12《小学奥数六年级竞赛必考章节精讲共36讲·小升初必备》-第12讲几何综合(一)
小升初讲座几何综合
【风雨数学小升初讲座11】几何综合几何图形是生活中物体的抽象,与生活的实际联系紧密。
几何图形从点,线,面,体四个角度来认识的。
涉及的方面有长度、角度、面积、体积等方面的内容。
常见图形有正方形、长方形、三角形、平行四边形、梯形、普通四边形、正多边形;正方体、长方体、圆柱、圆锥等。
几何图形的学习是很有趣的,许多数学家和数学爱好者都喜欢玩几何图形,其中有许许多多的奥妙呢!【题目1】计算下面图形的周长。
(单位:厘米)基本图形周长的计算,得根据这些图形的特点,第一个图是正方形,特点是四条边都相等,周长就是5×4=20厘米。
第二个图是长方形,特点是对边相等,周长就是(3+4)×2=14厘米。
经常会遇到不规则的图形,我们就要进行一些转化,再来求周长。
第三个图有点特别,将线段平移后可以拼成长方形,周长(4+5)×2=18厘米。
第四个图拼成长方形后,多两条2厘米的线段,周长(6+8)×2+2×2=32厘米。
下面这几个图形的周长又怎样求呢可得仔细想想了。
(单位:厘米)第一个图是一个圆,圆的半径知道,要计算周长怎讲做呢圆的周长=圆周率×半径×2=×2×2=厘米。
第二个图是一个半圆,计算半圆的周长要注意,除了圆周长的一半以外,还得算上直径的长度,×3+3×2=厘米。
第三个图是一个1/4 圆的扇形,1/4 圆周长和两条半径。
×4÷2+2×4=厘米。
【题目2】求下面各图中∠1 的度数。
【解答】复习直角、锐角和钝角以及三角形内角和的知识。
第一个图是直角三角形,1=90°-45°=45°第二个图是钝角三角形,1=180°-100°-60°=20°第三个图是锐角三角形,1=180°-70°-70°=40°【题目3】一个各条边分别为5、12、13 厘米的直角三角形,将它的短直角边折到斜边上去与斜边相重合,求阴影部分的面积。
【奥数】六年级奥赛专题小升初专题讲座
1.1 追及与相遇........................................................................................................ - 1 -1.2 环形路上的行程问题........................................................................................ - 7 -1.3 稍复杂的问题.................................................................................................. - 12 - 第二讲和、差与倍数的应用题...................................................................................... - 18 -2.1 和差问题.......................................................................................................... - 18 -2.2 倍数问题.......................................................................................................... - 21 -2.3 盈不足问题...................................................................................................... - 25 - 第三讲数论的方法技巧之一.......................................................................................... - 29 -3.1 利用整数的各种表示法.................................................................................. - 30 -3.2 枚举法.............................................................................................................. - 32 -3.3 归纳法.............................................................................................................. - 34 - 第四讲数论的方法技巧之二.......................................................................................... - 37 -4.1 反证法.............................................................................................................. - 37 -4.2 构造法.............................................................................................................. - 38 -4.3 配对法.............................................................................................................. - 39 -4.4 估计法.............................................................................................................. - 41 - 第五讲整数问题之一................................................................................................ - 43 -5.1 整除.................................................................................................................. - 43 -5.2 分解质因数...................................................................................................... - 48 -5.3 余数.................................................................................................................. - 53 - 第六讲图形面积............................................................................................................ - 60 -6.1 三角形的面积.................................................................................................. - 60 -6.2 有关正方形的问题.......................................................................................... - 64 -6.3 其他的面积...................................................................................................... - 68 - 第七讲工程问题............................................................................................................ - 72 -7.1 两个人的问题.................................................................................................. - 73 -7.2 多人的工程问题.............................................................................................. - 77 -7.3 水管问题.......................................................................................................... - 81 - 第八讲比和比例关系.................................................................................................... - 87 -8.1 比和比的分配.................................................................................................. - 87 -8.2 比的变化.......................................................................................................... - 93 -8.3 比例的其他问题.............................................................................................. - 97 - 第九讲经济问题.......................................................................................................... - 104 - 第十讲溶液问题.......................................................................................................... - 109 - 第十一讲简单几何体的表面积与体积的计算.......................................................... - 114 -11.1 四种常见几何体的平面展开图.................................................................. - 114 -11.2 四种常见几何体表面积与体积公式.......................................................... - 115 -11.3 例题选讲...................................................................................................... - 116 - 第十二讲循环小数化分数.......................................................................................... - 123 -12.1 纯循环小数化分数...................................................................................... - 123 -12.2 混循环小数化分数...................................................................................... - 124 -12.3 循环小数的四则运算.................................................................................. - 125 - 第十三讲估计与估算.................................................................................................. - 127 -14.1 列简易方程解应用题.................................................................................. - 134 - 14.2 引入参数列方程解应用题.......................................................................... - 138 - 14.3 列不定方程解应用题.................................................................................. - 140 -第一讲行程问题走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米1.1 追及与相遇有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离= 甲的速度×时间-乙的速度×时间=(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是 54-6=48(千米/小时).城门离学校的距离是48×1.5=72(千米).答:学校到城门的距离是72千米.例2小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50 ×10÷(75- 50)= 20(分钟)·因此,小张走的距离是75× 20= 1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少?解一:自行车1小时走了30×1-已超前距离,自行车40分钟走了自行车多走20分钟,走了因此,自行车的速度是答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:马上可看出前一速度差是15.自行车速度是35- 15= 20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+ 4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点(或E点)相遇所用时间是28÷5= 5.6(小时).比C点相遇少用 6-5.6=0.4(小时).甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是12÷0.4=30(千米/小时).同样道理,乙的速度是16÷0.4=40(千米/小时).A到 B距离是(30+ 40)×6= 420(千米).答: A,B两地距离是 420千米.很明显,例7不能简单地说成是“相遇问题”.例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?解:(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了因此在 B与 C之间平路上留下 3- 1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是2 ÷(4+ 4)×60= 15(分钟).从出发到相遇的时间是25+ 15= 40 (分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.小张走15分钟平路到达D点,45分钟可走小张离终点还有2.5-1.5=1(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.1.2 环形路上的行程问题人在环形路上行走,计算行程距离常常与环形路的周长有关.例9小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解:(1 )75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1.25-180=220(米/分).(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是500÷(220-180)=12.5(分).220×12.5÷500=5.5(圈).答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王.例10 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是小张 10÷2=5(千米/小时),小王 8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.例12小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是15,,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考, 3只爬虫第二次到达同一位置是出发后多少秒?例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M 是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=(9+18)-12= 15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.1.3 稍复杂的问题在这一节希望读者逐渐掌握以下两个解题技巧:(1)在行程中能设置一个解题需要的点;(2)灵活地运用比例.例16 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A 之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65(分钟).从乙地到甲地需要的时间是130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”?姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米?解:先画一张示意图设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成:骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是1.5个单位.从公园到A是1+1.5=2.5(单位).每个单位是 2000÷2.5=800(米).因此,从公园到家的距离是800×1.5=1200(米).答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.例19一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C 至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出A至B距离是 12+3=15(千米).答:A至B两地距离是15千米.例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行。
小学六年级奥数系列讲座几何综合(含答案解析)
几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPFCGPHIFP DGP EHP S SSSS S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78. 所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB,所以△A OB 为等腰三角形,AO=OC,所以△A OC为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-几何综合(二)内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题2.如图30-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆ 阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然,△DBC 的面积11010502⨯⨯=(平方厘米).阴影部分△DFB的面积为50平方厘米.4.如图30-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-(∠1+∠2),而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800, ∠D=∠8+∠9-1800,∠C=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×1800=12600.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=90006.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(a1,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25).(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12). 1020251,,2,,,999⎛⎫ ⎪⎝⎭(1,2,2.4,4.8,5), 131025147813101,,,,,1,,,,636333313⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.8.如图30-8,ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】 如下图所示,连接EC ,并在某些点处标上字母,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以:1:4AEG DCG S S ∆∆=, AGD ECG AEG DCG S S S S ∆∆∆∆⨯=⨯,且有AGD ECG S S ∆∆=,所以:1:2AEG ADG S S ∆∆=,而这两个三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2.有AED AEG AGD S S S ∆∆∆=+,而111822AED ABCD S S ∆=⨯⨯=(平方厘米) 有EG:GD=:AEG AGB S S ∆∆,所以1612AEG AED S S ∆∆=⨯=+(平方厘米) 21212AGD AED S S ∆∆=⨯=+(平方厘米) 同理可得6HFC S ∆=(平方厘米), 12DCH S ∆=(平方厘米),44624DCG AEG S S ∆∆==⨯=(平方厘米)又GHD DCG DCH S S S ∆∆∆=-=24-12=12(平方厘米)所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).10.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】 如下图所示,为了方便所叙,将某些点标上字母,并连接BG .设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =. 所以原题中阴影部分面积为400800202033⨯-= (平方厘米).12.如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】 如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A ,右下图中的每一部分阴影称为B .大半圆的面积为13332A B ++小圆的面积219322ππ=⨯⨯=而小圆的面积为π,则9133223A B πππ⎛⎫+=-÷= ⎪⎝⎭, 原题图中的阴影部分面积为小半圆面积与阴影A 、B 的面积和,即为5236πππ+=14.如图30-14,将长方形ABCD 绕顶点C 顺时针旋转90度,若AB=4,BC=3,AC=5,求AD 边扫过部分的面积.(π取3.14)【分析与解】 如下图所示,如下图所示,端点A 扫过的轨迹为AA A ''',端点D 扫过轨迹为DD D ''',而AD 之间的点,扫过的轨迹在以A 、D 轨迹,AD ,A D ''所形成的封闭图形内,且这个封闭图形的每一点都有线段AD 上某点扫过,所以AD 边扫过的图形为阴影部分.显然有阴影部分面积为A D C ACA ACD S S S S ''''∆∆+--直角扇形直角扇形CD D ,而直角三角形A D C ''、ACD 面积相等.所以=A D C ACA ACD ACA S S S S S S ''''''∆∆+---直角扇形直角扇形CD D 扇形扇形CD D222290909=(54)7.065()36036044AC CD ππππ-=-==平方厘米即AD 边扫过部分的面积为7.065平方厘米.。
小学六年级奥数经典讲义(全套36讲)
第一讲循环小数与分数第二讲和差倍分问题第三讲行程问题第五讲质数与合数第六讲工程问题第七讲牛吃草问题第八讲包含与排除第九讲整数的拆分第十讲逻辑推理第十一讲通分与裂项第十二讲几何综合第十三讲植树问题第十五讲余数问题第十六讲直线面积第十七讲圆与扇形第十八讲数列与数表综合第十九讲数字迷综合第二十讲计数综合第二十一讲行程与工程第二十二讲复杂工程问题第二十三讲运用比例求解行程问题第二十四讲应用题综合第二十五讲数论综合2第二十六讲进位制问题第二十七讲取整问题第二十八讲数论综合3第二十九讲数论综合4第三十讲几何综合2第三十一讲图形变换第三十二讲勾股定理第三十三讲计数综合第三十四讲最值问题第三十五讲构造与论证1第三十六讲构造与论证2第一讲循环小数与分数循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【分析与解】17=0.142857 ,27=0.285714 ,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142. 因此,真分数7a化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以7a =0..857142 ,即a =6.评注:7a的特殊性,循环节中数字不变,且顺序不变,只是开始循环的这个数有所变化.2.某学生将1.23乘以一个数a 时,把1.23 误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【分析与解】 由题意得:1.23 a -1.23a =0.3,即:0.003 a =0.3,所以有:3390010a =.解得a = 90,所以1.23a =1.23 × 90=123290-×90=11190× 90=111.3.计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【分析与解】 方法一:0.1+0.125+0.3+0.16≈-0.1111+0.1250+0.3333+0.1666=0.7359≈0.736方法二:0.1+0.125+0.3+0.16113159899011118853720.7361=+++=+== ≈0.7364.计算:0.010.120.230.340.780.89+++++ 【分析与解】 方法一:0.010.120.230.340.780.89+++++ =1121232343787898909090909090-----+++++ =11121317181909090909090+++++ =21690=2.4方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+(0.010.020.030.040.080.09+++++ ) =2.1+0.01×(1+2+3+4+8+9) =2.1+190×27 =2.1+0.3 =2.4方法三:如下式, 0.011111… 0.122222... 0.233333... 0.344444...(1+2+3+4+8+9=27) 0.788888...+0.899999... 2.399997...注意到,百万分位的7是因为没有进位造成,而实际情况应该是2.399999…=2.39 =2.4.评注:0.9=99=1 ,0.09 =919010=.5.将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【分析与解】0.×0.179672=27179672117967248560.00485699999999937999999999999⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.6.将下列分数约成最简分数:166********66666666664【分析与解】 找规律:161644=,16616644=,1666166644= ,166661666644=,…所以1666666666666666666664=14评注:类似问题还有38538853888538888538888888885234 (29729972999729999729999999997)+⨯+⨯+⨯++.7.将下列算式的计算结果写成带分数:0.523659119⨯⨯【分析与解】0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=58601198.计算:744808333÷2193425909÷11855635255【分析与解】 744808333÷2193425909÷11855635255=62811259093525583332193453811⨯⨯ =373997131993564111136412119973331993⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=7523⨯⨯=5569.计算:1111111 81282545081016203240648128 ++++++【分析与解】原式1111111 81288128406420321016508254 =++++++2111118128406420321016508254 =+++++ 1111114064406420321016508254 =+++++ 11111203220321016508254=++++111110161016508254=+++111508508254=++11254254=+1127=10.计算:153219(4.85 3.6 6.153) 5.5 1.75(1) 4185321⎡⎤⨯÷-+⨯+-⨯+⎢⎥⎣⎦【分析与解】原式=1757193.6(4.851 6.15)5.5443421⨯⨯-++-⨯-⨯=135193.610 5.5412+⨯⨯+-=9+5.5-4.5 =1011.计算: 41.2×8.1+11×194+537×0.19【分析与解】原式=412×0.81+11×9.25+0.19×(412+125) =412×(0.81+0.19)+11×9.25+0.19×125 =412+11×8+11×1.25+19×1.25=412+88+1.25×30=500+37.5=537.512.计算:2255 (97)() 7979+÷+【分析与解】原式=656555 ()() 7979+÷+=[]555513()()137979⨯+÷+=13.计算:12324648127142113526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析与解】 原式=33333333123(1247)1232135(1247)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯14.(1)已知等式0.126×79+1235×□-6310÷25=10.08,那么口所代表的数是多少? (2)设上题答案为a .在算式(1993.81+a )×○的○内,填入一个适当的一位自然数,使乘积的个位数字达到最小值.问○内所填的数字是多少? 【分析与解】 (1)设口所代表的数是x ,0.126×79+1235x -6310÷25=10.08,解得:x =0.03,即口所代表的数是0.03.(2)设○内所填的数字是y ,(1993.81+O.03)×y =1993.84×y ,有当y 为8时1993.84×y =1993.84×8=15050.94,所以○内所填的数字是8.15.求下述算式计算结果的整数部分:111111()38523571113+++++⨯ 【分析与解】原式=111111(38538538538538538523571113⨯+⨯+⨯+⨯+⨯+⨯≈192.5+128.3+77+55+35+29.6=517.4 所以原式的整数部分是517.第二讲 和差倍分问题各种具有和差倍分关系的综合应用题,重点是包含分数的问题.基本的解题方法是将已知条件用恰当形式写出或变形,并结合起来进行比较而求出相关的量,其中要注意单位“1”的恰当选取.1.有甲、乙两个数,如果把甲数的小数点向左移两位,就是乙数的18,那么甲数是乙数的多少倍?【分析与解】甲数的小数点向左移动两位,则甲数缩小到原来的1100,设这时的甲数为“1”,则乙数为1×8=8,那么原来的甲数=l×100=100,则甲数是乙数的100÷8=12.5倍.2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25.如果把这三堆棋子集中在一起,那么白子占全部棋子的几分之几?【分析与解】如下表所示:设全部黑子为“5”份,则第三堆里的黑子为“2”份,那么剩下的黑子占5-2=“3”份,而第一堆里的黑子和第二堆里的白子一样多,将第一堆黑子和第二堆白子调换,则第二堆全部为黑子.所以第二堆棋子总数为“3”份,三堆棋子总数为3×3=“9”份,其中黑子占“5”份,则白子占剩下的9-5=“4”份,那么白子占全部棋子的4÷9=49.3.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的1213,那么甲、乙两厂一共生产了机床多少台?【分析与解】因为甲厂生产的是乙厂的1213,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.4.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?【分析与解】设原来人数为“1”,则现在有1+0.5=1.5.原来收入为l×15=15,降价后收人为15×(1+15)=18元,那么降价后门票为18÷1.5=12元,则一张门票降价15-12=3元.5.李刚给军属王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块.这时,已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【分析与解】已经运来的是没有运来的57,则运来的是5份,没有运来的是7份,也就是运来的占总数的512.则共有50÷(512-38)=1200块,还剩下1200×712=700块.6.有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【分析与解】方法一:开始时,两条纸带的长度差为21-13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13-8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13-12.8=O.2(厘米).方法二:设剪下x厘米,则1382113xx-=-,交叉相乘得:13×(13-x)=8×(21-x),解得x=0.2,即剪下的一段长0.2厘米.7.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的l 12倍.那么,两队挖通这条隧道需要多少天?【分析与解】如下表所示:天数工作量1 2 3 4 5甲10 20 40 80 160乙10 15 22.5 33.75 50.625 当天工作量20 35 62.5 113.75 210.625已完成工作量20 55 117.5 231.25 441.375 说明在第五天没有全天干活,则第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=4110 337天.8.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【分析与解】如下表所示:菜地12麦地13⇒13公顷菜地3 麦地2 ⇒78公顷菜地2 麦地3 ⇒72公顷菜地13麦地12⇒12公顷即5倍菜地公顷数+5倍麦地公顷数=78+72=150,所以菜地与麦地共有150÷5=30(公顷).而菜地减去麦地,为78-72=6(公顷),所以菜地有(30+6)÷2=18(公顷).9.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的3 5和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【分析与解】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份-15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.10.师徒二人共同加工170个零件,师傅加工零件个数的13比徒弟加工零件个数的14还多10个.那么,徒弟一共加工了多少个零件?【分析与解】我们用“师”表示师傅加工的零件个数,“徒”表示徒弟加工的零件个数,有:1 3“师”-14“徒”=10,4“师”- 3“徒”=120,而4“师”+4“徒”=170×4=680.那么有7“徒”=680-120=560,“徒”=80,徒弟一共加工了80个零件.11. 一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的11 2倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天.那么这批工人共有多少名?【分析与解】设甲工地的工作量为“1.5”,则乙工地的工作量为“1”.甲乙上午33134=+11134=+下午7121-712=512于是甲工地一整天平均用了这批工人的372()24123+÷=,乙工地一整天平均用了这批工人的1-21 33 =.这批工人的23完成了“1.5”的工作量,那么13的这批工人完成1.5÷2=“0.75”的工作量,于是乙工地还剩下1-0.75=“0.25”的工作量,这“0.25”的工作量需要4人工作1天.而甲、乙工地的工作量为1.5+1=2.5,那么需2.5÷0.25× 4=40人工作1天.所以原来这批工人共有40-4=36人.12.有一个分数,如果分子加1,这个分数就等于12;如果分母加1,这个分数就等于13.问原来的分数是多少?【分析与解】如果分子加1,则分数为12,设这时的分数为:2xx,则原来的分数为12xx-,分母加1后为:11213xx-=+,交叉相乘得:3(x-1)=2x+1,解得x=4,则原分数为38.13.图2-1是某市的园林规划图,其中草地占正方形的34,竹林占圆形的67,正方形和圆形的公共部分是水池.已知竹林的面积比草地的面积大450平方米.问水池的面积是多少平方米?【分析与解】因为水池是正方形的14,是圆的17,则正方形是水池的4倍,圆是水池的7倍,相差7-4=3倍,差450平方米,则水池=450÷3=150平方米.14.唐僧师徒四人吃了许多馒头,唐僧和猪八戒共吃了总数的12,唐僧和沙僧共吃了总数的13,唐僧和孙悟空共吃了总数的14.那么唐僧吃了总数的几分之几?【分析与解】唐+猪=12、唐+沙=13、唐+孙=14.(两边同时加减)唐+猪+唐+沙+唐+孙=2唐+(唐+猪+沙+孙)=2唐+1=12+13+14=1112.则:2唐=112,唐=124.唐僧吃了总数的124.15.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?【分析与解】方法一:先估算出大致所需时间,然后再进行调整.因为小李、小张的工作效率大致相等,那么完成时小李完成300÷2=150个零件左右;小李完成150个零件需要150÷3×4=200分钟;在200分钟左右,198分钟是5.5的整数倍,此时乙生产198÷5.5×4=144个零件,并且刚休息完,所以在2分钟后,即200分钟时完成144+2=146个零件;那么在200分钟时,小李、小张共生产150+146=296个零件,还剩下4个零件未完成,所以再需2分钟,小李生产2个零件,小张生产2个零件,正好完成.所以共需202分钟才能完成.方法二:把休息时间包括进去,小李每4分钟做3个,小张每5.5分钟做4个.则在44分钟内小李做了:44÷4×3=33个,小张做了:44÷5.5×4=32个,他们一共做了:33+32=65个.300÷65=4……40,也就是他们共同做了4个44分钟即:44×4=176分钟后,还剩下40个零件没有做完.而22=4+4+4+4+4+2=5.5×4,所以22分钟内小李做了:3+3+3+3+3+2=17个,小张做了:4×2=16个,那么还剩下:40-17-16=7个,4分钟内小李做3个,小张做4个,共做4+3=7个,即这40个零件还需要26分钟.所以共用时间:44×4+26=202分钟.第三讲行程问题(1)涉及分数的行程问题.顺水速度、逆水速度与流速的关系,以及与此相关的问题.环形道路上的行程问题.解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑.1.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间260,现在从甲到乙花费了时间1÷55=155千米,所以从乙地返回到甲地时所需的时间只能是211 605566-=.即如果他想按时返回甲地,他应以每小时66千米的速度往回开.2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶1O 分钟.那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时问为100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,共用时1小时25分钟.而小张先小李1小时出发,但却同时到达,所以小张从甲到乙共用了2小时25分钟,即2最小时.以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x +40×5210012x ⎛⎫-= ⎪⎝⎭,解得13x =. 所以小张驾驶的摩托车减速是在他出发后13小时. 方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时.依据鸡兔同笼的思想知,小张以每小时50千米的速度行驶了52.521122.526-=-的路程,即行驶了10015010063⨯=千米的路程,距出发5015033÷=小时.3. 一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?【分析与解】 我们知道顺风速度=无风速度+风速,逆风速度=无风速度-风速. 有顺风时速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒. 则无风速度=2顺风速度+逆风速度=982+7=米/秒 所以无风的时候跑100米,需100÷8=12.5秒.124.一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A,B 两镇间的距离是多少千米?【分析与解】 如下画出示意图,有A →B 段顺水的速度为11+1.5=12.5千米/小时, 有B →C 段顺水的速度为3.5+1.5=5千米/小时. 而从A →C 全程的行驶时间为8-1=7小时. 设AB 长x 千米,有50712.55x x -+=,解得x =25. 所以A,B 两镇间的距离是25千米.5.一条大河有A,B 两个港口,水由A 流向B,水流速度是每小时4千米.甲、乙两船同时由A 向B 行驶,各自不停地在A,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时开始出发的那一次)的地点相距40千米,求A,B 两个港口之间的距离.【分析与解】 设AB 两地的路程为单位“1”,则:甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次同向相遇时,甲、乙两人的路程差为2n ;甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次相向相遇时,甲、乙两人的路程和为2n ;甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次同向相遇时,甲、乙两人的路程差为(2n -1);甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次相向相遇时,甲、乙两人的路程和为(2n -1).有甲船的顺水速度为32千米/小时,逆水速度为24千米/小时, 乙船的顺水速度为24千米/小时,逆水速度为16千米/小时. 两船第二次迎面相遇时,它们的路程和为“4”;甲船第二次追上乙船时,它们的路程差为“4”.(一)第二次迎面相遇时,一定是甲走了2~3个AB 长度,乙走了2~1个AB 长度,设甲走了2+x 个AB 的长度,则乙走了2-x 个AB 的长度,有11322432x ++=112416x -+,解得13x =,即第二次迎面相遇的地点距A 点13AB 的距离.(二)①第二次甲追上乙时,有甲行走2y z +(y 为整数,z ≤1)个AB 的长度,则乙行走了24y z -+个AB 的长度,有322432y y z ++=22241624y y z --++,化简得320y z +=,显然无法满足y 为整数,z ≤1;②第二次甲追上乙时,有甲行走21y z ++(y 为整数,z ≤1)个AB 的长度,则乙行走了23y z -+个AB 的长度,有1322424y y z +++=12241616y y z--++,化简有3213y z +=,有0.5z =,4y =. 即第二次甲追上乙时的地点距B 点12AB 的距离,那么距A 也是12AB 的距离.所以,题中两次相遇点的距离为(111236⎛⎫-= ⎪⎝⎭AB ,为40千米,所以AB 全长为240千米.6.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A 地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【分析与解】 因为甲、乙第一次相遇时行驶的路程相等,所以有甲、乙同时刻各自到达B 、A 两地.接着两船再分别从B 、A 两地往AB 中间行驶.所以在第二次相遇前始终是一船逆流、一船顺流,那么它们的速度和始终等于它们在静水中的速度和.有:甲静水速度+水速=乙静水速度-水速.还有从开始到甲第一次到达B 地,乙第一次到达A 地之前,两船在河流中的速度相等.所以甲船比乙船少行驶的1000米是在甲、乙各自返航时产生的.甲乙返航时,有甲在河流中行驶的速度为:甲静水速度-水速,乙在河流中的速度为:乙静水速度+水速.它们的速度差为4倍水速.从第一次相遇到第二次相遇,两船共行驶了2AB 的路程,而从返航到第二次相遇两船共行驶了AB 的路程,需时间80÷2=40分钟. 有4倍水速=401000150060⎛⎫÷=⎪⎝⎭,有水速=375米/小时=0.375千米/小时. 即河水的流速为每小时0.375千米.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 【分析与解】 甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程. 甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.9.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23.甲跑第二圈时速度比第一圈提高了13;乙跑第二圈时速度提高了15.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米? 【分析与解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125. 如下图,第一次相遇地点逆时针方向距出发点35的跑道长度. 有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈, 所以,这条椭圆形跑道的长度为1919040040÷=米.10.如图3-2,在400米的环形跑道上,A,B 两点相距100米.甲、乙两人分别从A ,B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?【分析与解】 如果甲、乙均不休息,那么甲追上乙的时间为100÷(5-4)=100秒. 此时甲跑了100×5=500米,乙跑了100×4=400米.而实际上甲跑500米,所需的时间为100+4×10=140秒,所以140~150秒时甲都在逆时针距A 点500处.而乙跑400米所需的时间为100+3×10=130秒,所以130~140秒时乙走在逆时针距B点400处.显然从开始计算140秒时,甲、乙在同一地点,即甲追上乙需要时间是140秒.11.周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米? 【分析与解】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程. 由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12. 即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.12.如图3-3,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【分析与解】 开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为 13、所以最少要追至只相差13,即至少要追上29-13=16米. 甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=23秒. 所以经过16+23=1623秒后甲第一次看见乙.13.如图3-4,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【分析与解】 如下图,甲、乙只可能在大跑道上相遇.并且只能在AB 顺时针的半跑道上.易知小跑道AB 逆时针路程为100,顺时针路程为200,大跑道上AB 的顺、逆时针路程均是200米.我们将甲、乙的行程状况分析清楚.当甲第一次到达B 时,乙还没有到达B 点,所以第一次相遇一定在逆时针的BA 某处.而当乙第一次到达B 点时,所需时间为200÷4=50秒,此时甲跑了50×6=300米,在B 点300-200=100米处.乙跑出小跑道到达A 需100÷4=25秒,则甲又跑了25×6=150米,在A 点左边(100+150)-200=50米处.所以当甲到达B 处时,乙还未到B 处,那么甲必定能在B 点右边某处与乙第二次相遇. 从乙再次到达A 处开始计算,还需(400-50)÷(6+4)=35秒,甲、乙第二次相遇,此时甲共跑了50+25+35=110秒.所以,从开始到甲、乙第二次相遇甲共跑了110×6=660米.14.如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【分析与解】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC +且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38.现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x .有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x+=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x-=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN ÷BN 1313232=÷131=15.如图3-6,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?【分析与解】 如下图,标出部分时刻甲、乙、丙、丁的位置.先分析甲的情况,甲10分钟,行走了AD 的路程;再看乙的情况,乙的速度等于甲的速度,乙14分钟行走了60+AE 的路程,乙20分钟走了60+AD+DF 的路程.所以乙10分钟走了(60+AD+DF)-(AD)=60+DF 的路程.有601014AD AE +=6010DF +=,有()()607560AD DFAE ED AE =+⎧⎪⎨-=+⎪⎩然后分析丙的情况,丙4分钟,行了走ED 的路程,再看丁的情况,丁的速度等于丙的速度,丁10分钟行走了DF 的距离.。
六年级奥数36讲(全)
第1讲 计算综合(一)繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题. 1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观. 4.对于定义新运算,我们只需按题中的定义进行运算即可.5.本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级 [第1讲 循环小数与分数].1.计算:711471826213581333416⨯+⨯-÷ 【分析与解】原式=7123723174612241488128131233+⨯=⨯=-2.计算:【分析与解】 注意,作为被除数的这个繁分数的分子、分母均含有5199.于是,我们想到改变运算顺序,如果分子与分母在5199后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序. 而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995×0.5. 具体过程如下:原式=5919(3 5.22)19930.41.6910()52719950.5199519(6 5.22)950+-⨯÷+⨯-+=5191.3219930.440.40.59()519950.419950.5191.329-⨯⨯⨯÷+⨯⨯-=199320.41()19950.5+÷⨯=0.410.5÷=1143.计算:1111111987-+-【分析与解】原式=11198711986-+=198613973-=198739734.计算:已知=181111+12+1x+4=,则x 等于多少? 【分析与解】方法一:1118x 68114x 112x 7111+11148x 62+214x 1x+4+====+++++++交叉相乘有88x+66=96x+56,x=1.25. 方法二:有11131118821x 4+==+++,所以18222133x 4+==++;所以13x 42+=,那么x =1.25.5.求944,43,443,...,44...43 个这10个数的和.【分析与解】方法一:944+43+443...44...43++ 个= 1044(441)(4441)...(44...41)+-+-++-个= 104444444...44...49++++-个=1094(999999...999...9)99⨯++++- 个 =1004[(101)(1001)(10001)...(1000...01)]99⨯-+-+-++-- 个 =914111.1009=49382715919⨯- 个.方法二:先计算这10个数的个位数字和为39+4=31⨯;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36339+=; 再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32335+=; 再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28331+=; 再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24327+=; 再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20222+=; 再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16218+=; 再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12113+=; 再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为819+=;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4. 所以,这10个数的和为4938271591.6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?【分析与解】 因为每个端点均有三条线段通过,所以这6条线段的长度之和为: 1173(0.60.875)1+0.75+1.8+2.625=6.175=63440⨯+++=7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○2.9=2.9○3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9.请计算:23155(0.625)(0.4)333841235(0.3)( 2.25)3104⨯+【分析与解】原式1550.6255155725384218384122562.253⨯=⨯÷=+8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,….如果111(16)(17)(17)-=⨯,那么方框内应填的数是多少? 【分析与解】111(17)()1(16)(17)(17)(16)=-÷=-=161718111516175⨯⨯-=⨯⨯.9.从和式11111124681012+++++中必须去掉哪两个分数,才能使得余下的分数之和等于1? 【分析与解】 因为1116124+=,所以12,14,16,112的和为l ,因此应去掉18与110.10.如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如1.892915929.那么在所有这种数中。
小学数学奥数基础教程(六年级)目30讲全
小学数学奥数基础教程(六年级)目30讲全小学奥数基础教程(六年级)-1-小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
小学奥数基础教程(六年级)-2-如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
完整word版本小学六年级的奥数培训教材.doc
完整word版本⼩学六年级的奥数培训教材.doc六年级拔尖数学⽬录第1 讲定义新运算第2 讲简单的⼆元⼀次不定⽅程第3 讲分数乘除法计算第4 讲分数四则混合运算第 5 讲估算第6 讲分数乘除法的计算技巧第7 讲简单的分数应⽤题( 1)第8 讲较复杂的分数应⽤题( 2)第9 讲阶段复习与测试(略)第10 讲简单的⼯程问题第11 讲圆和扇形第12 讲简单的百分数应⽤题第13 讲分数应⽤题复习第14 讲综合复习(略)第15 讲测试(略)第16 讲复杂的利润问题( 2)第⼀讲定义新运算在加 .减 .乘 .除四则运算之外,还有其它许多种法则的运算。
在这⼀讲⾥,我们学习的新运算就是⽤“ #”“ *”“Δ”等多种符号按照⼀定的关系“临时”规定的⼀种运算法则进⾏的运算。
例1:如果 A*B=3A+2B ,那么 7*5 的值是多少?例 2:如果 A#B 表⽰A B照这样的规定,6#( 8#5)的结果是多少?3例 3:规定X YXY10 10 的值。
求 2X Y例4:设 M*N 表⽰ M 的 3 倍减去 N 的 2 倍,即 M*N=3M-2N (1)计算( 14 *10 )*6(2)计算(8*3)5 4 2例5:如果任何数 A 和 B 有 A ¤ B=A ×B- ( A+B )求( 1) 10¤ 7(2)( 5¤ 3)¤ 4(3)假设 2¤ X=1 求 X例 6:设 P∞ Q=5P+4Q,当 X∞9=91 时, 1/5 ∞( X∞ 1/4 )的值是多少?例 7:规定 X*Y= AX Y,且5*6=6*5则(3*2)*(1*10)的值是多少?XY例 8:▽表⽰⼀种运算符号,它的意义是1 1X YA)( Y A)XY ( X已知 2 1 11 22 (2 1)(1 A) 3那么 20088▽ 2009=?巩固练习1、已知 2▽ 3=2+22+222=246;3▽4=3+33+333+3333=3702;按此规则类推( 1)3▽ 2(2)5▽3( 3)1▽ X=123,求 X 的值2、已知 1△ 4=1× 2× 3× 4;5△ 3=5×6× 7计算( 1)( 4△ 2) +( 5△3)( 2)( 3△ 5)÷( 4△ 4)3、如果 A*B=3A+2B ,那么( 1) 7*5 的是多少?( 2)( 4*5 ) *6 ( 3)( 1*5 ) *( 2*4 )4、如果 A>B ,那么{ A , B} =A ;如果 A求( 1){ 8,0.8}(2){{1.9,1.901}1.19}5、 N ⾃然数,定F( N) =3N-2例如F(4)=3×4-2=10求: F(1) +F( 2) +F( 3)+F ( 4)+F ( 5)+?? +F( 100)的6、如果 1=1!1× 2=2 !1× 2× 3=3!1× 2× 3× 4×??× 100=100!7、若“ +、-、×、÷、 =、()”的意是通常情况,⽽式⼦中的“5”却相当于“ 4”。
六年级奥数培训教材
六年级拔尖数学目录第1讲定义新运算第2讲简单的二元一次不定方程第3讲分数乘除法计算第4讲分数四那么混合运算第5讲估算第6讲分数乘除法的计算技巧第7讲简单的分数应用题〔1〕第8讲较复杂的分数应用题〔2〕第9讲阶段复习与测试〔略〕第10讲简单的工程问题第11讲圆和扇形第12讲简单的百分数应用题第13讲分数应用题复习第14讲综合复习〔略〕第15讲测试〔略〕第16讲复杂的利润问题〔2〕第一讲 定义新运算在加.减.乘.除四那么运算之外,还有其它许多种法那么的运算。
在这一讲里,我们学习的新运算就是用“ #〞“*〞“Δ〞等多种符号按照一定的关系“临时〞规定的一种运算法那么进展的运算。
例1:如果A*B=3A+2B ,那么7*5的值是多少?例2:如果A#B 表示3B A + 照这样的规定,6#〔8#5〕的结果是多少?例3:规定YX XY Y X +=∆ 求2Δ10Δ10的值。
例4:设M*N 表示M 的3倍减去N 的2倍,即M*N=3M-2N(1) 计算〔14 *10〕*6(2) 计算 〔58*43〕 *〔1 *21〕例5:如果任何数A 和B 有A ¤B=A ×B-〔A+B 〕求〔1〕10¤7〔2〕〔5¤3〕¤4〔3〕假设2¤X=1求X例6:设P ∞Q=5P+4Q ,当X ∞9=91时,1/5∞〔X ∞ 1/4〕的值是多少?例7:规定X*Y=XY Y AX +,且5*6=6*5那么〔3*2〕*〔1*10〕的值是多少?例8:▽表示一种运算符号,它的意义是))((A Y A X XY Y X +++=∇11 3211212112=+++=∇))((A 那么20218▽2021=?稳固练习1、2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规那么类推(1) 3▽2 〔2〕5▽3〔3〕1▽X=123,求X 的值2、1△4=1×2×3×4;5△3=5×6×7计算〔1〕〔4△2〕+〔5△3〕 〔2〕〔3△5〕÷〔4△4〕3、如果A*B=3A+2B,那么〔1〕7*5的值是多少?〔2〕〔4*5〕*6 〔3〕〔1*5〕*〔2*4〕4、如果A>B,那么{A,B}=A;如果A<B,那么{A,B}=B;试求〔1〕{8,0.8}〔2〕{{1.9,1.901}1.19}5、N为自然数,规定F〔N〕=3N-2 例如F〔4〕=3×4-2=10试求:F〔1〕+F〔2〕+F〔3〕+F〔4〕+F〔5〕+……+F〔100〕的值6、如果1=1!1×2=2!1×2×3=3!……1×2×3×4×……×100=100!那么1!+2!+3!+……+100!的个位数字是几?〔第四届小学生“迎春杯〞数学决赛试题〕7、假设“+、-、×、÷、=、〔〕〞的意义是通常情况,而式子中的“5”却相当于“4”。
小学六年级奥数36讲
小学六年级奥数36讲(总81页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第13讲植树问题内容概述几何图形的设计与构造,本讲讲解一些有关的植树问题.典型问题1.今有10盆花要在平地上摆成5行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:2.今有9盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:3.今有10盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行·【分析与解】如下图所示:4.今有20盆花要在平地上摆成18行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:5.今有20盆花要在平地上摆成20行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:第14讲数字谜综合内容概述各种具有相当难度、求解需要综合应用多方面知识的竖式、横式、数字及数阵图等类型的数字谜问题.典型问题1.ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少【分析与解】因为两个数的和一定时,两个数越紧接,乘积越大;两个数的差越大,乘积越小.A显然只能为1,则BCD+EFG=993,当ABCD与EFG的积最大时,ABCD、EFG最接近,则BCD尽可能小,EFG尽可能大,有BCD最小为234,对应EFG为759,所以有1234×759是满足条件的最大乘积;当ABCD与EFG的积最小时,ABCD、EFG差最大,则BCD尽可能大,EFG尽可能小,有EFG最小为234,对应BCD为759,所以有1759×234是满足条件的最小乘积;它们的差为1234×759—1759×234=(1000+234)×759一(1000+759)×234=1000×(759—234)=525000.2.有9个分数的和为1,它们的分子都是1.其中的5个是13,17,19,111,133另外4个数的分母个位数字都是5.请写出这4个分数.【分析与解】 l一(13+17+19+111+133)=210133711⨯⨯⨯⨯=1010335711⨯⨯⨯⨯⨯需要将1010拆成4个数的和,这4个数都不是5的倍数,而且都是3×3×7×1l的约数.因此,它们可能是3,7,9,11,21,33,77,63,99,231,693.经试验得693+231+77+9=1010.所以,其余的4个分数是:15,115,145,1385.3.请在上面算式的每个方格内填入一个数字,使其成为正确的等式.【分析与解】1988=2×2×7×7l=4×497,112+14=13,在等式两边同时乘上1497,就得15964+11988=11491.显然满足题意.又135+114=110,两边同乘以1142,就得14970+11988=11420.显然也满足.1 3053+11988=11204,18094+11988=11596均满足.4.小明按照下列算式:乙组的数口甲组的数○1=对甲、乙两组数逐个进行计算,其中方框是乘号或除号,圆圈是加号或减号他将计算结果填入表14—1的表中.有人发现表中14个数中有两个数是错的请你改正.问改正后的两个数的和是多少【分析与解】甲组的前三个数,23,914都是小于1的数,21732与这三个数运算后,得,45164,4516;不论减1还是加l后,这三个数都比21732大,而这是21732与小于1的数运算的结果,因此可以猜想方框内是除号.现在验算一下:21732÷=8132×85=8120=;21732÷23=8132×32=31564;21732÷914=8132×149=6316=31516;21732÷3=2732.从上面四个算式来看,圆圈内填加号,这样有三个结果是对的,而4516是错的.按照算式乙组的数÷甲组的数+1…………………………*2÷3+1=123,显然不为,上面已认定3是正确的,因此,只有把2改为,才有÷3+1=112,而÷+l=,÷23+1=.由此可见,确定的算式*是正确的.表中有两个错误,4516应改为41516,2应改为,41516+112=5+15816=6716.改正后的两个数的和是67 16.5.图14—3中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个项点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法:如果不能,请说明理由.(2)能否使8个三角形顶点上数字之和各不相同?如果能,请给出填数方法;如果不能,请说明理由.【分析与解】 (1)无论怎样填法,都不可以使八个三角形顶点上数字之和相等.事实上,假设存在某种填法使得八个三角形顶点上数字之和都相等,不妨设每个三角形顶点上数字之和为k.在计算八个三角形顶点上数字之和时,大正方形四个顶点上每个数字恰好使用过一次;中正方形四个顶点上每个数字各使用过三次;小正方形四个顶点上每个数字各使用过二次.因此,这八个三角形顶点上数字之和的总和为:8k=(1+2+3+4)+3×(1+2+3+4)+2×(1+2+3+4),即8k=60,k不为整数,矛盾,所以假设是错误的.(2)易知:不可能做到三角形的三个顶点上数字完全相同,所以三角形顶点上数字之和最小为1 +1+2=4,最大为3+4+4=11.而4~11共8个数,于是有可能使得8个三角形顶点上数字之和各不相同,可如下构造,且填法不惟一.图(a)和图(b)是两种填法.6.图14—5中有11条直线.请将1至11这11个数分别填在11个圆圈里,使每一条直线上所有数的和相等.求这个相等的和以及标有*的圆圈中所填的数.【分析与解】表述1:设每行的和为S,在左下图中,除了a出现2次,其他数字均只出现了1次,并且每个数字都出现了,于是有4S=(1+2+3+…+11)+a=66+a;在右上图中除了a出现5次,其他数字均只出现了1次,并且每个数字都出现了,于是有5S=(1+2+3+…11)+4a=66+4a.综合以上两式466(1) 5664(2)S aS a=+⎧⎨=+⎩,①×5-②×4得66-11a=0,所以a=6,则S=18.考虑到含有*的五条线,有4*+(1+2+3+4+…+11)-t=5S=90.即4*-t=24,由t是1~11间的数且t≠*,可知*=7,而每行相等的和S为18.表述2:如下图所示,在每个圆圈内标上字母,带有*的圆圈标为x,首先考虑以下四条直线:(h、f、a),(i、g、a),(x、d、b),(j、e、c),除了标有a的圆圈外,其余每个圆圈都出现了一次,而标有a的圆圈出现了两次,设每条直线上数字之和为S,则有:(1+11)×11÷2+a=4S,即66+a=4S.再考虑以下五条直线:(h、f、a),(i、g、a),(j、x、a),(e、d、a),(c、b、a),同理我们可得到66+4a=5S.综合两个等式6646645a Sa S+=⎧⎨+=⎩,可得a为6,每条直线上和S为18.最后考虑含x的五条直线:(x、h),(x、g、f),(j、x、a),(x、d、b),(i、x、c).其中除了x出现了5次,e没有出现,其他数字均只出现了一次,于是可以得到: 66+4x-e=5S=90,即4x-e=24,由e是1—11间的数且e≠x可知x=7.即每行相等的和S为18,*所填的数为7.7.一个六位数,把个位数字移到最前面便得到一个新的六位数,再将这个六位数的个位数字移到最前面又得到一个新的六位数,如此共进行5次所得的新数连同原来的六位数共6个数称为一组循环数.已知一个六位数所生成的一组循环数恰巧分别为此数的l 倍,2倍,3倍,4倍,5倍,6倍,求这个六位数.【分析与解】方法一:17=..0.142857,27=..0.285714,37=..0.428571,47=..0.571428,57=..0.714285,67=..0.857142。
六年级奥数培训教材
六年级奥数培训教材六年级拔尖数学目录第1讲定义新运算第2讲第3讲第4讲第5讲第6讲第7讲第8讲第9讲第10讲第11讲第12讲第13讲第14讲第15讲第16讲简单的二元一次不定方程分数乘除法计算分数四则混合运算估算分数乘除法的计算技巧简单的分数应用题(1)较复杂的分数应用题(2)阶段复习与测试(略)简单的工程问题圆和扇形简单的百分数应用题分数应用题复习综合复习(略)测试(略)复杂的利润问题(2)第一讲定义新运算在加.减.乘.除四则运算之外,还有其它许多种法则的运算。
在这一讲里,我们学习的新运算就是用“#”“某”“Δ”等多种符号按照一定的关系“临时”规定的一种运算法则进行的运算。
例1:如果A某B=3A+2B,那么7某5的值是多少?例2例3例4例5:如果任何数A和B有A¤B=A某B-(A+B)求(1)10¤7(2)(5¤3)¤4(3)假设2¤某=1求某例6:设P∞Q=5P+4Q,当某∞9=91时,1/5∞(某∞1/4)的值是多少?例7:规定某某Y=A某Y某Y,且5某6=6某5则(3某2)某(1某10)的值是多少?例8(3)1▽某=123,求某的值2、已知1△4=1某2某3某4;5△3=5某6某7计算(1)(4△2)+(5△3)(2)(3△5)÷(4△4)3、如果A某B=3A+2B,那么(1)7某5的值是多少?(2)(4某5)某6(3)(1某5)某(2某4)4、如果A>B,那么{A,B}=A;如果A<B,那么{试求(1){8,0.8}(2){{1.9,}5、N为自然数,规定F(N)=3N-2(试求:F(1)+F(2)+F(3)+F (+F100)的值6、如果1=1!1某141!+100!的个位数字是几?(第四届小学生“迎春杯”数学决赛试题)7、若“+、-、某、÷、=、()”的意义是通常情况,而式子中的“5”却相当于“4”。
小学六年级奥数培训教材
六年级拔尖数学目录第1讲概念新运算第2讲简单的二元一次不定方程第3讲分数乘除法计算第4讲分数四那么混合运算第5讲估算第6讲分数乘除法的计算技术第7讲简单的分数应用题(1)第8讲较复杂的分数应用题(2)第9讲时期温习与测试(略)第10讲简单的工程问题第11讲圆和扇形第12讲简单的百分数应用题第13讲分数应用题温习第14讲综合温习(略)第15讲测试(略)第16讲复杂的利润问题(2)第一讲 概念新运算在加.减.乘.除四那么运算之外,还有其它许多种法那么的运算。
在这一讲里,咱们学习的新运算确实是用“ #”“*”“Δ”等多种符号依照必然的关系“临时”规定的一种运算法那么进行的运算。
例1:若是A*B=3A+2B ,那么7*5的值是多少?例2:若是A#B 表示3B A + 照如此的规定,6#(8#5)的结果是多少?例3:规定Y X XY Y X +=∆ 求2Δ10Δ10的值。
例4:设M*N 表示M 的3倍减去N 的2倍,即M*N=3M-2N(1) 计算(14 *10)*6(2) 计算 (58*43) *(1 *21)例5:若是任何数A 和B 有A ¤B=A ×B-(A+B )求(1)10¤7(2)(5¤3)¤4(3)假设2¤X=1求X例6:设P ∞Q=5P+4Q ,当X ∞9=91时,1/5∞(X ∞ 1/4)的值是多少?例7:规定X*Y=XY Y AX +,且5*6=6*5那么(3*2)*(1*10)的值是多少?例8:▽表示一种运算符号,它的意义是))((A Y A X XY Y X +++=∇11 已知3211212112=+++=∇))((A 那么20208▽2020=?巩固练习一、已知2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规那么类推(1) 3▽2 (2)5▽3(3)1▽X=123,求X 的值二、已知1△4=1×2×3×4;5△3=5×6×7计算(1)(4△2)+(5△3)(2)(3△5)÷(4△4)3、若是A*B=3A+2B,那么(1)7*5的值是多少?(2)(4*5)*6 (3)(1*5)*(2*4)4、若是A>B,那么{A,B}=A;若是A<B,那么{A,B}=B;试求(1){8,}(2){{,}}五、N为自然数,规定F(N)=3N-2 例如F(4)=3×4-2=10试求:F(1)+F(2)+F(3)+F(4)+F(5)+……+F(100)的值六、若是1=1!1×2=2!1×2×3=3!……1×2×3×4×……×100=100!那么1!+2!+3!+……+100!的个位数字是几?(第四届小学生“迎春杯”数学决赛试题)7、假设“+、-、×、÷、=、()”的意义是通常情形,而式子中的“5”却相当于“4”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPF CGPH IFP DGP EHP S S S S S S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78. 所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A 和B 是两个正方形重叠部分,C ,D ,E 是空出的部分,这些部分都是长方形,它们的面积比是A :B :C :D :E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】 以下用E 横表示E 部分横向的长度,E 坚竖表示E 部分竖向的长度,其他下标意义类似.有E 横:D 横=5:4,A 横:B 横=l :2.而E 横+A 横=D 横+B 横,所以有E 横:D 横:A 横:B 横=5:4:1:2. 而A 横+B 横+C 横=E 横+A 横对应为5+1=6,那么C 横对应为3. 而A 面积:B 面积:C 面积=1:2:3,所以A 坚=B 坚=C 坚. 有A 坚+C 坚竖对应为6,所以A 坚=C 坚对应为3. 那么长方形的竖边为6+C 坚对应为9,长方形横边为E 横+6+D 横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是 14,绿色的面积是lO .那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB,所以△A OB 为等腰三角形,AO=OC,所以△A OC为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-。