【数学】1-2《集合的基本关系》课件(北师必修1)(2) - 副本

合集下载

北师大版高中数学必修一:1.1.2集合的基本关系(共24张PPT) - 副本

北师大版高中数学必修一:1.1.2集合的基本关系(共24张PPT) - 副本

由集合中元素的互异性可知: x≠1,x≠0, 故综上所述,x = -1,y=0。 ∴解方程组得x = -1,y=0。
2 x 例5、设A={x︱ –8x+15=0},B={x︱ax –1=0},若
BA,求实数 a 组成的集合。
解:∵A={3A={3 ,5}又∵ BA,又B为一个一次式方程的 中至多只有一个元素 分析:易知 ,5},而集合 解集,因此集合 中最多有一个元素,有因为 BA, ∴B= Φ或{3}B 或 {5},
集合A=B和AB可以用下面的图形来表示:
A B( A)
A
B
A=B
A B
3.子集、真子集的性质:
(1)Φ A(空集是任何集合的子集) 若B≠Φ, 则ΦB(空集是任何非空集合的真子集) (2)A A(任何一个集合是它本身的子集) (3)传递性: 若A B,B C,则A C 若A B,B C,则A C
当, n=2k-1 为整数。 1 时, 1 x=k 3 , …… ……,通过观察发现集合B ,0, ,1, 2 2 2 ∴AB。 中的元素除了所有的整数外,还含有其他的元素,
1 1 3 , , 等,因 注:此题说成 AB此 也没错,但没有 AB准确。 如 AB。 2 2 2
课堂练习
例2、已知{a,b}A{a,b,c,d},求所有满足条 件的集合A。 解:∵{a,b}A,∴A中必有元素a,b。 分析:本题考察的是子集与真子集的概念。首先要 又∵ A{a,b,c, d} , 弄清楚 A里面必须含有 a和 b ,然后考虑A里面含有其 他哪些元素,按规律去找。 ∴A中的元素有2个或3个。 因此满足条件的集合A有:
思考 ?
实数有相等关系、大小关系, 如: 5=5,5<7,5>3,等。 类比实数之间的关系,你会想到 集合之间的什么关系?

【数学】1-2《集合的基本关系》课件(北师必修1)(2) - 副本

【数学】1-2《集合的基本关系》课件(北师必修1)(2) - 副本
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.
即对任何集合A,都有: A
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的
真子集.记作
图示为
B
A
子集的性质
(1)对任何集合A,都有:
A A (2)对于集合A,B,C,若A B,且B
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,

【数学】1-2《集合的基本关系》课件(北师必修1)(2)

【数学】1-2《集合的基本关系》课件(北师必修1)(2)

观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的
真子集.记作
图示为
B
A
子集的性质
(1)对任何集合A,都有:
A A (2)对于集合A,B,C,若A B,且B
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
例3 若A={x -3≤x≤4}, B={x 2m-1≤x≤m+1},当B A时, 求实数m的取值范围.
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.
即对任何集合A,系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.
即对任何集合A,都有: A
课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{ } ③ {0} ④0 φ φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }
课堂Байду номын сангаас结
1.子集,真子集的概念与性质;
2. 集合的相等;
3.集合与集合,元素与集合的
关系.
作业布置
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的
真子集.记作
图示为
B
A
子集的性质
(1)对任何集合A,都有:
A A (2)对于集合A,B,C,若A B,且B
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{} ③ {0} φ ④0 φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }
课堂小结
1.子集,真子集的概念与性质;
2. 集合的相等;
3.集合与集合,元素与集合的
关系.
作业布置
C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
例3 若A={x -3≤x≤4}, B={x 2m-1≤x≤m+1},当B A时, 求实数m的取值范围.
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
例3 若A={x -3≤x≤4}, B={x 2m-1≤x≤m+1},当B A时, 求实数m的取值范围.
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的
真子集.记作
图示为
B
A
子集的性质
(1)对任何集合A,都有:
A A (2)对于集合A,B,C,若A B,且B
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
例3 若A={x -3≤x≤4}, B={x 2m-1≤x≤m+1},当B A时, 求实数m的取值范围.
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的
真子集.记作
图示为
B
A
子集的性质
(1)对任何集合A,都有:
A A (2)对于集合A,B,C,若A B,且B
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) 子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.
即对任何集合A,都有: A
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
C,则有 A C

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
例3 若A={x -3≤x≤4}, B={x 2m-1≤x≤m+1},当B A时, 求实数m的取值范围.
课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{ } ③ {0} ④0 φ φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }
课堂小结

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{ } ③ {0} ④0 φ φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }
课堂小结
1.子集,真子集的概念与性质;
2. 集合的相等;
3.集合与集合,元素与集合的
关系.
作业布置
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{ } ③ {0} ④0 φ φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }
课堂小结
1.子集,真子集的概念与性质;
2. 集合的相等;
3.集合与集合,元素与集合的
关系.
作业布置
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={11}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.
即对任何集合A,都有: A
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
例3 若A={x -3≤x≤4}, B={x 2m-1≤x≤m+1},当B A时, 求实数m的取值范围.

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的
真子集.记作
图示为
B
A
子集的性质
(1)对任何集合A,都有:
A A (2)对于集合A,B,C,若A B,且B
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.
即对任何集合A,都有: A
课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{ } ③ {0} ④0 φ φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1};x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
记作
B(或B A) 也说集合A是集合B的子集.
A
A BBAFra bibliotek判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{ } ③ {0} ④0 φ φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }
课堂小结
1.子集,真子集的概念与性质;
2. 集合的相等;
3.集合与集合,元素与集合的
关系.
作业布置
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.
即对任何集合A,都有: A

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的
真子集.记作
图示为
B
A
子集的性质
(1)对任何集合A,都有:
A A (2)对于集合A,B,C,若A B,且B
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
例3 若A={x -3≤x≤4}, B={x 2m-1≤x≤m+1},当B A时, 求实数m的取值范围.
课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{ } ③ {0} ④0 φ φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }
课堂小结
1.子集,真子集的概念与性质;
2. 集合的相等;
3.集合与集合,元素与集合的
关系.
作业布置
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.

【数学】1-2《集合的基本关系》课件(北师必修1)

【数学】1-2《集合的基本关系》课件(北师必修1)

(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
பைடு நூலகம்
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作 ⑵ 规定:空集是任何集合的子集.
即对任何集合A,都有: A
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察以下几组集合,并指出它们元
素间的关系: ① A={1,2,3}, B={1,2,3,4,5};
② A={x x>1}, B={x
2>1}; x
③ A={四边形}, B={多边形};
④ A={x x2+1=0}, B={x x > 2} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说集合A包含 于集合B,或集合B包含集合A.
课堂练习 1.教材P9 . T 1,2,3,4,5
② ∈{ } ③ {0} ④0 φ φ⑤ φ≠{0} ⑥φ={φ},其中正确的序 号是: ①②③④⑤
2.以下六个关系式:① { }
课堂小结
1.子集,真子集的概念与性质;
2. 集合的相等;
3.集合与集合,元素与集合的
关系.
作业布置
记作
B(或B A) 也说集合A是集合B的子集.
A
A B
B
A
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
(× ) (√ )
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且B 则A=B; A,
反之,亦然.
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
1.教材P9 A组 T2,3,5
2.已知A={a,b,c}, B={x x A},
求B.
Good
bye
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2)A={四边形}, B={多边形}
定 义
对于两个集合A与B,如果A B,并且A≠B,则称集合A是集合B的
真子集.记作
图示为
B
A
子集的性质
(1)对任何集合A,都有:
A A (2)对于集合A,B,C,若A B,且B
观察集合A与集合B的关系:
(1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x
2-1=0} x
图中A是否为B的子集?
B (1)
A
B
A (2)
注 意
⑴ 集合A不包含于集合B,或集合 B不包含集合A时, 记作来自⑵ 规定:空集是任何集合的子集.
即对任何集合A,都有: A
C,则有 A C
(3)空集是任何非空集合的真子 集.
例题讲解
例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集. 例2 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
例3 若A={x -3≤x≤4}, B={x 2m-1≤x≤m+1},当B A时, 求实数m的取值范围.
相关文档
最新文档