河南省洛阳理工学院附中2015届高考热身练习数学(理)试卷

合集下载

河南省洛阳理工学院附属中学2015届高考理综热身练习试题及答案

河南省洛阳理工学院附属中学2015届高考理综热身练习试题及答案

理工学院附中高三年级理综热身练考试试卷注意事项:1. 答案都必须填入对应的..答题卷。

.......答题卷中。

2. 考试结束时只交可能用到的相对原子质量:H:1 C: 12 N:14 O:16 Na: 23Cl:35.5 Cu:64一、选择题:每小题只有一个选项....符合题意,每小题6分,共78分。

1. 下列有关生物膜结构和功能的描述,不正确....的是()A. 免疫细胞清除凋亡细胞需要膜蛋白发挥作用B. 流动镶嵌模型认为蛋白质分子在膜中的分布不均匀C. 膜的选择透过性既与其中磷脂分子和水的亲疏有关,又与蛋白质的种类和结构有关D. 膜中多糖水解产物能与斐林试剂生成砖红色沉淀,说明膜中多糖的单体是葡萄糖2.ATP在生物体的生命活动中发挥着重要的作用,下列有关ATP的叙述,不正确...的有()①人体成熟的红细胞、蛙的红细胞、鸡的红细胞中均能合成ATP②若细胞内Na+浓度偏高,为维持Na+浓度的稳定,细胞消耗ATP的量增加③ ATP中的“A”与构成DNA、RNA中的碱基“A”不是同一物质④质壁分离和复原实验过程中不消耗ATP⑤ATP中的能量可以来源于光能、化学能,也可以转化为光能和化学能A. 0项B. 1项C. 2项D. 3项3. 如图为某高等生物细胞某种分裂的两个时期的结构模式图,a,b表示染色体片段。

下列关于两图叙述错误..的是()A. 图甲细胞处在减数第二次分裂中期,此时期没有遗传物质的复制B. 两图说明分裂过程中可能发生基因重组C. 同源染色体上等位基因的分离不能发生在甲图所处的分裂时期D. 若两图来源于同一个卵原细胞,且图乙是卵细胞,则图甲是次级卵母细胞4. 下列关于植物生命活动调节的叙述正确的是()A. 植物激素具有两重性,低浓度促进生长,高浓度抑制生长B. 植物激素在植物体内含量较低,但有高效的生物催化作用C. 根尖分生区细胞数目的增多主要是由赤霉素调节的D. 细胞分裂素在果实生长中起促进作用5. 下图为小鼠结肠癌发病过程中细胞形态和部分染色体上基因的变化。

洛阳市2015届高三一练word答案数学理

洛阳市2015届高三一练word答案数学理

参考答案(理)一、选择题CBABDCACDAAA二、填空题13.0.214.2(3-槡5)π15.116.槡36三、解答题17.(1)∵A,B,C三点共线,∴λ∈R,使→AC=λ→AB,→OC-→OA=λ(→OB-→OA),即→OC=(1-λ)→OA+λ→OB.由平面向量基本定理,1-λ=a3,λ=a15{.消去λ,得a3+a15=1.……3分又a3+a15=a1+a17,所以S17=17(a1+a17)2=172.即存在n=17时,S17为定值172.……5分(2)由于anbn=a1+a2n-1b1+b2n-1=S2n-1T2n-1=31n+35n+1……7分=31+4n+1.……8分依题意,n+1的可能取值为2,4,所以n的取值为1或3,即使anbn为整数的正整数n的集合为{1,3}.……10分18.(1)在△CDE中,CD=CE2+ED2-2CE²ED²cos∠槡CED=3+1-2²槡3²1²槡cos30°=1.……2分∴△EDC为等腰三角形,∠ADB=60°,AD=2,AE=1,……4分S△ACE=12²AE²CE²sin∠AEC=12²1²槡3²sin150°=槡34.……6分(2)设CD=a,在△ACE中,CEsin∠CAE=AEsin∠ACE∴CE=2asin15°sin30°=(槡6-槡2)a.……8分学试卷参考答案(理)一、选择题CBABDCACDAAA二、填空题13.0.214.2(3-槡5)π15.116.槡36三、解答题17.(1)∵A,B,C三点共线,∴λ∈R,使→AC=λ→AB,→OC-→OA=λ(→OB-→OA),即→OC=(1-λ)→OA+λ→OB.由平面向量基本定理,1-λ=a3,λ=a15{.消去λ,得a3+a15=1.……3分又a3+a15=a1+a17,所以S17=17(a1+a17)2=172.即存在n=17时,S17为定值172.……5分(2)由于anbn=a1+a2n-1b1+b2n-1=S2n-1T2n-1=31n+35n+1……7分=31+4n+1.……8分依题意,n+1的可能取值为2,4,所以n的取值为1或3,即使anbn为整数的正整数n的集合为{1,3}.……10分18.(1)在△CDE中,CD=CE2+ED2-2CE²ED²cos∠槡CED=3+1-2²槡3²1²槡cos30°=1.……2分∴△EDC为等腰三角形,∠ADB=60°,AD=2,AE=1,……4分S△ACE=12²AE²CE²sin∠AEC=12²1²槡3²sin150°=槡34.……6分(2)设CD=a,在△ACE中,CEsin∠CAE=AEsin∠ACE∴CE=2asin15°sin30°=(槡6-槡2)a.……8分在cos∠DAB=cos(∠CDE-90°)=sin∠CDE=槡3-1.……12分19.(1)线段AB的中垂线方程:y=x,2x-y-4=0,y=x{.x=4,y=4{.即S(4,4).……3分圆S半径|SA|=5,……4分则圆S的方程为:(x-4)2+(y-4)2=25.……6分(2)由x+y-m=0变形得y=-x+m,代入圆S的方程,消去x并整理得2x2-2mx+m2-8m+7=0.令△ =(2m)2-8(m2-8m+7)>0,得8-槡52<m<8+槡52,……8分设点C,D的横坐标分别为x1,x2,则x1+x2=m,x1x2=m2-8m+72.依题意,得→OC²→OD<0,即x1x2+(-x1+m)(-x2+m)<0.m2-8m+7<0,解得1<m<7.……11分故实数m的取值范围{m|8-槡52<m<8+槡52}∩{m|1<m<7}={m|1<m<7}.……12分20.(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立空间直角坐标系,则A(0,1,0),B(0,0,0),C(2,0,0),D1(2,2,2).若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2.……2分→EF=(-2,y-1,z-1),→AC=(2,-1,0),CD→1=(0,2,2),∵EF⊥平面ACD1,∴→EF⊥→AC,→EF⊥AD→1.则→EF²→AC=0,→EF²AD→1=0,即-4-(y-1)=0,2(y-1)+2(z-1)=0{.y=-3,z=5{.……4分与0≤y≤1,0≤z≤2矛盾,所以不存在满足条件的点F.……6分(2)设|DD1|=2k(k>0),则K(0,0,k),→AK=(0,-1,k).设平面ACK的法向量m→=(x,y,z),则-y+kz=0,2x-y=0{.取一个m→=(k,2k,2),同样的,可求得平面ACD1的一个法向量n→=(-k,-2k,2).……8分依题意得|m→²n→|m→||n→||=12,即|-k2-4k2+45k2+槡4² 5k2+槡4|=12,……10分解得:k=±槡21515或±槡2155(负值舍去),即DD1的长为槡41515或槡4155.……12分21.(1)设A(x1,y1),B(x2,y2),直线l的方程为x=my+p2,由x=my+p2,y2=2px烅烄烆.消去x得y2-2pmy-p2=0.所以y1+y2=2pm,y1y2=-p2.∵→OA²→OB=-3,∴x1x2+y1y2=-3,x1x2=y122p²y222p=p24,所以p24-p2=-3,p2=4.∵p>0,∴p=2.……4分(2)由抛物线定义,|AM|=x1+p2=x1+1,|BM|=x2+p2=x2+1.……6分∴|AM|+4|BM|=x1+4x2+5≥24x1x槡2+5=9.当且仅当x1=4x2时取等号.……8分将x1=4x2代入x1x2=p24=1中,得x2=±12(负值舍去).x2=12代入y2=4x中,得y2=±槡2,即点B的坐标为(12,±槡2).……10分将B的坐标代入x=my+1,得m=±槡24.∴l的方程为:x=±槡24y+1,即4x±槡2y-4=0.……12分22.(1)∵f(x)=mln(1+x)-x,∴f′(x)=m1+x-1.∵f(x)在(0,+∞)上为单调函数,∴f′(x)≥0恒成立,或f′(x)≤0恒成立.……2分即m1+x≥1恒成立,或m1+x≤1恒成立.∵x∈(0,+∞),∴m≥1+x不能恒成立.而1+x>1,∴m≤1时f(x)为单调递减函数.综上,m≤1.……4分(2)由(1)知,m=1时,f(x)在(0,+∞)上为减函数,∴f(x)<f(0),即ln(x+1)<x,x∈(0,+∞).……6分∵sin1,sin122,…sin1n2>0,∴ln(1+sin1)<sin1,ln(1+sin122)<sin122,……ln(1+sin1n2)<sin1n2.……8分令g(x)=sinx-x,x∈ (0,π2),则g′(x)=cosx-1<0,∴g(x)在(0,π2)上为减函数.∴g(x)<g(0),即sinx<x,x∈(0,π2).∴sin1<1,sin122<122,…,sin1n2<1n2.……10分∴ln(1+sin1)+ln(1+sin122)+…+ln(1+sin1n2)<sin1+sin122+…+sin1n2<1+122+…+1n2<1+11³2+12³3+…+1(n-1)n=1+(1-12)+(12-13)+…+(1n-1-1n)=2-1n<2.即ln[(1+sin1)(1+sin122)…(1+sin1n2)]<2.∴(1+sin1)(1+sin122)…(1+sin1n2)<e2.……12分。

河南省洛阳市2015—2016学年高三年级第二次统一考试——数学(理)剖析

河南省洛阳市2015—2016学年高三年级第二次统一考试——数学(理)剖析

洛阳市2015——2016学年高三年级第二次统一考试数学试卷(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名,考号填写在答题卡上. 2.考试结束,将答题卡交回.一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足(z -1)(1+i )=2(i 为虚数单位),则|z |=A .1B .5CD 2.若命题p :x ∀∈(0,+∞),21log ()x x+≥1,命题q :0x ∃∈R ,20x -0x +1≤0,则下列命题为真命题的是A .p ∨qB .p ∧qC .(p ⌝)∨qD .(p ⌝)∧(q ⌝) 3.若f (x )=xae--xe 为奇函数,则f (x -1)<e -1e的解集为 A .(-∞,0) B .(-∞,2)C .(2,+∞)D .(0,+∞)4.执行如图所示的程序框图,则输出i 的值为 A .4 B .5 C .6 D .555.已知f (x )sin (ωx +ϕ)(ω>0,|ϕ|<2π) 满足f (x )=-f (x +2π),f (0)=12,则g (x )=2cos (ωx +ϕ)在区间[0,2π]上的最大值为A .2BC .1D .-26.在矩形ABCD 中,AB =3,BCBE =2EC ,点F 在边CD 上,若AB ·AF =3,则AE uu u r ·BF uu u r的值为A .4 BC .0D .-4 7.设D 为不等式组0,0,230,x x y x y ⎧⎪⎨⎪⎩≥-≤+-≤表示的平面区域,圆C :22(5)x y -+=1上的点与区域D 上的点之间的距离的取值范围是 A .11) B .-11] C .D .-11] 8.如图所示是某几何体的三视图,则该几何体的表面积为A .57+24πB .57+15πC .48+15πD .48+24π9.已知双曲线C :2218y x -=的左右焦点分别为 F 1,F 2,过F 2的直线l 与C 的左右两支分别交于 A ,B 两点,且|AF 1|=|BF 1|,则|AB |=A .B .3C .4D .110.设等比数列{n a }的公比为q ,其前n 项之积为n T ,并且满足条件:a 1>1,a 2015a 2016>1,2015201611a a --<0.给出下列结论:(1)0<q <1;(2)a 20l5a 2017-1>0;(3)T 2016的值是n T 中最大的;(4)使n T >1成立的最大自然数n 等于4030.其中正确的结论为 A .(1),(3) B .(2),(3) C .(1),(4) D .(2),(4)11.已知正四面体S -ABC 的外接球O 过AB 中点E 作球O 的截面,则截面面积的最小值为A .4πB .6πC .163π D .43π12.若函数f (x )=xe ·(2x +ax +b )有极值点x 1,x 2(x 1<x 2),且f (x 1)=x 1,则关于x 的方程2()f x +(2+a )f (x )+a +b =0的不同实根个数为 A .0 B .3 C .4 D .5第Ⅱ卷(非选择题,共90分)二、填空题:本题共4个小题。

河南省洛阳市2015届高三第二次统一考试数学理试题Word版含答案

河南省洛阳市2015届高三第二次统一考试数学理试题Word版含答案

2014—一2015学年高中三年级第二次统一考试数学试卷(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名,考号填写在答题卷上.2.考试结束,将答题卷交回.一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知i 是虚数单位,若复数z 满足zi =1+i ,则复数z 的实部与虚部之和为A .0B .1C .D .42.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x B},则 A -B =A .{x |x <-1}B .{x |-1≤x <0}C .{x |-1<x <0}D .{x |x ≤-1}3.若函数y =f (2x +1)是偶函数,则函数y =f (x )的图象的对称轴方程是A .x =1B .x =-1C .x =2D .x =-24.设等比数列{n a }的公比为q ,则“0<q <1”是“{n a }是递减数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知函数f (x )=2x ,g (x )=lgx ,若有f (a )=g (b ),则b 的取值范围是A .[0,+∞)B .(0,+∞)C .[1,+∞)D .(1,+∞)6.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +2a =2()b c +, 则cosA 等于A .45B .-45C .1517D .-15177.6(1)(2)x x +-的展开式中4x 的系数为 A .-100 B .-15 C .35 D .2208.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为A .115B .15C .14D .129.已知双曲线C :2221x a b2y -=(a >0,b >0),斜率为1的直线过双曲线C 的左焦点且与该曲线交于A ,B 两点,若OA uu r +OB uu u r 与向量n r =(-3,-1)共线,则双曲线C 的离心率为ABC .43D .3 10.设函数f (x )=x |x -a |,若对1x ,2x ∈[3,+∞),1x ≠2x ,不等式1212()()f x f x x x -->0恒成立,则实数a 的取值范围是A .(-∞,-3]B .[-3,0)C .(-∞,3]D .(0,3]11.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为A .1 B.2CD .12.已知点A 、B 、C 、D 均在球O 上,AB =BC,AC =3,若三棱锥D -ABCO 的表面积为A .36πB .16πC .12πD .163π 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.执行下面的程序,若输入的x =2,则输出的所有x 的值的和为________________.14.已知tan α,tan β分别是2lg(652)x x -+=0的两个实根,则tan (α+β)=_________. 15.已知向量a r ,满足|a r |=2,|b r |=1,且对一切实数x ,|a r +xb r |≥|a r +b r |恒成立,则a r ,b r 的夹角的大小为________________.16.已知F 1,F 2分别是双曲线22233x y a -=(a >0)的左,右焦点,P 是抛物线28y ax =与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为_____________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知正项数列{n a }的前n 项和为n S ,对n ∈N ﹡有2n S =2n n a a +.(1)求数列{n a }的通项公式;。

2015年高考考前热身试卷理科数学(二)

2015年高考考前热身试卷理科数学(二)

【模拟二】2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{|||1}A x x =<,{|21}xB x =>,则A B =I(A )(1,0)- (B )(1,1)-(C ))21,0((D )(0,1)(2(A )1(B )i(C )12(D )12i (3)设||1=a ,||2=b ,且a ,b 夹角3π,则|2|+=a b (A )2(B )4(C)(D)(4)在长为3的线段上任取一点,则该点到两端点的距离均不小于1的概率为(A )13(B )23(C )49(D )59(5)已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =(A )18(B )36(C )54(D )72(6)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是(A )2 (B )92(C )32(D )3正视图 侧视图x(7)如图,程序输出的结果132S =,则判断框中应填(A )10?i ≥(B )11?i ≥ (C )11?i ≤ (D )12?i ≥(8)设a ,b 是两条不同的直线,α,β是两个不同的平面,a α⊂,b β⊥,则α∥β是a b ⊥的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既非充分又非必要条件(9)已知不等式组⎪⎩⎪⎨⎧≥-≥-≤+011y y x y x 所表示的平面区域为D ,若直线3y kx =-与平面区域D 有公共点,则k 的取值范围为是 (A )[3,3]-(B )11(,][,)33-∞-+∞ (C )(,3][3,)-∞-+∞(D )11[,]33-(10)在直角坐标系xOy 中,设P 是曲线C :)0(1>=x xy 上任意一点,l 是曲线C 在点P处的切线,且l 交坐标轴于A ,B 两点,则以下结论正确的是 (A )△OAB 的面积为定值2 (B )△OAB 的面积有最小值为3 (C )△OAB 的面积有最大值为4(D )△OAB 的面积的取值范围是[3,4](11)已知抛物线1C :y x 22=的焦点为F ,以F 为圆心的圆2C 交1C 于,A B 两点,交1C 的准线于,CD 两点,若四边形ABCD 是矩形,则圆2C 的标准方程为 (A )221()42x y +-= (B )221()42x y -+= (C )221()22x y +-=(D )221()22x y -+=(12)已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是(A )1(,)2+∞ (B )1(0,)2(C )(1,)+∞ (D )(0,1)第Ⅱ卷本卷包括必考题和选考题两部分。

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)(x i﹣)(y i(w i﹣)表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年河南省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.另解:函数f(x)=xln(x+)为偶函数,可得g(x)=ln(x+)为R上奇函数,即g(0)=0,即有a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣an2+2(an+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣an2=(an+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos <,>===﹣.则有直线AE与直线CF 所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)(x i﹣)(y i(w i﹣)表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;豫汝王世崇;cst;lincy;吕静;双曲线;whgcn;沂蒙松(排名不分先后)菁优网2017年3月2日。

河南省洛阳市2015届高三数学一模试卷(理科) Word版含解析

河南省洛阳市2015届高三数学一模试卷(理科) Word版含解析

河南省洛阳市2015届高考数学一模试卷(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合 A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( ) A.3 B.11 C.8 D.12 2.已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为( ) A.{a|a<﹣6} B.{a|﹣6<a<} C.{a|a<} D.{a|a<﹣6或a>} 3.已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,则sinθ﹣cosθ的等于( ) A.B.C.D.﹣ 4.下面四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数 5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为( ) A.B.8﹣2πC.πD.8﹣π 6.已知 f(x)是定义域在R上的偶函数,且 f(x)在(﹣∞,0]上单调递增,设a=f(sinπ),b=f(cosπ),c=f(tanπ),则a,b,c的大小关系是,( ) A.a<b<c B.b<a<c C.c<a<b D.a<c<b 7.执行如图的程序,则输出的结果等于( ) A.B.C.D. 8.在△ABC中,D为AC的中点,=3,BD与AE交于点F,若=,则实数λ的值为( ) A.B.C.D. 9.设 F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为( ) A.B.2 C.D. 10.曲线 y=(x>0)在点 P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB的 周长的最小值为( ) A.4+2 B.2 C.2 D.5+2 11.若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则实数λ的取值范围是( ) A.(﹣∞,﹣)∪(9,+∞)B.,(﹣,1)∪(9,+∞)C.(1,9)D.(﹣∞,﹣) 12.在平面直角坐标系中,点P是直线 l:x=﹣上一动点,点 F(,0),点Q为PF的中点,点M满足MQ⊥PF,且=λ(λ∈R).过点M作圆(x﹣3)2+y2=2的切线,切点分别为S,T,则|ST|的最小值为( ) A.B.C.D. 二、填空题:本大题共4小题,每小题5分,共20分. 13.设随机变量ξ~N(μ,σ2),且 P(ξ<﹣1)=P(ξ>1),P(ξ>2)=0.3,则P(﹣2<ξ<0)=__________. 14.若正四梭锥P﹣ABCD的底面边长及高均为2,刚此四棱锥内切球的表面积为__________. 15.将函数 y=sin(x)sin(X+)的图象向右平移个单位,所得图象关于y轴对称,则正数ω的最小值为__________. 16.在△ABC中,角A,B,C的对边分别是a,b,c,若b=1,a=2c,则当C取最大值时,△ABC的面积为__________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知{an},{bn} 均为等差数列,前n项和分别为Sn,Tn. (1)若平面内三个不共线向量,,满足=a3+a15,且A,B,C三点共线.是否存在正整数n,使Sn为定值?若存在,请求出此定值;若不存在,请说明理由; (2)若对 n∈N+,有=,求使为整数的正整数n的集合. 18.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上. (l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积; (2)若 AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值. 19.已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x﹣y﹣4=0上. (1)求圆S的方程 (2)若直线x+y﹣m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围. 20.如图,直四棱柱ABCD﹣A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2. (1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由; (2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长. 21.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且?=﹣3,其中O为坐标原点. (1)求p的值; (2)当|AM|+4|BM|最小时,求直线l的方程. 22.已知函数f(x)=ln(1+x)m﹣x (1)若函数f(x)为(0,+∞)上的单调函数,求实数m的取值范围; (2)求证:(1+sin1)(1+sin)(1+sin)…(1+sin)<e2. 河南省洛阳市2015届高考数学一模试卷(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合 A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( ) A.3 B.11 C.8 D.12 考点:集合的表示法. 专题:集合. 分析:根据题意和z=xy,x∈A且y∈B,利用列举法求出集合C,再求出集合C中的元素个数. 解答:解:由题意得,A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B}, 当x=1时,z=1或2或3;当x=2时,z=2或4或6;当x=3时,z=3或6或9; 当x=4时,z=4或8或12;当x=5时,z=5或10或15; 所以C={1,2,3,4,6,8,9,12,5,10,15}中的元素个数为11, 故选:B. 点评:本题考查集合元素的三要素中的互异性,注意集合中元素的性质,属于基础题. 2.已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为( ) A.{a|a<﹣6} B.{a|﹣6<a<} C.{a|a<} D.{a|a<﹣6或a>} 考点:复数的代数表示法及其几何意义. 专题:数系的扩充和复数. 分析:求出复数的表达式,根据题意列出不等式组,求出a的取值范围. 解答:解:∵复数z1=3﹣ai,z2=1+2i, ∴===﹣i; ∴, 解得﹣6<a<, ∴实数a的取值范围{a|﹣6<a<}. 故选:B. 点评:本题考查了复数的代数运算问题,解题时应注意虚数单位i2=﹣1,是基础题. 3.已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,则sinθ﹣cosθ的等于( ) A.B.C.D.﹣ 考点:同角三角函数基本关系的运用. 专题:三角函数的求值. 分析:利用根与系数的关系表示出sinθ+cosθ=,sinθcosθ=,利用完全平方公式及同角三角函数间基本关系整理求出m的值,再利用完全平方公式求出sinθ﹣cosθ的值即可. 解答:解:∵sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根, ∴sinθ+cosθ=,sinθcosθ=, 可得(sinθ+cosθ)2=1+2sinθcosθ,即=1+m,即m=﹣, ∵θ为第二象限角,∴sinθ>0,cosθ<0,即sinθ﹣cosθ>0, ∵(sinθ﹣cosθ)2=(sinθ+cosθ)2﹣4sinθcosθ=﹣2m=1﹣+=, ∴sinθ﹣cosθ==. 故选:A. 点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键. 4.下面四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数 考点:演绎推理的意义. 专题:推理和证明. 分析:根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论. 解答:解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式; 对于B,符合演绎推理三段论形式且推理正确; 对于C,大小前提颠倒,不符合演绎推理三段论形式; 对于D,大小前提及结论颠倒,不符合演绎推理三段论形式; 故选:B 点评:本题主要考查推理和证明,三段论推理的标准形式,属于基础题. 5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为( ) A.B.8﹣2πC.πD.8﹣π 考点:由三视图求面积、体积. 专题:计算题;空间位置关系与距离. 分析:根据三视图可判断正方体的内部挖空了一个圆锥,该几何体的体积为23﹣×π×12×2运用体积计算即可. 解答:解:∵几何体的三视图可得出:三个正方形的边长均为2, ∴正方体的内部挖空了一个圆锥, ∴该几何体的体积为23﹣×π×12×2=8, 故选:D 点评:本题考查了空间几何体的三视图,运用求解几何体的体积问题,关键是求解几何体的有关的线段长度. 6.已知 f(x)是定义域在R上的偶函数,且 f(x)在(﹣∞,0]上单调递增,设a=f(sinπ),b=f(cosπ),c=f(tanπ),则a,b,c的大小关系是,( ) A.a<b<c B.b<a<c C.c<a<b D.a<c<b 考点:奇偶性与单调性的综合. 专题:函数的性质及应用. 分析:根据函数奇偶性和单调性之间的关系,即可得到结论. 解答:解:∵f(x)是定义域在R上的偶函数,且 f(x)在(﹣∞,0]上单调递增, ∴f(x)在[0,+∞)上单调递减, 则tanπ<﹣1,<sinπ,<cosπ<0, 则tanπ<﹣sinπ<cosπ, 则f(tanπ)<f(﹣sinπ)<f(cosπ), 即f(tanπ)<f(sinπ)<f(cosπ), 故c<a<b, 故选:C 点评:本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键. 7.执行如图的程序,则输出的结果等于( ) A.B.C.D. 考点:程序框图. 专题:计算题;点列、递归数列与数学归纳法;算法和程序框图. 分析:执行程序框图,依次写出每次循环得到的S,T的值,当i=100,退出循环,输出T 的值. 解答:解:执行程序框图,有 i=1,s=0,t=0 第1次执行循环,有s=1,T=1 第2次执行循环,有i=2,s=1+2=3,T=1+ 第3次执行循环,有i=3,s=1+2+3=6,T=1++ 第4次执行循环,有i=4,s=1+2+3+4=10,T=1++ … 第99次执行循环,有i=99,s=1+2+3+..+99,T=1+++…+ 此时有i=100,退出循环,输出T的值. ∵T=1+++…+,则通项an===, ∴T=1+(1﹣)+(﹣)+()+()+…+()=2=. ∴输出的结果等于. 故选:A. 点评:本题主要考察了程序框图和算法,考察了数列的求和,属于基本知识的考查. 8.在△ABC中,D为AC的中点,=3,BD与AE交于点F,若=,则实数λ的值为( ) A.B.C.D. 考点:平面向量的基本定理及其意义. 专题:平面向量及应用. 分析:根据已知条件,,能够分别用表示为:,k∈R,,所以带入便可得到,=,所以根据平面向量基本定理即可得到,解不等式组即得λ的值. 解答:解:如图,B,F,D三点共线,∴存在实数k使,; ∴==;=; ∵; ∴; ∴,解得. 故选C. 点评:考查向量加法运算及向量加法的平行四边形法则,共面向量基本定理,以及平面向量基本定理. 9.设 F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为( ) A.B.2 C.D. 考点:双曲线的简单性质. 专题:圆锥曲线的定义、性质与方程. 分析:由题意,不妨设|F1P|>|F2P|,a=b=1,c=;|F1P|﹣|F2P|=2,|F1P|2+|F2P|2=8;从而求出|F1P|=+1,|F2P|=﹣1;再出和即可. 解答:解:由题意,不妨设|F1P|>|F2P|, a=b=1,c=; |F1P|﹣|F2P|=2, |F1P|2+|F2P|2=8; 故(|F1P|+|F2P|)2=2(|F1P|2+|F2P|2)﹣(|F1P|﹣|F2P|)2=2×8﹣4=12; 故|F1P|+|F2P|=2; 则|F1P|=+1,|F2P|=﹣1; 故则sin∠PF1F2的所有可能取值之和为 +==; 故选D. 点评:本题考查了圆锥曲线的应用,考查了圆锥曲线的定义,属于基础题. 10.曲线 y=(x>0)在点 P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB的 周长的最小值为( ) A.4+2 B.2 C.2 D.5+2 考点:利用导数研究曲线上某点切线方程. 专题:导数的综合应用. 分析:利用导数求出函数y=(x>0)在点 P(x0,y0)处的切线方程,得到直线在两坐标轴上的截距,由勾股定理求得第三边,作和后利用基本不等式求最值. 解答:解:由y=,得, 则, ∴曲线 y=(x>0)在点 P(x0,y0)处的切线方程为:y﹣=﹣(x﹣x0). 整理得:. 取y=0,得:x=2x0,取x=0,得. ∴|AB|==2. ∴△OAB的周长为=(x0>0) . 当且仅当x0=1时上式等号成立. 故选:A. 点评:本题考查了利用导数研究过曲线上某点的切线方程,考查了利用基本不等式求最值,是中档题. 11.若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则实数λ的取值范围是( ) A.(﹣∞,﹣)∪(9,+∞)B.,(﹣,1)∪(9,+∞)C.(1,9)D.(﹣∞,﹣) 考点:简单线性规划. 专题:不等式的解法及应用. 分析:作出不等式组对应的平面区域,利用线性规划的知识即可得到结论. 解答:解:(3λ+1)x+(1﹣λ)y+6﹣6λ=0等价为λ(3x﹣y﹣6)+(x+y+6)=0, 则,解得,即直线过定点D(0,﹣6) 作出不等式组对应的平面区域如图:其中A(2,1),B(5,2), 此时AD的斜率k==,BD的斜率k==, 当直线过A时,λ=9, 当直线过B时,λ=﹣, 则若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点, 则满足直线的斜率≤≤, 解得λ∈(﹣∞,﹣)∪(9,+∞), 故选:A 点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,运算量较大. 12.在平面直角坐标系中,点P是直线 l:x=﹣上一动点,点 F(,0),点Q为PF的中点,点M满足MQ⊥PF,且=λ(λ∈R).过点M作圆(x﹣3)2+y2=2的切线,切点分别为S,T,则|ST|的最小值为( ) A.B.C.D. 考点:圆的切线方程. 专题:直线与圆. 分析:由题意首先求出M的轨迹方程,然后在M满足的曲线上设点,只要求曲线上到圆心的距离的最小值,即可得到|ST|的最小值. 解答:解:设M坐标为M(x,y),由MP⊥l知P(﹣,y);由“点Q为PF的中点”知Q(0,); 又因为QM⊥PF,QM、PF斜率乘积为﹣1,即, 解得:y2=2x, 所以M的轨迹是抛物线, 设M(y2,y),到圆心(3,0)的距离为d,d2=(y2﹣3)2+2y2=y4﹣4y2+9=(y2﹣2)2+5, ∴y2=2时,dmln=,此时的切线长为,所以切点距离为2=; ∴|ST|的最小值为; 故选A. 点评:本题考查了抛物线轨迹方程的求法以及与圆相关的距离的最小值求法,属于中档题. 二、填空题:本大题共4小题,每小题5分,共20分. 13.设随机变量ξ~N(μ,σ2),且 P(ξ<﹣1)=P(ξ>1),P(ξ>2)=0.3,则P(﹣2<ξ<0)=0.2. 考点:正态分布曲线的特点及曲线所表示的意义. 专题:计算题;概率与统计. 分析:根据正态分布的性质求解. 解答:解:因为P(ξ<﹣1)=P(ξ>1),所以正态分布曲线关于y轴对称, 又因为P(ξ>2)=0.3,所以P(﹣2<ξ<0)=故答案为:0.2. 点评:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位. 14.若正四梭锥P﹣ABCD的底面边长及高均为2,刚此四棱锥内切球的表面积为(6﹣2)π. 考点:球内接多面体. 专题:计算题;空间位置关系与距离. 分析:运用分割思想,连接OP,OA,OB,OC,OD,得到四个三棱锥和一个四棱锥,由大的四棱锥的体积等于四个三棱锥的体积和一个小的四棱锥的体积之和,根据正四棱锥的性质,求出斜高,即可求出球的半径r,从而得到球的表面积. 解答:解:设球的半径为r,连接OP,OA,OB,OC,OD,得到四个三棱锥和一个四棱锥 它们的高均为r, 则VP﹣ABCD=VO﹣PAB+VO﹣PAD+VO﹣PBC+VO﹣PCD+VO﹣ABCD 即×2×22=r(4×S△PBC+4), 由四棱锥的高和斜高,及斜高在底面的射影构成的直角三角形得到, 斜高为, ∴S△PBC=×2×=, ∴r=, 则球的表面积为4π×()2=(6﹣2)π. 故答案为:(6﹣2)π. 点评:本题主要考查球与正四棱锥的关系,通过分割,运用体积转换的思想,是解决本题的关键. 15.将函数 y=sin(x)sin(X+)的图象向右平移个单位,所得图象关于y轴对称,则正数ω的最小值为2. 考点:函数y=Asin(ωx+φ)的图象变换. 专题:三角函数的求值;三角函数的图像与性质. 分析:化简可得y=sin(ωx﹣)+将函数的图象向右平移个单位,所得解析式为:y=sin(ωx﹣ω﹣)+,所得图象关于y轴对称,可得﹣ω﹣=k,k∈Z,从而可解得正数ω的最小值. 解答:解:∵y=sin(x)sin(X+)=sin2+sinωx==sin(ωx﹣)+, ∴将函数的图象向右平移个单位,所得解析式为:y=sin[ω(x﹣)﹣]+=sin(ωx﹣ω﹣)+, ∵所得图象关于y轴对称, ∴﹣ω﹣=k,k∈Z, ∴可解得:ω=﹣6k﹣4,k∈Z, ∴k=﹣1时,正数ω的最小值为2, 故答案为:2. 点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数的图象与性质,属于基本知识的考查. 16.在△ABC中,角A,B,C的对边分别是a,b,c,若b=1,a=2c,则当C取最大值时,△ABC的面积为. 考点:余弦定理;正弦定理. 专题:计算题;解三角形;不等式的解法及应用. 分析:运用余弦定理和基本不等式,求出最小值,注意等号成立的条件,再由面积公式,即可得到. 解答:解:由于b=1,a=2c, 由余弦定理,可得, cosC====(3c+)≥=, 当且仅当c=,cosC取得最小值, 即有C取最大值,此时a=, 则面积为absinC==. 故答案为:. 点评:本题考查余弦定理和三角形面积公式的运用,考查基本不等式的运用:求最值,考查运算能力,属于中档题. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知{an},{bn} 均为等差数列,前n项和分别为Sn,Tn. (1)若平面内三个不共线向量,,满足=a3+a15,且A,B,C三点共线.是否存在正整数n,使Sn为定值?若存在,请求出此定值;若不存在,请说明理由; (2)若对 n∈N+,有=,求使为整数的正整数n的集合. 考点:数列与向量的综合;数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分析:(1)根据平面向量的基本定理和A,B,C三点共线,以及等差数列的性质和求和公式,即可求出定值; (2)根据等差数列的求和公式得到====31+,继而求出正整数n的集合. 解答:解:(1)∵A,B,C三点共线. ∴?λ∈R,使=λ,=λ(), 即=(1﹣λ)+λ, 又平面向量的基本定理得,,消去λ得到a3+a15=1, ∵a3+a15=a1+a17=1, ∴S17=×17×(a1+a17)=即存在n=17时,S17为定值. (2)由于====31+ 根据题意n+1的可能取值为2,4, 所以n的取值为1或3, 即使为整数的正整数n的集合为{1,3} 点评:本题主要考查了向量以及等差数列的通项公式和求和公式的应用.考查了学生创造性解决问题的能力,属于中档题 18.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上. (l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积; (2)若 AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值. 考点:三角形中的几何计算. 专题:计算题;解三角形. 分析:(1)运用余弦定理,解出CD=1,再解直角三角形ADB,得到AE=1,再由面积公式,即可得到△ACE的面积; (2)在△ACE和△CDE中,分别运用正弦定理,求出CE,及sin∠CDE,再由诱导公式,即可得到∠DAB的余弦值. 解答:解:(1)在△CDE中,CD==, 解得CD=1, 在直角三角形ABD中,∠ADB=60°,AD=2,AE=1, S△ACE===; (2)设CD=a,在△ACE中,=, CE==()a, 在△CED中,=,sin∠CDE===﹣1, 则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1. 点评:本题考查解三角形的运用,考查正弦定理和余弦定理,及面积公式的运用,考查运算能力,属于基础题. 19.已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x﹣y﹣4=0上. (1)求圆S的方程 (2)若直线x+y﹣m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围. 考点:直线与圆的位置关系;圆的标准方程. 专题:直线与圆. 分析:(1)线段AB的中垂线方程:y=x,联立,得S(4,4),由此能求出圆S的半径|SA|. (2)由x+y﹣m=0,变形得y=﹣x+m,代入圆S的方程,得2x2﹣2mx+m2﹣8m+7=0,由此利用根的判别式和韦达定理结合已知条件能求出实数m的取值范围. 解答:解:(1)线段AB的中垂线方程:y=x, 联立,得S(4,4), ∵A(7,8), ∴圆S的半径|SA|==5. ∴圆S的方程为(x﹣4)2+(y﹣4)2=25. (2)由x+y﹣m=0,变形得y=﹣x+m, 代入圆S的方程,得2x2﹣2mx+m2﹣8m+7=0, 令△=(2m)2﹣8(m2﹣8m+7)>0, 得, 设点C,D上的横坐标分别为x1,x2, 则x1+x2=m,, 依题意,得<0, ∴x1x2+(﹣x1+m)(﹣x2+m)<0, m2﹣8m+7<0, 解得1<m<7. ∴实数m的取值范围是(1,7). 点评:本题考查圆的半径的求法,考查实数的取值范围的求法,解题时要注意根的判别式和韦达定理的合理运用. 20.如图,直四棱柱ABCD﹣A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2. (1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由; (2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长. 考点:点、线、面间的距离计算;直线与平面垂直的判定. 专题:综合题;空间位置关系与距离;空间角. 分析:(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立坐标系,若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2,利用EF⊥平面ACD1,求出y=﹣3,z=5,与0≤y≤1,0≤z≤2矛盾,即可得出结论; (2)设|DD1|=2k(k>0),求出平面ACK的法向量、平面ACD1的法向量,利用向量的夹角公式,结合平面D1AC与平面ACK所成锐二面角为60°,求出k,即可求DD1的长. 解答:解:(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立坐标系, 则A(0,1,0),B(0,0,0),C(2,0,0),D1(2,2,2), 若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2,=(﹣2,y﹣1,z﹣1),=(2,﹣1,0),=(0,2,2), ∵EF⊥平面ACD1, ∴,∴y=﹣3,z=5, 与0≤y≤1,0≤z≤2矛盾, ∴不存在满足条件的点F; (2)设|DD1|=2k(k>0),则K(0,0,k),D1(2,2,2k),=(0,﹣1,k),=(2,1,2k), 设平面ACK的法向量为=(x,y,z),则, 取=(k,2k,2), 同理平面ACD1的法向量为=(﹣k,﹣2k,2), 则=∴k=±或(负值舍去), ∴DD1的长为或. 点评:本题考查直线与平面垂直的判定,考查向量知识的运用,正确求出平面的法向量是关键. 21.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且?=﹣3,其中O为坐标原点. (1)求p的值; (2)当|AM|+4|BM|最小时,求直线l的方程. 考点:直线与圆锥曲线的关系. 专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程. 分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2; (2)运用抛物线的定义,及均值不等式,即可得到最小值9,注意等号成立的条件,求得B的坐标,代入直线方程,求得m,即可得到直线l的方程. 解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+, 代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0, y1+y2=2pm,y1y2=﹣p2, 由于?=﹣3,即x1x2+y1y2=﹣3, x1x2==, 即有﹣p2=﹣3,解得,p=2; (2)由抛物线的定义,可得,|AM|=x1+1,|BM|=x2+1, 则|AM|+4|BM|=x1+4x2+5+5=9, 当且仅当x1=4x2时取得最小值9. 由于x1x2=1,则解得,x2=(负的舍去), 代入抛物线方程y2=4x,解得,y2=,即有B(), 将B的坐标代入直线x=my+1,得m=. 则直线l:x=y+1,即有4x+y﹣4=0或4x﹣y﹣4=0. 点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题. 22.已知函数f(x)=ln(1+x)m﹣x (1)若函数f(x)为(0,+∞)上的单调函数,求实数m的取值范围; (2)求证:(1+sin1)(1+sin)(1+sin)…(1+sin)<e2. 考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用. 专题:导数的综合应用. 分析:(1)先求出函数的导数,通过f′(x)≥0恒成立,或f′(x)≤0恒成立,得到m的范围; (2)由题意得:ln(x+1)<x,令g(x)=sinx﹣x,通过函数的单调性得sin1<1,sin<,…,sin<,从而ln[(1+sin1)(1+sin)…(1+sin)]<2,进而证出结论. 解答:解:(1)∵f(x)=mln(1+x)﹣x,∴f′(x)=﹣1, ∵函数f(x)为(0,+∞)上的单调函数, ∴f′(x)≥0恒成立,或f′(x)≤0恒成立, ∵x∈(0,+∞),∴m≥1+x不能恒成立, 而1+x>1,∴m≤1时,f(x)为单调递减函数, 综上:m≤1; (2)由(1)得m=1时,f(x)在(0,+∞)上是减函数, ∴f(x)<f(0),即ln(x+1)<x,x∈(0,+∞), ∵sin1?sin…sin>0, ∴ln(1+sin1)<sin1,…,ln(1+sin)<sin, 令g(x)=sinx﹣x,x∈(0,),则g′(x)=cosx﹣1<0, ∴g(x)在(0,)上是减函数, ∴g(x)<g(0),即sinx<x,x∈(0,), ∴sin1<1,sin<,…,sin<, ∴ln(1+sin1)+ln(1+sin)+…+ln(1+sin) <sin1+sin+…+sin <1++…+ <1+++…+=1+(1﹣)+(﹣)+…+(﹣)=2﹣<2, 即ln[(1+sin1)(1+sin)…(1+sin)]<2, ∴(1+sin1)(1+sin)(1+sin)…(1+sin)<e2. 点评:本题考查了函数的单调性问题,导数的应用,考查了不等式的证明问题,考查转化思想,有一定的难度.。

河南省洛阳市2015届高三上学期期末考试数学(理)试题 Word版含答案

河南省洛阳市2015届高三上学期期末考试数学(理)试题 Word版含答案

洛阳市2014-2015学年高中三年级期末考试数 学 试 卷(理A )一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}24120x x x A =--<,{}2x x B =<,则()RAB =ð( )A .{}6x x <B .{}22x x -<<C .{}2x x >-D .{}26x x ≤< 2、设i 为虚数单位,复数212ii+-的共轭复数是( ) A .35i B .35i - C .i D .i - 3、已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为10,点()2,1P 在C 的渐近线上,则C 的方程为( )A .221205x y -= B .221520x y -= C .2218020x y -= D .2212080x y -=4、若程序框图如图所示,则该程序运行后输出k 的值是( ) A .4 B .5 C .6 D .75、已知命题:p 0R x ∃∈,使0sin x =:q R x ∀∈,都有210x x ++>.给出下列结论:①命题“p q ∧”是真命题;②命题“()p q ∧⌝”是假命题; ③命题“()p q ⌝∨”是真命题;④命题“()()p q ⌝∨⌝是假命题. 其中正确的命题是( )A .②③B .②④C .③④D .①②③6、已知角α的终边经过点()a A ,若点A 在抛物线214y x =-的准线上,则sin α=( )A .BC .12-D .127、在平面直角坐标系内,若曲线C :22224540x y ax ay a ++-+-=上所有的点均在第四象限内,则实数a 的取值范围为( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞ 8、已知直线:m 230x y +-=,函数3cos y x x =+的图象与直线l 相切于P 点,若l m ⊥,则P 点的坐标可能是( )A .3,22ππ⎛⎫--⎪⎝⎭ B .3,22ππ⎛⎫ ⎪⎝⎭ C .3,22ππ⎛⎫⎪⎝⎭D .3,22ππ⎛⎫-- ⎪⎝⎭9、把函数sin 6y x π⎛⎫=+ ⎪⎝⎭图象上各点的横坐标缩小到原来的12(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为( ) A .2x π=-B .4x π=-C .8x π=D .4x π=10、在平面直角坐标系x y O 中,点A 与B 关于y 轴对称.若向量()1,a k =,则满足不等式20a OA +⋅AB ≤的点(),x y A 的集合为( )A .()(){}22,11x y x y ++≤ B .(){}222,x y x y k +≤C .()(){}22,11x y x y -+≤ D .()(){}222,1x y x y k ++≤11、如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π 12、设二次函数()2f x ax bx c =++的导函数为()f x '.对R x ∀∈,不等式()()f x f x '≥恒成立,则2222b a c +的最大值为( )A 2B 2C .2D .2 二、填空题(本大题共4小题,每小题5分,共20分.)13、在62x ⎫⎪⎭的展开式中,常数项是 .14、函数()1,10,01x x x f x e x +-≤<⎧=⎨≤≤⎩的图象与直线1x =及x 轴所围成的封闭图形的面积为 .15、将5名实习老师分配到4个班级任课,每班至少1人,则不同的分配方法数是 (用数字作答). 16、如图,在C ∆AB中,C sin2∠AB =,2AB =,点D 在线段C A 上,且D 2DC A =,D B =,则cosC = . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)设数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-.()1求数列{}n a 的通项公式; ()2设12log n n b a =,求22212111111n n b b b T =++⋅⋅⋅+---.18、(本小题满分12分)在某学校的一次选拔性考试中,随机抽取了100名考生的成绩(单位:分),并把所得数据列成了如下表所示的频数分布表:()1求抽取的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中点值作代表);()2已知这次考试共有2000名考生参加,如果近似地认为这次成绩z 服从正态分布()2,μσN (其中μ近似为样本平均数x ,2σ近似为样本方差2s ),且规定82.7分是复试线,那么在这200012.7≈,若()2,z μσN ,则()0.6826z μσμσP -<<+=,()220.9544z μσμσP -<<+=)()3已知样本中成绩在[]90,100中的6名考生中,有4名男生,2名女生,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望()ξE .19、(本小题满分12分)如图,在四棱锥CD P -AB 中,底面CD AB 是直角梯形,D//C A B ,DC 90∠A =,平面D PA ⊥底面CD AB ,Q 为D A 的中点,D 2PA =P =,1C D 12B =A =,CD =. ()1求证:平面Q PB ⊥平面D PA ;()2在棱C P 上是否存在一点M ,使二面角Q C M -B -为30?若存在,确定M 的位置;若不存在,请说明理由.20、(本小题满分12分)已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,一个焦点与抛物线24y x =的焦点重合,直线:l y kx m =+与椭圆C 相交于A ,B 两点. ()1求椭圆C 的标准方程;()2设O 为坐标原点,22b k k aOA OB⋅=-,判断∆AOB 的面积是否为定值?若是,求出定值;若不是,说明理由. 21、(本小题满分12分)设函数()()2ln 12f x x ax a x =---(0a >).()1若0x ∃>,使得不等式()264f x a a >-成立,求实数a 的取值范围;()2设函数()y f x =图象上任意不同的两点为()11,x y A 、()22,x y B ,线段AB 的中点为()00C ,x y ,记直线AB 的斜率为k ,证明:()0k f x '>.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,AB 是O 的切线,B 为切点,D A E 是O 的割线,C 是O 外一点,且C AB =A ,连接D B ,BE ,CD ,C E ,CD 交O 于F ,C E 交O 于G . ()1求证:CD D C BE⋅=B ⋅E ;()2求证:FG//C A .23、(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系x y O 中,过点()2,0P 的直线l 的参数方程为2x y t⎧=-⎪⎨=⎪⎩(t 为参数),圆C 的方程为229x y +=.以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.()1求直线l 和圆C 的极坐标方程;()2设直线l 与圆C 相交于A ,B 两点,求PA ⋅PB 的值.24、(本小题满分10分)选修4-5:不等式选讲()1设函数()52f x x x a =-+-,R x ∈,若关于x 的不等式()f x a ≥在R 上恒成立,求实数a 的最大值;()2已知正数x ,y ,z 满足231x y z ++=,求321x y z++的最小值.洛阳市2014-2015学年高中三年级期末考试数 学 试 卷(理A )参考答案一、选择题:13、60 14、12e 15、24016、79三、解答题。

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足上%i,贝lj|z|=()l~zA.1B.C.V3D.22.(5分)sin20°cosl0°-cosl60°sinl0°=()A.jZIB.C.D.L22223.(5分)设命题p:3nGN,n2>2%则「p为()A.V n6N,n2>2nB.3nGN,n2^2nC.V nGN,n2^2nD.3nEN,n2=2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3122c5.(5分)已知M(xo,yo)是双曲线C:上的一点,Fi,F2是C的左、右两个焦点,若则yo的取值范围是()A.(乎争B.(华华C.(号,誓)D.(琴,誓)6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:"今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?"其意思为:"在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A. 14 斛B. 22 斛C. 36 斛D. 66 斛7. (5分)设D 为Z^ABC 所在平面内一点,BC=3CD>贝J ()A. AD=-yAB+yAC B - ADABAC c - AD=yAB+yAC D - AD AB-y AC8. (5分)函数f (x ) =cos (cox+4))的部分图象如图所示,则f (x )的单调递减区间为( )C. (k - k +旦),k£zD.(兀」,2k+旦),k£z 4 4 瓜4 彳9. (5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的8 ( )/输入//S・l/・0, m[s・s.招=5_2 m 7^7(W)A. 5B. 6C. 7D. 810. (5分)(x2+x+y ) 5的展开式中,x5y2的系数为()A. 10B. 20C. 30D. 6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20JI,12.(5分)设函数f(x)=e x(2x-1)-ax+a,其中a<l,若存在唯一的整数Xo使得f(Xo)<0,则a的取值范围是()A.1)B.[_J-,旦)C.[旦,2)D.[旦,1)2e2e42e42e二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+旗渗)为偶函数.贝"=—.2214.(5分)一个圆经过椭圆。

2015年高考数学(理科)模拟试卷四.doc

2015年高考数学(理科)模拟试卷四.doc

2015年高考数学(理科)模拟试卷四一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项符合题目要求.1.复数等于 A. B. C. D.2.已知集合,,则A. B. C. D.3.已知两个单位向量,的夹角为,且满足,则实数的值是A. B. C. D.4.已知、,则“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.已知、满足约束条件,则的最大值为A. B. C. D.6.下列函数中,可以是奇函数的为A.,B.,C.,D.,7.已知异面直线、均与平面相交,下列命题:①存在直线,使得或;②存在直线,使得且;③存在直线,使得与和所成的角相等,其中不正确的命题个数是 A. B. C. D.8.有10个乒乓球,将它们任意分成两堆,求出这两堆乒乓球个数的乘积,再将每堆乒乓球任意分成两堆并求出这两堆乒乓球个数的乘积,如此下去,直到不能再分为止,则所有乘积的和为A. B. C. D.二、填空题:本大题共7小题,分为必做题和选做题两部分,每小题5分,满分30分.(一)必做题(第9题至13题为必做题,每道题都必须作答)9.如果,那么 .10.不等式恒成立,则的取值范围是 .11.已知点、到直线:的距离相等,则的值为 .12.某市有40%的家庭订阅了《南方都市报》,从该市中任取4个家庭,则这4个家庭中恰好有4个家庭订阅了《南方都市报》的概率为 .13.如图,为了测量河对岸、两点之间的距离,观察者找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;找到一点,从点可以观察到点、,并测量得到一些数据:,,,,,,,则、两点之间的距离为 .()(二)选做题(14-15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图,是圆外一点,、是圆的两条切线,切点分别为、,的中点为,过作圆的一条割线交圆于、两点,若,,则 .15.(坐标系与参数方程选讲选做题)在极坐标中,曲线:与曲线:()的一个交点在极轴上,则, .三、解答题:本大题共6小题,满分80分,解答题须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数(,)的最小正周期为.(Ⅰ)求;(Ⅱ)在平面直角坐标系中,画出函数在区间上的图象,并根据图象写出其在上的单调递减区间.17.(本小题满分12分)某地区“腾笼换鸟”的政策促进了区内环境改善和产业转型,空气质量也有所改善,现从当地天气网站上收集该地区近两年11月份(30天)的空气质量指数(AQI)(单位:)资料如下:2013年11月份AQI数据频率分布直方图2014年11月份AQI数据(1)请填好2014年11月份AQI数据的频率分布表并完成频率分布直方图;(Ⅱ)该地区环保部门2014年12月1日发布的11月份环评报告中声称该地区“比去年同期空气质量的优良率提高了20多个百分点”(当AQI时,空气为优良),试问此人收集到的资料信息是否支持该观点?18.(本小题满分14分)如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面是的菱形,是棱上的动点,且().(Ⅰ)求证:为直角三角形;(Ⅱ)试确定的值,使得二面角的平面角的余弦值为.19.(本小题满分14分)数列的前项和为,已知,,.(Ⅰ)求,的值;(Ⅱ)求数列的通项公式;(Ⅲ)设,数列前项和为,证明:,.20.(本小题满分14分)已知曲线:,(Ⅰ)曲线为双曲线,求实数的取值范围;(Ⅱ)已知,和曲线:,若是曲线上任意一点,线段的垂直平分线为,试判断直线与曲线的位置关系,并证明你的结论.21.(本小题满分14分)已知函数.(Ⅰ)若,证明:函数是上的减函数;(Ⅱ)若曲线在点处的切线与直线平行,求的值;(Ⅲ)若,证明:(其中为自然对数的底数).2015年高考数学(理科)模拟试卷四参考答案和评分标准一、选择题:本大题共8小题,每小题5分,满分40分.[必做题] 9.10.11.12.(或) 13.[选做题] 14.15.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.【解析】(Ⅰ)依题意得,解得,所以,………………2分所以.………4分(Ⅱ)因为,所以,列表如下:……………………6分由图象可知函数在上的单调递减区间为,.…………12分17.【解析】(Ⅰ) 频率分布表(3分);频率分布直方图(6分)(Ⅱ) 支持,理由如下:年月的优良率为:, …………8分………10分年月的优良率为:, …………9分因此…………11分所以数据信息可支持“比去年同期空气质量的优良率提高了多个百分点”.…………………12分18.【解析】(Ⅰ)取中点,连结,依题意可知△,△均为正三角形,所以,,又,平面,平面,所以平面,又平面,所以,因为,所以,即,从而△为直角三角形.………………5分说明:利用平面证明正确,同样满分!(Ⅱ)[向量法]由(Ⅰ)可知,又平面平面,平面平面,平面,所以平面.………………6分以为原点,建立空间直角坐标系如图所示,则,,,,………………7分由可得点的坐标为,………………9分所以,,设平面的法向量为,则,即解得,令,得,………………11分显然平面的一个法向量为,………………12分依题意,解得或(舍去),所以,当时,二面角的余弦值为.………………14分[传统法]由(Ⅰ)可知平面,所以,,所以为二面角的平面角,即,………………8分在△中,,,,所以,………10分由正弦定理可得,即,解得,………………12分又,所以,所以,当时,二面角的余弦值为.………………14分19.【解析】(Ⅰ)当时,,解得;……………………………………1分当时,, 解得;…………………………………………2分(Ⅱ)方法一:当时,,整理得,即……………………………………………5分所以数列是首项为,公差为的等差数列. ……………………………………………6分所以,即……………………………………………7分代入中可得. ……………………………………………8分方法二:由(Ⅰ)知:,猜想,…………………………………4分下面用数学归纳法证明:①当时,,猜想成立;……………………………………………5分②假设,猜想也成立,即,则当时,有整理得,从而,于是即时猜想也成立.所以对于任意的正整数,均有. ……………………………………………8分(Ⅲ) 由(Ⅱ)得,, …………………………………………9分当时,………11分当时,成立;…………………………………………………12分当时,所以综上所述,命题得证. (14)分20.【解析】(Ⅰ) 因为曲线为双曲线,所以,解得,所以实数的取值范围为.…………………………………………………4分(Ⅱ)结论:与曲线相切.………………………5分证明:当时,曲线为,即,设,其中,……………………………………6分线段的中点为,直线的斜率为,………………………………7分当时,直线与曲线相切成立.当时,直线的方程为,即,…9分因为,所以,所以,………………10分代入得,化简得,…………12分即,所以所以直线与曲线相切.……………………………………………………14分说明:利用参数方程求解正确同等给分!21.【解析】(Ⅰ)当时,函数的定义域是,………………1分对求导得,………………………………………………2分令,只需证:时,.又,………………………………3分故是上的减函数,所以…………………………5分所以,函数是上的减函数. …………………………………………………6分(Ⅱ)由题意知,,…………………………………………7分即,…………………………………8分令,则,…………………………………9分故是上的增函数,又,因此是的唯一零点,即方程有唯一实根,所以,…………………………………10分[说明]利用两函数与图象求出(必须画出大致图象),同样给至10分.(Ⅲ)因为,故原不等式等价于,………11分由(Ⅰ)知,当时,是上的减函数,…………………………………12分故要证原不等式成立,只需证明:当时,,令,则,是上的增函数,…………………………13分所以,即,故,即…………………………………………………………14分。

(2021年整理)2015高考数学模拟试卷及答案解析-理科

(2021年整理)2015高考数学模拟试卷及答案解析-理科

(完整)2015高考数学模拟试卷及答案解析-理科编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015高考数学模拟试卷及答案解析-理科)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015高考数学模拟试卷及答案解析-理科的全部内容。

2015高考数学模拟试卷及答案解析(理科)本试卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数321i i -(i 为虚数单位)的虚部是A .15iB .15C .15i -D .15-2.设全集U=R ,A={x |2x (x —2)〈1},B={x |y=1n (l -x )},则右图中阴影部分表示的集合为 A .{x |x≥1}B .{x |x≤1}C .{x|0<x≤1}D .{x |1≤x〈2}3.等比数列{a n }的各项均为正数,且564718a a a a +=,则log 3 a 1+log 3a 2+…+log 3 a l0= A .12 B .10C .8D .2+log 3 54.若x=6π是3x ω+cos x ω的图象的一条对称轴,则ω可以是 A .4B .8C .2D .15.己知某几何体的三视图如图所示,则该几何体的体积是 A 23π B 232π+ C .232π D .3π6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有'5架舰载机准备着舰.如果甲乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有( )种 A .12B .18C .24D .487.已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅,则a= A .—6或-2 B .-6 C .2或-6 D .-28.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为: P= P 0e-kt,(k,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.A .12小时B .59小时 c .5小时D .10小时9.己知抛物线22(0)y px p =>的焦点F 恰好是双曲线22221(0,0)x y a b a b-=>>的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为 A 2B .2C 2D 2110.实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1则(a 5+a 6)-(a 1+a 4)的最大值为A .3B .2C 6D .1二、填空题(本大题共6小题,考生共需作答5小题.每小题5分,共25分,请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)(一)必考题.(11-14题) 常数项11.己知0(sin cos )xa t t dt =+⎰,则(1x ax-)6的展开式中的为 。

河南省洛阳市2015-2016学年高三下学期第二次大练习理科数学备考试题一含答案

河南省洛阳市2015-2016学年高三下学期第二次大练习理科数学备考试题一含答案

二练备考一一、选择题(本大题共12小题,共60.0分)1. 设等差数列 的前n 项和为 , 且 ,则 ( )A. 11B. 10C. 9D. 82. 已知定义域为R 的函数 不是奇函数,则下列命题一定为真命题的是( )A. B.C.D.3. 已知 ,则“”是“ ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既非充分也非必要条件 4. 某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰 直角三角形,左视图是边长为2的正方形,则此四面体的四个面中面 积最大的为( )A. B. 4 C. D.5. 直线的倾斜角的取值范围是( )A. B. C.D.6. 如图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是( ) A. B. C. D.7. 如图,已知 ,点在线段上,且,设,则等于( ) A. B. 3 C.D.8. 设 为三条不同的直线, 为一个平面,下列命题中正确的个数是( ) ①若 ,则 与 相交 ②若 则 ③若 || , || , ,则 ④若 || , , ,则 ||A. 1B. 2C. 3D. 49.已知曲线 ,点 及点 ,从点 观察点 ,要使视线不被曲线挡住,则实数 的取值范围是( )A. (4,+∞)B. (-∞,4)C. (10,+∞)D. (-∞,10)10. 函数(其中)的图象如图所示,为了得到 的图象,则只要将 的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度11. 若变量满足,则点所在区域的面积为()A. B. C. D.12. 设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13. 已知关于的二项式展开式的二项式系数之和为32,常数项为80,则实数的值为.14. ABC的内角A,B,C所对的边分别为,且成等比数列,若= ,=,则的值为.15. 已知点在抛物线的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若,则点A到动直线MN的最大距离为 .16. 在直径AB为2的圆上有长度为1的动弦CD,则的取值范围是.三、解答题(本大题共6小题,共70.0分)17. 设数列的前项和为,且首项.(Ⅰ)求证:是等比数列;(Ⅱ)若为递增数列,求的取值范围.18. (本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和,试求和的分布列和数学期望.19.如图,弧是半径为的半圆,为直径,点为弧的中点,点和点为线段的三等分点,平面外一点满足,.(Ⅰ)证明:;(Ⅱ)已知点,为线段,上的点,使得,求当最短时,平面和平面所成二面角的正弦值.20. (12分)已知直线经过椭圆S:的一个焦点和一个顶点.(1)求椭圆S的方程;(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为.①若直线PA平分线段MN,求的值;②对任意,求证:.21. 设,.(Ⅰ)若在上有两个不等实根,求的取值范围;(Ⅱ)若存在,使得对任意的,都有成立,求实数的取值范围.22. (本题满分10分)选修4—4:坐标系与参数方程直线(极轴与轴的非负半轴重合,且单位长度相同)。

20河南省洛阳市2015届高三上学期第一次统一考试 数学(

20河南省洛阳市2015届高三上学期第一次统一考试 数学(

洛阳市2014——2015学年高中三年级统一考试数学试卷(理A )本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟,第I 卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名,考号填写在答题卷上. 2.考试结束,将答题卷交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.l.集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为A.3 B .4 C .8 D .12 2.已知i 为虚数单位,复数123,12z ai z i =-=+,若12z z 复平面内对应的点在第四象限,则实数a 的取值范围为A. {}|6a a <- B . 3|62a a ⎧⎫-<<⎨⎬⎩⎭C . 3|62a a ⎧⎫-<<⎨⎬⎩⎭ D . 3|62a a a ⎧⎫<->⎨⎬⎩⎭或 3.已知θ为第二象限角, sin ,cos θθ是关于x 的方程22x R)∈ 的两根,则 sin -cos θθ的等于 A .B .C .D .4.下面四个推导过程符合演绎推理三段论形式且推理正确的是A .大前提:无限不循环小数是无理数;小前提:π丌是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提: π是无限不循环小数;结论: π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论: π是无理数D.大前提: π是无限不循环小数;小前提: π是无理数;结论:无限不循环小数是无理数5.某几何体的三视图如图所示,图中三个正方形的边长均 为2,则该几何体的体积为 A . 38 B . 82π- C . 43π D . 283π-6.已知 ()f x 是定义涵在R 上的偶函数,且()f x 在(],0-∞上单调递增,设333(sin )(cos ),(tan )555a fb fc f πππ===,则a,b,c 的大小关系是,A .a<b<cB .b<a<cC .c<a<bD .a<c<b7.执行如图的程序,则输出的结果等于 A .9950B .200101C .14950D . 150508.在△ABC 中,D 为AC 的中点, 3BC BD =,BD 与 AE 交于点F ,若 AF AE λ=,则实数A 的值为 A .12 B . 23 C . 34 D . 459.设 12,F F 分别为双曲线 221x y -=的左,右焦点,P 是双曲线上在x 轴上方的点, 1F PF ∠为直角,则 12sin PF F ∠的所有可能取值之和为A .83B .2C .D .210.曲线 1(0)y x x=>在点 00(,)P x y 处的切线为 l . 若直线l 与x ,y 轴的交点分别为A ,B ,则△OAB 的 周长的最小值为A. 4+B.C.2D. 5+11.若直线(31)(1)660x y λλλ++-+-= 与不等式组 70,310,350.x y x y x y +-<⎧⎪-+<⎨⎪-->⎩,表示的平面区域有公共点,则实数A 的取值范围是A . 13(,)(9,)7-∞-+∞ B . 13(,1)(9,)7-+∞ C .(1,9) D . 13(,)7-∞-12.在平面直角坐标系中,点P 是直线 1:2l x =-上一动点,点 1(,0)2F ,点Q 为PF 的中点,点M 满MQ ⊥PF ,且 ()MP OF R λλ=∈.过点M 作圆 22(3)2x y -+= 的切线,切点分别为S ,T ,则 ST 的最小值为A .5 B .5C . 72 D. 52第Ⅱ卷(非选择题,共90分),二、填空题:本大题共4小题,每小题5分,共20分. 13.设随机变量2(,)N ξμσ,且 (1)(1),(2)0.3P P P ξξξ<-=>>=,则(10)P ξ-<<=_____________.14.若正四梭锥P- ABCD 的底面边长及高均为2,刚此四棱锥内切球的表面积为_______. 15.将函数 ()sin()223y sin x x ωωπ=+的图象向右平移号个单位,所得图象关于y 轴对称,则正数 ω的最小值为_________.16.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b=l ,a= 2c ,则当C 取最大值时,△ABC 的面积为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分) 已知 {}{},n n a b 均为等差数列,前n 项和分别为 ,n n S T .(1)若平面内三个不共线向量 ,,OA OB OC 满足 315OC a OA a OB =+,且A ,B ,C 三点共线.是否存在正整数n ,使 n S 为定值?若存在,请求出此定值;若不存在,请说明理由。

河南省洛阳理工学院附属中学2015届高三高考热身练习化学试题

河南省洛阳理工学院附属中学2015届高三高考热身练习化学试题

河南省洛阳理工学院附属中学2015届高三高考热身练习化学试题7.下列说法不正确...的是()A.对稀土元素及化合物的研究是获得优良催化剂的一种重要途径B.油脂是人体中热值最高的营养物质,在工业上可用于制肥皂C.离子键、共价键和氢键等化学键都可能对物质的熔沸点产生影响D.高分子膜在分离提纯、物质制备以及能量转化等领域都有广泛应用8. 下列说法不正确...的是()A.甲苯和环己烯都能使酸性高锰酸钾溶液褪色B.用银氨溶液可以鉴别乙醛和葡萄糖溶液C.甲醛和乙二醇都可作为合成高分子化合物的单体D.丙烷和2-甲基丙烷的一氯代物均为两种9. 已知酸性:H2SO4>>H2CO3>> HCO3—,综合考虑反应物的转化率和原料成本等因素,将转变为的最佳方法是A.与足量的NaOH溶液共热后,再通入足量CO2()B.与足量的NaOH溶液共热后,再加入适量H2SO4C.与稀H2SO4共热后,加入足量的NaOH溶液D.与稀H2SO4共热后,加入足量的Na2CO3溶液10.实验:①0.1 mol/L AgNO3溶液和0.1 mol/L NaCl溶液等体积混合得到浊液,过滤。

②分别取少量①的滤液,分别滴加等浓度等体积的饱和Na2S溶液、饱和Na2SO4溶液,前者出现浑浊,后者溶液仍澄清。

③取少量①的沉淀,滴加几滴氨水,沉淀逐渐溶解。

下列分析不正确...的是()A.实验②证明了①的滤液中含有Ag+,由此推断①的滤液中也含有Cl¯B.实验②证明了该温度下Ag2S比Ag2SO4更难溶解C.实验③的溶液中含有Ag(NH3)2+微粒D.由实验③推测:若在①的沉淀中滴加NaOH溶液,沉淀也能溶解11. 在100℃时,将N2O4、NO2分别充入两个各为1 L的密闭容器中,反应过程中浓度变化如下:2NO2(g) N2O4(g) ΔH <0下列说法正确的是( )A. 平衡时,Ⅰ、Ⅱ中反应物的转化率α(N 2O 4)<α(NO 2)B. 平衡时,Ⅰ、Ⅱ中上述正反应的平衡常数K (Ⅰ) = 2K (Ⅱ)C. 平衡后,升高相同温度,以N 2O 4表示的反应速率ν(Ⅰ)<ν(Ⅱ)D. 平衡后,升高温度,Ⅰ、Ⅱ中气体颜色都将变深12. FeCO 3与砂糖混用可以作补血剂,实验室里制备FeCO 3的流程如下图所示。

高考专题高考模拟卷数学(理)试题.docx

高考专题高考模拟卷数学(理)试题.docx

2015年高考模拟卷数学(理)试题命题:高二数学组注意事项:1.本试题分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第1卷l 至2贞,第Ⅱ卷:至4页.2.答卷前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡卜-完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡.一并交回.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若全集U=R ,集合A={x|x 2>4},B={x|x-3x+1<0},则A ∩(C U B)等于( )A. {x|x<-2}B. {x|x<-2或x ≥3}C. {x| x ≥3}D. {x|-2≤x<3}2.已知x,y ∈R ,i 为虚数单位,且(x-1)i+y=2+i ,则(1+i)x+y的值为( )A .4B .-4C .4+4iD .2i3.把函数()22s i n 2s i n c o s 3c o s fx x x x x =-+的图象沿x 轴向左平移(0)m m >个单位,所得函数()g x 的图象关于直线8x π=对称,则m 的最小值为( )开始 y=2x-1 x=y否输入x |x-y|>8A .4πB .3πC .2πD .34π4.执行如图所示的程序框图,若输入x=3,则输出y 的值为( ) A.5 B.9 C.17 D.335.在长为8的线段AB 上任取一点C ,现作一矩形,临边分别等于AC 、BC 的长,则该矩形面积大于15的概率( )A .B .C .D . 6.以下命题中:①p q ∨为真命题,则p 与q 均为真命题;②2201s in 242x d x ππ=-⎰;③9()a b c ++的展开式,432a b c 项的系数为1260;④已知函数()3123,,,f x xx x x x R =--∈,且1223310,0,0x x xx xx +>+>+>,则123()()()f x f x f x ++的值恒为负;⑤“1a =”是“直线1:210l a x y +-=与直线2:(1)40l x a y +++=”平行的充分条件。

高三数学考前热身综合练习试题二理扫描版新人教A版

高三数学考前热身综合练习试题二理扫描版新人教A版

洛阳市2013年高三综合练习题理科数学(二)AC 折起,使BD=a,则三棱傕D-ABC 的体积为5 •下列命题中的真命題是A.日 x W R •使彳3 sinx -rcosx — 1. 5C. 3 x6 使得 x 24-x= —16・已知等比数列满足张>0小=1,2,…,且心•如r=2沁“23),则当时:log : 31 + 】og2 as H log : a% ・ 1 =A. n(2n-l)B. (n+1)2 C, n 2< ) D.(n-l)2 河南省洛阳市高三数学考前热身综合练习试(二)理(扫描版)题号二三总分1718192021 22 〜24分数•一■选择题:本大题共12小SL 每小趣5分•共60分■在毎小题给出的四个选项中■只有一项是符合题目要求的.得分 评卷人Kl2C.鲁 D 養B. Vx6(0>+<»)»e M >xl- 1 IX V x€ (0,^)>sinx>c ()sx 1 •定义差集A-B={x|x6A,且x$B}・现有三个集合A.B.C 分别用圆表示,则集 合C-(A-B )可表示下列图中阴影部分的为A •第一象限 B.第二象限 C •第三象限 3.据第六次全国人口普査的数据•得到我国人口的年龄频率•分布宜方图如图所示■那 么在一个总人口数为300万的城市中,年 龄在[20,60)之间的人口数大约有()A.158 万B. 166 万C. 174D. 132D •第四象限7.已知f ( J=sin (g+专)(3>0)的图象与y= — l 的图象的相邻两交点间的距高为 X,要得到y-f<x )的图象,只需把y=cos2x 的图煞 ( )A.向右平移豈个单位B.向右平移誇个单位12.定义方程f (x )=r (x )的实数根0叫做函数f (x )的“新驻点”•如果函数g (x ) =Xth(x) —ln(x F 1) 9<x) = cosx( x€ (寻伍))的“新驻点”分别为那么a • p,y 的大小关系£(>A M V PGB. aVyVpC. y<a<pD. p<a<yC.向左平移卷个单位D.向左平移芳个单位&已知a =(V3 cosx — sinx) dx t 则二项・式(才+旦尸展开式中X 的系数为XA. 一40B..40C. -80D. 809.如图所示,用模拟方法估计圆周率K 的 程序框图,f 表示估计结果,则图中空白 框内应填入()A P=-^~ •• 1000c 如H p= 4NapioooD P»—i • 100010・右图为•个儿何体的三视图,尺寸如图所示•则该几何体的体积为C ・3v^ + # D. 3箱+¥D311.若双曲线£ 一,=只5>0)的左、右顶 点分别为A 、B,点P 是第一念限内双曲 线上的点.若直线PA 、PB 的倾斜和分别 为a ,B ,且P= ma (m>l ),那么a 的值堆7T2m-rl D. 2m+2二、填空題:本大题共4个小題■毎小題5分■共20分.13.若不等式组*y$ — x, 表示的平面区域为M,x 2 + /< 1所表示的平面区域bx —y —3W0.为N ■现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为 ________ •14•用数字0,1>2>3组成数字可以重复的四位数,其中有且只有一个数字出现两次的四位数的个数为________ •15•已知圆C 的圆心在曲线上,圆C 过坐标原点O,且分别与x 轴・y 轴交于• •A.B 两点■则AOAB 的面积 ________ •16.在锐角△ABC 中,BC=1,B=2A,则衆的值等于 _____________ ,AC 的取值范围为三■解答题:本大题共6小题,共70分•解答应写出文字说明■证明过程或演算步骤.2+bx(a^O)的导函数f #(x) =-2x + 7t 数列{如}的前n 项和为S …点P.(mSJ (nWN ・〉均在函数y=f(x)的图象上(1) 求数列{aj 的通项公式及S,的最大值, (2) 令b 严其中n6N-,求数列{nb.}的前n 项和.17.(本小题满分12分)18.(本小题满分12分〉有100米跑■立定跳远、掷实心球•测试规定如下:①三个测试项目中有两项测试成绩合格即可认定为体育达标'②测试时要求考生先从三个顼目中随机抽取两个进行测试,若抽取的两个项目测试都合格或都不合格时•不再参加第三个项目的测试;若抽取的两个项目只有一项合格,则必须参加第三项测试.已知甲同学跑、冼、掷三个项目测试合格的概率分别是y.y'l,各项测试时间间隔恰当,每次测试互不影响.(1)求甲同学恰好先抽取跳、掷两个项目进行测试的槪率;(2)求甲同学经过两个项目测试就能达标的概率;(3)若甲按规定完成测试,参加测试项目个数为X•求X的分布列和期望.如图■一张平行四边形的硬纸片ABQD.中. AD=BD= 1, AB = V2 .沿它的对角线BD 把 ABDCo 折起•使点G 到达平面ABCoD 外点C 的 位置.(DABDCo 折起的过程中,判断平面ABCoD 与平面CBG 的位秃关系,并给出证明;(2)当AABC 为等腰三角形时,求二面角 A-BD-C 的大小.得分 评卷人919.(本小题淸分12分)20.(本小题满分12分)已知椭圆G:手+石= l(a>b>0)的离心率为警,直线/;y=x + 2与以原点为圆心、椭圆G的短半轴长为半径的圆相切.(1)求椭圆C.的方程;(2)设椭圆G的左焦点为右焦点为F-直线人过点旺且垂直于椭圆的长轴•动直线"垂直人于点P,线段FF:的垂直平分线交伤于点M,求点M的轨迹C:的方程;⑶设G与x轴交于点Q・不同的两点R,S在G上,且满足述・菸=0,求的取值范围.21.(本小题满分12分)X⑴若a=2,求曲线y=f(x)在点(l,f(D)处的切线方程$(2)求函数f(Q的单凋区间;⑶设函数g(x) = -^.若至少存在一个XoECUe],使得fg)>g(G成立■求实数8的取值范围.请考生在第22.23.24三题中任选一题做答■如果多做•则按所做的第一得分评卷人題计分•把所选题目对应的題号涂黑•・我选做的题号是:画画叵]・22•(本小题满分10分)选修4~1;几何证明选讲.如图,已知PA是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理工附中热身练(理数)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数332
i i
z +-=
的共轭复数对应的点位于 A .第四象限 B .第三象限 C .第二象限 D .第一象限
2.已知集合{}0222=++=ax x x A ,{}
0232=++=a x x x B ,{}2=⋂B A 且
I B A =⋃,则()()=⋃B C A C I I
A .⎭⎬⎫⎩⎨⎧-21,5
B .⎭⎬⎫⎩⎨⎧-2,21,
5 C .{}2,5- D .⎭
⎬⎫⎩⎨⎧21,2 3.已知函数x
a x f =)(,则“4
1
0≤
<a ”是“对任意21x x ≠,都有
0)()(2121<--x x x f x f 成立”的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件 4.已知点P 是ABC ∆内一点,且BP BC BA 6=+,则
=∆∆ACP
ABP
S S A .
21 B .31 C .41 D .5
1 5.各项都是正数的等比数列{}n a 中,2312,2
1
,3a a a 成等差数列,则
=++++++++++21
181********
2019151210a a a a a a a a a a a a
A .1
B .3
C .6
D .9
6.如图所示,元件()4,3,2,1=i A i 通过电流的概率均为0.9,且各元件是否通过电流相互独立,则电流能在M ,N 之间通过的概率为
A .0.729
B .0.8829
C .0.864
D .0.9891
7.当实数
y x ,满足
⎪⎩

⎨⎧≥≤--≤-+1010
42x y x y x 时,若存在),(y x 使得ax y -≥4成立,则实数a 的取值范围是
A .⎥⎦⎤ ⎝
⎛∞-23, B .⎪⎭⎫ ⎝
⎛∞-23, C .⎪⎭⎫⎢⎣⎡+∞,23 D .⎪⎭
⎫ ⎝⎛+∞,2
3
8.执行如图所示的程序框图,若输出的结果为2,则输入的正整 数a 的可能取值构成的集合为 A .{}5
,4,3,2,1 B .{}5,4,3,2 C .{}6
,5,4,3,2,1 D .{}6,5,4,3,2
9.已知函数)6
cos(2)(π
ω+
=x x f (0>ω)满足: )314()38(ππf f =,
且在区间⎪⎭

⎝⎛ππ314,38内有最大值但没有最小值,给出下列四个命题:
1P :)(x f 在[]π2,0上单调递减; 2P :)(x f 的最小正周期是π4;
3P :)(x f 的图象关于直线2
π
=
x 对称;
4P :)(x f 的图象关于点⎪⎭

⎝⎛-0,34π对称.
其中的真命题是
A .21,P P
B .42,P P
C .31,P P
D .43,P P
10.双曲线12222=-b
y a x ()0,0>>b a 的右焦点是抛物线x y 82
=的焦点,两曲线的一个公
共交点为P ,且5=PF ,则该双曲线的离心率为
A .
25 B .5 C .2 D .3
22
11.已知某斜三棱柱的三视图如图所示,则
该斜三
棱柱的表面积是
A .6524++
B .654+
+
C .6254++。

相关文档
最新文档