浙教版八下数学各章节知识点以及重难点(修改版)
浙教版八下数学基础知识点复习提纲
浙教版八下数学各章节知识点及重难点第一章 二次根式 一.知识点:1. 二次根式的定义:形如√a (a ≥0)的代数式叫做二次根式。
如:√2,,√3,√π,5√11,-3√2,……2. 二次根式的性质:⑴ a ≥ 0(双重非负性); ⑵()=2a a (a ≥0)⑶=2a ∣a ∣;(4)=ab √a ×√(0,0≥≥b a );(5) =b a√a ÷√b (0,0>≥b a ).强调:二次根式具有双重非负性。
3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。
满足这三个条件的二次根式称为最简二次根式。
4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。
5.二次根式的运算(1)加(减)法:先化简,再合并。
(2)乘(除)法:先乘除,再化简。
6.分母有理化:分母有理化也称为有理化分母。
就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。
(1) 形如:√3=√3√3×√3=23√3 (2) 形如:√3−√2=√3+√2)(√3−√2)(√3+√2)=2(√3+√2)=2√3+2√27.关于具有双重根号的二次根式。
如: √6+2√5=√1+2√5+5=√12+2×1×√5+(√5)2=√(1+√5)2=1+√5二.重点和难点:重点:二次根式的运算。
难点:混合运算以及应用。
第二章 一元二次方程 一.知识点:1. 定义:形如a x 2+bx +c =0(a ≠0) 的方程叫做一元二次方 程,其中,a x 2 叫做二次项。
a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。
2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。
浙教版八下数学各章节知识点及重难点整理(最新版),推荐文档
浙教版八下数学各章节知识点及重难点第一章二次根式(徐旺红老师整理)知识点一:二次根式的概念二次根式的定义:形如a(a≥0)的代数式叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0 时,没有意义。
知识点三:二次根式()的非负性()表示a 的算术平方根,也就是说,()是一个非负数,即0()。
1注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
2注:1、化简时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,即;若a 是负数,则等于a 的相反数-a,即;2、中的a 的取值范围可以是任意实数,即不论a 取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。
浙教版八下数学知识点(完整版)
浙教版八年级数学下册知识点汇总八年级(下册)第1章二次根式1.1二次根式1.2二次根式的性质1.3二次根式的运算第2章一元二次方程2.1一元二次方程2.2一元二次方程的解法2.3一元二次方程的应用2.4一元二次方程根与系数的关系第3章数据分析初步3.1平均数3.2中位数和众数3.3方差和标准差第4章平行四边形4.1多边形4.2平行四边形及其性质4.3中心对称4.4平行四边形的判定定理4.5三角形的中位线4.6反证法第5章特殊平行四边形5.1矩形5.2菱形5.3正方形第6章反比例函数6.1反比例函数6.2反比例函数的图像和性质第一章 二次根式1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。
1.2. 二次根式的性质()()0a 2≥=a a ()()⎩⎨⎧<-≥==00a 2a a a a a ()0,0a ab ≥≥⨯=b a b()0,0a >≥=b a ba b 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。
1.3. 二次根式的运算()0,0ab a ≥≥=⨯b a b()0,0a >≥=b a b ba第二章一元二次方程2.1一元二次方程像方程x 2+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程。
能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。
任何一个关于x 的一元二次方程都可以化为ax 2+bx+c=0的形式。
ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。
2.2一元二次方程的解法1、因式分解法:利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程,常见ax 2+bx=0(无常数项)、及类似3x(x -1)=x -1等也可以使用因式分解法。
浙教版八下数学基础知识点复习提纲
浙教版八下数学各章节知识点及重难点第一章二次根式一.知识点 :1.二次根式的定义:形如a(a≥0)的代数式叫做二次根式。
如:2 ,, 3,π,5 11, -3 2,,,2.二次根式的性质 :⑴a ≥0(双重非负性);⑵2a a(a≥0)⑶ a 2∣ a∣;(4)ab a3 b(a0, b0 );(5)a a÷ b(a0, b 0 ).b强调:二次根式具有双重非负性。
3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。
满足这三个条件的二次根式称为最简二次根式。
4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。
5.二次根式的运算(1)加(减)法:先化简,再合并。
(2)乘(除)法:先乘除,再化简。
6.分母有理化:分母有理化也称为有理化分母。
就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。
(1)形如:2 = 2×3 = 2333× 33( 2)形如:2=23+2=2 3+ 2=23+22-3-23+ 2327.关于具有双重根号的二次根式。
如:6+2 5= 1+2 5+5= 122 + 2×1× 5+ 5=21+5=1+5二.重点和难点:重点:二次根式的运算。
难点:混合运算以及应用。
第二章一元二次方程一.知识点:定义:形如??(≠)的方程叫做一元二次方1.a?? + ????+ ??= ?? ????程,其中, a????叫做二次项。
a 叫做二次项系数, bx 叫做一次项, b 叫做一次项系数, c 叫做常数项。
2.一元二次方程的解法:(1)直接开平方法;( 2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法 ;(5)换元法。
一元二次方程根的判别式:△??3.= ?? - ??????.△> 0 , 方程有两个不相等的实数根;△= ??,方程有两个相等的实数根;△ < 0 ,方程无实数根。
浙教版八下数学知识点(完整版)
浙教版八年级数学下册知识点汇总八年级(下册)第1章二次根式1.1二次根式1.2二次根式的性质1.3二次根式的运算第2章一元二次方程2.1一元二次方程2.2一元二次方程的解法2.3一元二次方程的应用2.4一元二次方程根与系数的关系第3章数据分析初步3.1平均数3.2中位数和众数3.3方差和标准差第4章平行四边形4.1多边形4.2平行四边形及其性质4.3中心对称4.4平行四边形的判定定理4.5三角形的中位线4.6反证法第5章特殊平行四边形5.1矩形5.2菱形5.3正方形第6章反比例函数6.1反比例函数6.2反比例函数的图像和性质第一章 二次根式1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。
1.2. 二次根式的性质()()0a 2≥=a a ()()⎩⎨⎧<-≥==00a 2a a a a a ()0,0a ab ≥≥⨯=b a b()0,0a >≥=b a ba b 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。
1.3. 二次根式的运算()0,0ab a ≥≥=⨯b a b()0,0a >≥=b a b ba第二章一元二次方程2.1一元二次方程像方程x 2+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程。
能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。
任何一个关于x 的一元二次方程都可以化为ax 2+bx+c=0的形式。
ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。
2.2一元二次方程的解法1、因式分解法:利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程,常见ax 2+bx=0(无常数项)、及类似3x(x -1)=x -1等也可以使用因式分解法。
浙教版八下数学各章节知识点以及重难点(修改版)
浙教版八下数学各章节知识点及重难点(修改版)第一章 二次根式一.知识点:1. 二次根式的定义:形如(a ≥0)的代数式叫做二次根式。
如:,,,,5,-3……2. 二次根式的性质:⑴ a ≥ 0(双重非负性); ⑵ ()=2a a (a ≥0) ⑶ =2a ∣a ∣;(4) =ab ×(0,0≥≥b a ); (5) =ba ÷(0,0>≥b a ). 强调:二次根式具有双重非负性。
3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。
满足这三个条件的二次根式称为最简二次根式。
4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。
(1)加(减)法:先化简,再合并。
(2)乘(除)法:先乘除,再化简。
6.分母有理化:分母有理化也称为有理化分母。
就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。
(1) 形如:(2) 形如:27.关于具有双重根号的二次根式。
如:二.重点和难点:重点:二次根式的运算。
难点:混合运算以及应用。
第二章 一元二次方程一.知识点:1. 定义:形如)0(02≠=++a c bx ax 的方程叫做一元二次方程,其中,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。
例:若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .m=2C .m= —2D .2±≠m2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。
例:按要求解方程(1)用配方法解方程:x2 —4x+1=0(2)用公式法解方程:3x2+5(2x+1)=0(3)用因式分解法解方程:3(x-5)2=2(5-x)3.一元二次方程根的判别式:△=ac b 42- .△>0,方程有两个不相等的实数根;△=0 ,方程有两个相等的实数根;△<0,方程无实数根。
浙教版八下数学基础知识点复习提纲
浙教版八下数学基础知识点复习提纲2浙教版八下数学各章节知识点及重难点第一章二次根式一.知识点:1. 二次根式的定义:形如(a≥0)的代数式叫做二次根式。
如:,,,,5,-3……2. 二次根式的性质:⑴a≥ 0(双重非负性);⑵???2a a(a≥0)⑶?2a∣a∣;(4)?ab×(0,0??ba);(5)?b a÷(0,0??ba).强调:二次根式具有双重非负性。
3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。
满足这三个条件的二次根式称为最简二次根式。
4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。
5.二次根式的运算(1)加(减)法:先化简,再合并。
(2)乘(除)法:先乘除,再化简。
36.分母有理化:分母有理化也称为有理化分母。
就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。
(1)形如:(2)形如:27.关于具有双重根号的二次根式。
如:二.重点和难点:重点:二次根式的运算。
难点:混合运算以及应用。
第二章一元二次方程一.知识点:1.定义:形如 a 的方程叫做一元二次方程,其中, a 叫做二次项。
a叫做二次项系数,bx叫做一次项,b叫做一次项系数,c叫做常数项。
2.一元二次方程的解法:4(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。
3.一元二次方程根的判别式:△ .△ ,方程有两个不相等的实数根;△,方程有两个相等的实数根;△,方程无实数根。
4.韦达定理: ; .5.可化为一元二次方程的分式方程。
(分式方程要验根)4 一元二次方程应用题(最大值、最小值问题)二.重点和难点:重点:解方程的方法。
难点:建立方程模型解决实际问题。
第三章频数及其分布一.知识点:总体\样本\样本容量的概念1.频数:所考察的对象出现的次数称为频数。
浙教版八下数学基础知识点复习提纲
浙教版八下数学各章节知识点及重难点第一章 二次根式 一.知识点:1. 二次根式的定义:形如(a ≥0)的代数式叫做二次根式。
如:,,,,5,-3……2. 二次根式的性质:⑴ a ≥ 0(双重非负性); ⑵ ()=2a a (a ≥0)⑶ =2a ∣a ∣;(4)=ab ×(0,0≥≥b a );(5)=ba÷(0,0>≥b a ).强调:二次根式具有双重非负性。
3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。
满足这三个条件的二次根式称为最简二次根式。
4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。
5.二次根式的运算(1)加(减)法:先化简,再合并。
(2)乘(除)法:先乘除,再化简。
6.分母有理化:分母有理化也称为有理化分母。
就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。
(1)形如:(2)形如:27.关于具有双重根号的二次根式。
如:二.重点和难点:重点:二次根式的运算。
难点:混合运算以及应用。
第二章一元二次方程一.知识点:1.定义:形如a的方程叫做一元二次方程,其中,a叫做二次项。
a叫做二次项系数,bx叫做一次项,b 叫做一次项系数,c叫做常数项。
2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。
3.一元二次方程根的判别式:△.△,方程有两个不相等的实数根;△,方程有两个相等的实数根;△,方程无实数根。
4.韦达定理:;.5.可化为一元二次方程的分式方程。
(分式方程要验根)4 一元二次方程应用题(最大值、最小值问题)二.重点和难点:重点:解方程的方法。
难点:建立方程模型解决实际问题。
第三章频数及其分布一.知识点:总体\样本\样本容量的概念1.频数:所考察的对象出现的次数称为频数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八下数学各章节知识点及重难点 (修改版)第一章 二次根式一.知识点:1. 二次根式的定义:形如(a ≥0)的代数式叫做二次根式。
如:,,,,5,-3……2. 二次根式的性质:⑴ a ≥ 0(双重非负性); ⑵ ()=2a a (a ≥0) ⑶ =2a ∣a ∣;(4) =ab ×(0,0≥≥b a ); (5) =ba ÷(0,0>≥b a ). 强调:二次根式具有双重非负性。
3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。
满足这三个条件的二次根式称为最简二次根式。
4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。
5.二次根式的运算(1)加(减)法:先化简,再合并。
(2)乘(除)法:先乘除,再化简。
6.分母有理化:分母有理化也称为有理化分母。
就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。
(1) 形如:(2) 形如:27.关于具有双重根号的二次根式。
如:二.重点和难点:重点:二次根式的运算。
难点:混合运算以及应用。
第二章 一元二次方程一.知识点:1. 定义:形如)0(02≠=++a c bx ax 的方程叫做一元二次方程,其中,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。
例:若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .m=2C .m= —2D .2±≠m2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。
例:按要求解方程(1)用配方法解方程:x2 —4x+1=0(2)用公式法解方程:3x2+5(2x+1)=0(3)用因式分解法解方程:3(x-5)2=2(5-x)3.一元二次方程根的判别式:△=ac b 42- .△>0,方程有两个不相等的实数根;△=0 ,方程有两个相等的实数根;△<0,方程无实数根。
例1.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14 且a ≠0D .a >–14 且a ≠0例2.若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆和完全平方式2)2(b at M +=的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定4.韦达定理: ac x x a b x x =∙-=+2121, 例1:(8分)设x 1、x 2是方程2x 2-4mx+2m 2+3m-2=0的两个实根,当m 为何值时,x 12+x 22有最小值?并求这个最小值。
例2:若一个三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 _______5.可化为一元二次方程的分式方程。
(解分式方程要验根) 例:1415112-=--+-x x x x ; 6、一元二次方程应用题(最大值、最小值问题)例:.某商店如果将进价为每件8元的某种商品按每件10元出售,每天可销售100件。
为了增加利润,该商店决定提高售价,但该商品单价每提高1元,销售量要减少10件。
问当售价定为多少时,才能使每天的利润最大?并求最大利润。
7、一元二次方程和二次函数之间的关系例1.当m 为何值时,抛物线y x m x m m =-+-+2222与x 轴有两个交点,有一个交点,无交点。
例2.已知二次函数y m x m x m =-++-2221()与x 轴有两个交点,求m 的取值范围。
8、一元二次方程应用题例:7.如图,AO=OB=50cm ,OC 是一条射线,OC ⊥AB ,一只蚂蚁由A 以2cm/s 速度向B 爬行,同时另一只蚂蚁由O 点以3cm/s 的速度沿OC 方向爬行,几秒钟后,•两只蚂蚁与O 点组成的三角形面积为450cm2?O C B A二.重点和难点:重点:解方程的方法。
难点:建立方程模型解决实际问题。
附:一元二次方程应用题分类增长率问题:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?3、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)4、周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)5、市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为商品定价:1、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?2、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。
当每吨售价为260元时,月销售量为45吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。
综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。
(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。
(3)小静说:“当月利润最大时,月销售额也最大。
”你认为对吗?请说明理由。
3、国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x 元(叫做税率x%), 则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?4、春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾图 1 如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.如果人数不超过25人,人均旅游费用为1000元.风景区旅游?5、某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件.两批玩具的售价均为2.8元.问第二次采购玩具多少件?6、某商场试销一种成本为60元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数b kx y +=,且70=x 时,50=y ;80=x 时,40=y ;(1)写出销售单价x 的取值范围;(2)求出一次函数b kx y +=的解析式;(3)若该商场获得利润为w 元,试写出利润w 与销售单价x 之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?面积问题:1、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。
①鸡场的面积能达到150m2吗?②鸡场的面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由。
(3)若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用?3、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.行程问题:1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇。
问甲、乙的速度各是多少?2、甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.4、甲、乙两人分别骑车从A,B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进。
乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度。
工程问题:1、某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.(1)求甲、乙两工程队单独完成此项工程所需的天数.(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少?2、搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间?(列式子)3、甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈?4、某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时?工程问题:1、某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.(1)求甲、乙两工程队单独完成此项工程所需的天数.(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少?2、搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间?(列式子)3、甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈?4、某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时?动态几何:1、已知:如图3-9-3所示,在△ABC中,=︒∠BC=ABB.点P从点A开始沿AB边向点Bcm,cm7590=,以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果QA,同时出发,那P,分别从B么几秒后,△PBQ的面积等于4cm2?(2)如果QP,分别从A,同时出发,那么几秒后,PQ的长度等于5cm?(3)在B(1)中,△PQB的面积能否等于7cm2?说明理由.杂题:1、象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.2、机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?动态几何:1、已知:如图3-9-3所示,在△ABC中,=︒∠BC=ABB.点P从点A开始沿AB边向点B以cm,cm75,90=1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果QA,同时出发,那么几秒后,△PBQP,分别从B的面积等于4cm2?(2)如果QA,同时出发,那么几秒P,分别从B后,PQ的长度等于5cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.杂题:1、象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.2、机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?第三章频数及其分布一.知识点:1.频数:所考察的对象出现的次数称为频数。