高频C4实验指导书

合集下载

高频实验指导书2017

高频实验指导书2017

实验平台操作及注意事项一、实验平台基本操作方法在使用实验平台进行实验时,要按照标准的规范进行实验操作,一般的实验流程包含以下几个步骤:(1)将实验台面整理干净整洁,设备摆放到对应的位置开始进行实验;(2)打开实验箱箱盖,或取下箱盖放置到合适的位置;(不同的实验箱盖要注意不能混淆);(3)简单检查实验箱是否有明显的损坏;如有损坏,需告知老师,以便判断是否可以进行正常实验;(4)根据当前需要进行的实验内容,由老师或自行更换实验模块;更换模块需要专用的钥匙,请妥善保管;(5)为实验箱加电,并开启电源;开启电源过程中,需要注意观察实验箱电源指示灯(每个模块均有电源指示),如果指示灯状态异常,需要关闭电源,检查原因;(6)实验箱开启过程需要大约20s时间,开启后可以开始进行实验;(7)实验内容等选择需用鼠标操作;(8)在实验过程中,可以打开置物槽,选择对应的配件完成实验;(9)实验完成后,关闭电源,整理实验配件并放置到置物槽中;(10)盖上箱盖,将实验箱还原到位。

二、实验平台系统功能介绍实验平台系统分为八大功能板块,分别为实验入门、实验项目、低频信号源、高频信号源、频率计、扫频仪、高频故障(实验测评)、系统设置。

1.设备入门设备入门分为四类,分别是平台基本操作、平台标识说明、实验注意事项、平台特点概述。

2.实验项目实验项目是指实验箱支持的实验课程项目,可以完成的实验内容列表,分为高频原理实验和高频系统实验。

高频原理实验细分为八大实验分类,分别是小信号调谐放大电路实验、非线性丙类功率放大电路实验、振荡器实验、中频放大器实验、混频器实验、幅度解调实验、变容二极管调频实验、鉴频器实验。

如下图所示。

点击每个实验分类,可进入详细的实验列表。

3.低频信号源信号源的详细说明可以参见文档2.1部分的详细说明.4.高频信号源信号源的详细说明可以参见文档2.1部分的详细说明5.频率计三、实验平台系统实验方法在实验箱右侧预留了鼠标接口,在实验时,主要通过鼠标进行操作完成实验,实验前可以先熟悉一下实验箱的操作使用习惯。

高频实验指导书

高频实验指导书

高频电路原理与分析实验指导书闽江学院物理学与电子信息工程系2013年10月实验一单调谐回路谐振放大器实验一、实验目的1.掌握单调谐回路谐振放大器的组成及电路中各元件的作用;2.通过对谐振回路的调试,对放大器处于谐振时的技术指标进行测试,包括电压放大倍数,通频带,矩形系数等;3.进一步掌握高频小信号调谐放大器的工作原理。

二、实验原理实验电路如图1-1所示。

电路采用共发射极接法,晶体管的集电极负载为LC并联谐振回路,该电路同时完成放大高频信号和选频作用。

晶体管的静态工作点由电阻WA1、RA2,RA3及RA6决定,其计算方法与低频单管放大器相同。

图1-1 单调谐回路谐振放大器三、调谐放大器的性能指标及测量方法高频小信号调谐放大器的主要性能指标有谐振频率f,谐振电压放大倍数0v A ,放大器的通频带BW 和选择性。

指标的测量方法如下:1、谐振频率0f放大器的调谐回路谐振时所对应的频率0f 称为放大器的谐振频率,其值为LC f π210=式中,L 为调谐回路电感线圈的电感量;C 为调谐回路的总电容,即ie oe C P C P C C 22211++=式中, Coe 为晶体管的输出电容;Cie 为晶体管的输入电容。

测量方法:采用函数信号发生器输出不同频率的等幅正弦波信号,测量输出端电压,找出输出幅值最大的频率点既为谐振频率点0f 。

2、电压放大倍数0v A放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。

A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量电路输出电压0u 和输入电压u i 的大小,然后通过下面的公式计算得到A V0。

iv u u A 00=(或dB u u A i v )lg(2000=) 3、通频带当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带B W ,其表达式为BW = 2△f 0.7 = fo/Q L其中,Q L 为谐振回路的有载品质因数。

《高频》(本科)实验指导书(精简版本)

《高频》(本科)实验指导书(精简版本)

高频电子线路电子信息与电气工程系通信教研室二00八年十月(蔡志明修订)目录实验一高频小信号谐振放大器(甲类) (3)实验二高频功率谐振放大电路(丙类) (8)实验三综合设计(调幅波调制与解调) (21)实验四集成电路频率调制器 (16)实验五集成电路频率解调器 (19)适用专业:通信、电子、信息类专业本科学生一、实验与实践课程的性质、目的与任务1.加深对高频电路课中各单元电路工作原理的理解,做到从实践中来,到实践中去,加深对理性知识的认识。

2.熟悉高频实验仪器的原理和使用。

3.熟悉各单元电路的组成,元件及参数的选择,掌握单元电路的基本设计方法。

4.熟练使用实验仪器,进行电路参数的测试。

5.正确分析实验数据,从而总结出符合实际的正确结论,全面掌握所学知识。

6.能自已设计制作一般电路。

二、实验与实践课程教学的基本要求加强实验与实践教学,理论联系实际,加深对知识的理解与掌握。

提高学生实践操作水平,进行创新性的培养;加强综合性和设计性实验以提高学生解决实际问题的能力。

为了达到以上目的,要求:1. 实验要求:(1)学生实验课前要认真阅读实验与实践指导书,写出预习实验报告。

(2)实验课上认真听老师讲解,回答老师提出的有关实验内容的相关问题。

(3)按要求正确开启实验仪器和设备。

(4)认真进行数据测量和记录。

(5)实验结束,请指导老师检查实验记录,做到实验数据正确,方可终止实验。

(6)关闭实验仪器,整理实验现场。

(7)填写实验记录,教师签字后方可离开。

(8)认真处理实验数据,写出实验报告。

(9)教师应仔细批改实验报告,并把有关情况以不同方式反馈学生。

2. 实践要求:(1)认真选择实践内容。

(2)若现场参观,要服从管理人员指导,认真观察,认真记录。

(3)若进行电子制作,要根据老师要求选择制作项目,研究制作原理,绘制电路原理图,进行印刷电路板制作,安装调试。

(4)上述各项结束后都要认真地写出实践报告。

三、考核办法1.基本要求实验课目的是为了提高学生的动手操作以及创新能力。

高频实验实用简易指导书

高频实验实用简易指导书

高频C4电子实验箱总体介绍1、低频信号源的使用方法本实验箱提供的低频信号源是基于本实验箱实验的需要而设计的。

它包括两部分:第一部分:输出500Hz~2KHz信号(实际输出信号范围较宽);此信号可以以方波的形式输出,也可以以正弦波的形式输出。

它用于变容二极管调频单元,集成模拟乘法应用中的平衡调幅单元,集电极调幅单元和高频信号源调频输出。

第二部分:输出20KHz~100KHz信号(实际输出信号范围较宽);此信号以正弦波的形式输出。

它用于锁相频率合成单元。

低频信号源在整机中的位置见整机分布图,电路原理图见附图G8。

低频信号源的使用方法如下:电路原理图中的可调电阻WD5用于调节输出方波信号的占空比;WD3、WD4的作用是:在输出正弦波信号时,通过调节WD3、WD4使输出信号失真最小。

这三个电位器在实验箱出厂时均已调到最佳位置且此三个电位器在PCB板的另一面。

电路原理图中的可调电阻WD6用来调节输出频率的大小; WD2用于调节输出正弦波信号大小。

在使用时,首先要按下开关KD1。

当需输出500Hz~2KHz的信号时,参照电路原理图G8连接好JD1、JD4(此时JD2、JD3应断开),则从TTD1处输出500Hz~2KHz的正弦波;2、高频信号源的使用方法本实验箱提供的高频信号源是基于本实验箱实验的需要而设计的。

它只提供10.7MHz 的载波信号和约10.7MHz的调频信号(调频信号的调制频偏可以调节)。

载波主要用于小信号调谐放大单元、高频谐振功率放大器单元、集电极调幅单元、模拟乘法器部分的平衡调幅及混频单元和二极管开关混频单元。

调频信号主要用于模拟乘法器部分的鉴频单元和FM锁相解调单元。

参看附原理图G10和整机分布图。

晶体振荡输出载波峰峰值不低于1.5V。

LC振荡输出载波峰峰值不低于1V。

高频信号源的使用方法如下:使用时,首先要按下开关KF1。

当需要输出载波信号时,连接JF1(此时JF2、JF3、JF4断开),则10.7MHz的信号由TTF1处输出,WF1用于调节输出信号的大小。

《高频电子线路》实验指导书

《高频电子线路》实验指导书
整理并分析原因。 5.本放大器的动态范围是多少(放大倍数下降 1dB 的折
弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE


原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷

TPE-GP4高频4综合实验箱指导书(天大)

TPE-GP4高频4综合实验箱指导书(天大)

TPE-GP4高频4综合实验箱指导书(天大)集成电路(压控振荡器)构成的频率调制器于I0为恒流源,V7线性斜升,升至VSP时V0跳变为高电平,V0高电平时控制S2闭合,S1断开,恒流源I0全部流入A支路,即I6=I0,于电流转发器的特性,B支路电流I7应等于I6,所以I7=I0,该电流C放电电流提供,因此V7线性斜降,V7降至VSM时V0跳变为低电平,如此周而复始循环下去,I7及V0波形如图9-2。

566输出的方波及三角波的载波频率(或称中心频率)可用外加电阻R和外加电容C来确定。

f(V8V5)RCV8(Hz)其中: R 为时基电阻 C 为时基电容V8 是566管脚⑧至地的电压V5 是566管脚⑤至地的电压五、实验内容及步骤图2实验电路见图3+5V-5VC1201L1201GNDGNDGNDU1201-8P1211C1204P1210U120 1-12200P12JP1201SW1201R1207R1208C1203U1201-1L1203GN DMP1201P1201OUT1P1202OUT2MP1202MP1234566U1XX765R120 1R1203Rp12 图3 566构成的调频器321 40集成电路(压控振荡器)构成的频率调制器1. 按图接线,观察R、C1204对频率的影响(其中R=R1203+RP1201)1)短接JP1201,将C1204接入566管脚⑦,短接JP1202的1-2端,使RP1202及C1205接至566管脚⑤;接通电源(±5V)。

2)调Rp1202,使566⑤脚电压V5=,将频率计接至M1201,改变RP1201, 观察方波输出信号频率,记录当R为最大和最小值时的输出频率。

当R分别为Rmax和Rmin及C1=2200时,计算这二种情况下的频率,并与实际测量值进行比较。

用双踪示波器观察并记录R=Rmin时方波及三角波的输出波形。

2. 观察输入电压对输出频率的影响1)直流电压控制:先调RP1201至最大,然后改变RP1202调整输入电压,测当V5在~变化时输出频率f 的变化,V5按递增。

高频实验指导书(合)2011(DOC)

高频实验指导书(合)2011(DOC)

高频电子线路实验指导书纪钢亓德志石油大学(华东)电子信息工程系二○一一年九月前言高频电子线路实验是教学过程中重要的实践性环节,其目的是通过实验和实际操作,获得必要的感性认识,进一步掌握和巩固所学的理论知识;学习常用高频测量仪器的使用和电路参数的测量方法;分析实验结果,编写实验报告;提高实验技能;培养事实求是,严谨的科学作风。

为了使学生做好每次实验,并且能达到预期的目的,现将实验工作的一般要求简述如下:一、实验前的准备在每次实验前,必须仔细阅读实验指导书和教材上有关实验方面的理论知识,充分理解实验原理和实验电路、明确本次实验的目的和任务、熟悉实验步骤和内容。

还需要了解实验仪器的技术性能、操作方法及注意事项及准备好记录实验数据表格。

二、实验工作按照实验步骤和内容,有目的地调整电路参数和测量数据,正确操作测量仪器。

读取数据时应仔细准确,实验数据应及时记录在事先准备好的表格中。

实验数据不要随意涂改,如发现数据有误,可重新测量,以便发现问题。

三、实验报告的编写编写实验报告是将实验结果进行归纳总结分析和提高的阶段。

学生在每次实验课后都应独立完成这一项工作,实验报告内容应包括:1.实验名称、班级和姓名、同组者姓名、实验日期2.实验目的和实验电路3.根据实验原始记录整理出的数据、表格、曲线、波形和计算数据等等。

曲线和波形要画在坐标纸上,坐标轴要注明物理量的单位。

4.对实验结果进行讨论分析。

如:是否达到实验目的和要求;有何收获;实验中产生误差的原因;回答问题以及对实验的改进意见等。

目录前言实验一高频小信号谐振放大器 (1)实验二LC正弦波振荡器 (5)实验三乘积调幅器与大信号检波器 (8)实验四调频与鉴频器 (14)实验一 高频小信号谐振放大器一、实验目的1.通过实验进一步熟悉小信号谐振放大器的组成和工作原理;2.掌握谐振放大器的调试和基本性能测量方法。

二、实验原理谐振放大器是采用谐振回路做为负载的放大器。

根据谐振回路的特性可以知道谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。

高频实验指导书正文

高频实验指导书正文
⑤频率特性仪RF输出端接XXH.IN,Y输入端接XXH.OUT, 中心频率9MHz,适当调节中心频率旋钮使频标居中,调电感磁芯使曲线幅度最大波形对称,频标置于波峰,改变衰减使幅度特性曲线在0dB高度(5格)附近.
选用LSW251扫频仪调试,实验初调:
①电源取12V正端接下板P3+12V负端接GND地,
表4-2放大器的动态范围Vi-Vo(画出曲线)
Vi(V)
0.02
0.3
Vo(V)
Re=2kΩ
Re=1kΩ
Re=500Ω
S2-2=2KΩ,S2-3=1KΩ,S2-4=500Ω
当Re分别为500Ω、1KΩ、2K时,将结果填入表4-2。在同一坐标纸上画出Ic不同时的动态范围曲线,并进行比较和分析(此时也可在J4两端测Ic值)。
a.连接扫频仪与示波器,示波器DTME/DIV置“XY”
方式。
b.ATTENUATIO置0dB, 0dB衰减键全弹出.
c.调整示波器CH1、CH2的幅度,使CH1=500mV,CH2=5mV。
d.将“SWEEP OUT”线与“FROM T.P”检波头短接,出现双平行线,调节Y增益旋钮微调,并读0dB校正线高度:F=______格。
④扫频仪零dB校正,连接扫频仪与示波器,示波器DTME/DIV置“XY”
方式。ATTENUATIO置0dB, 0dB衰减键全弹出.调整示波器CH1、CH2的幅度,使CH1=500mV,CH2=5mV。将“SWEEP OUT”线与“FROM T.P”检波头短接,出现双平行线,调节Y增益旋钮微调,并读0dB校正线高度:F=___5___格。
被测电路断开电源,频率特性仪频标方式选择外标,调节频标幅度旋钮至最右,MARKER(面板或背板标注)与YM8177A输出端相连,YM8177输出电平99dBμV ,调频率从9MHz到8MHz,适当调节扫频宽度旋钮使波峰频宽适中,频标移动小格数T=______小格,则每小格的频宽Δf=1000KHz/T=_______KHz/T,中心频率f0=______MHz.完成该步骤之后, 扫频宽度旋钮在以后的实验步骤里不要再调动. 接通被测电路电源,频率特性仪波峰高度H=___5___大格, 中心频率9MHz.

《高频电子技术》实验指导书

《高频电子技术》实验指导书

《高频电子技术》实验指导书信息科学与工程学院目录实验一调谐放大器(实验板1) 11、单调谐回路谐振放大器2、双调谐回路谐振放大器实验二丙类高频功率放大器(实验板2) 4 实验三LC电容反馈式三点式振荡器(实验板1) 6 实验四石英晶体振荡器(实验板1)9 实验五振幅调制器(实验板3)10 实验六调幅波信号的解调(实验板3)13 实验七变容二极管调频振荡器(实验板4)16 实验八相位鉴频器(实验板4)18 实验九集成电路(压控振荡器)构成的频率调制器(实验板5)21 实验十集成电路(锁相环)构成的频率解调器(实验板5)24 实验十一利用二极管函数电路实现波形转换(主机面板)26实验一调谐放大器一、实验目的1、熟悉电子元器件和高频电路实验箱。

2、熟悉谐振回路的幅频特性分析——通频带与选择性。

3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4、熟悉和了解放大器的动态范围及其测试方法。

二、实验仪器1、双踪示波器2、扫频仪3、高频信号发生器4、毫伏表5、万用表6、实验板1三、预习要求1、复习谐振回路的工作原理。

2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

3、实验电路中,若电感量L=1uh回路总电容C=220pf(分布电容包括在内),计算回路中心频率f。

四、实验内容及步骤(一)单调谐回路谐振放大器。

1、实验电路见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。

(2)接线后仔细检查,确认无误后接通电源。

图1-1 单谐回路谐振放大器原理图12、静态测量实验电路中选Re=1K,测量各静态工作点,计算并填表1.1B E3、动态研究(1)测放大器的动态范围V i~V0(在谐振点)选R=10K,Re=1K。

把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHZ,调节C T使回路谐振,使输出电压幅度为最大。

高频电路实验指导书

高频电路实验指导书

高频电路实验济南大学信息科学与工程学院电子信息实验中心实验要求1、如果条件许可,实验前将实验内容进行EWB仿真。

2、必须充分预习,完成指定的任务。

预习要求如下:1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。

2)预习各实验内容及步骤。

3)熟悉实验所用仪器的使用方法及注意事项。

3、使用仪器和学习机前必须了解其性能、操作方法和注意事项,在使用时应严格遵守操作规程,并根据实验指导书中的常见问题自查,以保证实验顺利进行。

4、实验时接线要认真,相互仔细检查,确定无误后才能接通电源,初学或没有把握者应经指导老师审查同意后再接通电源。

5、高频电路实验注意:1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。

2)由于高频电路频率较高,分布参数感应的影响较大。

所以在接线时连接线应尽可能短。

接地点必须接触良好,以减少干扰。

3)做放大器实验时,如发现削顶失真甚至变成方波,应检查工作点设置是否准确,输入信号是否过大。

6、实验时应注意观察,如发现有破坏异常性现象应立即关断电源,保护现场,报告指导老师。

找出原因、排除故障,经指导老师同意后再继续实验。

7、实验过程中需要改接线时,应关断电源后才能拆、接线。

8、实验过程中应仔细观察实验现象,认真记录实验结果。

所记录的实验数据经指导老师审阅签字后再拆除实验线路。

9、实验结束后必须关断仪器电源、并将仪器、工具、导线等按附录七的要求归类整理好,检查完毕方可离开,否则扣实验操作分。

10、实验前每个同学必须写预习报告,实验中记录数据,老师签字后才可以带走,实验后写实验报告(实际实验操作报告)。

实验报告写法见最后一页。

11、实验前必须详细阅读本实验指导书!目录目录 (III)实验一熟悉实验仪器 (3)实验二利用二极管函数电路实现波形转换 (7)实验三调谐放大器 (9)实验四高频功率放大器(丙类) (13)实验五 LC电容反馈式三点式振荡器 (19)实验六石英晶体振荡 (22)实验七振幅调制器与解调器(利用乘法器) (24)实验八集成电路构成的频率调制器与解调器 (27)附录一BT3-D型频率特性测试仪 (36)附录二 LSG-17型宽频带信号发生器 (38)附录三 XD-22C型低频信号发生器技术说明书 (39)附录四 DA22A型超高频毫伏表 (40)附录五示波器的原理及使用 (41)附录六 NFC-1000C-1多功能计数器的使用 (43)附录七实验台仪器线缆整理图 (44)实验一熟悉实验仪器一、实验目的熟悉BT3-D型频率特性测试仪、LSG-17型宽频带信号发生器、XD-22C型低频信号发生器、DA22A型超高频毫伏表、NFC-1000C-1型多功能计数器、XJ4339型双踪示波器、MY-65型万用表的,TPE-GP2高频电路实验学习机功能及具体使用方法。

高频实验指导书

高频实验指导书

高频实验指导书12020年4月19日高频电子线路实验指导书牡丹江师范学院工学院实验一高频小信号调谐放大器一、实验目的1.熟悉电子元器件和高频电路实验箱2.熟悉谐振回路的幅频特性分析一通频带与选择性。

3.熟悉和了解放大器的动态范围及其测试方法。

二、实验主要仪器1.高频电路实验箱2.双踪示波器3.高频信号发生器4.万用表5.实验板G1三、预习要求1.复习谐振回路的工作原理。

2.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

3.实验电路中,若电感量L=1 μH 回路总电容C=220pf。

(分布电容包括在内),计算回路中心频率f。

四、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大12020年4月19日22020年4月19日器。

它不但要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC 并联谐振回路。

在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。

晶体管的静态工作点由电阻R B1,R B2及R E 决定,其计算方法与低频单管放大器相同。

本实验中输入信号的频率fs =10MHz 。

改变射极电阻R E ,从而改变放大器的增益。

图1-1 小信号调谐放大器放大器在高频情况下的等效电路如图1-2所示,晶体管的4个y 参数ie y ,oe y ,fe y 及re y 。

32020年4月19日图1-2 放大器的高频等效回路式中,m g ——晶体管的跨导,与发射极电流的关系为{}SmA I g E m 26=(1-1)e b g /——发射结电导,与晶体管的电流放大系数β及I E 有关,其关系为 {}S mA I r g E e b e b β261''==(1-2) L g 为调谐放大器输出负载的电导,LL R g 1=。

一般小信号调谐放大器的下一级仍为晶体管调谐放大器,则L g 将是下一级晶体管的输入导纳2ie g 。

(整理)高频实验指导书精简版

(整理)高频实验指导书精简版

实验一高频小信号调谐放大器实验一、实验目的1、进一步掌握高频小信号调谐放大器的工作原理。

2、学会小信号调谐放大器的设计方法。

二、实验内容1、调节谐振回路使谐振放大器谐振在。

2、测量谐振放大器的电压增益。

3、测量谐振放大器的通频带。

4、判断谐振放大器选择性的优劣。

三、实验仪器>1、BT-3(G)型频率特性测试仪(选项)一台2、20MHz模拟示波器一台3、数字万用表一块4、调试工具一套四、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。

它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。

在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。

晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。

图1-1 小信号调谐放大器五、实验步骤本实验中,用到BT-3频率特性测试仪和频谱仪的地方可选做。

参考所附电路原理图G2。

先调静态工作点,然后再调谐振回路。

)1、按下开关KA1,则LEDA1亮。

2、调整晶体管QA1的静态工作点:不加输入信号(u i =0),即将TTA1接地,用万用表直流电压档(20V 档)测量三极管QA1发射极对地的电压u EQ (即测P6与G 两焊点之间的电压),调节WA1使u EQ =3V 左右,根据实验参考电路计算此时的u BQ ,u CEQ ,u EQ 及I EQ 。

3、使放大器的谐振回路谐振在方法是:BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率o f =所对应的幅值最大。

如果没有频率特性测试仪,可用示波器来观察调谐过程,方法是:在TTA1处输入由高频信号源提供的频率为,峰峰值Vp-p-=20~100mV 的信号,用示波器在TTA2处观察输出波形,调节TA1使TTA2处信号幅度最大。

高频电路实验一 操作指导书

高频电路实验一 操作指导书

高频电路实验一操作指导书实验1 高频小信号调谐放大器实验―、实验准备1.做本实验时应具备的知识点: ? 放大器静态工作点 ? LC并联谐振回路 ? 单调谐放大器幅频特性 ? 双调谐回路? 电容耦合双调谐回路谐振放大器 ? 放大器动态范围 2.做本实验时所用到的仪器: ? 单、双调谐回路谐振放大器模块 ? 双踪示波器 ? 万用表 ? 频率计 ? 高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐回路谐振放大器的基本工作原理; 3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

6.熟悉耦合电容对双调谐回路放大器幅频特性的影响; 7.了解放大器动态范围的概念和测量方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响; 4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

5.采用点测法测量双调谐放大器的幅频特性;7.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响; 8.用示波器观察放大器动态范围。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,RB1、RB2、RE用以保证晶体管工作于放大区域,从而放大器工作于甲类。

CE是RE的旁路电容,CB、CC是输入、输出耦合电容,L、C是谐振回路,RC是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

高频电子线路实验指导书

高频电子线路实验指导书

《高频电子线路》实验指导书湖南工业大学电气与信息工程学院实验一高频单调谐回路放大器一、实验类型验证型实验二、实验目的与任务1、熟悉谐振放大器的幅频特性、通频带和选择性;2、熟悉信号源内阻及负载对谐振回路的影响,了解展宽频带的方法;3、掌握放大器的动态范围及其测试方法。

三、实验基本原理1. 单调谐回路放大器实验电路如图 1-1 所示图1-1单调谐小信号放大器在图 1-1 中 ,L2、C5、C6为π型滤波电路,其作用是为了减少交流高频信号对直流电源的影响。

+12V电源、R1、R2和R6、R7、R8为放大电路提供直流静态工作点,C3为发射极旁路电容。

L1、C2和Ct为选频回路(也称为谐振回路),改变Ct的值,可以改变回路的谐振频率。

三极管T及其输出阻抗相当于谐振回路的信号源和信号源内阻,R3、R4、R5相当于负载,改变R3、R4、R5的阻值,将对谐振回路产生影响。

C4为隔直电容,它能够有效防止不同放大级之间直流信号的相互影响,又可使交流信号顺利通过。

若忽略三极管输出电容和负载电容的影响,谐振频率为:LCf o π21=对于放大电路而言,L1、C2和Ct 回路相当于负载,当发生谐振时,选频回路的阻抗最大,为纯电阻性,这时放大电路的电压放大倍数最大;改变信号源频率,选频回路就会失谐,其阻抗值迅速减小,电压放大倍数也迅速减小,通常小信号调谐放大器就工作在谐振频率处,它允许与其频率一致的信号通过并进行放大,对于与其谐振频率不一致的频率信号,则不进行放大而被禁止通过,这就是“选频”的含义。

改变电容Ct ,可以改变选频回路的谐振频率,从而使得不同频率的信号通过。

调谐放大器的谐振频率,一般有两种测量方法,一是扫频法 ;一种是逐点法。

所谓扫频法,一般采用频率特性测试仪,先将频率特性测试仪提供的扫频信号接到单级放大器的输入端,单级放大器的输出端接到频率特性测试仪的输入端,然后调节中心频率旋钮,屏幕上就可显示出放大器的谐振曲线。

高频实验指导书

高频实验指导书

前言本高频电子实验箱共包含十个实验单元模块:单元选频电路模块;小信号选频放大模块;正弦波振荡及VCO模块;AM调制及检波模块;FM鉴频模块一;FM鉴频模块二;混频及变频模块;高频功放模块;波形变换模块;综合实验模块。

本实验系统的实验内容是根据高等教育出版社的《高频电子线路》一书而设计的。

本实验箱共设置了二十四个实验:其中有十九个单元实验,是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容;五个系统实验是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。

此外,学生还可以根据我们所提供的单元电路自行设计系统实验。

本实验系统力求电路原理清楚,重点突出,实验内容丰富。

其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。

同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力已及动手能力。

由于编者水平有限,书中难免存在一些缺点和错误,希望广大读者批评指正。

编者实验注意事项1、本实验系统接通电源前请确保电源插座接地良好。

2、每次安装实验模块之前应确保主机箱右侧的交流开关处于断开状态。

为保险起见,建议拔下电源线后再安装实验模块。

3、安装实验模块时,模块右边的双刀双掷开关要拨上,将模板四角的螺孔和母板上的铜支柱对齐,然后用黑色接线柱固定。

确保四个接线柱要拧紧,以免造成实验模块与电源或者地接触不良。

经仔细检查后方可通电实验。

4、各实验模块上的双刀双掷开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。

5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。

6、各模块中的3362电位器(蓝色正方形封装)是出厂前调试使用的。

出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。

若已调动请尽快复原;若无法复原,请与指导老师或直接与我公司联系。

7、在关闭各模块电源之后,方可进行连线。

TPE-GP4高频4综合实验箱指导书要点

TPE-GP4高频4综合实验箱指导书要点

TPE-GP4高频综合实验箱实验指导书清华大学科教仪器厂2008年2月前言实验是学习电子技术的一个重要环节。

对巩固和加深课堂教学内容,提高学生实际工作技能,培养科学作风,为学习后续课程和从事实践技术工作奠定基础具有重要作用。

为配合教学需要,我们新研制了TPE-GP4高频综合实验学习机。

该学习机仍属于TPE—GP系列产品,与TPE-GP2相比,TPE-GP4所提供的实验是基于建立一个完整的无线电收发系统而设置的,因此更强调电路的系统性、相关性和综合性。

电路的设计多采用原理性强的典型电路,以便结合理论知识进行学习与分析。

同时,尽量多地介绍一些功能相同但电路形式不同的单元电路,以便学生掌握各电路的共性与差异。

本学习机采用了整板结构形式,所有的实验均集成在同一电路板上,并且面板上绘制了电原理图,连接方便,易于教学和使用。

内置电源直接将直流连接到各单元电路,并用独立的按键开关切换。

同时还设置了外供电源,采用自锁紧插孔,为用户的外挂电路提供电源。

电路的设计多采用原理性强的典型电路,以便结合理论知识进行学习与分析。

各实验单元电路板既可完成独立的单元实验,又可通过适当连接完成系统性实验。

为使理论教学和实践教学紧密结合,注重学生的能力培养,同时为了更好地使用TPE-GP4高频学习机,我们特编写了这本实验指导书。

实验项目的编排和指导书的编写主要以近年来出版的以面向21世纪课程教材“电子线路非线性部分”,“通信电子电路”,“高频电路”等高校教材,同时也参考了中等专业学校电子信息类教材“高频电子线路”等资料,因此该实验指导书有较强的通用性。

指导书的编写力求简明扼要,突出实验要求与过程,必要时结合工作原理对电路特点加以说明。

对于通过实验应能解决的问题或应能解释的现象,均在实验报告要求中提出。

由于编者水平所限,时间仓促,错误及欠缺之处恳请批评指正。

编者2008年2月于清华大学实验要求1.实验前必须充分预习,完成指定的预习任务。

高频实验指导书

高频实验指导书

高频实验指导书(第三版)(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高频电子线路实验指导书姚屏编著信息与电气工程学院2007-11前言通信电子线路实验系统是配合通信电子线路(高频电子线路或非线性电子电路)课程的理论教学研制的一套实验系统。

通信电子线路实验系统由通信发射机和接收机两大部分组成。

每部分都由单独的单元模块组合。

既可根据课程内容、进度完成单元模块实验,又可进行调幅、调频两种收、发系统的实验。

实验内容既有分立器件又有集成器件,便于学生循序渐进的学习。

发射机系统由低频调制源振荡器电路、变容二极管调频电路、振幅调制电路、高频功率放大器五个模块组成。

可独立进行各部分功能模块实验,也可将各部分级连完成发射机整机调试和测试实验。

接收机系统由小信号调谐放大器、混频器、锁相频率合成器、本振源、中放、二次混频与鉴频,包络检波五个模块组成。

可独立进行各部分功能模块实验,也可将各部分级联完成接收机功能实验。

该实验装置还可进行通话实验,使学生了解实际的通信系统。

通过实验可使学生进一步消化理解理论课程内容,培养学生调测的实际动手能力,建立系统概念。

采用GP-4型实验设备做实验时,必备的仪器是20MHZ以上双踪示波器,万用表、频率计、毫伏表、高频信号发生器等,GP-4A型实验设备中带有高频信号发生器和频率计。

该实验设备经过多次修改,本指导书是针对GP-4型和GP-4A型机所写,设备和指导书仍有一些不完善甚至不妥之处,期望同学们及有关老师提出宝贵意见。

编者目录实验一高频小信号调谐放大器.................................. 错误!未定义书签。

实验二幅度调制器 ........................................................ 错误!未定义书签。

实验三调幅波信号的解调........................................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频C4电子实验箱总体介绍一、概述本高频电子实验箱的实验内容及实验顺序是根据高等教育出版社出版的〈〈高频电子线路〉〉一书而设计的(作者为张肃文)。

在本实验箱中设置了十个实验,它们是:高频小信号调谐放大器实验、二极管开关混频器实验、高频谐振功率放大器实验、正弦波振荡器实验、集电极调幅及大信号检波实验、变容二极管调频实验、集成模拟乘法器应用实验、模拟锁相环应用实验、小功率调频发射机设计和调频接收机设计。

其中前八个实验是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容。

后两个实验是系统实验,是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。

二、整机介绍整机元件分布图如图0-1所示,整机测试点和各调试点分布图如图0-2所示,在图0-2中所列出的是测试点、调试点、电源开关及电源指示等。

在实验板的右侧为为实验所需而配备的高低频信号源和频率计。

它们不作为实验内容,属于实验工具。

高低频信号源和频率计的使用说明如下。

1、频率计的使用方法本实验箱提供的频率计是基于本实验箱实验的需要而设计的。

它只适用于频率低于15MHz,信号幅度Vp-p=100mV~5V的信号。

参看电路原理图G11和整机分布图(原理图中的CG10用于校正显示频率的准确度,WG1用于调节测量的阈门时间,这两个元件均在PCB板的另一面)。

使用的方法是:KG1是频率计的开关,在使用时首先要按下该开关;当测低于100KHz的信号时连接JG3、JG4(此时JG2应为断开状态)。

当测高于100KHz的信号时连接JG2(此时JG3、JG4应为断开状态,一般情况下都接JG2)。

将需要测量的信号(信号输出端)用实验箱中附带的连线与频率计的输入端(ING1)相连,则从频率计单元的数码管上能读出信号的频率大小。

数码管为8个,其中前6个显示有效数字,第8个显示10的幂,单位为Hz(如显示10.7000-6时,则频率为10.7MHz)。

本频率计的精度为:若信号为MHz级,显示精度为百赫兹。

若信号为KHz和Hz级则显示精度为赫兹。

2、低频信号源的使用方法本实验箱提供的低频信号源是基于本实验箱实验的需要而设计的。

它包括两部分:第一部分:输出500Hz~2KHz信号(实际输出信号范围较宽);此信号可以以方波的形式输出,也可以以正弦波的形式输出。

它用于变容二极管调频单元,集成模拟乘法应用中的平衡调幅单元,集电极调幅单元和高频信号源调频输出。

第二部分:输出20KHz~100KHz信号(实际输出信号范围较宽);此信号以正弦波的形式输出。

它用于锁相频率合成单元。

低频信号源在整机中的位置见整机分布图,电路原理图见附图G8。

低频信号源的使用方法如下:电路原理图中的可调电阻WD5用于调节输出方波信号的占空比;WD3、WD4的作用是:在输出正弦波信号时,通过调节WD3、WD4使输出信号失真最小。

这三个电位器在实验箱出厂时均已调到最佳位置且此三个电位器在PCB板的另一面。

电路原理图中的可调电阻WD6用来调节输出频率的大小;WD1用于调节输出方波信号的大小;WD2用于调节输出正弦波信号大小。

在使用时,首先要按下开关KD1。

当需输出500Hz~2KHz的信号时,参照电路原理图G8连接好JD1、JD4(此时JD2、JD3应断开),则从TTD1处输出500Hz~2KHz的正弦波;断开JD4,连上JD3,则从TTD2处输出500Hz~2KHz的方波。

根据实验的需要用示波器观察,通过调节WD1、WD2获得需要信号的大小,WD1调节方波的大小,WD2调节正弦波的大小;用频率计测量,通过调节WD6获得需要信号的频率。

当需输出20KHz~100KHz的信号时,参照电路原理图G8连接好JD2、JD4(此时JD1、JD3应断开)。

从TTD1处输出20KHz~100KHz的正弦波。

根据实验的需要用示波器观察,通过调节WD2获得需要信号的大小;用频率计测量,通过调节WD6获得需要信号的频率。

3、高频信号源的使用方法本实验箱提供的高频信号源是基于本实验箱实验的需要而设计的。

它只提供10.7MHz的载波信号和约10.7MHz的调频信号(调频信号的调制频偏可以调节)。

载波主要用于小信号调谐放大单元、高频谐振功率放大器单元、集电极调幅单元、模拟乘法器部分的平衡调幅及混频单元和二极管开关混频单元。

调频信号主要用于模拟乘法器部分的鉴频单元和FM锁相解调单元。

参看附原理图G10和整机分布图。

晶体振荡输出载波峰峰值不低于1.5V。

LC振荡输出载波峰峰值不低于1V。

高频信号源的使用方法如下:使用时,首先要按下开关KF1。

当需要输出载波信号时,连接JF1(此时JF2、JF3、JF4断开),则10.7MHz的信号由TTF1处输出,WF1用于调节输出信号的大小。

当需要输出10.7MHz的调频信号时,连接JF2、JF3、JF4(此时JF1断开,同时使低频信号源处于输出1KHz正弦波的状态,改变低频信号源的幅度就是改变调频信号的频偏,在没有特别要求时,一般低频信号源幅度调为2V,参看低频信号源的使用),则10.7MHz的调制信号由TTF1处输出,WF1用于调节输出信号的大小;低频信号源处的WD2用于调节调制频偏的大小。

在具体使用中,通过示波器观察输出信号的大小和形状。

实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。

在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数,通频带,矩形系数),进一步掌握高频小信号调谐放大器的工作原理。

学会小信号调谐放大器的设计方法。

二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHz。

2、测量谐振放大器的电压增益。

3、测量谐振放大器的通频带。

4、判断谐振放大器选择性的优劣。

三、实验仪器1、BT-3(G)型频率特性测试仪(选项)一台2、20MHz模拟示波器一台3、数字万用表一块4、调试工具一套四、实验原理1、原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。

它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。

在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。

晶体管的静态工作点由电阻R B1,R B2及R E决定,其计算方法与低频单管放大器相同。

图1-1 小信号调谐放大器放大器在高频情况下的等效电路如图1-2所示,晶体管的4个y 参数y ie ,y oe ,y fe 及y re 分别为输入导纳 ()e b e b b b e b e b ie jwc g r jwc g y '''''1+++≈ (1-1) 输出导纳 ()e b e b e b b b e b b b m oe jwc jwc g r jwc r g y ''''''1+++≈ (1-2)正向传输导纳 ()e b e b b b m fe jwc g r g y '''1++≈(1-3) 反向传输导纳 ()e b e b b b eb re jwc g r jwc y ''''1++-≈ (1-4)图1-2 放大器的高频等效回路式中,g m ——晶体管的跨导,与发射极电流的关系为{}S mA I g E m 26= (1-5) g b ’e ——发射结电导,与晶体管的电流放大系数β及I E 有关,其关系为 {}S m A I r g E e b e b β261''== (1-6) r b ’b ——基极体电阻,一般为几十欧姆;C b ’c ——集电极电容,一般为几皮法;C b ’e ——发射结电容,一般为几十皮法至几百皮法。

由此可见,晶体管在高频情况下的分布参数除了与静态工作电流I E ,电流放大系数β有关外,还与工作频率ω有关。

晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。

如在f 0=30MHz ,I E =2mA ,U CE =8V 条件下测得3DG6C 的y 参数为:mS r g ie ie 21== pF C ie 12= mS r g oeoe 2501== pF C oe 4= mS y fe 40= uS y re 350=如果工作条件发生变化,上述参数则有所变动。

因此,高频电路的设计计算一般采用工程估算的方法。

图1-2中所示的等效电路中,p 1为晶体管的集电极接入系数,即211/N N P = (1-7) 式中,N 2为电感L 线圈的总匝数。

P 2为输出变压器T 的副边与原边的匝数比,即232/N N P = (1-8) 式中,N 3为副边(次级)的总匝数。

g L 为调谐放大器输出负载的电导,g L =1/R L 。

通常小信号调谐放大器的下一级仍为晶体管调谐放大器,则g L 将是下一级晶体管的输入导纳g ie2。

由图1-2可见,并联谐振回路的总电导∑g 的表达式为G jwLjwc g p g p G jwL jwc g p g p g L oe ie oe ++++=++++=∑11222122221 (1-9) 式中,G 为LC 回路本身的损耗电导。

谐振时L 和C 的并联回路呈纯阻,其阻值等于1/G ,并联谐振电抗为无限大,则jwC 与1/(jwL )的影响可以忽略。

2、调谐放大器的性能指标及测量方法表征高频小信号调谐放大器的主要性能指标有谐振频率o f ,谐振电压放大倍数vo A ,放大器的通频带BW 及选择性(通常用矩形系数1.0r K 来表示)等。

放大器各项性能指标及测量方法如下:(1)谐振频率放大器的调谐回路谐振时所对应的频率o f 称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),o f 的表达式为∑=LC f π210 (1-10)式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为ie oe C P C P C C 2221++=∑ (1-11)式中, Coe 为晶体管的输出电容;Cie 为晶体管的输入电容。

谐振频率o f 的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点o f 。

(2)电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数vo A 称为调谐放大器的电压放大倍数。

vo A 的表达式为 Gg p g p y p p g y p p u u A ie oe fe fe i V ++-=-=-=∑2221212100 (1-12) 式中,∑g 为谐振回路谐振时的总电导。

相关文档
最新文档