,由根与系数关系,两根之和为6, 故P 中元素的和为12.二、 多选题 (本题共计10小题,总分50分) 26.(5分)26. ABC 27.(5分)27. CD采用特值法,可设{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,根据集合之间的基本关系,对选项,,,A B C D 逐项进行检验,即可得到结果.28.(5分)28. AD29. 29.(5分)ABC 解:集合{}220,A x mx x m m =++=∈R 表示方程220mx x m ++=的解组成的集合,当0m =时,{}{}200A x x ===符合题意; 当0m ≠要使A 中有且只有一个元素 只需2440m ∆=-=解得1m =± 故m 的取值集合是{}0,1,1-,30.(5分)30. CD 解:集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,满足AB =∅,15a ∴-或11a +,解得6a 或0a .31.(5分)31. AD 设x 0=2m +1,y 0=2n ,m ,n ①Z ,则a =x 0+y 0=2m +1+2n =2(m +n )+1, ①m +n ①Z ,①a ①M ,b=x 0y 0=2n (2m +1)=2(2mn +n ), ①2mn +n ①Z ,①b ①P , 即a ∈M ,b ∈P ,32.(5分)32. ACD33.(5分)33. AD 对于A ,当2x >时,(2)(1)0x x -->成立,但当3x =-时,(2)(1)0x x -->也成立,所以“2x >”是“(2)(1)0x x -->”的充分不必要条件,所以A 正确; 对于B ,2,10x R x ∀∈+≠,所以B 错误;22224(213)21(1)0x x x x x x --+=-+=-≥,即当1x =时,224213x x x =-+成立,所以C错误; 因为()AB A ⊆,而()A A B ⊆,所以()()A B A B ⋂⊆⋃恒成立,D 正确.34.(5分)34. BD 对于A ,命题“2,1x R x ”的否定是“2,1x R x ”,故A 错误;对于B ,命题“()23,,9x x∞∃∈-+”的否定是“()23,,9x x ∀∈-+∞>”,故B 正确;对于C ,由命题2:,0p x R x ∀∈>为全称命题,可得p ⌝:x R ∃∈,20x ≤,故C 错误; 对于D ,由5a <不能推出3a <,但3a <时一定有5a <成立,“5a <”是“3a <”的必要条件,故D 正确.35.(5分)35. AC 对于选项A :当2a =,1b =-时,不等式成立,故A 正确;对于选项B :当0a =时,不存在实数x 使得不等式成立,故B 错误;对于选项C :11x -<⇔02x <<,因为{}0x x > {}02x x <<,所以“0x >”是“11x -<”的必要不充分条件,故C 正确;对于选项D :9q a ⇔≥,因为{}8a a ≥ {}9a a ≥,所以p 是q 的必要不充分条件,故D 错误.。

浙江省9+1高中联盟2024-2025学年高一上学期期中考试数学试卷含答案

浙江省9+1高中联盟2024-2025学年高一上学期期中考试数学试卷含答案

2024学年第一学期浙江省9+1高中联盟高一年级期中考试数学(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;一、选择题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中只有一个是符合题目要求的)1.已知集合{1,0,1,2,3},{2,3},{0,1}U A B =-==,则()U B A ⋂=ð()A.{1,0,1}-B.{0,1}C.{0}D.{1}【答案】B 【解析】【分析】先计算补集{}1,0,1U A =-ð,再计算交集()U A B ⋂ð;【详解】{}(){}1,0,1,0,1U UA AB =-∴⋂= 痧,故选:B.2.命题“[)1,x ∃∈+∞,21x ≤”的否定形式为()A.[)1,x ∀∈+∞,21x >B.(),1x ∀∈-∞,21x >C.[)1,x ∀∈+∞,21x ≤D.(),1x ∀∈-∞,21x ≤【答案】A 【解析】【分析】特称命题的否定:①∃⇒∀,②否定结论.【详解】命题“[)1,x ∃∈+∞,21x ≤”的否定形式为:“[)1,x ∀∈+∞,21x >”,故选:A.3.函数()f x =)A.[]1,3 B.1,12⎛⎫⎪⎝⎭C.1,32⎡⎤⎢⎥⎣⎦D.1,12⎡⎤⎢⎥⎣⎦【答案】D 【解析】【分析】由根式有意义可以列出不等式求解.【详解】依题意得10210x ⎧≥⎪⎨-≥⎪⎩,解得112x ≤≤,所以()f x 的定义域为1,12⎡⎤⎢⎥⎣⎦,故选:D.4.已知()f x 在R 上的奇函数,当0x >时,2()21f x x x =--,则((1))f f -=()A.2B.2- C.1D.1-【答案】D 【解析】【分析】利用函数奇偶性,由内向外求值即可.【详解】由题意()()112f f -=-=,所以((1))(2)1f f f -==-.故选:D5.已知R a b c ∈,,,则a b c ==是222a b c ab bc ac ++=++成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件和必要条件的定义分析判断即可.【详解】当a b c ==时,222223,3a b c a ab bc ac a ++=++=,所以222a b c ab bc ac ++=++,当222a b c ab bc ac ++=++时,2220a b c ab bc ac ++---=,所以2222222220a b c ab bc ac ++---=,所以()()()2222222220a ab baac c b bc c -++-++-+=,所以()()()2220a b a c b c -+-+-=,因为()()()2220,0,0a b a c b c -≥-≥-≥,所以()()()2220a b a c b c -=-=-=,所以a b c ==,所以a b c ==是222a b c ab bc ac ++=++成立的充要条件,故选:C6.若函数()()2222422xx x x f x m --=+-++有且只有一个零点,则实数m 的值为()A.3B.4C.5D.6【答案】D 【解析】【分析】根据偶函数的性质结合题意得()00f =即可求解.【详解】由题函数定义域为R ,关于原点对称,又由于()()()2222422,x x x x f x m f x ---=+-++=故()f x 为R 上的偶函数,由于()f x 只有一个零点,因此()00f =,故2420m -⨯+=,解得6m =,故选:D.7.当01a <<时,关于x 的不等式()()()3130x a x a ⎡⎤--+->⎣⎦的解集为()A.33, 1a x x x a -⎧⎫><⎨⎬-⎩⎭∣或 B.331a x x a ⎧⎫-<<⎨⎬-⎩⎭C.33, 1a xx x a -⎧⎫<>⎨⎬-⎩⎭∣或 D.331a xx a ⎧⎫-<<⎨⎬-⎩⎭【答案】B 【解析】【分析】确定二次项的系数符号和两根的大小关系,直接写出解集即可.【详解】因为333323=111a a a aa a a ---+--=---,又因为01a <<,所以201a a ->-,所以3>31a a --,又因为10a -<,于是()()()3130x a x a ⎡⎤--+->⎣⎦等价于()3301a x x a -⎡⎤--<⎢⎥-⎣⎦,可得331a x a -<<-,所以()()()3130x a x a ⎡⎤--+->⎣⎦的解集为331a x x a ⎧⎫-<<⎨⎬-⎩⎭.故选:B8.已知()()2,12,1xa x x f x x a xb x ⎧+≤⎪=⎨--+>⎪⎩,存在实数(0a >且)1a ≠,对于R 上任意不相同的12,x x ,都有()()21211f x f x x x ->-,则实数b 的取值范围是()A.()0,∞+ B.[)4,+∞ C.(]0,4 D.[]0,4【答案】A 【解析】【分析】先将问题转化为分段函数()()g x f x x =-的单调性问题,然后根据各段函数的单调性以及分段点处函数值大小关系得到,a b 的不等关系,再由题意可分析出b 的取值范围.【详解】对于R 上任意不相同的12,x x ,都有()()21211f x f x x x ->-,即对于R 上任意不相同的12,x x ,都有()()2211210f x x f x x x x ---⎡⎤⎡⎤⎣⎦⎣⎦>-,所以()()g x f x x =-是R 上的增函数,且()()2,11,1xa x g x x a xb x ⎧≤⎪=⎨--+>⎪⎩,所以()1111211a a a a b>⎧⎪-⎪≤⎨⎪≤--+⎪⎩,所以1322a b a <≤⎧⎨≥-⎩,故由题意可知,存在(]1,3a ∈使得22b a ≥-,所以()min 22b a ≥-,且22a -最小值无限逼近0,所以0b >,故选:A.二、选择题(本题共3小题,每小题6分,共18分.每小题列出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知0a b c >>>,则()A.2a c b c +>+ B.ac bc >C.a ba cb c>++ D.cc a b <【答案】BC 【解析】【分析】对于A ,利用特殊值可以排除;对于B 、C ,根据给定条件,利用不等式的性质可以判断;对于D ,结合幂函数性质判断即可.【详解】对于A ,因为0a b c >>>,不妨取3,2,1a b c ===,则42a c b c +=+=,5,此时2a c b c +<+,故A 错误;对于B ,因为0a b c >>>,由不等式的可乘性得ac bc >,故B 正确;对于C ,由B 知ac bc >,所以()()0a b ac bca cbc a c b c --=>++++,即a b a c b c>++,故C 正确;对于D ,函数c y x =在()0,∞+上单调递增,则c c a b >,故D 错误.故选:BC10.已知函数()f x 的定义域为R ,满足:①对于任意的x ,y ∈R ,都有()()()f xy f x f y =,②存在1x ,2x ∈R ,使得()()12f x f x ≠,则()A.()00f = B.()22f =C.当()11f -=-时,()f x 为奇函数 D.当()11f -=时,()f x 为偶函数【答案】ACD 【解析】【分析】通过赋值,函数奇偶性的概念逐个判断即可.【详解】对于A :令0x y ==,可得:()()200f f=,解得:()00f =或()01f =,当()01f =时,令0y =,可得:()()()00f f x f =,得()1f x =,不满足存在1x ,2x ∈R ,使得()()12f x f x ≠,舍去,故()00f =;正确;对于B :令()2f x x =,满足()()()()222f xy xy f x f y x y ===,且存在1x ,2x ∈R ,使得()()12f x f x ≠,此时()24f =,故错误;对于C :令1y =-,可得:()()f x f x -=-,奇函数,正确;对于D :令1y =-,可得:()()f x f x -=,偶函数,正确;故选:ACD11.给定数集A =R ,(],0B ∞=-,方程2210s t ++=①,则()A.任给s A ∈,对应关系f 使方程①的解s 与t 对应,则()t f s =为函数B.任给t B ∈,对应关系g 使方程①的解t 与s 对应,则()s g t =为函数C.任给方程①的两组不同解()11,s t ,()22,s t ,其中1s ,2s B ∈,则11221221t s t s t s t s +>+D.存在方程①的两组不同解()11,s t ,()22,s t ,其中1s ,2s B ∈,使得1212(,)22s s t t ++也是方程①的解【答案】AC 【解析】【分析】根据函数的定义判断A,B 易得;对于C ,由题意得到211210s t ++=,222210s t ++=,化简整理得121212()()2()0s s s s t t +-+-=,根据12,(,0]s s ∈-∞推得1212()()0t t s s -->,展开即可判断;对于D ,运用反证法,假设1212(,22s s t t ++也是方程①的解,通过22121211,22s s t t ++=-=-,替代化简推出12s s =,得出矛盾即可.【详解】对于A ,由①可得,21122t s =--,对于任意的s A ∈,都有唯一确定的t 值与之对应,故()t f s =为函数,故A 正确;对于B ,由①可得221s t =--,因t B ∈,若取0t =,则21s =-,此时不存在实数s 与之对应,若考虑虚数解,会出现i s =±两个虚数与之对应,不符合函数的定义,故B 错误;对于C ,依题意,211210s t ++=,222210s t ++=,两式相减,整理得121212()()2()0s s s s t t +-+-=,因12s s ≠且12,(,0]s s ∈-∞,则有1212122()0t t s s s s -+=-<-,即得1212()()0t t s s -->,展开整理,即得11221221t s t s t s t s +>+,故C 正确;对于D ,由题意,12s s ≠,12,(,0]s s ∈-∞,假设1212(,22s s t t ++也是方程①的解,则有21212(2()1022s s t t++++=(*),因22121211,22s s t t ++=-=-,则22121212s s t t ++=--,代入(*)式,整理得:22121220s s s s +-=,即得12s s =,这与题意不符,故D 错误.故选:AC.【点睛】思路点睛:本题主要考查函数的定义、方程的解的应用,属于难题.对于判断两个变量是否构成函数,主要根据函数的定义,检测对于每一个自变量的取值,是否一定存在唯一的另一个值与之对应;对于方程的解,一般应从字母范围,解析式特点等方面考虑.三、填空题(本题共3小题,每小题5分,共15分)12.函数()11f x x =+,()1,x ∈+∞的值域是__________.【答案】10,2⎛⎫ ⎪⎝⎭【解析】【分析】由函数在()1,+∞的单调性得到函数值域.【详解】由反比例函数的图像可知:函数()f x 区间()1,-+∞上单调递减,∵()()1,1,+∞⊆-+∞,∴()f x 区间()1,+∞上单调递减,∴()()112f x f <=,又∵10x +>,∴()0f x >,∴()10,2f x ⎛⎫∈ ⎪⎝⎭,故答案为:10,2⎛⎫ ⎪⎝⎭.13.已知实数x ,y 满足0x >,0y >,231xy x y =++,则xy 的最小值是__________.【答案】42+【解析】【分析】利用基本不等式将题设方程转化成不等式210-≥,求出即得xy 的最小值.【详解】由231xy x y =++,可得213xy x y -=+≥,当且仅当3x y =时取等号,即210-≥,设t =2210t t --≥,解得352t ≤或352t ≥,因0t =>,故得235(2xy ≥,即4152xy +≥,由3231x y xy x y =⎧⎨=++⎩解得3632x y ⎧+=⎪⎪⎨+⎪=⎪⎩,即当36x =,32y +=时,xy取得最小值为42+.故答案为:42+.14.已知=,R x ∈,且()03f =,()()()0.520.51f n f n =+,*n ∈N ,请写出()f x 的一个解析式__________.【答案】134xy ⎛⎫=⋅ ⎪⎝⎭(答案不唯一)【解析】【分析】根据()()()0.520.51f n f n =+可考虑指数型函数,再设()x f x a b =⋅分析求解即可.【详解】设()xf x a b =⋅,由()()()0.520.51f n f n =+可得()0.50.512n n a b a b+⋅=⋅,即0.512b=,故4b =,又()03f =,故043a ⋅=,则3a =,134xy ⎛⎫=⋅ ⎪⎝⎭.故答案为:134xy ⎛⎫=⋅ ⎪⎝⎭四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(1)求值:)1112141431620.75624--⎛⎫⎛⎫+-+⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭.(2)设22xm=,且0m >,求33x xxxm m m m--++的值.【答案】(1)2-;(2)32【解析】【分析】(1)根据指数幂及其运算性质化简求值即可;(2)运用三次方公式化简,再根据分数指数幂的运算性质求解即可.【详解】(1))11121414331620.75624--⎛⎫⎛⎫++⨯⨯ ⎪⎪ ⎪⎝⎭⎝⎭()111124443272424-⎛⎫⎛⎫⎛⎫=+⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭)1144432722344⎛⎫⎛⎫=-+⨯⨯ ⎪ ⎪⎝⎭⎝⎭14432743234432⨯⎛⎫=+⨯=⨯= ⎪⨯⎝⎭.(2)因为22x m =,且0m >,所以()()3333xxxxx x x xm m mm m m m m ----++=++()()22xxxx x xx xm m mm m m m m ----+-⋅+=+.2222113112122x x x xm m m m -=-+=-+=-+=.16.已知集合{}2560A xx x =--≥∣,403x B x x ⎧⎫-=<⎨⎬+⎩⎭,{3}C x x a =-<.(1)求A B ;(2)若x B ∈是x C ∈的充分条件,求实数a 的取值范围.【答案】(1){4xx <∣或6}x ≥(2){}6a a ≥【解析】【分析】(1)解二次不等式和分式不等式分别得到集合,A B ,再求并集;(2)解绝对值不等式得到集合C ,由充分条件得到包含关系,建立不等式,求得a 的取值范围.【小问1详解】因为{}2560{6A xx x x x =--≥=≥∣∣或1}x ≤-,40{34}3x B x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭∣,所以{4A B xx =< ∣或6}x ≥.【小问2详解】{3}{33}C x x a x a x a =-<=-+<<+∣若x B ∈是x C ∈的充分条件,则B C ⊆,所以3334a a -≤-⎧⎨+≥⎩,解得6a ≥,故a 的取值范围为{}6a a ≥.17.已知幂函数=经过点2,4().(1)求12f ⎛⎫⎪⎝⎭的值;(2)记()()g x f x x =-,若()g x 在[]1,a -上是不单调的,求实数a 的取值范围;(3)记()()h x f x x b =++,若ℎ与()()h h x 值域相同,求实数b 的最大值.【答案】(1)14(2)1,2⎛⎫+∞⎪⎝⎭(3)14-【解析】【分析】(1)待定系数法求函数解析式后计算求值;(2)根据二次函数的对称轴与定义域的关系列出不等式即可得解;(3)根据二次函数的性质,值域相同转化为1142b -≤-求解即可.【小问1详解】设幂函数为a y x =,42a ∴=,2a ∴=,2y x ∴=,∴当12x =时,21124y ⎛⎫== ⎪⎝⎭.【小问2详解】()()221124g x f x x x x x ⎛⎫=-=-=-- ⎪⎝⎭,因为()g x 在[]1,a -上是不单调的,所以12a >,所以a 的取值范围是1,2∞⎛⎫+⎪⎝⎭.【小问3详解】函数()22111,244h x x x b x b b ∞⎛⎫⎡⎫=++=++-∈-+ ⎪⎪⎢⎝⎭⎣⎭,令()t h x =,则()()()221124h h x h t t t b t b ⎛⎫==++=++- ⎪⎝⎭,1,4t b ∞⎡⎫∈-+⎪⎢⎣⎭,因为函数ℎ的值域和函数()()h h x 相同,可得1142b -≤-,解得14b ≤-,所以实数b 的最大值为14-.18.设矩形ABCD 的周长为20,其中AB AD >.如图所示,E 为CD 边上一动点,把四边形ABCE 沿AE 折叠,使得AB 与DC 交于点P .设DP x =,PE y =.(1)若3AD =,将y 表示成x 的函数=,并求定义域;(2)在(1)条件下,判断并证明=的单调性;(3)求ADP △面积的最大值.【答案】(1)29y x =+,200,7⎛⎤ ⎥⎝⎦(2)29y x =+200,7x ⎛⎤∈ ⎥⎝⎦上单调递增,证明见解析(3)752-.【解析】【分析】(1)通过几何关系确定AP EP =,利用R Rt ADP 的三边关系建立x ,y 的关系,再利用7x y +≤,进而确定x 的范围即可.(2)应用函数单调性的定义证明即可;(3)设AD m =,将面积表示为()5510m m S m ⨯⨯-=-,适当变形应用基本不等式求解最值即可.【小问1详解】解:根据题意,由3AD =,得7AB =,由已知PAE PEA ∠=∠,故AP EP y ==,又因为DP x=故在Rt ADP 中,则222AP AD DP =+,即229y x =+,整理得29y x =+又7x y +≤,则297x x ++≤297x x +≤-,2294914x x x+≤+-207x ≤,所以,定义域为200,7⎛⎤ ⎥⎝⎦.【小问2详解】解:因为y =200,7x ⎛⎤∈ ⎥⎝⎦,任取1x ,2200,7x ⎛⎤∈ ⎥⎝⎦且12x x >,则12y y -+-=因为212007x x <<≤,所以120x x ->,120x x +>0>所以120y y ->,即y =200,7x ⎛⎤∈ ⎥⎝⎦上单调递增.【小问3详解】解:易知,当E 点位于C 点时,ADP △面积最大.此时再设AD m =,DP n =,那么10AP n m =--,由222AP AD DP =+得501010m n m-=-,()0,5m ∈,所以,ADP △的面积()55115010221010m m m S nm m m m⨯⨯--==⋅=--,令10m t -=,则()10510m t t =-<<,10m t -=-,故()5510m m S m⨯⨯-=-()()510510t tt⨯-⨯+-=5051551575t t ⎛⎫⎛⎫=-⨯+-≤-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当50t t=,即t =10m =-故当10AD =-ADP △的面积S 的最大值为75-.19.设A ,B 是非空实数集,如果对于集合A 中的任意两个实数x ,y ,按照某种确定的关系f ,在B 中都有唯一确定的数z 和它对应,那么就称:f A B →为从集合A 到集合B 的一个二元函数,记作(),z f x y =,x ,y A Î,其中A 称为二元函数f 的定义域.(1)已知(),f x y =若()11,1f x y =,()22,2f x y =,12122x x y y +=,求()1212,f x x y y ++;(2)设二元函数f 的定义域为I ,如果存在实数M 满足:①x ∀,y I ∈,都有(),f x y M ≥,②0x ∃,0y I ∈,使得()00,f x y M =.那么,我们称M 是二元函数(),f x y 的下确界.若x ,()0,y ∈+∞,且111x y+=,判断函数()22,8f x y x y xy =+-是否存在下确界,若存在,求出此函数的下确界,若不存在,说明理由.(3)(),f x y 的定义域为R ,若0h ∃>,对于x ∀,y D ∈⊆R ,都有()(),,f x y f x h y h ≤++,则称f 在D 上是关于h 单调递增.已知()2,4ay f x y kx y =-+在[]1,2上是关于a 单调递增,求实数k 的取值范围.【答案】(1)()1212,3f x x y y ++=(2)答案见解析(3)1,5∞⎡⎫-+⎪⎢⎣⎭.【解析】【分析】(1)由二元函数的定义求解即可;(2)根据基本不等式即二次函数的性质判断即可;(3)根据二元函数在定义域上单调递增的定义求解即可;【小问1详解】由()11,1f x y =可得,22111x y +=,由()22,2f x y =可得,22224x y +=,由()1212,f x x y y ++==又12122x x y y +=,所以()1212,3f x x y y ++=;【小问2详解】由111x y+=可得,x y xy +=,由xy xy +=可得,x y xy +=≥,所以4xy ≥,()()()()22222,8101052525f x y x y xy x y xy xy xy xy =+-=+-=-=--≥-,当且仅当5xy =,即52x +=,552y =或52x =,52y +=时取等号.【小问3详解】因为()2,4ay f x y kx y =-+在[]1,2上是关于a 单调递增,所以()(),,f x y f x a y a ≤++,即存在0a >,对于任意的x ,[]1,2y ∈,都有()()()2244a y a ay kx k x a y y a +-≤+-+++,化简可得()()22044y a y k y y a ++-≥+++,即()()2224044a y ay k y a y +-+≥⎡⎤⎡⎤+++⎣⎦⎣⎦,下面求函数()()()222444a y ay g y y a y +-=⎡⎤⎡⎤+++⎣⎦⎣⎦的最小值,设24y ay t +-=,[]3,2t a a ∈-,()()2222224464164644416a y ay at a a t t a y a y t t +-==++++⎡⎤⎡⎤+++++⎣⎦⎣⎦,所以函数()246416ah t a t t=+++在[]3,2a a -递增,()()()2min 233525a a h t h a a a -=-=++,即存在0a >,使得()2230525a a k a a -+≥++,设()22325a a a a a ϕ-=++,0a >,①当03a <≤时,()223025a a a a a ϕ-=≤++,②当3a >时,()()22251312525a a a a a a a a ϕ+-==-++++,设14u a =+>,221110,42545a u a a u u u+⎛⎫==∈ ⎪+++⎝⎭+,所以()()2230,125a a a a a ϕ-=∈++,综上,105k +≥,所以k 的取值范围是1,5⎡⎫-+∞⎪⎢⎣⎭.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.。

高一9月17月周考(周考用,共印450份)

高一9月17月周考(周考用,共印450份)

高一周考(9月17日)一、选择题(本大题共8小题,每小题5分,共40分) 1.下列四个关系式中,正确的是( ).A .{}a ∅∈B .{}a a ∉C .{}{},a a b ∈D .{}b a a ,∈ 2.若{1,2,3,4},{1,2},{2,3}U M N ===,则()u C M N ⋃是 ( ) A .{1,2,3} B .{2} C .{1,3,4} D .{4}3.已知集合(){,|240}A x y x y =+-=,集合(){,|0}B x y x ==,则A B = (A ){}0,2 (B )(){}0,2 (C )()0,2 (D )∅4、设集合}{x y x p ==,2{|1}Q y y x ==+,则=Q P ( )A .()1,+∞B .[0,)+∞C .空集D .[1,)+∞ 5.集合{}2,1,0=A 的非空真子集的个数是( )A 、5B 、6C 、7D 、86.已知集合{}22M x x ==,N={}1x ax =,若N M ⊆,则a 的值是( )A .BC .2±.0或 7、已知集合{}1,2M =,{}2,3N =,{}|,,b N P x x a b a M ==+∈∈,P 中元素个数为( )A .2 B .3 C .4D .58.设集合A={x|1<x <2},B={x|x <a}满足A ≠⊂B ,则实数a 的取值范围是 ( )A .{a |a ≥2}B .{a |a ≤1}C .{a |a ≥1}D .{a |a ≤2}.二、填空题(本大题共2小题,每小题5分,共10分)9、已知全集U =R ,集合{}|23A x x =-≤≤,{}|1B x x =<-,那么集合B A = . 10、设三元集合,,1b a a ⎧⎫⎨⎬⎩⎭={}2,,0a a b +,则20142015a b +=请将1到10小题的答案写到答题卡上!三、解答题(本大题共2小题,每小题12分,共24分) 11、已知集合{},71|≤≤=x x U {}52|≤≤=x x A , {}73|≤≤=x x B ,求:(1)A B ;(2)()U C A B12、已知集合{}{}2232010A x x x B x x ax a =-+==+--=,,若A B A = , 求实数a 的取值。

2013-2014学年高一数学上学期周考试题9及答案(新人教A版 第227套)

2013-2014学年高一数学上学期周考试题9及答案(新人教A版 第227套)

公安三中2013级高一数学周考(9)一、选择题1.下列命题正确的是( )A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同 2、若α是第三象限角,则α-180是( )A 、第一象限角B 、第二象限角C 、第三象限角D 、 第四象限角 3、下列函数中,与x y =是同一函数的是( ) A 、)10(log ≠>=a a ay xa 且 B 、xx y 2= C 、)1,0(log ≠>=a a a y x a 且 D 、2x y =4.函数3()33f x x x =--的零点的区间是( )A (-1,0)B (0,1)C (1,2)D (2,3) 5、下列各组两个集合M 和N,表示同一集合的是( )A. M={}π, N={}14159.3B. M={}3,2, N={})32(,C. M={}π,3,1, N={}3,1,-π D. M={}N x x x ∈≤<-,11, N={}1 6、 如图1、液体从球形漏斗漏入一圆柱形烧杯中,开始时漏斗中盛满液体,经过3分钟漏完,已知烧杯中液面上升的速度是一个常量,H是漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示可能是图2中的( ).图1 图27、有关集合的性质:(1)u (A ⋂B)=( u A )∪(uB ); (2) u (A ⋃B)=( u A )⋂(uB )(3) A ⋃ (u A)=U (4) A ⋂ (u A)=Φ 其中正确的个数有( )个.A.1 B . 2 C .3 D .48、实数c b a ,,是图象连续不断的函数()x f y =定义域中的三个数,且满足()()()()0,0,<∙<∙<<c f b f b f a f c b a ,则函数()x f y =在区间()c a ,上的零点个数为( )A 2B 奇数C 偶数D 至少是29、已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是 ( )(A )101b a -<<< (B )101a b -<<< (C )101<<<-a b(D )1101ab --<<<10、 已知(31)4,1()log ,1a a x a x f x x x -+≤⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( )A.(0,1)B.1(0,)3C.11[,)73D.1[,1)7二、填空题11、cos690= ___12、若角α的终边落在直线x +y =0上,则ααααcos cos 1sin 1sin 22-+-的值等于___ 13、设奇函数()x f 在()∝+,0上为增函数,且(),01=f 则不等式()()0<--xx f x f 的解集为___14、根据表格中的数据,可以判定方程xe -x-2=0的一个根所在的区间为___15、对于定义在R 上的函数()f x ,有下列4个命题: ①若()f x 是奇函数,则(1)f x -得图象关于A(-1,0)对称.②若()2xf x =与2()log g x x =,则函数()f x 与()g x 得图象关于y x =对称.③若函数的图象(1)f x -关于直线x=1对称,则()f x 为偶函数.④()f x 是偶函数,且()f x 在[,]a b 上是减函数,则()f x 在[,]b a --上也是减函数.x其中正确的命题是___ 三、解答题16. 计算下列各式。

高三数学上学期第九次周考试题A文 试题

高三数学上学期第九次周考试题A文 试题

石城中学2021届高三数学上学期第九次周考试题〔A 〕文制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日―、选择题:本大题一一共10小题,每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的。

1. 设集合{|28}xA x =≤,集合{|lg(1)}B x y x ==-,那么A B ⋂=( ) A.{|13}x x ≤< B. {|3}x x ≥ C. {|13}x x <≤ D. {|1}x x ≥ 2. 以下函数中,在(0)+∞,内单调递减,并且是偶函数的是〔 〕 A .lg ||y x =-B .1y x =+C .2y x =D .2x y =3.以下命题正确的选项是( ) A .单位向量都相等B .假设a 与b 一共线,b 与c 一共线,那么a 与c 一共线C .假设|a +b |=|a -b |,那么a ·b =0D .假设a 与b 都是单位向量,那么a ·b =1.4.命题“对任意的x R ∈,323240x x -+<〞的否认是〔 〕 A. 不存在x R ∈,323240x x -+≥ B. 存在x ∉R ,333240x x -+≥ C. 存在x R ∈,323240x x -+≥D. 存在,x R ∈,323240x x -+<5.要得到函数y sin3x 的图象,只需将函数y =sin3x +cos3x 的图象 ( )34π4π个单位长度 C. 向右平移2π2π个单位长度6.等差数列{}n a 中的前n 项和n S ,假设1082327,=a a S =+则( ) A .145 B. 1452C.161D. 16127.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,假设2cos =b c A ,那么这个三角形一定是〔 〕A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形8.在ABC ∆中,AB AC AB AC +=-,4AB =,3AC =,那么BC 在CA 方向上的投影是〔 〕A. 4B. 3C. -4D. -39.函数()2f x x bx =+的图像在点()()1,1A f 处的切线的斜率为3,数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,那么2009S 的值是( ) A .20072008 B . 20082009 C .20092010 D . 2010201110.设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0.且g(3)=0.那么不等式f(x)g(x)<0的解集是 ( ) A . (-3,0)∪(3,+∞) B . (-3,0)∪(0, 3) C . (-∞,- 3)∪(3,+∞) D . (-∞,- 3)∪(0, 3) 11.在ABC ∆中,角A ,B ,C 所对应的边分别为,,a b c ,假设4ac =,sin 2sin cos 0B C A +=,那么ABC ∆面积的最大值为〔 〕A. 1B. 3C. 2D. 412.函数()(ln )xe f x k x x x=+-,假设1x =是()f x 的唯一极值点,那么实数k 的取值范围是〔 〕A .(-∞,e )B .(-∞,e ]C .(-e , +∞)D .[-e , +∞) 二、填空题:本大题一一共5小题,每一小题5分,一共25分,把答案填在答题卡相应位置上。

高一9月月考考试(数学)试题含答案

高一9月月考考试(数学)试题含答案

高一9月月考考试(数学)(考试总分:150 分)一、单选题(本题共计12小题,总分60分)1.(5分)1.已知集合A={1,2,3},B={2,3,4,5},记集合P=A∪B,Q=A∩B,则()A.1∈P B.3∉P C.5∈Q D.2∉Q2.(5分)2.设全集U={x∈N*|x<9},集合A={3,4,5,6},则∁U A=()A.{1,2,3,8}B.{1,2,7,8}C.{0,1,2,7}D.{0,1,2,7,8}3.(5分)3.已知集合A={(0,1)},B={y|y=x+1,x∈R},则A,B的关系可以是()A.A∈B B.A⊆B C.A=B D.A∩B=∅4.(5分)4.函数的定义域为()A.B.C.D.5.(5分)5.与事件“我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速”吻合得最好的图象是()A.B.C.D.6.(5分)6.集合A={n∈N|x=,x∈N}的元素个数为()A.3B.4C.5D.67.(5分)7.与y=|x|为相等函数的是()A.B.C.D.8.(5分)8.设集合A={x|0<x<2},B={x|﹣2<x<2},则∁B A=()A.(﹣2,0)B.(﹣2,0]C.(﹣2,2]D.(0,2)9.(5分)9.已知集合A={1,2,3},B={﹣1,0,1,2},若M⊆A且M⊆B,则M的个数为()A.1B.3C.4D.610.(5分)10.设全集U={2,4,a2},集合A={4,a+3},∁U A={1},则实数a的值为()A.1B.﹣1C.±1D.11.(5分)11.定义域是一个函数的三要素之一,已知函数Jzzx(x)定义域为[211,985],则函数shuangyiliu(x)=Jzzx(2018x)+Jzzx(2021x)的定义域为()A.B.C.D.12.(5分)12.已知函数f(x)=x2+ax+b(a,b∈R)的最小值为0,若关于x的不等式f(x)<c的解集为(m,m+4),则实数c的值为()A.9B.8C.6D.4二、填空题(本题共计5小题,总分32分)13.(5分)二.填空题(共4小题)13.某中学的学生积极参加体育锻炼,其中有75%的学生喜欢足球或游泳,56%的学生喜欢足球,38%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是.14.(5分)14.设函数f(x)=,若f(α)=9,则α=.15.(5分)15.已知集合A={x|x2﹣3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是.16.(5分)16.设函数,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有个.17.(12分)18.已知全集U=R,集合A={x∈R|﹣2<x≤5},B={x∈R|x≤1或x>4}.(1)求A∩B;(2)求A∪(∁U B).三、解答题(本题共计5小题,总分58分)18.(10分)三.解答题(共6小题)17.已知集合P={0,x,y},Q={2x,0,y2},且P=Q,求x,y的值.19.(12分)19.已知二次函数y=f(x)的图像与x轴的交点(﹣1,0),(3,0),与y轴的交点为(0,﹣3).(1)求f(x)的解析式;(2)若f(x)+m>0对一切实数x恒成立,求实数m的取值范围.20.(12分)20.设全集U=R,集合A={x|﹣1≤x<3},B=(2,4],C=[a,a+1](a∈R).(1)求A∪B,A∩(∁U B);(2)若A∩C=C,求实数a的取值范围.21.(12分)21.已知函数f(x)满足2f(x)﹣f(﹣x)=x2+6x+1.(1)求f(x)的解析式;(2)若g(x)=,解不等式.22.(12分)22.已知M={x|1<x<3},N={x|x2﹣6x+8≤0}.(1)设全集U=R,定义集合运算△,使M△N=M∩(∁U N),求M△N和N△M;(2)若H={x||x﹣a|≤2},按(1)的运算定义求:(N△M)△H.答案一、单选题(本题共计12小题,总分60分)1.(5分)1.已知集合A={1,2,3},B={2,3,4,5},记集合P=A∪B,Q=A∩B,则()A.1∈P B.3∉P C.5∈Q D.2∉Q【解答】解:由题意,P=A∪B={1,2,3,4,5},Q=A∩B={2,3},故1∈P,3∈P,5∉Q,2∈Q,故选:A.2.(5分)2.设全集U={x∈N*|x<9},集合A={3,4,5,6},则∁U A=()A.{1,2,3,8}B.{1,2,7,8}C.{0,1,2,7}D.{0,1,2,7,8}【解答】解:∵U={1,2,3,4,5,6,7,8},A={3,4,5,6},∴∁U A={1,2,7,8}.故选:B.3.(5分)3.已知集合A={(0,1)},B={y|y=x+1,x∈R},则A,B的关系可以是()A.A∈B B.A⊆B C.A=B D.A∩B=∅【解答】解:∵集合A={(0,1)},B={y|y=x+1,x∈R}={y|y∈R},集合A是点集,集合B是数集,∴A,B的关系可以是A∩B=∅.故选:D.4.(5分)4.函数的定义域为()A.B.C.D.【解答】解:要使f(x)有意义,则,解得,且x≠0,∴f(x)的定义域为.故选:C.5.(5分)5.与事件“我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速”吻合得最好的图象是()A.B.C.D.【解答】解:我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速”,可得图象:先缓后陡.因此吻合得最好的图象是B.故选:B.6.(5分)6.集合A={n∈N|x=,x∈N}的元素个数为()A.3B.4C.5D.6【解答】解:由题意知,x,n都是16的正整数因数,故n的取值有:1,2,4,8,16,故集合A={1,2,4,8,16},故共有5个元素,故选:C.7.(5分)7.与y=|x|为相等函数的是()A.B.C.D.【解答】解:对于A,函数y==x,定义域为[0,+∞),函数y=|x|的定义域为R,两函数的定义域不同,不是相等函数;对于B,函数y==|x|,定义域为R,函数y=|x|的定义域为R,两函数的定义域相同,对应关系也相同,是相等函数;对于C,函数y==|x|,定义域为(﹣∞,0)∪(0,+∞),函数y=|x|的定义域为R,两函数的定义域不同,不是相等函数;对于D,函数y==x,定义域为R,函数y=|x|的定义域为R,两函数的对应关系不同,不是相等函数.故选:B.8.(5分)8.设集合A={x|0<x<2},B={x|﹣2<x<2},则∁B A=()A.(﹣2,0)B.(﹣2,0]C.(﹣2,2]D.(0,2)【解答】解:∵A={x|0<x<2},B={x|﹣2<x<2},∴∁B A=(﹣2,0].故选:B.9.(5分)9.已知集合A={1,2,3},B={﹣1,0,1,2},若M⊆A且M⊆B,则M的个数为()A.1B.3C.4D.6【解答】解:集合A={1,2,3},B={﹣1,0,1,2},∴A∩B={1,2},∵M⊆A且M⊆B,∴M可能为∅,{1},{2},{1,2},∴M的个数为4.故选:C.10.(5分)10.设全集U={2,4,a2},集合A={4,a+3},∁U A={1},则实数a的值为()A.1B.﹣1C.±1D.【解答】解:因为全集U={2,4,a2},集合A={4,a+3},∁U A={1},则1∈A,所以a2=1,解得a=±1,当a=1时,集合A不满足元素的互异性,不成立,故a=﹣1.故选:B.11.(5分)11.定义域是一个函数的三要素之一,已知函数Jzzx(x)定义域为[211,985],则函数shuangyiliu(x)=Jzzx(2018x)+Jzzx(2021x)的定义域为()A.B.C.D.【解答】解:根据题意得,解得:x∈[,].故选:A.12.(5分)12.已知函数f(x)=x2+ax+b(a,b∈R)的最小值为0,若关于x的不等式f(x)<c的解集为(m,m+4),则实数c的值为()A.9B.8C.6D.4【解答】解:f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴=0,∴b=,∵f(x)<c的解集为(m,m+4),∴f(x)﹣c=0的根为m,m+4,即x2+ax+﹣c=0的根为m,m+4,∵(m+4﹣m)2=(﹣a)2﹣4(﹣c),∴4c=16,c=4.故选:D.二、填空题(本题共计5小题,总分32分)13.(5分)二.填空题(共4小题)13.某中学的学生积极参加体育锻炼,其中有75%的学生喜欢足球或游泳,56%的学生喜欢足球,38%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是19%.【解答】解:设有x%的学生既喜欢足球又喜欢游泳,则有(56﹣x)%只喜欢足球,有(38﹣x)%只喜欢游泳,由题意得:(56﹣x)%+x%+(38﹣x)%=75%,解得x=19.故该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是19%.故答案为:19%.14.(5分)14.设函数f(x)=,若f(α)=9,则α=﹣9或3.【解答】解:由题意可得或∴α=﹣9或α=3故答案为:﹣9或315.(5分)15.已知集合A={x|x2﹣3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是{a|0<a<3且a≠1}.【解答】解:A={x|0<x<3},∴1∈A,∵A∩B有4个子集,∴A∩B中有两个不同的元素,∴a∈A,∴0<a<3且a≠1,∴a的取值范围是{a|0<a<3且a≠1}.故答案为:{a|0<a<3且a≠1}16.(5分)16.设函数,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有3个.【解答】解:由题意知,当x≥0时,令M=[0,1]验证满足条件,又因为x>1时,f(x)=<x故不存在这样的区间.当x≤0时,令M=[﹣1,0]验证满足条件.又因为x<﹣1时,f(x)=>x故不存在这样的区间.又当M=[﹣1.1]时满足条件.故答案为:3.17.(12分)18.已知全集U=R,集合A={x∈R|﹣2<x≤5},B={x∈R|x≤1或x>4}.(1)求A∩B;(2)求A∪(∁U B).【解答】解:(1)∵A={x∈R|﹣2<x≤5},B={x∈R|x≤1或x>4},∴A∩B=(﹣2,1]∪(4,5],(2)∵∁U B=(1,4],∴A∪(∁U B)=(﹣2,5]三、解答题(本题共计5小题,总分58分)18.(10分)三.解答题(共6小题)17.已知集合P={0,x,y},Q={2x,0,y2},且P=Q,求x,y的值.【解答】解:∵集合P={0,x,y},Q={2x,0,y2},且P=Q,∴或,解得(舍)或(舍)或.∴,.19.(12分)19.已知二次函数y=f(x)的图像与x轴的交点(﹣1,0),(3,0),与y轴的交点为(0,﹣3).(1)求f(x)的解析式;(2)若f(x)+m>0对一切实数x恒成立,求实数m的取值范围.【解答】解:(1)设f(x)=ax2+bx+c(a≠0)把点(﹣1,0),(3,0),(0,﹣3)代入f(x)得,,∴,∴f(x)=x2﹣2x﹣3.(2)∵f(x)+m>0对一切实数x恒成立,∴x2﹣2x﹣3+m>0对一切实数x恒成立,∴m>(﹣x2+2x+3)max,∵y=﹣x2+2x+3开口向下且对称轴为x=1,∴(﹣x2+2x+3)max=4,∴m>4.20.(12分)20.设全集U=R,集合A={x|﹣1≤x<3},B=(2,4],C=[a,a+1](a∈R).(1)求A∪B,A∩(∁U B);(2)若A∩C=C,求实数a的取值范围.【解答】解:(1)∵全集U=R,集合A={x|﹣1≤x<3},B=(2,4],∴A∪B={x|﹣1≤x<3}∪(2,4]={x|﹣1≤x≤4}.∁U B={x|x≤2或x>4}.∴A∩(∁U B)={x|﹣1≤x≤2}.(2)∵集合A={x|﹣1≤x<3},B=(2,4],C=[a,a+1](a∈R).A∩C=C,∴C⊆A,∴,解得﹣1≤a<2,∴实数a的取值范围为[﹣1,2).21.(12分)21.已知函数f(x)满足2f(x)﹣f(﹣x)=x2+6x+1.(1)求f(x)的解析式;(2)若g(x)=,解不等式.【解答】解:(1)∵2f(x)﹣f(﹣x)=x2+6x+1 ①,∴用﹣x代换x,可得2f(﹣x)﹣f(x)=x2﹣6x+1 ②,由①②求得f(x)=x2+2x+1.(2)∵g(x)==,由不等式可得,当0<<2时,应有x+6≤0或x+6≥2,求得x≤﹣6;当≤0时,应有x+6>2,求得x>1;当≥2时,应有x+6>,求得﹣4<x<﹣1.综上可得,不等式的解集为{x|x≤﹣6,或﹣4<x<﹣1,或x>1}.22.(12分)22.已知M={x|1<x<3},N={x|x2﹣6x+8≤0}.(1)设全集U=R,定义集合运算△,使M△N=M∩(∁U N),求M△N和N△M;(2)若H={x||x﹣a|≤2},按(1)的运算定义求:(N△M)△H.【解答】解:(1)M={x|1<x<3},N={x|x2﹣6x+8≤0}={x|2≤x≤4};根据题意,U=R,∁U N={x|x<2或x>4},∴M△N=M∩(∁U N)={x|1<x<2},又∁U M={x|x≤1或x≥3},∴N△M=N∩(∁U M)={x|3≤x≤4};(2)∵H={x||x﹣a|≤2}=[a﹣2,a+2],∴(N△M)△H=(N△M)∩(∁U H)=[3,4]∩[(﹣∞,a﹣2)∪(a+2,+∞)],当a﹣2>4,或a+2<3,即a>6,或a<1时,(N△M)△H=[3,4];当3≤a﹣2≤4,即5≤a≤6时,(N△M)△H=[3,a﹣2);当3≤a+2≤4,即1≤a≤0时,(N△M)△H=(a+2,4];当a﹣2<3,且a+2>4,即2<a<5时,(N△M)△H=∅.。

2022-2023学年下学期高一数学周测试卷

2022-2023学年下学期高一数学周测试卷
(Ⅰ)求2021年的利润 (万元)关于年产量 (百辆)的函数关系式;
(Ⅱ)2021年年产量为多少百辆时,企业所获利润最大?并求出最大利润.
21.设函数 .
(1)求函数 的定义域 ;
(2)若对任意实数 ,关于 的方程 总有解,求实数 的取值范围.
22.已知函数 (其中 且 )的图象关于原点对称.
(1)求 , 的值
②y=f(x)是以π为最小正周期的周期函数;
③y=f(x)在区间( , )上单调递减;
④将函数y= cos2x的图象向左平移 个单位后,将与已知函数的图象重合.
其中正确命题的序号是.(注:把你认为正确的命题的序号都填上)
四、解答题
17.计算下列各式的值(10分):
(1) ;
(2)
18.(1)化简: ;
(2)已知sin(α+ )= ,求cos( +α)的值.
19.(2021·河北迁安·高一期末)已知函数 ,( , , )图象的一部分如图所示.
(1)求函数 的解析式;
(2)当 时,求 的值域.
20.某汽车制造企业计划在2021年引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产 (百辆),需另投入成本 (万元),且 ,该企业确定每辆新能源汽车的售价为5万元,并且全年内生产的汽车当年全部销售完.
C. 时, D. 的图像关于直线 对称
三、填空题
13.已知函数 的定义域为______.
14.已知 ,则tan( 14.已知 ,则tan(π-α)=__________.
15.已知曲线y=sin(ωx+ )关于直线x=1对称,则|ω|的最小值为.
16.关于函数f(x)= ,有下列命题:
①y=f(x)的最大值为 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰城中学2015-2016第一学期第九次数学周考(9--37)
满分100分,时间70分钟
命题人;余小娜 审题人;邱玲
一.选择题(每小题5分,共60分)
1.如右图,正六边形ABCDEF 中,BA →+CD →+EF →=( )
A .0 B.BE → C.AD → D.CF →
2.已知点A (-1,-5)和向量a r =(2,3),若AB →=3a r ,则点B 的坐标为( )
A .(5,4)
B .(6,9)
C .(7,14)
D .(9,24)
3.设a r 是非零向量,λ是非零实数,下列结论中正确的是( )
A .a r 与λa r 的方向相反
B .a r 与λ2a r 的方向相同
C .|-λa r |≥|a r |
D .|-λa r |=|λ|·
a r 4.AO →+BC →+OB →等于( )
A.AB →
B.AO → C .0r D.AC →
5.已知向量a r =(1,2),b r =(1,0),c r =(3,4).若λ为实数,(a r +λb r )∥c r ,则λ=( )
A.14
B.12 C .1 D .2 6.若向量a r =(1,1),b r =(-1,1),c r =(4,2),则c r =( )
A .3a r +b r
B .3a r -b r
C .-a r +3b r
D .a r +3b r
7. 已知|a r |=2,b r 是单位向量,且a r 与b r 夹角为60°,则a r ·(a r -b r )等于( )
A .1
B .2- 3
C .3
D .4- 3
8.若两个非零向量a r ,b r 满足|a r +b r |=|a r -b r |=2|a r |,则向量a r +b r 与a r -b r 的夹角是
( )
A.π6
B.π3
C.2π3
D.5π6 9.若a r ,b r 是非零向量,且a r ⊥b r ,|a r |≠|b r |,则函数f (x )=(x a r +b r )·(x b r -a r )是( )
A .一次函数且是奇函数
B .一次函数但不是奇函数
C .二次函数且是偶函数
D .二次函数但不是偶函数
10.已知△ABC 和点M 满足MA →+MB →+MC →=0r ,若存在实数m 使得AB →+AC →=mAM →成立,
则m =( )
A .2
B .3
C .4
D .5
11.设向量a r ,b r 满足|a r |=25,b r =(2,1),且a r 与b r 的方向相反,则a r 的坐标为( )
A.(4,2)
B.(4,-2)
C.(-4,2)
D.(-4,-2)
12.在△ABC 中,已知AB AC BC AB AC 骣琪+^琪琪桫
u u u r u u u r u u u r u u u r u u u r ,且AB →·AC →=12|AB →|·|AC →|,则△ABC 的形状是( )
A.直角三角形
B.等边三角形
C.等腰三角形
D.不确定
二.填空题(每小题5分,共20分)
13.已知两个力F 1、F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°, 则 F 1的大小为
14.已知向量a r ,b r 满足(a r +2b r )·(a r -b r )=-6,且|a r |=1,|b r |=2,则a r 与b r 的夹角为____
_______
15.在△OAB 中,延长BA 到C ,使AC →=BA →,在OB 上取点D ,使DB →=13
OB →,DC 与OA 交 于E ,设OA →=a r ,OB →=b r ,用a r ,b r 表示向量OC →= ,DC →=
16.若M 为△ABC 内(包括边上)一点,且满足AM →=34AB →+14
AC →,求△ABM 与△ABC 的面积之比 .
答题卡
一、选择题 题号 1 2 3 4 5 6
7 8 9 10 11 12 答案
二、填空题
13. 14.
15. 16.
三、解答题:本大题共2小题,共20分,解答题应写出文字说明、证明过程或演算步骤。

三.解答题(每小题10分,共20分) 17.已知向量a r =(1,2),b r =(2,-2).
(1)设c r =4a r +b r ,求(b r ·
c r )·a r ; (2)若a r +λb r 与a r 垂直,求λ的值; (3)求向量a r 在b r 方向上的投影.
18.在△OAB 中,OC →=14OA →,OD →=12
OB →,AD 与BC 交于点M ,设OA →=a r ,OB →=b r ,以a r 、
b r 为基底表示OM →.。

相关文档
最新文档