直线平面平行的判定及其性质

合集下载

直线、平面平行的判定与性质

直线、平面平行的判定与性质

栏目 导引
第八章
立体几何初步
解析:选 C.A 错误.直线 l 和平面 α 有两个公共点,则 l⊂α. B 错误.若 α∥β,a⊂α,b⊂β,则 a 与 b 异面或平行. C 正确.因为 a 与 β 无公共点,则 a∥β. D 错误.a 与 β 有可能平行.故选 C.
栏目 导引
第八章
立体几何初步
(教材习题改编)设 m,n 表示直线,α、β 表示平面,则下 列命题为真的是( m ∥ α ⇒m∥n A. n∥α α∩β=m n∥α ⇒m∥n n∥β ) m∥ α ⇒m∥β B. α∥ β α∥ β m∥α⇒m∥n n∥ β
栏目 导引
第八章
立体几何初步
判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α); (3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β); (4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).
栏目 导引
栏目 导引
第八章
立体几何初步
解析:连接 BD,设 BD∩AC=O,连接 EO,在△BDD1 中, O 为 BD 的中点,E 为 DD1 的中点,所以 EO 为△BDD1 的中 位线,则 BD1∥EO,而 BD1⊄平面 ACE,EO⊂平面 ACE,所 以 BD1∥平面 ACE.
答案:平行
栏目 导引
第八章
栏目 导引
第八章
立体几何初步
角度三
线面平行性质的应用
如图, 四棱锥 PABCD 的底面是边长 为 8 的正方形, 四条侧棱长均为 2 17.点 G, E,F,H 分别是棱 PB,AB,CD,PC 上 共面的四点,平面 GEFH⊥平面 ABCD, BC∥平面 GEFH. (1)证明:GH∥EF; (2)若 EB=2,求四边形 GEFH 的面积.

平行的判定与性质

平行的判定与性质

EF //平面 BB 1D 1D.第12讲平行的判定与性质1. 线面平行的定义:直线和平面没有公共点,则直线和平面平行2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行符号表示为:a 二二:打a 〃b= a 〃 . 3 .性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交a// :- 线平行.即: a 1 1 =a//b .:-n: =b【例1】已知P 是平行四边形 ABCD 所在平面外一点,E 、F 分别为AB 、PD 的中点, 求证:AF //平面PEC证明:设PC 的中点为G ,连接EG 、FG.1•/ F 为 PD 中点, ••• GF // CD 且 GF= —CD.2•/ AB // CD , AB=CD , E 为 AB 中点, • GF // AE , GF=AE , 四边形AEGF 为平行四边形• • EG // AF , 又••• AF 二平面 PEC , EG 二平面 PEC , • AF //平面 PEC.【例2】在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为棱BC 、C 1D 1的中点•求证: 证明:连接AC 交BD 于0,连接0E ,贝U OE // DC , OE = 1 DC.2•/ DC // D 1C 1, DC=D 1C 1 , F 为 D 1C 1 的中点,• OE // D 1F , 0E=D 1F , 四边形D 1FE0为平行四边形•EF // D 1O.又••• EF 二平面 BB 1D 1D , DQ 二平面 BB 1D 1D , •EF //平面 BB 1D 1D.【例3】如图,已知E 、F 、G 、M 分别是四面体的棱 AD 、CD 、BD 、BC 的中点,求证:AM //平面EFG .证明:如右图,连结DM ,交GF 于0点,连结0E ,在「BCD 中,G 、F 分别是 BD 、CD 中点, • GF//BC , ••• G 为BD 中点, • 0为MD 中点,在 AMD 中,I E 、0 为 AD 、MD 中点, • EO//AM , 又••• AM 平面EFG , E0 平面EFG , • AM // 平面 EFG .【例4】如图,已知P 是平行四边形 ABCD 所在平面外一点,M 、N 分别是AB 、 PC 的中点•( 1)求证:MN//平面FAD ;(2)若MN =BC =4 , PA =4..3,求异面直线PA 与MN 所成的角的大小. 解:(1)取PD 的中点H ,连接AH ,由N 是PC 的中点,1• NH // DC .由 M 是 AB 的中点, • NH//AM ,-2 -即AMNH 为平行四边形.• MN //AH . 由 MN 二平面 PAD,AH 二平面 PAD ,• MN //平面 PAD .1 1(2) 连接 AC 并取其中点为 0,连接 0M 、0N ,「. 0M// - BC , 0N // - PA , -2 - 2 所以Z0NM 就是异面直线PA 与MN 所成的角,且 M0丄N0. 由 MN =BC =4 , PA =4 .3,得 0M=2, 0N=2.3.所以.ONM =30°,即异面直线 PA 与MN 成30°的角■【例5】三角形的三条中线交于一点,该点称为三角形的重心,且到顶点的距离等于到对边中点距离的2倍.这一结论叫做三角形的重心定理在四面体 ABCD 中,M 、N 分别是面厶ACD 、△ BCD 的重心,在四面体的四个面中,与MN 平行的是C哪几个面?试证明你的结论.解:连结AM并延长,交CD于E,连结BN并延长交CD于F,由重心性质可知,E、F 重合为一点,CiBD . ^=zV 2 =i7且该点为CD 的中点E ,由EM =_EN =1得MN // AB ,MA NB 2因此,MN //平面 ABC 且 MN //平面 ABD.【例6】经过正方体 ABCD-A^C i D i 的棱BB i 作一平面交平面 AAQ I D 于E i E ,求证:E i E // B I B证明:••• AA i// BB i, AA^平面 BEE iB i,BB i平面 BEE iB i,••• AA 〃 平面 BEE i B i . 又 二平面 ADD iA i,平面 ADD* 门平面 BEE iB^ = EE i,AA, // BB i ] •- AA i //EE i .则 二 BB i //EE i .i AA // EE ii i【例7】如图,AB 〃「,AC//BD , C 。

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质新课讲解:1、直线与平面平行的判定及其性质(1)线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行⇒线面平行(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线面平行⇒线线平行2、平面与平面平行的判定及其性质(两条相交直线即可代表一个平面)(1)两个平面平行的判定定理①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

线面平行→面面平行②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

线线平行→面面平行③垂直于同一条直线的两个平面平行.(2)两个平面平行的性质①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

面面平行→线面平行②如果两个平行平面都和第三个平面相交,那么它们的交线平行。

面面平行→线线平行题型一:直线与平面平行的判定要点:利用判定定理时关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线。

例1.(2011·天津改编)如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,O 为AC 的中点,M 为PD 的中点。

求证:PB ∥平面ACM 。

变式练习1:如图,正方体ABCD-A 1B 1C 1D 1中,E 为DD 1中点。

求证:BD 1∥平面AEC 。

变式练习2:如图,若PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点,求证:AF ∥平面PCE 。

A B CD A 1B 1C 1D 1E例2.正方体ABCD-A1B1C1D1中,侧面对角线AB1、BC1分别有E、F,且B1E=C1F,求证:EF∥平面ABCD.变式练习1:如图,正方体ABCD-A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.题型二:平面与平面平行的判定例3.如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B。

直线、平面平行的判定和性质

直线、平面平行的判定和性质
又∵平面 ABEF∩平面 BCE=BE,
∴PM∥BE,∴APEP=MAMB,
又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴MAMB=DQQB,
∴MQ∥AD,又 AD∥BC,
∴MQ∥BC,∴MQ∥平面 BCE,又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE,又 PQ⊂平面 的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, 上面命题中正确的是________(填序号). 答案 ④
解析 ①若 a∥α,b⊂α,则 a,b 平行或异面;②若 a∥α,b∥α,则 a,b 平行、相交、异面都有可能;③若 a∥b,b⊂α,a∥α 或 a⊂α.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N,
连接 MN. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴AE =BD. 又 AP=DQ,∴PE=QB,
又 PM∥AB∥QN,∴PAMB =PAEE=QBDB,QDNC=BBQD,
∴PAMB =QDNC, ∴PM // QN,即四边形 PMNQ 为平行四边形, ∴PQ∥MN.又 MN⊂平面 BCE,PQ⊄平面 BCE, ∴PQ∥平面 BCE.
直线、平面平行的判定及性质
2012·考纲
1.以立体几何的定义、公理、定理为出发点,认识 和理解空间中线面平行的有关性质和判定定理.
2.能运用公理、定理和已获得的结论证明一些空间位 置关系的简单命题.
课本导读
1.直线和平面平行的判定: (1)定义:直线与平面没有公共点,则称直线平行平面; (2)判定定理: a⊄α,b⊂α,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α⇒a∥β. 2.直线和平面平行的性质: a∥α,a⊂β,α∩β=l⇒a∥l.

直线、平面平行的判定与性质

直线、平面平行的判定与性质

[解析]
选项A,平行直线的平行投影可以依然是两条平行
直线;选项 B ,两个相交平面的交线与某一条直线平行,则这
条直线平行于这两个平面;选项 C,两个相交平面可以同时垂
直于同一个平面;选项D,正确. [答案] D
2.(2009·福建,10)设m,n是平面α内的两条不同直线;l1,
l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件
∵AF⊄平面PCD,CD⊂平面PCD,∴AF∥平面PDC.
∵AF∩EF=F,∴平面AEF∥平面PCD.
∵AE⊂平面AEF,AE∥平面PCD.
∴线段PB的中点E是符合题意要求的点.
1.证明直线和平面平行的方法有:
(1)依定义采用反证法
(2) 判定定理( 线∥线 ⇒线∥面) ,即想方设法在平面内找出 一条与已知直线平行的直线. (3)面面平行性质定理(面∥面⇒线∥面) 2.证明平面与平面平行的方法有:
(1)[证明] ∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,
∵PD⊂平面PAD,∴AB⊥PD.
(2)[解]
解法一:取线段 PB 的中点 E,PC 的中点 F,连
接 AE,EF,DF,则 EF 是△PBC 的中位线. 1 1 ∴EF∥BC,EF= BC,∵AD∥BC,AD= BC, 2 2 ∴AD∥EF,AD=EF. ∴四边形 EFDA 是平行四边形,∴AE∥DF. ∵AE⊄平面 PCD,DF⊂平面 PCD, ∴AE∥平面 PCD. ∴线段 PB 的中点 E 是符合题意要求的点.
(1)依定义采用反证法
(2) 判定定理( 线∥面 ⇒面∥面) .即证一平面内两条相交直
线与另一平面垂直.

直线平面平行的判定及其性质

直线平面平行的判定及其性质

解析几何中的应用
在解析几何中,直线与平面的平行关系 也是非常重要的。例如,在求解一些涉 及平面解析几何的问题时,需要使用直 线与平面平行的判定定理和性质来解决

ቤተ መጻሕፍቲ ባይዱ
直线与平面平行的判定定理的应用:在 解析几何中,利用直线与平面平行的判 定定理,可以用来判断一个点是否在一 条直线上,或者判断两个平面是否平行
直线与平面平行的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都没有交 点。
直线与平面平行的判定定理的应用
在几何学中,这个定理经常被用来判断两条直线是否平行,或者一个平面是否平 行于另一个平面。
02
直线与平面平行的性质
直线平行于平面的性质
直线平行于平面,则 直线与平面内的任意 一条直线都平行。
直线平行于平面,则 直线与平面内的任意 一条直线都平行或异 面。
直线平行于平面,则 直线与平面内的任意 一条直线都没有公共 点。
平面平行于直线的性质
平面平行于直线,则平面与直 线的任意一条平行线都平行。
平面平行于直线,则平面与直 线的任意一条垂线都垂直。
平面平行于直线,则平面与直 线的任意一条垂线都垂直或平 行。
直线与平面平行的判定定理的应用:在空间几何中,利用直线与平面平 行的判定定理,即“如果直线与平面内的一条直线平行,则直线与该平
面平行”,可以用来判断建筑物的结构是否符合设计要求。
直线与平面平行的性质的应用:直线与平面平行的性质定理的应用,即 “如果直线与平面平行,则直线与平面的垂线互相垂直”,可以用来判 断建筑物的高度和角度是否符合设计要求。
直线平行于平面的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都平行 。

直线、平面平行的判定与性质

直线、平面平行的判定与性质

直线、平面平行的判定与性质重点难点重点:掌握线线平行、线面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题.难点:线面平行与面面平行在判定中的相互转化使用.方法突破线面平行的判定定理的实质是:对于平面外的一条直线,只需在平面内找出一条直线与这条直线平行,就可断定这条直线必与这个平面平行. 线面平行的性质定理的实质是:已知线面平行,过已知直线作一平面与已知平面相交,其交线必与已知直线平行. 两个平面平行问题的判定与证明,是将其转化为一个平面内的直线与另一个平面平行的问题,即“线面平行,则面面平行”,必须注意这里的“线面”是指一个平面内的两条相交直线和另一个平面.1. 判定线线平行的三种方法(1)公理4:证明两直线同时平行于第三条直线.(2)线面平行的性质定理:如果一条直线和一个平面平行,且经过这条直线的平面和这个平面相交,那么这条直线与交线平行.推理模式:l∥α,l∥β,α∩β=m?圯l∥m.(3)平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.推理模式:α∥β,γ∩α=a,γ∩β=b?圯a∥b.2. 判定线面平行的三种方法(1)根据线面平行的判定定理:如果不在某个平面内的一条直线与该平面内的一条直线平行,那么这条直线与这个平面平行.推理模式:l?埭α,m?奂α,l∥m?圯l∥α.使用定理时,一定要说明“平面外的一条直线与平面内的一条直线平行”,若不注明该条件,则证明过程就不完备.(2)面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:α∥β,a?奂α?圯a∥β.3. 判定面面平行的三种方法(1)根据面面平行的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式:a?奂β,b?奂β,a∩b=P,a∥α,b∥α?圯β∥α.(2)平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:a∩b=P,a?奂α,b?奂α,a′∩b′=P′,a′?奂β,b′?奂β,a∥a′,b∥b′?圯α∥β.(3)向量法:如果两个不同平面的法向量相互平行,那么就可以判定两个平面平行.典例精讲一、线线平行的判定■已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.思索若证四边形是平行四边形,只需证一组对边相等且平行或两组对边分别平行,选其一证出即可. 利用平行公理证明两条直线平行的思路就是要找准一条直线与这两条直线都平行的直线来传递.破解如图1,连结BD,因为EH是△ABD的中位线,所以EH∥BD,EH=■BD. 又因为FG是△CBD的中位线,所以FG∥BD,FG=■BD. 根据公理4,FG∥EH且FG=EH,所以四边形EFGH是平行四边形.■图1二、线面平行的判定■如图2,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=■,AF=1,M是线段EF的中点. 求证:AM ∥平面BDE.■图2思索设AC与BD相交于G,连结EG,证明四边形AGEM 是平行四边形,可得EG∥AM,利用线面平行的判定定理可证.破解设AC与BD相交于G,连结EG,则G是AC的中点. 因为M是线段EF的中点,ACEF是矩形,所以EM∥AG,EM=AG,所以四边形AGEM是平行四边形,所以EG∥AM. 因为AM不在平面BDE内,EG在平面BDE内,所以AM∥平面BDE.三、面面平行的判定■如图3,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB. 过A作AF⊥SB,垂足为F,点E,G分别是侧棱SA,SC的中点. 求证:平面EFG∥平面ABC.■图3思索证明平面EFG∥平面ABC,需要在平面EFG内找到两条相交直线与平面ABC平行,而线面平行的判定定理告诉我们,要证明线面平行,需要转化为证明线线平行. 因此,证明该题的关键是在平面内最为恰当的位置找出一条直线与该直线平行.破解(1)因为E,G分别是侧棱SA,SC的中点,所以EG∥AC.因为AC?奂平面ABC,EG?埭平面ABC,所以EG∥平面ABC. ?摇因为AS=AB,AF⊥SB,所以F为SB的中点,所以EF∥AB.因为AB?奂平面ABC,EF?埭平面ABC,所以EF∥平面ABC.因为EF∩EG=E,EF,EG?奂平面EFG,所以平面EFG∥平面ABC.四、线线平行、线面平行、面面平行的转化■如图4,已知点S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为三角形SAB上的高,D,E,F分别是AC,BC,SC的中点,试判断SG与平面DEF的位置关系,并给予证明.■图4思索一可判断SG∥平面DEF,要证明结论成立,只需证明SG与平面DEF内的一条直线平行,观察图形可以看出,转化成线线平行的证明.破解一连结CG交DE于点H,因为DE是△ABC的中位线,所以DE∥AB. 在△ACG中,D是AC的中点,且DH∥AG,所以H为CG的中点,所以FH是△SCG的中位线,所以FH ∥SG. 又SG?埭面DEF,FH?奂面DEF,所以SG∥平面DEF. 思索二要证明SG∥平面DEF,只需证明平面SAB∥平面DEF,从而得到线面平行.破解二因为EF是△SBC的中位线,所以EF∥SB,又EF?埭面SAB,SB?奂面SAB,所以EF∥平面SAB. 同理,DF∥平面SAB.因为EF∩DF=F,所以可得面SAB∥面DEF. 又SG?奂面SAB,所以SG∥平面DEF.证法一直接应用线面平行的判定定理来证明;证法二是通过线线平行证面面平行,再由面面平行证线面平行. 在本题的证明过程中实现了线线平行、线面平行、面面平行的转化.变式练习1. 如图5,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点. 求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.■图52. 如图6,在三棱锥S-ABC中,M,N,P分别为棱SA,SB,SC的中点,求证:平面MNP∥平面ABC.■图63. 如图7,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点,求证:AC1∥平面CDB1.参考答案1. (1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC. 因为AD?奂平面ABC,所以CC1⊥AD. 因为AD⊥DE,且CC1,DE?奂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1. 又因为AD?奂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1. 因为CC1⊥平面A1B1C1,且A1F?奂平面A1B1C1,所以CC1⊥A1F. 因为CC1,?摇B1C1?奂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1. 由(1)知,AD⊥平面BCC1B1,所以A1F∥AD. 又因为AD?奂平面ADE,?摇A1F?埭平面ADE,所以直线A1F∥平面ADE2. 因为M,N,P分别为棱SA,SB,SC的中点,所以MN∥AB,PN∥BC. 因为MN?埭平面ABC,AB?奂平面ABC,PN?埭平面ABC,BC?奂平面ABC,所以MN∥平面ABC,PN∥平面ABC. 因为MN∩PN=N,MN,PN?奂平面MPN. 所以平面MNP∥平面ABC.3. 证法一(利用线面平行的判定定理):设C1B与CB1的交点为E,由已知得E为C1B的中点. 连结AC1,DE,则OE■■AC1. 又DE?奂平面CDB1,AC1?埭平面CDB1,所以AC1∥平面CDB1.证法二(利用共线向量定理证明线面平行):因为直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,所以AC,BC,CC1两两垂直,以AC,BC,CC1为x,y,z轴建立空间直角坐标系,由已知可得C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D■,2,0. 设CB1与C1B的交点为E,则E(0,2,2),因为■=-■,0,2,■=(-3,0,4),所以■=■■,所以■∥■. 因为DE?奂平面CDB1,AC1?埭平面CDB1,所以AC1∥平面CDB1.证法三(利用法向量证明线面平行):因为直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,所以AC,BC,CC1两两垂直,以■,■,■为正交基底,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B■(0,4,4),D■,2,0,故■=(-3,0,4),■=(0,4,4),■=■,2,0. 设平面CDB1的法向量为n=(x,y,z),则4y+4z=0,■x+2y=0,故有n=(4,-3,3),所以■?n=0. 因此■⊥n. 又AC1不在平面CDB1内,从而有AC1∥平面CDB1. ■。

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质姓名:日期:♥知识梳理♥一、直线与平面平行的判定与性质二、面面平行的判定与性质♥究疑点♥1.若一直线平行于平面α,那么平面α内的任一条直线与它有何位置关系?2.若两平面平行,那么在一个平面内的任一条直线与另一个平面内的任一条直线有何位置关系?3.如果一平面同时平行于两个平面,那么这两个平面有何位置关系?♥考点突破♥考点一:线面平行、面面平行的基本问题1.已知直线a,b,平面α,满足a⊂α,则使b∥α的条件为()A.b∥a B.b∥a且b⊄αC.a与b异面D.a与b不相交2.下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面3.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l24.(2011·临沂模拟)已知m,n是两条不同的直线,α、β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n. 其中正确的命题是()A.①②B.①③C.①④D.①③④[归纳领悟]解决有关线面平行,面面平行的判定与性质的基本问题要注意:1.注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易忽视.2.结合题意构造或绘制图形,结合图形作出判断.3.会举反例或用反证法推断命题是否正确.考点二:直线与平面平行的判定与性质1.在空间中,下列命题正确的是()A.若a∥α,b∥a,则b∥αB.a∥α,b∥α,a⊂β,b⊂β,则β∥αC.若α∥β,b∥α,则b∥βD.若α∥β,a⊂α,则a∥β2.如图,直四棱柱ABCD-A1B1C1D1的底面是梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点.求证:AC∥平面BPQ.3 .如图,在四棱锥ABCD P 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD的中点求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD[归纳领悟]1.证明直线与平面平行,一般有以下几种方法: (1)若用定义直接判定,一般用反证法; (2)用判定定理来证明,关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言叙述证明过程; (3)应用两平面平行的一个性质,即两平面平行时,其中一 个平面内的任何直线都平行于另一个平面. 2.线线平行与线面平行之间的转化体现了化归的思想方 法.考点三:平面与平面的平行与判定1.设α、β、γ为三个不同的平面,m 、n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则 m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题. ①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ.2.(2011·苏州模拟) 如图所示,在正方体ABCD -A 1B 1C 1D 1中,求证平面AB 1 D 1∥平面C 1BD ;A3. 如图所示,在直四棱柱ABCD-A1B1C1D1中,底面是正方形,E、F、G分别是棱B1B、D1D、DA的中点.求证:平面AD1E∥平面BGF;变式:条件变为E、F、G满足“DF∶D1F=1∶2,DG∶DA=1∶3,BE∶BB1=2∶3”,求证平面AD1E∥平面BGF.[归纳领悟]判定平面与平面平行的方法:1.利用定义2.利用面面平行的判定定理3.利用面面平行的判定定理的推论4.面面平行的传递性(α∥β,β∥γ⇒α∥γ)5.利用线面垂直的性质(l⊥α,l⊥β⇒α∥β)♥感悟真题♥1.(2010·山东高考)在空间中,下列命题正确的是()A.平行直线的平行投影重合 B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行 D.垂直于同一平面的两条直线平行2.(2010·浙江高考)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m3.(2010·浙江高考第Ⅰ问)如图,在平行四边形ABCD中,AB=2BC,∠ABC =120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.求证:BF∥平面A′DE;♥限时训练♥(时间60分钟,满分80分)一、选择题(共6个小题,每小题5分,满分30分)1.(2011·滁州模拟)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α2.(2011·江南十校)已知a、b、l表示三条不同的直线,α、β、γ表示三个不同的平面,有下列四个命题:①若α∩β=a,β∩γ=b且a∥b,则α∥γ;②若a、b相交,且都在α、β外,a∥α,a∥β,b∥α,b∥β,则α∥β;③若α⊥β,α∩β=a,b⊂β,a⊥b,则b⊥α;④若a⊂α,b⊂α,l⊥a,l⊥b,则l⊥α.其中正确的是()A.①②B.②③C.①④D.③④3.下列命题正确的是()A.直线a与平面α不平行,则直线a与平面α内的所有直线都不平行B.如果两条直线在平面α内的射影平行,则这两条直线平行C.垂直于同一直线的两个平面平行D.直线a与平面α不垂直,则直线a与平面α内的所有直线都不垂直4.给出下列命题:①若直线a∥直线b,且直线a∥平面α,则直线b与平面α的位置关系是平行或直线b在平面α内;②直线a∥平面α,平面α内有n条直线交于一点,那么这n条直线中与直线a平行的直线有且只有一条;③a∥α,b、c⊂α,a∥b,b⊥c,则有a⊥c;④过平面外一点只能引一条直线与这个平面平行;其中错误的个数是()A.0 B.1C.2 D.35.(2010·无锡一模)下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1 B.2C.3 D.46.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等二、填空题(共3个小题,每小题5分,满分15分)7.已知m 、n 是不同的直线,α、β是不重合的平面,给出下列命题: ①若m ∥α,则m 平行于平面α内的无数条直线; ②若α∥β,m ⊂α,n ⊂β,则m ∥n ; ③若m ⊥α,n ⊥β,m ∥n ,则α∥β; ④若α∥β,m ∥α,则m ∥β.其中,真命题的序号是________(写出所有真命题的序号).8.正方体ABCD -A 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为 ________.9.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则当M 满足条件________________时,有MN ∥平面B 1BDD 1.三、解答题(共3个小题,满分35分)10.如图所示,在四棱锥S—ABCD中,底面ABCD为平行四边形,E,F分别为AB,SC的中点.求证:EF∥平面SAD.11.如图,已知α∥β,异面直线AB、CD和平面α、β分别交于A、B、C、D四点,E、F、G、H分别是AB、BC、CD、DA的中点.求证:(1)E、F、G、H共面;(2)平面EFGH∥平面α.12.(2011·山东济南)如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.;(1)证明:BD⊥AA(2)证明:平面AB1C∥平面DA1C1;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.。

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质1.平面与平面的位置关系有相交、平行两种情况.2.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

符号语言:b b a a a ααα⊄⎫⎪⊂⇒⎬⎪⎭,,(3)其他判定方法:α∥β;a ⊂α⇒a ∥β.3.直线和平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

符号语言:.a a a l l αβαβ⎫⎪⊂⇒⎬⎪⋂⎭,,=推论:直线与平面平行,则直线上的点到平面的距离都相等。

4.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

符号语言:b b b a a a αααβββ⊂⊂⎫⎪⋂⇒⎬⎪⎭,,=P ,,;(3)推论:两个平面上分别有两条相交直线分别平行,则这两个平面平行。

符号语言:b M b b M b .b b a a a a a a αβαβ⋂⊂⎫⎪'⋂''''⊂⇒⎬⎪''⎭=,,,=,,,,5.两个平面平行的性质定理:如果两个平面同时和第三个平面相交,那么它们的交线平行。

符号语言:b .a a αβγαγβ⎫⎪⋂⇒⎬⎪⋂⎭,=,=推论:两平面平行,则其中一个平面上的任一条直线都与另一个平面平行。

即,a a αββα⎫⇒⎬⊂⎭,;6.与垂直相关的平行的判定(1)直线平行b b a a αα⊥⊥⇒ ,; (2)平面平行.a a αβαβ⊥⊥⇒ ,7.平行问题的转化关系:8.两个防范(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.课后练习:1.下面命题中正确的是( ).①若一个平面内有两条直线与另一个平面平行,则这两个平面平行; ②若一个平面内有无数条直线与另一个平面平行,则这两个平面平行; ③若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;④若一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行.A .①③B .②④C .②③④D .③④2.平面α∥平面β,a ⊂α,b ⊂β,则直线a ,b 的位置关系是( ).A .平行B .相交C .异面D .平行或异面3.在空间中,下列命题正确的是( ).A .若a ∥α,b ∥a ,则b ∥αB .若a ∥α,b ∥α,a ⊂β,b ⊂β,则β∥αC .若α∥β,b ∥α,则b ∥βD .若α∥β,a ⊂α,则a ∥β4.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是().A.m∥n,m⊥α⇒n⊥αB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.m⊂α,n⊂α,m∥β,n∥β⇒α∥β5如图,在四棱锥P ABCD中,底面ABCD为平行四边形,O为AC的中点,M 为PD的中点.求证:PB∥平面ACM.【例2】►如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B;。

5.4直线平面平行的判定及其性质

5.4直线平面平行的判定及其性质

5.4 直线、平面平行的判定及其性质1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)∵l ∥a ,a ⊂α,l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b文字语言图形语言符号语言 判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b考点一 直线与平面平行的判定与性质(题点多变型考点——多角探明)平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行是高考热点,多出现在解答题中.常见的命题角度有:(1)证明直线与平面平行;(2)线面平行性质定理的应用. 例1.已知平面α∥平面β,直线a ⊂α,有下列命题:①a 与β内的所有直线平行;②a 与β内无数条直线平行;③a 与β内的任意一条直线都不垂直.其中真命题的序号是________.变式1-1.在正方体ABCD -A 1B 1C 1D 1中,点E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.变式1-2.如果直线a ∥平面α,那么直线a 与平面α内的( ) A .一条直线不相交 B .两条直线不相交 C .无数条直线不相交 D .任意一条直线都不相交变式1-3.(2015·北京高考)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件角度一:证明直线与平面平行例2.(2016·全国丙卷)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求四面体N-BCM的体积.角度二:线面平行性质定理的应用例3.(2017·瑞安期中)已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.变式3-1.如图,四棱锥P-ABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.考点二平面与平面平行的判定与性质(重点保分型考点——师生共研)例4.如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.《5.4 直线、平面平行的判定及其性质》1.若两条直线都与一个平面平行,则这两条直线的位置关系是()A.平行B.相交C.异面D.以上都有可能2.(2017·合肥模拟)在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在平面内D.不能确定3.(2017·绍兴期中考试)已知两个不重合的平面α,β,给定以下条件:①α内任意不共线的三点到β的距离都相等;②l,m是α内的两条直线,且l∥β,m∥β;③l,m是两条异面直线,且l∥α,l∥β,m∥α,m∥β;其中可以判定α∥β的是()A.①B.②C.①③D.③4.在空间中,已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0 B.1 C.2 D.35.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l26.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③B.②③C.①④D.②④7.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在平面平行;④当容器倾斜如图所示时,BE·BF是定值.其中正确命题的个数是()A.1 B.2 C.3 D.48.在三棱锥S -ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为()A.452B.4532C .45D .45 3 9.如图,α∥β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.10.如图所示,在四面体ABCD 中,点M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.11.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).12.正方体ABCD -A 1B 1C 1D 1的棱长为1 cm ,过AC 作平行于对角线BD 1的截面,则截面面积为________cm 2;其周长为________cm.13.如图,在直三棱柱ABC -A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC=4,M 为AA 1的中点,点P 为BM 的中点,Q 在线段CA 1上,且A 1Q =3QC ,则PQ 的长度为________.14.(2016·嘉兴一模)如图所示,在几何体P -ABCD 中,四边形ABCD 为矩形,平面ABCD ⊥平面P AB ,且平面P AB 为正三角形,若AB =2,AD =1,E ,F 分别为AC ,BP 中点.(1)求证EF ∥平面PCD ;(2)求直线BP 与平面P AC 所成角的正弦值.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A 的中点.求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H .14.(2016·嘉兴一模)如图所示,在几何体P-ABCD中,四边形ABCD为矩形,平面ABCD ⊥平面PAB,且平面PAB为正三角形,若AB=2,AD=1,E,F分别为AC,BP中点.(1)求证EF∥平面PCD;(2)求直线BP与平面PAC所成角的正弦值.解:(1)证明:连接DB,与AC交于点E,在△DPB中,∵E,F分别是DB,PB中点,∴EF∥DP.又∵DP⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD,(2)取AP中点H,连接HC,HB.过B作BO⊥HC,垂足为O,连接OP.∵平面ABCD⊥平面APB,且平面ABCD∩平面APB=AB,又BC⊥AB,∴BC⊥平面APB,∴BC⊥AP.又∵AB=BP,∴BH⊥AP,且BC∩BH=B,∴AP⊥平面CHB,∴AP⊥BO.又AP∩HC=H,∴BO⊥平面PAC,∴∠BPO就是直线BP与平面PAC所成角.由已知得,BO=32,BP=2,∴sin∠BPO=34,即直线BP与平面PAC所成角的正弦值为3 4.15.如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明:(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,∴HD 1∥MC 1.又∵MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O ,则OE 綊12DC ,又D 1G 綊12DC ,∴OE 綊D 1G ,∴四边形OEGD 1是平行四边形, ∴GE ∥D 1O .又GE ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D , ∴EG ∥平面BB 1D 1D . (3)由(1)知BF ∥HD 1,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B ,∴平面BDF ∥平面B 1D 1H .。

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质[考纲传真]1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.【知识通关】1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)⎭⎬⎫l⊄αa⊂αl∥a⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎬⎫a∥αa⊂βα∩β=b⇒a∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a⊂αb⊂αa∥βb∥βa∩b=P⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎬⎫α∥βα∩γ=aβ∩γ=b⇒a∥b1.垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β. 2.垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.3.平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.4.三种平行关系的转化:【基础自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(2)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(3)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(4)若直线a与平面α内无数条直线平行,则a∥α.()[答案](1)×(2)×(3)√(4)×2.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥αD3.平面α与平面β平行的条件可以是()A.α内有无数条直线都与β平行B.直线a∥α,a∥β,且直线a不在α内,也不在β内C.α内的任何直线都与β平行D.直线a在α内,直线b在β内,且a∥β,b∥αC4.已知直线l∥平面α,P∈α,则过点P且平行于直线l的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,不一定在平面α内D.有无数条,一定在平面α内B5.在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为________.平行【题型突破】与线、面平行相关命题的判定1.平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥αD2.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,则能得出AB∥平面MNP的图形的序号是()①②③④A.①③B.②③C.①④D.②④C[方法总结]与线、面平行相关命题的判定,必须熟悉线、面平行关系的各个定义、定理,特别注意定理所要求的条件是否完备,图形是否有特殊情形.直线与平面平行的判定与性质►考法1直线与平面平行的判定【例1】如图所示,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=3,F是棱PA上的一个动点,E为PD的中点,O为AC的中点.(1)证明:OE∥平面PAB;(2)若AF=1,求证:CE∥平面BDF;(3)若AF=2,M为△ABC的重心,证明FM∥平面PBC.[证明](1)由已知四边形ABCD为菱形,又O为AC的中点,所以O为BD的中点,又E为PD的中点,所以OE∥PB.又OE⊄平面PAB,PB⊂平面PAB,所以OE∥平面PAB.(2)过E作EG∥FD交AP于G,连接CG,FO.因为EG∥FD,EG⊄平面BDF,FD⊂平面BDF,所以EG∥平面BDF,因为底面ABCD是菱形,O是AC的中点,又因为E为PD的中点,所以G为PF的中点,因为AF=1,PA=3,所以F为AG的中点,所以OF∥CG.因为CG⊄平面BDF,OF⊂平面BDF,所以CG∥平面BDF.又EG∩CG=G,EG,CG⊂平面CGE,所以平面CGE∥平面BDF,又CE⊂平面CGE,所以CE∥平面BDF.(3)连接AM,并延长,交BC于点Q,连接PQ,因为M为△ABC的重心,所以Q为BC中点,且AM MQ=21.又AF=2,所以AFFP=21.所以AMMQ=AFFP,所以MF∥PQ,又MF⊄平面PBC,PQ⊂平面PBC,所以FM∥平面PBC.►考法2线面平行性质定理的应用【例2】如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.[证明]∵CD∥平面EFGH,而平面EFGH∩平面BCD=EF,∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH为平行四边形,∵CD∥EF,HE∥AB,∴∠HEF为异面直线CD和AB所成的角.又∵CD⊥AB,∴HE⊥EF.∴平行四边形EFGH为矩形.[方法总结]1.证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β).,(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).2.利用判定定理判定线面平行,注意三条件缺一不可,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面找其交线.如图,四棱锥P-ABCD中,底面ABCD为矩形,F是AB的中点,E 是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.[解](1)证明:连接BD,设BD交AC于O,连接EO,因为ABCD为矩形,所以O为BD的中点,又E为PD的中点,所以EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(2)PC的中点G即为所求的点.证明如下:连接GE,FG,∵E为PD的中点,∴EG綊12CD;又F是AB的中点,∴AF綊12CD,∴AF綊EG,∴四边形AFGE为平行四边形,∴FG∥AE,又FG⊄平面AEC,AE⊂平面AEC,∴FG∥平面AEC.平面与平面平行的判定与性质【例3】如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.[证明](1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,则A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.[母题探究](1)在本例条件下,若点D为BC1的中点,求证:HD∥平面A1B1BA.(2)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.[证明](1)如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B.又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.(2)如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1,又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1.又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.[方法总结]证明面面平行的常用方法(1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.[证明](1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.【真题链接】(2016·全国卷Ⅲ节选)如图所示,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.证明:MN∥平面PAB.[证明]由已知得AM=23AD=2.取BP的中点T,连接AT,TN,由N为PC的中点知TN∥BC,TN=12BC=2.又AD∥BC,故TN綊AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为MN⊄平面PAB,AT⊂平面PAB,所以MN∥平面PAB.。

高中数学专题-直线、平面平行的判定及其性质

高中数学专题-直线、平面平行的判定及其性质

直线、平面平行的判定及其性质一、线线平行的证明方法(一)利用平行四边形;(二)利用三角形或梯形的中位线或平移;(三)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行;(线面平行的性质定理)(四)如果两个平行平面同时和第三个平面相交,那么它们的交线平行;(面面平行的性质定理)(五)如果两条直线垂直于同一个平面,那么这两条直线平行;(线面垂直的性质定理)(六)平行于同一条直线的两条直线平行;(七)夹在两个平行平面之间的平行线段相等。

(需证明)二、线面平行的证明方法(一)定义法:直线与平面没有公共点;(二)如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;(线面平行的判定定理)(三)两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。

三、面面平行的证明方法(一)定义法:两平面没有公共点;(二)如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(面面平行的判定定理)(三)平行于同一平面的两个平面平行;(四)经过平面外一点,有且只有一个平面和已知平面平行;(五)垂直于同一直线的两个平面平行。

相关例题1.通过“平移”再利用平行四边形的性质① 如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;② 如图,已知直角梯形ABCD 中,AB ∥CD,AB ⊥BC,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD,垂足为E,G 、F分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;③ 已知直三棱柱ABC -A1B1C1中,D, E, F 分别为AA1, CC1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C1D ⊥BC ; (Ⅱ)C1D ∥平面B1FM.DA 1AF(第1题图)④如图所示, 四棱锥P-ABCD底面是直角梯形,,,ADCDADBA⊥⊥CD=2AB, E为PC的中点, 证明://EB PAD平面;【相关点拨】①取PC的中点G,连EG.,FG,则易证AEGF是平行四边形;②取DB的中点H,连GH,HC则易证FGHC是平行四边形;③连EA,易证C1EAD是平行四边形,于是MF//EA;④取PD的中点F,连EF,AF则易证ABEF是平行四边形2.利用三角形、梯形中位线的性质①如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG。

直线与平面平行的判定及其性质

直线与平面平行的判定及其性质

课题直线、平面平行的判定及其性质一直线与平面平行的判定直线与平面平行的判定定理:如果平面外一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

定理中的三个条件,用符号语言可概括为:////ab aa bααα⊄⎫⎪⊂⇒⎬⎪⎭线线平行⇒线面平行1.判断下列命题的真假,并说明理由①如果一条直线不在平面内,则这条直线就与这个平面平行.()②过直线外一点,可以作无数个平面与这条直线平行.()③如果一直线与平面平行,则它与平面内的任何直线平行.()例1.如图所示,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN.求证:MN∥平面BCE.[证明] 方法一:作MP∥AB交BC于P,NQ∥AB交BE于Q,如图①,则MP∥NQ.因为AM=FN,所以MP=22MC=22BN=NQ.所以MP∥NQ,且MP=NQ,则四边形MNQP为平行四边形.所以MN∥PQ.又因为MN⊄平面BCE,PQ⊂平面BCE,所以MN∥平面BCE.方法二:如图②所示,连接AN并延长,交BE的延长线于G,连接CG,因为AF∥BG,AM=NF.所以 . 所以MN∥CG.因为MN⊄平面BCE,CG⊂平面BCE,所以MN∥平面BCE.1.三棱台ABC-A1B1C1中,直线AB与平面A1B1C1的位置关系是( )A.相交B.平行 C.在平面内 D.不确定2.能保证直线a与平面α平行的条件是()A.a⊄α,b⊂α,a∥b B.b⊂α,a∥bC.b⊂α,c∥α,a∥b,a∥c D.b⊂α,A∈a,B∈a,C∈b,D∈b,且AC=BD3、几何体-E ABCD是四棱锥,△ABD为正三角形,,=⊥CB CD EC BD.O为BD中点、N是AB中点。

(Ⅰ)求证:=BE DE. (Ⅱ)若∠120=︒BCD,M为线段AE的中点,求证:平面MND∥平面BEC.【证明】(Ⅰ)因为BD的中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,又已知EC⊥BD,所以BD⊥平面OCE.所以BD⊥OE,即OE是BD的垂直平分线,所以BE=DE.(II)取AB的中点N,连接MN,DN,因为M是AE的中点,所以MN∥BE,因为△ABD是等边三角形,所以DN⊥AB.由∠BCD=120°知,∠CBD=30°,所以∠ABC=60°+30°=90°,即BC⊥AB,所以ND∥BC,所以平面MND∥平面BEC.二平面与平面平行的判定平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.,////,//⊂⊂⎫⎪=⇒⎬⎪⎭Ia ba b Pa bβββααα线面平行⇒面面平行规律总结:判断两平面平行的方法有三种:(1)利用定义.(2)利用两平面平行的判定定理.(3)面面平行的传递性.下列命题正确的是( )①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行;②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行;③一个平面内任何直线都与另外一个平面平行,则这两个平面平行;④一个平面内有两条相交直线都与另外一个平面平行,则这两个平面平行.A.①③B.②④ C.②③④ D.③④例1 在正方体ABCD-A′B′C′D′中. 求证:平面AB′D′∥平面BC′D.例2 在三棱锥P-ABC中,点D、E、F分别是△PAB、△PBC、△PAC的重心,求证:平面DEF//平面ABC.1.判断题①一平面内的两相交直线分别平行于另一平面内的两相交直线,那么这两个平面平行. ( )②如果两平面同垂直于一直线,那么这两个平面平行. ( )③平面a上,不共线的三点(在B的同侧)到平面B间的平行线段相等,则a//B.( )④平面a内不在一直线上三点(在B同侧)到B的距离相等,则a//B.( )2.平面和平面平行的条件可以是()A.α内有无穷多条直线都与已知平面平行B.直线a∥α,a∥β,且直线a不在α内,也不在β内C.直线aα⊂,直线bβ⊂,且a∥β,b∥α D.α内的任何一条直线都与β平行3.下列命题正确的是()A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行三 直线与平面平行的性质直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.符号语言: 线面平行⇒ 线线平行作用:①作平行线的方法; ②判定直线与直线平行的重要依据. 关键:寻找平面与平面的交线.例1.已知α⊄a 且//a α,点A 是α另一侧的点,B 、C 、D a ∈,线段AB 、AC 、AD 交α于E 、F 、G ,若BD=4,CF=4,AF=5,求EG 的长.1、直线a ∥平面α,平面α内有n 条交于一点的直线,那么这n 条直线和直线a 平行的 ( )A.至少有一条B.至多有一条C.有且只有一条D.不可能有2.如下图所示,长方体ABCD -A ′B ′C ′D ′中,E ,F 分别为AA ′,BB ′的中点,过EF 的平面EFGH 分别交BC 和AD 于G ,H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行或异面3.如图所示,直线a ∥平面α,A ∉α,并且a 和A 位于平面α的两侧,点B ,C ∈a ,AB ,AC 分别交平面α于点E ,F ,若BC =4,CF =5,AF =3,则EF =________.【解析】由于点A 不在直线a 上,则直线a 和点A 确定一个平面β,所以α∩β=EF .因为a ∥平面α,a ⊂平面β,所以EF ∥a .所以EF BC =AF AC .所以EF =AF ·BC AC =3×45+3=32.4.在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD ∥BC , E 是DD1的中点,F 是平面B1C1E 与直线AA1的交点.证明: EF ∥A1D1.a β⊂//a αb αβ=//.a b四平面与平面平行的性质平面和平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.符号语言:////a a bbαβαγβγ⎫⎪=⇒⎬⎪=⎭II简记:面面平行线线平行作用:①作平行线的方法;②判定直线与直线平行的重要依据.关键:寻找两平行平面与第三个平面的交线.如果平面α平行于平面β,那么( )A.平面α内的任意直线都平行于平面β B.平面α内仅有两条相交直线平行于平面βC.平面α内的任意直线都平行于平面β内的任意直线 D.平面α内的直线与平面β内的直线不能垂直例1、如图,设平面α∥平面β,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C∈α,B、D∈β. 求证:MN∥α.1.平面α与圆台的上、下底面分别相交于直线m,n,则m,n的位置关系是( ) A.相交B.异面C.平行D.平行或异面2.已知α∥β,a⊂α,B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线 B.只有两条与a平行的直线C.存在无数条与a平行的直线 D.存在唯一一条与a平行的直线βαEN MDBCA。

高中数学直线、平面平行的判定与性质

高中数学直线、平面平行的判定与性质

例2 如图所示,正方体ABCD-A1B1C1D1中,M,N分别为A1B1,A1D1 的中点,E,F分别为B1C1,C1D1的中点.
(1)求证:四边形BDFE为梯形; (2)求证:平面AMN∥平面EFDB.
解题导引
1 (1)在△B1D1C1中得EF∥B1D1且EF= 2 B1D1 在正方体中得 1 BD������ B1D1 EF∥BD且EF= BD 四边形BDFE为梯形 2
证明 证法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接 MN. ∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD. 又AP=DQ,∴PE=QB, 又PM∥AB∥QN, ∴ = = = ,∴ = , 又AB=DC, ∴PM������ QN,∴四边形PMNQ为平行四边形, ∴PQ∥MN. 又MN⊂平面BCE,PQ⊄平面BCE, ∴PQ∥平面BCE.§8Leabharlann 4直线、平面平行的判定与性质
知识清单
考点 直线、平面平行的判定与性质
1.判定直线与直线平行的方法
(1)平行公理:a∥b,b∥c⇒① a∥c ; (2)线面平行的性质定理:a∥β,a⊂α,α∩β=b⇒② a∥b ;
(3)面面平行的性质定理:α∥β,γ∩α=a,γ∩β=b⇒③ a∥b ;
(4)垂直于同一个平面的两条直线④ 平行 ; (5)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交 线平行.
∴ = ,
∴MQ∥AD,又AD∥BC, ∴MQ∥BC,∴MQ∥平面BCE,又PM∩MQ=M,
∴平面PMQ∥平面BCE,
又PQ⊂平面PMQ,∴PQ∥平面BCE.
方法 2 判定或证明面面平行的方法
1.利用面面平行的定义(此法一般伴随反证法证明). 2.利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于 另一个平面,那么这两个平面平行. 3.证明两个平面都垂直于同一条直线. 4.证明两个平面同时平行于第三个平面.

直线、平面平行的判定与性质

直线、平面平行的判定与性质

一、基础知识1.直线与平面平行的判定定理和性质定理⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β. 二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面. (2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考法(一)直线与平面平行的判定[典例]如图,在直三棱柱ABC-AB1C1中,点M,N分别为线段A1B,AC1的中点.求证:1MN∥平面BB1C1C.[证明]如图,连接AC.在直三棱柱ABC-A1B1C1中,侧面AA1C1C为平行1四边形.又因为N为线段AC1的中点,所以A1C与AC1相交于点N,即A1C经过点N,且N为线段A1C的中点.因为M为线段A1B的中点,所以MN∥BC.又因为MN⊄平面BB1C1C,BC⊂平面BB1C1C,所以MN∥平面BB1C1C.考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCD-AB1C1D1中,E为线段AD上的任意一1与平面BB1D交于FG.点(不包括A,D两点),平面CEC求证:FG∥平面AA1B1B.[证明]在四棱柱ABCD -AB1C1D1中,BB1∥CC1,BB1⊂平面BB1D,1CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.如图,在四棱锥P-ABCD中,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN .∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB ||=MN ,∴四边形ABMN 为平行四边形,∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC ,又AB ∥CD ,AB =23CD ,∴AB ||=DN ,∴四边形ABND 为平行四边形,∴BN ∥AD . ∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D ,∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和P A 作平面P AHG 交平面BMD 于GH .求证:P A ∥GH .证明:如图所示,连接AC 交BD 于点O ,连接MO , ∵四边形ABCD 是平行四边形,∴O 是AC 的中点,又M 是PC 的中点,∴P A ∥MO .又MO ⊂平面BMD ,P A ⊄平面BMD , ∴P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , P A ⊂平面P AHG , ∴P A ∥GH .考点二 平面与平面平行的判定与性质[典例] 如图,在三棱柱A BC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证: (1)B ,C ,H ,G 四点共面; (2)平面EF A 1∥平面BCHG .[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G||=EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.(变结论)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN .又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG .又M 为AB 中点, 所以MN 为△ABD 的中位线,所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG ,所以BD ∥平面MNG . 又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( )A .平行B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF ,所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD -A1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题: ①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值.其中正确命题的个数是( )A .1B .2C .3D .4解析:选C 由题图,显然①是正确的,②是错误的;对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面).∴③是正确的;对于④,∵水是定量的(定体积V ),∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________. 解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CDAB ,∴AB =P A ×CD PC =5×12=52. 答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P -ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:89.如图,E ,F ,G ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明:(1)如图,取B 1D 1的中点O ,连接GO ,OB , 因为OG ||=12B 1C 1,BE ||=12B 1C 1,所以BE ||=OG ,所以四边形BEGO 为平行四边形,故OB ∥EG ,因为OB ⊂平面BB 1D 1D , EG ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1.连接HB ,D 1F ,因为BH 綊D 1F , 所以四边形HBFD 1是平行四边形, 故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B , 所以平面BDF ∥平面B 1D 1H .10.(2019·南昌摸底调研)如图,在四棱锥P -ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P -ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点,∴MN ∥P A , 又MN ⊄平面P AB ,P A ⊂平面P AB ,∴MN ∥平面P AB . 在Rt △ACD 中,∠CAD =60°,CN =AN ,∴∠ACN =60°. 又∠BAC =60°,∴CN ∥AB .∵CN ⊄平面P AB ,AB ⊂平面P AB ,∴CN ∥平面P AB .又CN ∩MN =N ,∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离. ∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P -ABM 的体积V =V M -P AB =V C -P AB =V P -ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)求证:MN ∥平面P AB ; (2)求四面体N -BCM 的体积.解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE . ∵CB =CD ,∴CO ⊥BD . 又∵EC ⊥BD ,EC ∩CO =C , ∴BD ⊥平面OEC ,∴BD ⊥EO .又∵O为BD中点.∴OE为BD的中垂线,∴BE=DE.(2)取BA的中点N,连接DN,MN.∵M为AE的中点,∴MN∥BE.∵△ABD为等边三角形,N为AB的中点,∴DN⊥AB.∵∠DCB=120°,DC=BC,∴∠OBC=30°,∴∠CBN=90°,即BC⊥AB,∴DN∥BC.∵DN∩MN=N,BC∩BE=B,∴平面MND∥平面BEC.又∵DM⊂平面MND,∴DM∥平面BEC.。

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质考点梳理1.直线与平面平行(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行).即:a⊄α,b⊂α,且a∥b⇒a∥α.其他判定方法;α∥β,a⊂α⇒a∥β.(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(线面平行⇒线线平行).即:a∥α,a⊂β,α∩β=l⇒a∥l.2.平面与平面平行(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(线面平行⇒面面平行).即:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.即:α∥β,γ∩α=a,γ∩β=b⇒a∥b.一个转化关系平行问题的转化关系两点提醒(1)在推证线面平行时,必须满足三个条件:一是直线a在已知平面外;二是直线b在已知平面内;三是两直线平行.(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则该直线与交线平行.考点自测1.若两条直线都与一个平面平行,则这两条直线的位置关系是().A.平行B.相交C.异面D.以上均有可能解析借助长方体模型易得.答案 D2.在空间中,下列命题正确的是().A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行解析选项A,平行直线的平行投影可以依然是两条平行直线;选项B,两个相交平面的交线与某一条直线平行,则这条直线平行于这两个平面;选项C,两个相交平面可以同时垂直于同一个平面;选项D,正确.答案 D3.(2013·长沙模拟)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( ).A .b ⊂αB .b ∥αC .b ⊂α或b ∥αD .b 与α相交或b ⊂α或b ∥α解析 可以构造一草图来表示位置关系,经验证,当b 与α相交或b ⊂α或b ∥α时,均满足直线a ⊥b ,且直线a ∥平面α的情况,故选D.答案 D4.在空间中,下列命题正确的是( ).A .若a ∥α,b ∥a ,则b ∥αB .若a ∥α,b ∥α,a ⊂β,b ⊂β,则β∥αC .若α∥β,b ∥α,则b ∥βD .若α∥β,a ⊂α,则a ∥β解析 若a ∥α,b ∥a ,则b ∥α或b ⊂α,故A 错误;由面面平行的判定定理知,B 错误;若α∥β,b ∥α,则b ∥β或b ⊂β,故C 错误.答案 D5.在正方体ABCDA 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析 如图.连接AC 、BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案 平行考向一 线面平行的判定及性质【例1】►(2012·辽宁)如图,直三棱柱ABCA ′B ′C ′,∠BAC=90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥A ′MNC 的体积.(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高)[审题视点] (1)连接AB ′,AC ′,在△AC ′B ′中由中位线定理可证MN ∥AC ′,则线面平行可证;此问也可以应用面面平行证明.(2)证A ′N ⊥平面NBC ,故V A ′MNC =V A ′NBC -V MNBC =12V A ′NBC ,体积可求.(1)证明 法一 连接AB ′,AC ′,如图由已知∠BAC =90°,AB =AC ,三棱柱ABCA ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′.法二 取A ′B ′的中点P ,连接MP ,NP ,AB ′,如图,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′. 而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′.(2)解 法一 连接BN ,如图由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′MNC =V NA ′MC =12V NA ′BC =12V A ′NBC =16.法二 V A ′MNC =V A ′NBC -V MNBC =12V A ′NBC =16.(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.注意说明已知的直线不在平面内.(2)证明直线与平面平行的方法:①利用定义结合反证;②利用线面平行的判定定理;③利用面面平行的性质.【训练1】 如图,在四棱锥P ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点.(1)证明:EF ∥平面P AD ; (2)求三棱锥EABC 的体积.(1)证明 在△PBC 中,E ,F 分别是PB ,PC 的中点, ∴EF ∥BC .又BC ∥AD ,∴EF ∥AD . 又∵AD ⊂平面P AD ,EF ⊄平面P AD , ∴EF ∥平面P AD .(2)解 连接AE ,AC ,EC ,过E 作EG ∥P A 交AB 于点G ,则EG ⊥平面ABCD ,且EG =12P A .在△P AB 中,AP =AB ,∠P AB =90°,BP =2, ∴AP =AB =2,EG =22. ∴S △ABC =12AB ·BC =12×2×2= 2.∴V EABC =13S △ABC ·EG =13×2×22=13.考向二 面面平行的判定和性质【例2】►(2013·济南调研) 如图,在正方体ABCDA 1B 1C 1D 1中,M 、N 、P 分别为所在边的中点.求证:平面MNP ∥平面A 1C 1B .[审题视点] 利用面面平行判定定理的证明即可. 证明如图,连接D 1C ,则MN 为△DD 1C 的中位线,∴MN ∥D 1C . ∵D 1C ∥A 1B ,∴MN ∥A 1B . 同理可证,MP ∥C 1B .而MN 与MP 相交,MN ,MP 在平面MNP 内,A 1B ,C 1B 在平面A 1C 1B 内, ∴平面MNP ∥平面A 1C 1B .要证面面平行需证线面平行,要证线面平行需证线线平行,因此“面面平行”问题最终转化为“线线平行”问题来解决.【训练2】 如图,在三棱柱ABCA 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EF A 1∥平面BCHG .证明 (1)∵GH 是△A 1B 1C 1的中位线,∴GH ∥B 1C 1. 又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面.(2)∵E 、F 分别为AB 、AC 的中点,∴EF ∥BC ,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.考向三线面平行中的探索性问题【例3】►如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.[审题视点] 取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.解存在点E,且E为AB的中点.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1.∵AB的中点为E,连接EF,则EF∥AB1.B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在.【训练3】如图,在四棱锥P ABCD中,底面是平行四边形,P A⊥平面ABCD,点M、N分别为BC、P A的中点.在线段PD上是否存在一点E,使NM∥平面ACE?若存在,请确定点E的位置;若不存在,请说明理由.解在PD上存在一点E,使得NM∥平面ACE.证明如下:如图,取PD 的中点E ,连接NE ,EC ,AE , 因为N ,E 分别为P A ,PD 的中点, 所以NE 綉12AD .又在平行四边形ABCD 中,CM 綉12AD .所以NE 綉MC ,即四边形MCEN 是平行四边形.所以NM 綉EC .又EC ⊂平面ACE ,NM ⊄平面ACE ,所以MN ∥平面ACE , 即在PD 上存在一点E ,使得NM ∥平面ACE .规范解答13——如何作答平行关系证明题【命题研究】 通过近三年的高考试题分析,对线面平行、面面平行的证明一直受到命题人的青睐,多以多面体为载体,证明线面平行和面面平行,题型为解答题,题目难度不大.【真题探究】► (本小题满分12分)(2012·山东)如图,几何体EABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . [教你审题] 一审 取BD 的中点O ,证明BD ⊥EO ;二审 取AB 中点N ,证明平面DMN ∥平面BEC ;找到平面BCE 和平面ADE 的交线EF ,证明DM ∥EF .[规范解答] 证明 (1)图(a)如图(a),取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,(2分)又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,(4分)因此BD⊥EO,又O为BD的中点,所以BE=DE.(6分)(2)法一如图(b),取AB的中点N,连接DM,DN,MN,图(b)因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC.(8分)又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.(10分)又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC. 又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.(12分)法二如图(c),延长AD,BC交于点F,连接EF.图(c)因为CB=CD,∠BCD=120°,所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .(8分)又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点,因此DM ∥EF .(10分)又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .(12分)[阅卷老师手记] (1)对题目已知条件分析不深入,不能将已知条件与所证问题联系起来; (2)识图能力差,不能观察出线、面之间的隐含关系,不能作出恰当的辅助线或辅助面; (3)答题不规范,跳步、漏步等.证明线面平行问题的答题模板(一)第一步:作(找)出所证线面平行中的平面内的一条直线; 第二步:证明线线平行;第三步:根据线面平行的判定定理证明线面平行; 第四步:反思回顾.检查关键点及答题规范. 证明线面平行问题的答题模板(二)第一步:在多面体中作出要证线面平行中的线所在的平面;第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行; 第四步:转化为线面平行; 第五步:反思回顾.检查答题规范. 【试一试】如图,在几何体ABCDEFG 中,下底面ABCD 为正方形,上底面EFG 为等腰直角三角形,其中EF ⊥FG ,且EF ∥AD ,FG ∥AB ,AF ⊥面ABCD ,AB =2FG =2,BE =BD ,M 是DE 的中点.(1)求证:FM ∥平面CEG ; (2)求几何体GEFC 的体积. (1)证明取CE 的中点N ,连接MN ,GN ,则MN 綉FG 綉12AB .故四边形MNGF 为平行四边形. ∴MF ∥GN .又MF ⊄平面CEG ,GN ⊂平面CEG , ∴FM ∥平面CEG .(2)解 在Rt △ABD 中,AB =AD =2,BD =22, ∴BE =2 2.∵AF ⊥平面ABCD ,AB ⊂平面ABCD , ∴AF ⊥AB .在正方形ABCD 中,AB ⊥AD . 又AD ∩AF =A ,∴AB ⊥平面ADEF .又AE ⊂平面ADEF ,∴AB ⊥AE . ∴在Rt △ABE 中,AE =8-4=2.又在Rt △AEF 中,EF =1,∴AF =4-1= 3. 又EF ∥AD ,EF ⊄平面ABCD ,AD ⊂平面ABCD , ∴EF ∥平面ABCD .同理由FG ∥AB ,可得FG ∥平面ABCD .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG . ∴平面EFG ∥平面ABCD . 又AF ⊥平面ABCD ,AF =3, ∴点C 到平面EFG 的距离等于3, ∴V GEFC =V CEFG =13×S △EFG ·d=13×⎝⎛⎭⎫12×1×1×3=36A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是().A.l∥αB.l⊥αC.l与α相交但不垂直 D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D2.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是().A.AB∥CD B.AD∥CB C.AB与CD相交D.A,B,C,D四点共面解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.答案 D3.(2012·北京模拟)以下命题中真命题的个数是().①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b⊂α,则a∥α;④若直线a∥b,b⊂α,则a平行于平面α内的无数条直线.A.1 B.2 C.3 D.4解析命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③直线a可以在平面α内,不正确;命题④正确.答案 A4.(2013·汕头质检)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是().A.若m、n都平行于平面α,则m、n一定不是相交直线B.若m、n都垂直于平面α,则m、n一定是平行直线C.已知α、β互相平行,m、n互相平行,若m∥α,则n∥βD.若m、n在平面α内的射影互相平行,则m、n互相平行解析A中,m、n可为相交直线;B正确;C中,n可以平行β,也可以在β内;D中,m、n也可能异面.故正确的命题是B.答案 B二、填空题(每小题5分,共10分)5.过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABCA1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 66.α、β、γ是三个平面,a 、b 是两条直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析 ①中,a ∥γ,a ⊂β,b ⊂β,β∩γ=b ⇒a ∥b (线面平行的性质).③中,b ∥β,b ⊂γ,a ⊂γ,β∩γ=a ⇒a ∥b (线面平行的性质).答案 ①③三、解答题(共25分)7.(12分)如图,在四面体ABCD 中,F 、E 、H 分别是棱AB 、BD 、AC 的中点,G 为DE 的中点.证明:直线HG ∥平面CEF .证明 法一 如图,连接BH ,BH 与CF 交于K ,连接EK .∵F 、H 分别是AB 、AC 的中点,∴K 是△ABC 的重心,∴BK BH =23.又据题设条件知,BE BG =23,∴BK BH =BE BG ,∴EK ∥GH .∵EK ⊂平面CEF ,GH ⊄平面CEF ,∴直线HG ∥平面CEF .法二如图,取CD 的中点N ,连接GN 、HN .∵G 为DE 的中点,∴GN ∥CE .∵CE ⊂平面CEF ,GN ⊄平面CEF ,∴GN ∥平面CEF .连接FH ,EN∵F 、E 、H 分别是棱AB 、BD 、AC 的中点, ∴FH 綉12BC ,EN 綉12BC ,∴FH 綉EN ,∴四边形FHNE 为平行四边形,∴HN ∥EF . ∵EF ⊂平面CEF ,HN ⊄平面CEF ,∴HN ∥平面CEF .HN ∩GN =N ,∴平面GHN ∥平面CEF .∵GH ⊂平面GHN ,∴直线HG ∥平面CEF .8.(13分)如图,已知ABCDA 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面;(2)求证:平面A 1GH ∥平面BED 1F .证明 (1)∵AE =B 1G =1,∴BG =A 1E =2,∴BG =A 1E ,∴A 1G =BE .又同理,C 1F 綉B 1G ,∴四边形C 1FGB 1是平行四边形, ∴FG 綉C 1B 1綉D 1A 1,∴四边形A 1GFD 1是平行四边形. ∴A 1G 綉D 1F ,∴D 1F 綉EB ,故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°,∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG , ∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G , FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
E、F分别是 AB,AD的中点. E
D
求证:EF∥平面BCD.
B
C
分析:要证明线面平行只需证明线线平行,即
在平面BCD内找一条直线 平行于EF,由已知
的条件怎样找这条直线?
7
定理的应用
A
例1. 如图,空间四边形ABCD中,
F
E、F分别是 AB,AD的中点. E
D
求证:EF∥平面BCD.
B
证明:连结行的判定定理:
平面外的一条直线与此平面内的一条直 线平行,则该直线与此平面平行 .
(线线平行 线面平行)
a
符号表示:
a
b
b
a //
a // b
4
感受校园生活中线面平行的例子:
天花板平面
5
感受校园生活中线面平行的例子:
球场地面
6
定理的应用
A
例1. 如图,空间四边形ABCD中,
A1
D1
一条直线与BD1平行.根据
E
已知条件应该怎样考虑辅
C1 B1
助线?
D
C
O
A
B
14
巩固练习:
如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,
求证:BD1//平面AEC.
证明:连结BD交AC于O,连结EO.
D1
C1
∵O 为矩形ABCD对角线的交点, A1
B1
∴DO=OB,
E
又∵DE=ED1,
与 平行;× (3)平行于同一直线的两个平面平行; ×
(4)两个平面分别经过两条平行直线,这两个平面平
行; ×
(5)过已知平面外一条直线,必能作出与已知平面平
行的平面.×
26
例1:已知正方体ABCD-A1B1C1D1,求证:平面 AB1D1//平面C1BD
证明:因为ABCD-A1B1C1D1为正方体, 所以 D1C1∥A1B1,D1C1=A1B1 又AB∥A1B1,AB=A1B1, ∴D1C1∥AB,D1C1=AB, ∴D1C1BA是平行四边形, ∴D1A∥C1B,
点,F为AE的中点. 求证:AB//平面
DCF.
证明:连结OF,
B
∵ O为正方形DBCE 对角线的交点,
A
D
O
∴BO=OE,
又AF=FE,
∴AB//OF,
AB平面 DCF
OF平面 DCFAB平 // 面 DCF
AB//OF
F E
C
11
反思~领悟:
1.线面平行,通常可以转化为线线平行来处理.
2.寻找平行直线可以通过三角形的中位线、 梯形的中位线、平行线的判定等来完成。 3、证明的书写三个条件“内”、“外”、“平 行”,缺一不可。
2.2.1《直线与平面 平行的判定》
1
复习提问
直线与平面有什么样的位置关系?
1.直线在平面内——有无数个公共点;
2.直线与平面相交——有且只有一个公共点;
3.直线与平面平行——没有公共点。
a
a
a
2
探究问题,归纳结论
如图,平面 外的直线 平a行于平面
内的直线b。
(1)这两条直线共面吗?
(2)直线 a与平面 相交吗?
24
结论: 两个平面平行的判定定理:
如果一个平面内有两条相交直线都平行 于另一个平面,那么这两个平面平行
符号表示:
a,b,ab=P,a,b
图形表示:
bP a
线不在多,重在相交
25
判断下列命题是否正确,并说明理由. (1)若平面 内的两条直线分别与平面 平行,则
与 平行; ×
(2)若平面 内有无数条直线分别与平面 平行,则
a
b
a //
a / / b
线线平行
线面平行 18
复习回顾:
2. 平面与平面有几种位置关系?分别是什么?
(1)平行
(2)相交
α∥β
a
问题: 怎样判定平面与平面平行呢?
19
思考:
生活中有没有平面与平面平行的例子呢? 教室的天花板与地面给人平行的感觉, 前后两块黑板也是平行的。
观察:
(1)三角板或课本的一条边所在直线与 桌面平行,这个三角板或课本所在平面 与桌面平行吗?
以通过三角形的中位线、梯形的中位线、平 行线的判定等来完成。
16
2.2.2《平面与平面 平行的判定》
17
复习回顾:
1. 到现在为止,我们一共学习过几种判断直线 与平面平行的方法呢?
(1)定义法; (2)直线与平面平行的判定定理:
平面外一条直线与此平面内的一条直 线平行,则该直线与此平面平行.
a
b
D
C
∴BD1//EO.
A
BD 1 平面 AEC
O B
EO平面 AEC BD 1//平面 AEC
BD 1//EO
15
归纳小结,理清知识体系
1.判定直线与平面平行的方法:
(1)定义法:直线与平面没有公共点则线面平行;
(2)判定定理:(线线平行 线面平行);
a
b
a
//
a // b
2.用定理证明线面平行时,在寻找平行直线可
22
结论: (2)分两种情况讨论: 如果平面β内的两条直线是平行直线,平面α 与平面β不一定平行。如图,AD∥PQ,AD∥ 平面BCC’B’,PQ∥BCC’B’,但平面ABCD与平 面BCC’B’不平行。
如果平面β内的两条直线 Q
是相交的直线,两个平面 会不会一定平行?
P
23
直线的条数不是关键 直线相交才是关键
12
巩固练习:
1.如图,长方体ABCD-A1B1C1D1中,与AA1平行
的平面是__平__面__B__C__1_、__平__面__C__D. 1
D1 A1
C1 B1
D A
C
B
13
巩固练习:
2.如图,正方体ABCD-A1B1C1D1中,E为DD1的中点, 求证:BD1//平面AEC.
分析:要证BD1//平面 AEC即要在平面AEC内找
∵AE=EB,AF=FD
∴EF∥BD(三角形中位线性质)
EF平面 BCD BD平面 BCDEF平 // 面 BCD FE//BD
8
变式1:
1.如图,在空间四边形ABCD中,E、F分
别为AB、AD上的点,若
AE EB
AF FD
,则EF
与平面BCD的位置关系是_E_F_/_/平__面__B_C__D__.
A
F
E
D
B
C
9
变式2:
2.如图,四棱锥A—DBCE中,O
为底面正方形DBCE对角线的交
点,F为AE的中点. 求证:AB//平面
DCF.(04年天津高考)
B
A
D
O
F E
C
分析:连结OF, 可知OF为 △ABE的中位线,所以得到AB//OF.
10
变式2:
2.如图,四棱锥A—DBCE中,O
为底面正方形DBCE对角线的交
(2)三角板或课本的两条边所在直线分 别与桌面平行,情况又如何呢?
20
结论: 当三角板的两条边所在直线分别 与地面平行时,这个三角板所在 平面与地面平行。
探究:(1)平面内有一条直线与 平面平行,,平行吗? (2)平面内有两条直线与平 面平行,,平行吗?
21
结论: (1)中的平面α,β不一定 平行。如图,借助长方体模 型,平面ABCD中直线AD平行 平面BCC'B',但平面ABCD与 平面BCC'B'不平行。
相关文档
最新文档