函数的最大值和最小值(1)

合集下载

人教版高中数学第三册《函数的最大值和最小值(第1课时)》说课稿含教学设计

人教版高中数学第三册《函数的最大值和最小值(第1课时)》说课稿含教学设计

3.8函数的最大值和最小值(第1课时)人教版全日制普通高级中学教科书数学第三册(选修Ⅱ)【教材分析】1.本节教材的地位与作用本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.2.教学重点会求闭区间上连续开区间上可导的函数的最值.3.教学难点高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.4.教学关键本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.【教学目标】根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:1.知识和技能目标(1)理解函数的最值与极值的区别和联系.(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.2.过程和方法目标(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.(3)会求闭区间上连续,开区间内可导的函数的最大、最小值.3.情感和价值目标(1)认识事物之间的的区别和联系.(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.【教法选择】根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.【学法指导】对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.【教学过程】本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织.题,这往往可以归结为求函数的最大值与最小值.cm用此薄板折要分别,且不大于体积来源于现实生活,培养学生用数学的意识,同时营造出宽松、和谐、积极主动的课堂氛围,在新旧知识的矛盾冲突中,激发起学生的探究热情.2.如图为连续函数f(x)的图象:60cm用此薄板折要分别,不大于体积? 课的引例前后呼应,继续巩固用导数法求闭区间上连续函数的最值,同时也让学生体会到现实生活中蕴含着大量的数学信息,培养他们用【教学设计说明】本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开.1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念.2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能力性.3.在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.4.关于教学法,为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的数学教学思想,引导学生主动参与到课堂教学全过程中.游建龙。

函数的最大值和最小值

函数的最大值和最小值

例1、求下列函数的最值: 、求下列函数的最值:
(1) y = x
2
− 2 x − 3, x ∈ R − 2 x − 3, x ∈ [ −1, 4]
( 2) y = x
2
( 3) y = x
2
− 2 x − 3, x ∈ [ −2, 0] − 2 x − 3, x ∈ [ 0, 4]
( 4) y = x
2
x2、函数的最ຫໍສະໝຸດ 值 、设函数y = f ( x) 在x0处的函数值是f ( x0 )
如果不等式f ( x) ≤ f ( x0 ) 对于定义域内任意x都成立, 记作ymax = f ( x0 ) 那么f ( x0 )叫做函数y = f ( x)的最大值。
y
f(x0) x 0 a x0 b
3、求函数的最值或值域的常见方法: 、求函数的最值或值域的常见方法: (1)利用一元二次函数的性质 ) (2)利用基本不等式 ) (3)利用函数的单调性 ) (4)利用一元二次方程有实根, )利用一元二次方程有实根, 也称“△” 即△≥0也称“△”法。 也称“△”法 (5)利用“耐克”线 )利用“耐克”
2
练习:求下列函数的最值: 练习:求下列函数的最值:
1 (1) y = 8 + 2 x − x , x ∈ −1, 2
2
( 2) y = 8 + 2x − x
2
, x ∈ ( −2, 2]
( 3) y = 8 + 2 x − x
2
,x ≤0
例2、求y = 8 + 2 x − x 的最值。
1 ( 5) y = x − ( x ≥ 2 ) x 2x +1 ( 6) y = ( x > 1) x −1

函数的极值与最大值最小值-精选文档

函数的极值与最大值最小值-精选文档

( 2 )若 f (x ) 在 x 附近不变号 ,则 f ( x0 ) 不是极值. 0
y

x0

x
y

O
O
x0
x
上页 下页 返回
§2.导数 f ( x );
( 2) 求驻点,即方程 f ( x ) 0 的根 及不可导点;
( 3 ) 检查 f ( x ) 在驻点及不可导点左右的正负号, 判断极值点 ;
在(0,0)取得极小 值,但0点不可导
上页 下页 返回
§2.9 函数的极值与最大值最小值
3. 极值的充分条件 定理2(第一充分条件) 设 f( x ) 在 x 点连续 , 且在 0
x0的某去心邻域内可导.
)0 ( 0); (1)如果在 x 0 左侧附近,有 f(x )0( 0), 则 而在 x 0 右侧附近,有f(x f ( x0 )为极大值 (极小值);
§2.9 函数的极值与最大值最小值
一、函数的极值 二、函数的最大值和最小值
上页 下页 返回
§2.9 函数的极值与最大值最小值
一、函数的极值
1. 函数极值的定义 y
a x1 O
x 2x
3
x
4
x
5
x
6
b x
上页 下页 返回
§2.9 函数的极值与最大值最小值
定义1 设函数f ( x )在区间(a , b )内有定义 , x0是 (a , b )内的一个点, 如果存在着点 x0的一个邻域 , 对于这邻域内的 任何点 x ,除了点 x0外, f ( x ) < f ( x0 )均成立, 就称
定理1(必要条件) 如果函数 f ( x ) 在点 x 处取得 0
f ( x ) 0 . x 处可导 ,则必有 极值, 且在 0 0

大学数学_3_4 函数的最大值与最小值

大学数学_3_4 函数的最大值与最小值

例5 3 甲船以 20nmile / h 的速度向东行驶,同一时间 乙船在甲船的正北 82nmile 处以16nmile / h 的速度向南行 驶,问经过多少时间,甲乙两船相距最近. y 82 解 设在时刻 t 0 时甲船位于 O 点, 16t 乙船位于甲船正北82nmile 处,在时刻 t B (单位:h)甲船由点 O 出发向东行驶了 20t (单位:nmile)至A点,乙船向南行驶 O 20t A x 了16t (单位:nmile)至B点(图 3-7) 图3-7 甲乙两船的距离为
内容小结
1. 最值点应在极值点和边界点上找
2. 应用题可根据问题的实际意义判别
作业
P134 1(1), (5), 2, 3, 4
由这个例子看出,为什么我们经常用n次测量值的算 术平均值作为所测量值的近似值. 例题中x-xi代表第i次的 测量值xi与真值x的误差,由于x-xi(i=1,2, …,n)可为正 也可为负,不能用它们的和作为n次测量值的总误差,以 免正负误差相抵消,因此一般采用n次测量误差的平方和 作为总误差,寻求如何取近似值能使这个总误差最小. 这 就是通常所谓的最小二乘法.
2 ( x 差平方和 1
x1 x2 n
xn
( x x2 )2 ( x xn ) 2 为最小. 2 2 2 y ( x x ) ( x x ) ( x x ) 证 记 1 2 n . 现求y的最小
值.
y 2[( x x1 ) ( x x2 ) ( x xn )] 2[nx ( x1 x2 xn )]. 令 y 0 得唯一驻点 1 x ( x1 x2 xn ). n 1 又y一定存在最小值,故当x ( x1 x2 xn ).时误差平 n 方和最小.

函数的最大值和最小值

函数的最大值和最小值

(1)对于定义域内全部元素,都有
f(x)≤M成立,“任意”是说对每一个值 都必须满足不等式. (2)定义中M首先是一个函数值,它是 值域的一个元素。
2.函数的最小值 设函数y=f(x)的定义域为D,如果
存在x0∈D,f(x0)=N,使得对于任
意x∈D,都有f(x) ≥M,那么称M是 函数y=f(x)的最小值,既当x= x0 时 , f(x0)是函数y=f(x)的最小值,记 作
ymin f x0
函数最大值、最小值的几何
意义是什么?
函数最大值或最小值是函数的 整体性质,从图象上看,函数的 最大值或最小值是图象最高点或 最低点的纵坐标.
利用函数图象求最值
如图为函数y=f(x),x∈[-3,8.
利用单调性求函数的最值 x+2 求函数 y= x∈[2,3]上的最值. x-1 【思路点拨】 性―→求最值 定义法判断函数的单调
当一个函数有多个单调增区间 和多个单调减区间时,我们该如何 简单有效的求解函数最大值和最小 值呢?
(1)运用函数单调性求最值是求函数最值的重 要方法,特别是当函数图象不好作或作不出来时 ,单调性几乎成为首选方法. (2)函数的最值与单调性的关系 ①若函数在闭区间[a,b]上是减函数,则f(x) 在[a,b]上的最大值为f(a),最小值为f(b); ②若函数在闭区间[a,b]上是增函数,则f(x) 在[a,b]上的最大值为f(b),最小值为f(a).
二次函数图象
一次函数图象
1.函数的最大值
设函数y=f(x)的定义域为D,如
果存在x0∈D,f(x0)=M,使得对于 任意x∈D,都有f(x)≤M,那么称M
是函数y=f(x)的最大值,既当x= x0
时, f(x0)是函数y=f(x)的最大值,

函数的最大值和最小值1

函数的最大值和最小值1

函数的最大值和最小值(1)教学目标:1使学生掌握可导函数f(x)在闭区间!a,b 1上所有点(包括端点a,b )处的函数中的最大(或最小)值;2、使学生掌握用导数求函数的极值及最值的方法教学重点:掌握用导数求函数的极值及最值的方法教学难点:提高“用导数求函数的极值及最值”的应用能力一、课题引入前面已经明确了函数极值的概念,并掌握了求函数极值的步骤和方法. 在社会生活实践中,为了发挥最大的经济效益,常常会遇到如何能使用料最省、产量最高、效益最大等问题,这样的问题有时就可以化为求一个函数的最大值和最小值的问题.二、新课在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小1. 闭区间上连续函数的性质课本中结合函数图像,研究了连续函数的一个重要性质,即在闭区间[a, b]上连续的函数f(x)在[a,b]上必有最大值和最小值。

此性质包括两个条件:(1) 给定函数的区间必须是闭区间,也就是说函数f(x)在开区间上虽然连续,但不能保证有最大值与最小值.例如函数f(x)二1在(0,+x)内连续,但没有最x 大值与最小值.(2) 在闭区间上的每一点必须连续,即在闭区间上有间断点亦不能保证f(x)有最大值与最小值.如f(x) =」x (°兰xuj,有最小值0,无最大值.0 (x=1)另外,函数f(x)在闭区间[a, b]上连续是使得f(x)有最大值与最小值的充分条件而非必要条件.因为函数的最大值与最小值可以在极值点、不可导点、区间的端点处取得。

例如:函数y=|x|在-1<x < 2时,在x=2时取得最大值,在不可导点x=0处取得最小值.2. 在区间a,b 上求函数y = f (x)的最大值与最小值的步骤:(1) 求函数f(x)在(a,b)内的极值.(2) 求函数f(x)在区间端点的函数值f(a),f(b).(3) 将函数f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.二、例题例1求函数y=x°—2x2巧在区间1-2,2 1上的最大值与最小值解:先求导数,得y/ =4x3_4x令y' = 0 即4x3 -4x =0解得X i = -1,X2 = 0, X3 = 1导数y'的正负以及f (-2) , f (2)如下表从上表知,当x = _2时,函数有最大值13,当x = _1时,函数有最小值4在日常生活中,常常会遇到什么条件下可以使材料最省,时间最少,效率最高等问题,这往往可以归结为求函数的最大值或最小值问题。

函数的最大值和最小值[1].ppt1

函数的最大值和最小值[1].ppt1
函数的最大值 和最小值
一、复习提问:
用导数来确定函数的极值步骤: (1)先求函数的导数 f / (x);(注意定义域) (2)再求方程 f /(x) = 0 的根; (3)列出导函数值符号变化规律表;
f’(x)符号
f (x)
+ 增函数
(-∞,a)
a
(a,b)
0
极大值
0 + 减函数 极小值 增函数
b
a 2 b 3 29 当x 0时.最大值为 3 ,求得b 3.

函数最小值为 16a b 29 可 可 - -1 0 0 + 2 能 能 f(x) a 2 3 小
-1 (-1,0)
0
(0,2)
2 (2,4)
4 3
f/(x)
五、练习题: 已知函数 y x3 3x 2 9 x a
f/(x)
-
0 4
+
0 5
-
五、练习题:
• 求下列函数在指定区间上的最大值与最小值:
( 1 ) y x 12 x 16 , x [ 3 ,3 ]
3
先求函数的导数 y 3( x 4 ) 驻点为x1 2、x2 2.
-3 (-3,-2)
/
2
-2 (-2,2)
2
(2,3)
-2 (-2,-1)
/
2
-1
(-1,1)
1
(1,2)
2
f/(x) f(x)
-1
+
0 11
0 -1
+
11
当x 1或2时,函数有最大值 11 ; 当x 2或1时,函数有最小值 1。
(3)求函数 f ( x ) 5 x 2 x 3 4 x的值域.

函数的最大值和最小值(教案与课后反思

函数的最大值和最小值(教案与课后反思

函数的最大值和最小值一、教学目标:1. 让学生理解函数的最大值和最小值的概念。

2. 让学生掌握求函数最大值和最小值的方法。

3. 培养学生解决实际问题的能力。

二、教学内容:1. 函数的最大值和最小值的定义。

2. 求函数最大值和最小值的方法。

3. 实际问题中的应用。

三、教学重点与难点:1. 教学重点:函数的最大值和最小值的定义,求最大值和最小值的方法。

2. 教学难点:如何运用方法求解实际问题中的最大值和最小值。

四、教学方法:1. 采用讲授法,讲解函数最大值和最小值的概念及求解方法。

2. 利用案例分析,让学生理解最大值和最小值在实际问题中的应用。

3. 开展小组讨论,培养学生合作解决问题的能力。

五、教学过程:1. 引入新课:通过生活中的例子,如购物时如何选择最划算的商品,引出函数的最大值和最小值的概念。

2. 讲解概念:详细讲解函数的最大值和最小值的定义,让学生明确最大值和最小值的意义。

3. 方法讲解:讲解求函数最大值和最小值的方法,并通过示例进行演示。

4. 案例分析:分析实际问题中的最大值和最小值,让学生了解最大值和最小值在生活中的应用。

5. 小组讨论:让学生分组讨论,运用所学方法解决实际问题。

6. 课堂小结:总结本节课的主要内容,强调最大值和最小值的概念及求解方法。

7. 课后作业:布置相关练习题,巩固所学知识。

课后反思:本节课通过生活中的例子引入最大值和最小值的概念,让学生容易理解。

在讲解方法时,结合示例进行演示,有助于学生掌握。

在案例分析和小组讨论环节,学生能够积极参与,运用所学知识解决实际问题。

但部分学生在理解最大值和最小值的应用时仍有一定难度,需要在今后的教学中加强引导和练习。

六、教学评价:1. 通过课堂提问、作业批改和课后访谈等方式,了解学生对函数最大值和最小值概念的理解程度。

2. 评估学生在实际问题中运用最大值和最小值方法的能力。

3. 根据学生的表现,调整教学策略,以提高教学质量。

七、教学拓展:1. 引导学生关注其他类型的函数(如二次函数、指数函数等)的最大值和最小值问题。

函数的最大值与最小值

函数的最大值与最小值

题型二 利用函数的单调性求最值 x 求函数 f(x)= 在区间[2,5]上的最大值与最小值. x-1
2.(1)函数 f(x)=2-3x,当 x∈[-2,3]时,f(x)的最小值为________,最大值 为________; x+1 (2)已知函数 f(x)= ,x∈[3,5],求函数 f(x)的最大值和最小值. 2-x
与函数最值数 f(x)= ,x∈[1,+∞). x 1 (1)当 a=2时,求函数 f(x)的最小值; (2)若对任意 x∈[1,+∞),f(x)>0 恒成立,试求实数 a 的取值范围.
【反思与感悟】 在解决不等式恒成立问题时,最为常见和重要的方法是从 函数最值的角度或分离参数的角度去处理,在分离参数后常使用以下结论: a>f(x)恒成立⇔a>f(x)max, a<f(x)恒成立⇔a<f(x)min.
函数的最大值、最小值
【目标】
1.理解函数的最大(小)值的概念及其几何意义.(重点) 2.会求一些简单函数的最大值或最小值.(重点、难点)
【化解疑难】 1.求函数最值应注意的问题 求函数的最大(小)值时,通常要先确定函数的单调性,同时要注意函数的定 义域. 2.函数的值域与最大(小)值的区别 (1)函数的值域是一个集合,函数的最值属于这个集合.即 M 首先是一个函数 值,它是值域的一个元素. (2)函数的值域一定存在,但函数并不一定有最大(小)值.
[课堂小结]
题型一
图象法求函数的最值
如图所示为函数 y=f(x),x∈[-4,7]的图象,指出它的最大值、最小值 及单调区间.
[基础自测] 1.函数 f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是 ( ) A.f(-2),0 C.f(-2),2 B.0,2 D.f(2),2

15-3函数的最大值和最小值1

15-3函数的最大值和最小值1
注意:解题中的第三步是代入方程f(x) 中求函数值,然后比较大小,千万不 要代入f′(x)中求值
练习1: 已知函数y=x4-2x2+5 ,求函数 在[-2,2] 内的最大值和最小值。
上面我们讲了函数f(x)在闭区间[a,b] 上函数的最大值和最小值,那么对于函数 f(x)在开区间(a,b)上的最大值和最小 值呢?下面,我们来观察两张图像。
对于可导函数来说,在闭区间[a,b] 上的最大值和最小值只能是区间内的极 值点(即驻点)处的函数值及端点处的 函数值,比较这些值的大小,其中最大 的便是函数的最大值,最小的便是函数 的最小值。
例1、求函数f(x)=x3-3x2-9x+5在[-2,6]上的最 大值和最小值。 解:⑴ f′ (x)=3x2-6x-9=3(x-3)(x+1) ⑵ 令 f′ (x)=0 ,解之得驻点x1=-1,x2=3
48
x x
48-2x
48-2x
解 : 设截去的小正方形的边长为xcm, 铁盒的容积为Vcm3. 根据题意,则有 V=x(48-2x)2 (0<x<24) 这就是所要建立的函数关系式。
求V对x的导数,得 V′=(48-2x)2+2x(48-2x)(-2) =(48-2x)(48-2x-4x)=12(24x)(8-x)
练习2
把长度为L的线段分成两段,使 得以这两段分别作为长与宽的矩形 的面积最大。
归纳: 通过上面的例子可以知道,解决有关函数 最大值或最小值的实际问题时,可以采取以下 步骤:
⑴根据题意建立函数关系式。一般将问题 中能取得最大值或最小值的那个变量设为函数y, 而将问题中与函数有关联的另一个变量设为自 变量x,再利用变量间的等量关系列出函数关系 式y=f(x)。

函数最大值最小值教案

函数最大值最小值教案

函数的最大值和最小值(第1课时)【教材分析】本节教材知识间的前后联系,以及地位与作用本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有重要的理论价值和现实价值.高中阶段对用导数求可导函数在闭区间上的最值的方法不要求作严密的理论推导,这一方法完全可以由学生通过对函数图象的观察、归纳得到,所以本节教材还有一个重要的教育功能,那就是培养学生的探索精神,体验自主学习的成功愉悦.【教学目标】根据本节教材特点,结合学生已有的认知水平,制定本节如下的三维教学目标:1.知识和技能目标(1)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.(2)理解上述函数的最值存在的可能位置.(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.2.过程和方法目标(1)在学习过程中,观察、归纳、表述、交流、合作,最终形成认识.(2)培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题.3.情感和价值目标(1)通过渗透数形结合的数学思想,对学生进行辨证唯物注意的教育,在数形结合中体现数学的图形美。

(2)认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.(4)探究与活动,明白考虑问题要细致,说理要明确。

【教学重点、难点】1.教学重点基于以上对本节教材特点和教学目标的分析,将本节课的教学重点确定为:(1)培养学生的探索精神,积累自主学习的经验;(2)会求闭区间上的连续函数的最大值和最小值.2.教学难点高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是(1)发现闭区间上的连续函数f (x)的最值只可能存在于极值点处或区间端点处;(2)理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.3.教学关键本节课突破难点的关键是:通过合作探究的方式,让学生在运动变化的过程中通过观察、比较,发现结论.【教法选择】关于教法与学法:(1)班杜拉的社会学习原理认为:观察学习是重要的学习方法.这节课采用的第一个方法就是“观察、比较法”;(2)为了克服学生已有知识经验和阅历不足的弱点,采用多媒体辅助教学,设计了一个动画课件,让学生在函数图象的运动变化中观察、比较,发现数学本质;(3)根据新课标的教学理念,教学中要培养学生合作共事的团队精神,这节课还采用了“合作、讨论法”,让学生共同探讨、合作学习、取长补短、形成共识.【学法指导】对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.【教学过程】本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈建构”四个环节进行组织.教学环节教学内容设计意图一、创设情境,铺垫导入1.问题情境:在日常生活、生产和科研中,常常会遇到求什么条件下可以使成本最低、产量最大、效益最高等问题,这往往可以归结为求函数的最大值与最小值.如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm且不大于20cm.设长方体的高为xcm,体积为Vcm3.问x为多大时,V最大?并求这个最大值.解:由长方体的高为xcm,可知其底面两边长分别是(80-2x)cm,(60-2x)cm,(10≤x≤20).所以体积V与高x有以下函数关系V=(80-2x)(60-2x)x=4(40-x)(30-x)x.2.引出课题:分析函数关系可以看出,以前学过的方法在这个问题中较难凑效,这节课我们将学习一种很重要的方法,来求某些函数的最值.以实例引入新课,有利于学生感受到数学来源于现实生活,培养学生用数学的意识,.通过运用几何画板演示,增强直观性,帮助学生迅速准确地发现相关的数量关系.实际问题中,在设元、列式后将这个实际问题转化为求函数在闭区间上的最值问题.这时学生经思考后会发现,以前学习过的知识不能解决这一问题,从而激发起学生的学习热情.二、合作学习,探索新知1.我们知道,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2.如图为连续函数f(x)的图象:在闭区间[a,b]上连续函数f(x)的最大值、最小值分别是什么?分别在何处取得?yxOyxOyxOyxO ba baba ba3.以上分析,说明求函数f(x)在闭区间[a,b]上最值的关键是什么?归纳:设函数f(x)在[a,b]上连续,在(a,b)内可导,求f (x)在[a,b]上的最大值与最小值的步骤如下:(1)求f (x)在(a,b)内的极值;(2)将f (x)的各极值与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值.通过对已有相关知识的回顾和深入分析,自然地提出问题:闭区间上的连续函数最大值和最小值在何处取得?如何能求得最大值和最小值?以问题制造悬念,引领着学生来到新知识的生成场景中.为新知的发现奠定基础后,提出教学目标,让学生带着问题走进课堂,既明确了学习目的,又激发起学生的求知热情.为让学生更好地进行发现,教学中通过改变区间位置,引导学生观察同一函数在不同区间内图象上最大值最小值取得的位置,形成感性认识,进而上升到理性的高度.学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作.在整个新知形成过程中,教师的身份始终是启发者、鼓励者和指导者,以提高学生抽象概括、分析归纳及语言表述等基本的数学思维能力.环节三、指导应用,鼓励创新例2如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm不大于20cm,设长方体的高为xcm,体积为V cm3.问x为多大时,V最大?并求这个最大值.分析:建立V与x的函数的关系后,问题相当于求x为何值时,V最大,可用本节课学习的导数法加以解决.例题2的解决与本课的引例前后呼应,继续巩固用导数法求闭区间上连续函数的最值,同时也让学生体会到现实生活中蕴含着大量的数学信息,培养他们用数学的意识和能力.四、归纳小结,反思建构课堂小结:1.在闭区间[a,b]上连续的函数f(x)在 [a,b]上必有最大值与最小值;2.求闭区间上连续函数的最值的方法与步骤;3.利用导数求函数最值的关键是对可导函数使导数为零的点的判定..作业布置:P134 1.选做题:已知抛物线y =4 x2的顶点为O,点A(5,0),倾斜角为4的直线与线段OA相交,且不过O、A两点,l 交抛物线于M、N两点,求使△AMN面积最大时的直线l 的方程..通过课堂小结,深化对知识理解,完善认识结构,领悟思想方法,强化情感体验,提高认识能力.课外作业分必做题与选做题,因材施教、及时反馈,让不同的学生在数学上得到不同的发展.同时有利于教师发现教学中的不足,及时反馈调节.【教学设计说明】本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开.1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念.2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能动性.3.为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的数学教学思想,引导学生主动参与到课堂教学全过程中.4.在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.。

函数的极大(小)值和最大(小)值

函数的极大(小)值和最大(小)值

§2-6 函数的极大(小)值和最大(小)值1.函数的极大(小)值 一个函数在它有定义的区间上可能没有最大(小)值,但它在某个部分区间上可能会有最大(小)值,即局部最大值或局部最小值.函数的局部最大值或局部最小值,又称为函数的极大值或极小值.具体地说,设函数)(x f 在点),(0b a x ∈连续.若有足够小的正数δ,使)||0()()(00δ<-<<x x x f x f (图2-21) 则称函数)(x f 在点0x 取到极大值)(0x f ,并称点0x 为函数)(x f 的极大值点.同理,使 )||0()()(11δ<-<>x x x f x f (图2-21) 则称函数)(x f 在点1x 取到极小值)(1x f ,并称点1x 为函数)(x f 的极小值点.函数的极大值和极小值统称为函数的极值,而函数的极大值点和极小值点统称为函数的极值点. 因为函数的极值是函数在小范围内的最大值或最小值,根据定理2-1,我们就有下面的结论:若函数()f x 在某区间内的点0x 处取到极值且有导数'0()f x ,则'=0()0f x .因此,0()0f x '=是可微函数....在点0x 取到极值的必要条件,但它不是可微函数取到极值的充分条................件.! 例如函数3)(x x f =,尽管有0)0(='f ,但0不是它的极值点(图2-22).以后,就把使0()0f x '=的点0x 称为函数)(x f 的驻点(可能不是极值点.......).需要指出,不能把上面的结论简单说成“函数取到极值的必要条件”.例如,函数()f x x =(图2-23),它在点0有极小值(也是最小值),可是它在点0没有导数.因此,函数在区间内部的极值点只可能是它的驻点或没有导数的点.它们合在一起称为函数的临界点.一般情形下,求连续函数)(x f 在开区间),(b a 内的极值时,一般步骤是:第一步,求出)(x f 在区间),(b a 内的所有临界点(即驻点或没有导数的点);第二步,对于每一个临界点,再用下面的判别法验证它是否为极值点;第三步,求出函数在极值点处的函数值(即函数的极大值或极小值).判别法Ⅰ 设0x 为连续函数)(x f 在区间),(b a 内的临界点(驻点或没有导数的点).若有足够小的正数δ,使(见图2-24)⑴)(x f 在),(00x x δ-内是增大的且在),(00δ+x x 内又是减小的,则)(0x f 是极大值; 图2-23x图2-21[或] [或]⑵)(x f 在),(00x x δ-内是减小的且在),(00δ+x x 内又是增大的,则)(0x f 是极小值;[或0)(<'x f ] [或0)(>'x f ]⑶)(x f 在),(00δδ+-x x 内是增大的或是减小的,则)(0x f 不是极值.当0x 为函数)(x f 的驻点且0)(0≠''x f 时,就用下面的判别法Ⅱ.判别法Ⅱ 设0x 为函数)(x f 在区间),(b a 内的驻点[即0)(0='x f ].若有二阶导数0)(0≠''x f ,则⑴ 当0)(0<''x f 时,)(0x f 是极大值; ⑵ 当0)(0>''x f 时,)(0x f 是极小值.[当0)(0=''x f 时,函数)(x f 在点0x 是否取到极值,需要做进一步的讨论]证 根据例22(§2-5),则有222200000011()()()()()()()()22f x h f x f x h f x h o h f x f x h o h '''''+=+++=++于是得 20001()()[()(1)]2f x h f x f x o h ''+-=+ 因为0)(0≠''x f ,所以当||h 足够小时,)]1()([0o x f +''与)(0x f ''同符号.因此,有正数δ,使当0||h δ<≤时,0()f x h +0()f x -=000,()00,()0f x f x ''<<⎧⎨''>>⎩ 这就是要证的结论.例23 求函数1323-+=x x y 的极值.解 2363(2)y x x x x '=+=+,666(1)y x x ''=+=+由0='y 得驻点122,0x x =-=.因为2060,60x x y y =-=''''=-<=>,所以31)2(3)2(232=--+-=-=x y 是极大值; 01x y ==-是极小值.【注】若函数()f x 在点0x 没有导数或二阶导数0()0f x ''=,就去用上面的判别法Ⅰ.2.函数的最大(小)值(又称为绝对极值) 函数的最大(小)值是指函数在定义域或定义域中某个区间上的最大(小)值.求连续函数)(x f 在闭区间],[b a 上的最大值和最小值时,方法更简单:第一步,先求出)(x f 在开区间),(b a 内的临界点;并求出)(x f 在所有临界点上的函数值.(1) 0图2-24 (2)(3)第二步,把以上函数值与区间端点上的函数值)(a f 和)(b f 放在一起做比较,其中最大者就是函数)(x f 在闭区间],[b a 上的最大值,最小者就是函数)(x f 在闭区间],[b a 上的最小值.非闭区间上的连续函数可能没有最大值或最小值.在这种情形下,就要根据具体问题,经过分析后才能确定某个函数值是最大值或最小值.例如,⑴ 函数)(x f 在区间),[b a 上增大(减小)时,)(a f 就是最小值(最大值);⑵ 函数)(x f 在区间],(b a 上增大(减小)时,)(b f 就是最大值(最小值);⑶ 设有点),(b a c ∈. 若函数)(x f 在区间],(c a 上增大且又在区间),[b c 上减小,则)(c f 就是最大值;若函数)(x f 在区间],(c a 上减小且又在区间),[b c 上增大,则)(c f 就是最小值.例24 证明不等式:)0(1e >+>x x x .证 令)0()1(e )(≥+-=x x x f x ,则)(x f 在),0[+∞上是连续函数.因为)0(01e )(>>-='x x f x [即函数()f x 是增函数]所以(0)0f =是最小值.因此,()0(0)f x x >>,即)0(1e >+>x x x .例25 证明:函数)10()(<<-=αααx x x f 在区间),0(+∞内有最大值α-=1)1(f . 由此再证明近代数学中著名的赫尔窦(H ölder)不等式:11110,0,0,0;1p q ab a b a b p q p qp q ⎛⎫≤+>>>>+= ⎪⎝⎭ 证 由0)1()(11=-=-='--αααααx x x f 得驻点1=x . 因为 当10<<x 时, 0)1()(1>-='-ααx x f [即)(x f 增大],当+∞<<x 1时, 0)1()(1<-='-ααx x f [即)(x f 减小],所以α-=1)1(f 是最大值.其次,令q p b a x p ==-,1α,则111qp p p p p q p q q q a a a f ab a b b b p b p --⎛⎫⎛⎫=-⋅=- ⎪ ⎪⎝⎭⎝⎭ 而根据上述结论,即α-≤1)(x f ,则得不等式111(1)11q p q p aba b f p p q α---≤=-=-= 两端同乘q b ,并注意1=-p q q ,则得要证的不等式q p b qa p ab 11+≤. 在非闭区间上求一个函数的最大(小)值问题,常常出现在实际应用问题中.解这类问题时,首先需要根据问题本身,运用几何学或物理学或其他有关科学中的知识,列出“目标函数”(即要求它的最大值或最小值的函数)的函数式.这样,问题就变成求目标函数的最大值或最小值.例如, “当矩形周长l 为定值时,它的长和宽为何值时面积最大?”或“当矩形面积S 为定值时,它的长和宽为何值时周长最小?”设矩形的一边长为x ,则前一个问题的目标函数就是(矩形面积)()2l S x x x ⎛⎫=- ⎪⎝⎭ 02l x ⎛⎫<< ⎪⎝⎭ 而后一个问题的目标函数就是(矩形周长)()2S l x x x ⎛⎫=+ ⎪⎝⎭ )0(+∞<<x 这样,问题就变成求函数)(x S 的最大值或求函数)(x l 的最小值.例26 设有闭合电路如图2-25. 它由电动势E 、内阻r 和纯电阻负载E 所构成.若E 和r 是已知常数,问负载R 为何值时,电流的电功率最大?解 根据电学的知识,闭合电路中电流的电功率为R I P 2=(I 为电流强度)而根据闭合电路的欧姆定律,电流强度R r E I +=. 因此,电功率为 22)(R r R E P += (自变量为R ) 由0='P ,即由0)()()()(2)(324222=+-=++⋅-+⋅='R r R r E R r R r R E R r E P 得r R =. 因此,当负载r R =(内阻)时,电功率取到最大值r E P 4/2=.例27 由材料力学的知识,横截面为矩形的横梁的强度是2h x k =ε(k 为比例系数,x 为矩形的宽,h 为矩形的高)今要将一根横截面直径为d 的圆木,切成横截面为矩形且有最大强度的横梁,那么矩形的高与宽之比应该是多少?解 如图2-26,因为222x d h -=,所以22()(0)kx d x x d ε=-<<.令0='x ε,即22222()2(3)0x k d x x k d x ε'=--=-=⎡⎤⎣⎦ 则得驻点x d=根据实际问题的提法,当矩形的宽/x d =强度ε取到最大值.此时,因为d dd x d h 32)3(2222=-=-= 所以2/=x h .图2-26在实际工作中,技术人员是按下面的几何方法设计的:把圆木的横截面(圆)的直径AB 分成三等份(如图2-27),再分别自分点C 和D 向相反方向作直径AB 的垂线,交圆周后做成图中那样的矩形.这个矩形的长边与短边的比值就是2.例28 已知某工厂生产x 件产品的成本为21()2500020040C x x x =++(元) 问:⑴ 要使平均成本最小,应生产多少件产品? ⑵ 若产品以每件500元售出,要获得最大利润,应生产多少件产品?最大利润是多少? 解 ⑴ 平均成本为x x x x C x C 40120025000)()(++==(元/件) 让040125000)(2=+-='x x C ,则得1000=x (件).因此,生产1000件产品时平均成本最小. ⑵ 售出x 件产品时,收入为x 500(元),而利润为=)(x L (收入)x 500-(成本))40120025000(500)(2x x x x C ++-= 212500030040x x =-+- 让020300)(=-='x x L ,则得6000=x (件).因此,生产6000件产品并全部售出时,获得的利润最大.最大利润为900000)6000(=L (元). 习 题1.求下列函数的极值(极大值或极小值):求连续函数在定义区间内的极值时,应先找出导数等于零的点(驻点)和没有导数的点,然后按上面指出的判别法,去判别函数在这些点上是否取到极大值或极小值.⑴x x x f -=3)(; ⑵242)(x x x f -=; ⑶122)(2-+-=x x x x f ;⑷()f x x = ⑸x x x f -=e )(; ⑹x x x f ln )(=; ⑺x x x f -+=e )1()(3; ⑻3231)1()(x x x f -=.答案:⑴max minf f ⎛= ⎝;⑵1)1(,0)0(m in m ax -=±=f f ; ⑶2)2(,2)0(m in m ax =-=f f ;⑷min 34f ⎛⎫= ⎪⎝⎭;⑸1m ax e )1(-=f ;⑹12m in e 2)e (---=f ;⑺2m ax e 27)2(-=f ;⑻max min 1(1)03f f ⎛⎫= ⎪⎝⎭. 2.求下列函数在指出区间上的最大值和最小值:⑴];2,2[,1823-+--=x x x y ⑵];1,1[,15-++=x x y⑶];2,1[,13--=x x y ⑷511,,1;12y x x ⎡⎤=-⎢⎥++⎣⎦ ⑸211,1,12x y x +⎡⎤=-⎢⎥+⎣⎦. 答案:⑴;11,27203-⑵;1,3-⑶;443,23-⑷;31,1532⑸0,2242-. 3.设n a a a <<< 21. 当x 为何值时,函数∑=-=ni i a x x f 12)()(取最小值?答案:n a a a x n +++=21(算术平均值). 4.设.0>a 求函数||11||11)(a x x x f -+++=的最大值. 提示:把区间),(+∞-∞分成三个区间(,0),(0,),(,)a a -∞+∞. 答案:21a a++. 5.证明下面的不等式: ⑴ );01(2)1ln(2<<--<+x x x x ⑵ 12ln 1(0);21x x x ⎛⎫+>> ⎪+⎝⎭ ⑶ );0(arctan 33><<-x x x x x ⑷ 1e 1(0)x x x -≥>. 6.设有方程033=+-c x x (c 为常数).问:当c满足什么条件时,方程有:⑴三个实根,⑵两个实根,⑶一个实根? [提示:分别研究下图⑴,⑵,⑶]答案:⑴22<<-c ;⑵2±=c ;⑶2-<c 或2>c .7.在什么条件下,方程()300x px q pq ++=≠有:⑴一个实根,⑵三个实根?提示:参考上一题的做法. 答案:⑴042723>+q p ;⑵042723<+q p . 8.确定下列各方程实根的个数,并指出只含有一个实根的区间:⑵ 第6题图⑴ 0109623=-+-x x x ; ⑵ 020********=-+--x x x x ;⑶ )0(ln ≠=k kx x ; ⑷2e (0)x ax a =>.答案:⑴一个实根,在)5,4(内;⑵两个实根,32,1221<<-<<-x x ;⑶当0<k 时有一个实根,在)1,0(内;当1e0-<<k 时有两个实根,+∞<<<<21e ,e 1x x ; 当1e -=k 时有一个实根e =x ;当1e ->k 时没有实根.⑷当4e 02<<a 时有一个实根,在)0,(-∞内;当4e 2>a 时有三个实根, 1230,02,2x x x -∞<<<<<<+∞.9.设有二阶导数)(a f ''. 证明:⑴ 若函数)(x f 在点a 取到极大值,则0)(≤''a f ;⑵ 若函数)(x f 在点a 取到极小值,则0)(≥''a f .10.设函数21()22sin (0),(0)2f x x x f x ⎛⎫=-+≠= ⎪⎝⎭. 证明:)(x f 有最大值2)0(=f ,但)(x f 在点0的左旁附近不是增大的,而且在点0的右旁附近不是减小的(这说明判别法Ⅰ中的条件不是必要的).11.应用题 ⑴设两正数x 与y 的和等于常数a (a y x =+).求)0,0(>>n m y x n m 的最大值.⑵设两正数x 与y 的乘积等于常数a (a xy =).求)0,0(>>+n m y x n m 的最小值.⑶在有一定体积的所有正圆柱体中,当底圆半径与高之比为何值时,它有最小的表面积?⑷用薄钢板做一个容积为定值v 的无盖圆柱形桶.假若不计钢板厚度和剪裁时的损耗,问桶底半径r 与高h 各为多少时,用料最省?⑸从半径为R 的圆上切掉一个扇形后,把余下部分卷成一个漏斗.问余下部分扇形的圆心角θ为何值时,卷成漏斗的容积最大?第11⑸题图⑵ ⑴ 第11⑹题图x⑹(反射定律) 如图示,由点A 经点B ,再到点C . 证明:当入射角α等于反射角β时,折线ABC 的长度最短.⑺一商家销售某种商品的价格为x p 2.07-=(万元/T),其中x 为销售量(单位:T);商品的成本为13+=x C (万元).(i )若每销售一吨商品,政府要征税t 万元,求商家获最大利润时的销售量;(ii )t 为何值时,政府税收的总额最大?答案:⑴n m n m n m n m n m a +++)(;⑵n m n m mn n m a n m +⎪⎪⎭⎫ ⎝⎛+1)(;⑶1∶2;⑷r h ==⑸2θ=弧度);⑺(i )t x 5.210-=;(ii )2=t .。

(新教材)2022年高中数学人教B版必修第一册学案:3.1.2.2 函数的最大值、最小值 (含答案)

(新教材)2022年高中数学人教B版必修第一册学案:3.1.2.2 函数的最大值、最小值 (含答案)

第2课时函数的最大值、最小值1.函数的最值(1)定义.前提函数f(x)的定义域为D,且x0∈D,对任意x∈D 条件都有f(x)≤f(x0)都有f(x)≥f(x0)结论最大值为f(x0),x0为最大值点最小值为f(x0),x0为最小值点最大值和最小值统称为最值,最大值点和最小值点统称为最值点①配方法:主要适用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围;②换元法:用换元法时一定要注意新变元的取值范围;③数形结合法:对于图像较容易画出的函数的最值问题,可借助图像直观求出;④利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值.最值点是点吗?提示:不是,是实数值,是函数值取得最值时的自变量x 的值.2.直线的斜率(1)直线斜率的定义.平面直角坐标系中的任意两点A (x 1,y 1),B (x 2,y 2),①当x 1≠x 2时,称y 2-y 1x 2-x 1 为直线的斜率,记作Δy Δx ; ②当x 1=x 2时,称直线的斜率不存在.(2)直线的斜率与函数单调性的关系①函数递增的充要条件是其图像上任意两点连线的斜率都大于0. ②函数递减的充要条件是其图像上任意两点连线的斜率都小于0.3.函数的平均变化率(1)平均变化率的定义:若I 是函数y =f (x )的定义域的子集,对任意x 1,x 2∈I ,且x 1≠x 2,记y 1=f (x 1),y 2=f (x 2),Δy Δx =y 2-y 1x 2-x 1⎝ ⎛⎭⎪⎫即Δf Δx =f (x 2)-f (x 1)x 2-x 1 , 称Δf Δx =f (x 2)-f (x 1)x 2-x 1为函数在区间[x 1,x 2](x 1<x 2时)或[x 2,x 1](x 1>x 2时)上的平均变化率.(2)函数的平均变化率与函数的单调性y =f (x )在I 上是增函数⇔Δy Δx >0在I 上恒成立y =f (x )在I 上是减函数⇔Δy Δx <0在I 上恒成立函数图像上任意两点连线的斜率大于0时,函数图像从左向右的变化趋势是什么?提示:函数图像从左向右逐渐上升.1.辨析记忆(对的打“√”,错的打“×”).(1)任何函数都有最大值、最小值.( × )提示:如函数y =1x 既没有最大值,也没有最小值.(2)一个函数的最大值是唯一的,最值点也是唯一的.( × )提示:函数的最大值是唯一的,但最值点不唯一,可以有多个最值点.(3)直线不一定有斜率,过函数图像上任意两点的直线也不一定有斜率.( × )提示:过函数图像上任意两点的直线一定有斜率,因为根据函数的定义,一定有x 1≠x 2.2.过函数图像上两点A (-1,3),B (2,3)的斜率Δy Δx =________.【解析】Δy Δx =3-32+1=0. 答案:03.已知函数f (x )=x -1x +1,x ∈[1,3],则函数f (x )的最大值为________,最小值为________.【解析】f (x )=x -1x +1 =1-2x +1,x ∈[1,3], 因为f (x )在[1,3]上为增函数,所以f(x)max=f(3)=1=f(1)=0.2,f(x)min答案:120类型一利用函数的图像求最值(数学运算、直观想象)1.(2021·太原高一检测)如图是函数y=f(x),x∈[-4,3]的图像,则下列说法正确的是()A.f(x)在[-4,-1]上单调递减,在[-1,3]上单调递增B.f(x)在区间(-1,3)上的最大值为3,最小值为-2C.f(x)在[-4,1]上有最小值-2,有最大值3D.当直线y=t与y=f(x)的图像有三个交点时-1<t<2【解析】选C.A选项,由函数图像可得,f(x)在[-4,-1]上单调递减,在[-1,1]上单调递增,在[1,3]上单调递减,故A错;B选项,由图像可得,f(x)在区间(-1,3)上的最大值为f(1)=3,无最小值,故B错;C选项,由图像可得,f(x)在[-4,1]上有最小值f(-1)=-2,有最大值f(1)=3,故C正确;D选项,由图像可得,为使直线y=t与y=f(x)的图像有三个交点,只需-1≤t≤2,故D错.2.已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.则f (x )的最小值、最大值点分别为________,________.【解析】作出函数f (x )的图像(如图).由图像可知,当x =±1时,f (x )取最大值,最小值为0,故f (x )的最小值为0,最大值点为±1.答案:0 ±13.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5], (1)如图所示,在给定的直角坐标系内画出f (x )的图像.(2)由图像指出函数f (x )的最值点,求出最值.【解析】(1)由题意,当x ∈[-1,2]时,f (x )=-x 2+3,为二次函数的一部分;当x ∈(2,5]时,f (x )=x -3,为一次函数的一部分;所以,函数f (x )的图像如图所示:(2)由图像可知,最大值点为0,最大值为3;最小值点为2,最小值为-1.图像法求最值、最值点的步骤【补偿训练】 已知函数f(x)=⎩⎨⎧x 2-x (0≤x≤2),2x -1(x >2),求函数f(x)的最大值、最小值. 【解析】作出f(x)的图像如图:由图像可知,当x =2时,f(x)取最大值为2;当x =12 时,f(x)取最小值为-14 .所以f(x)的最大值为2,最小值为-14 .【拓展延伸】求二次函数最值的常见类型及解法求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,当开口方向或对称轴位置不确定时,还需要进行分类讨论.求二次函数f (x )=ax 2+bx +c (a >0)在区间[m ,n ]上的最值一般分为以下几种情况:(1)若对称轴x =-b 2a 在区间[m ,n ]内,则最小值为f ⎝ ⎛⎭⎪⎫-b 2a ,最大值为f (m ),f (n )中较大者(或区间端点m ,n 中与直线x =-b 2a 距离较远的一个对应的函数值为最大值).(2)若对称轴x =-b 2a <m ,则f (x )在区间[m ,n ]上是增函数,最大值为f (n ),最小值为f (m ).(3)若对称轴x =-b 2a >n ,则f (x )在区间[m ,n ]上是减函数,最大值为f (m ),最小值为f (n ).【拓展训练】1.定轴定区间上的最值问题【例1】已知函数f (x )=3x 2-12x +5,当自变量x 在下列范围内取值时,求函数的最大值和最小值.(1)R .(2)[0,3].(3)[-1,1].【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函数,所以可以采用配方法和图像法求解.【解析】f (x )=3x 2-12x +5=3(x -2)2-7.(1)当x ∈R 时,f (x )=3(x -2)2-7≥-7,当x =2时,等号成立.故函数f (x )的最小值为-7,无最大值.(2) 函数f (x )=3(x -2)2-7的图像如图所示,由图可知,在[0,3]上,函数f (x )在x =0时取得最大值,最大值为5;在x =2时取得最小值,最小值为-7.(3)由图可知,函数f (x )在[-1,1]上是减函数,在x =-1时取得最大值,最大值为20;在x =1时取得最小值,最小值为-4.(1)函数y =ax 2+bx +c (a >0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是减函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是增函数,当x =-b 2a 时,函数取得最小值. (2)函数y =ax 2+bx +c (a <0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是增函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是减函数,当x =-b 2a 时,函数取得最大值. 2.动轴定区间上的最值问题【例2】已知函数f (x )=x 2-2ax +2,x ∈[-1,1],求函数f (x )的最小值.【思路导引】二次函数开口方向确定,对称轴不确定,需根据对称轴的不同情况分类讨论.可画出二次函数相关部分的简图,数形结合解决问题.【解析】f(x)=x2-2ax+2=(x-a)2+2-a2的图像开口向上,且对称轴为直线x=a.当a≥1时,函数图像如图(1)所示,函数f(x)在区间[-1,1]上是减函数,最小值为f(1)=3-2a;当-1<a<1时,函数图像如图(2)所示,函数f(x)在区间[-1,1]上是先减后增,最小值为f(a)=2-a2;当a≤-1时,函数图像如图(3)所示,函数f(x)在区间[-1,1]上是增函数,最小值为f(-1)=3+2a.3.定轴动区间上的最值问题【例3】已知函数f(x)=x2-2x+2,x∈[t,t+1],t∈R的最小值为g(t),试写出g(t)的函数表达式.【思路导引】二次函数的解析式是确定的,但定义域是变化的,需依据t的大小情况画出对应的简图(二次函数的一段),从而求解.【解析】f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,对称轴为x=1.当t +1<1,即t <0时,函数图像如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图像如图(2)所示,最小值为g (t )=f (1)=1;当t >1时,函数图像如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为g (t )=f (t )=t 2-2t +2.综上可得g (t )=⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.本题中给出的区间是变化的,从运动的观点来看,让区间从左向右沿x 轴正方向移动,分析移动到不同位置时对最值有什么影响.借助图形,可使问题的解决显得直观、清晰.类型二 函数的平均变化率与单调性、最值(数学运算、逻辑推理)【典例】已知函数f (x )=2x -3x +1. (1)判断函数f (x )在区间[0,+∞)上的单调性,并用平均变化率证明其结论.【思路导引】任取x1,x2∈[0,+∞)⇒Δf(x)Δx>0⇒函数单调递增【解析】f(x)在区间[0,+∞)上是增函数.证明如下:任取x1,x2∈[0,+∞),且x1≠x2,f(x2)-f(x1)=2x2-3x2+1-2x1-3x1+1=(2x2-3)(x1+1)(x1+1)(x2+1)-(2x1-3)(x2+1)(x1+1)(x2+1)=5(x2-x1)(x1+1)(x2+1).所以Δf(x)Δx=5(x2-x1)(x1+1)(x2+1)x2-x1=5(x1+1)(x2+1).因为x1,x2∈[0,+∞),所以(x1+1)(x2+1)>0,所以Δf(x)Δx>0,所以函数f(x)在区间[0,+∞)上是增函数.(2)求函数f(x)在区间[2,9]上的最大值与最小值.【思路导引】由第(1)问可知f(x)在[2,9]上是增函数⇒f(2)是最小值,f(9)是最大值【解析】由(1)知函数f(x)在区间[2,9]上是增函数,故函数f(x)在区间[2,9]上的最大值为f(9)=2×9-39+1=32,最小值为f(2)=2×2-32+1=13.利用函数的平均变化率证明单调性的步骤(1)任取x 1,x 2∈D ,且x 1≠x 2.(2)计算f (x 2)-f (x 1),Δf (x )Δx .(3)根据x 1,x 2的范围判断Δf (x )Δx 的符号,确定函数的单调性.已知函数f (x )=x +1x -2,x ∈[3,7]. (1)判断函数f (x )的单调性,并用平均变化率加以证明.【解析】函数f(x)在区间[3,7]内单调递减,证明如下: 在[3,7]上任意取两个数x 1和x 2,且x 1≠x 2,因为f(x 1)=x 1+1x 1-2 ,f(x 2)=x 2+1x 2-2, 所以f(x 2)-f(x 1)=x 2+1x 2-2 -x 1+1x 1-2 =3(x 1-x 2)(x 1-2)(x 2-2). 所以Δf (x )Δx =3(x 1-x 2)(x 1-2)(x 2-2)x 2-x 1 =-3(x 1-2)(x 2-2), 因为x 1,x 2∈[3,7],所以x 1-2>0,x 2-2>0,所以Δf (x )Δx <0,函数f(x)为[3,7]上的减函数.(2)求函数f (x )的最大值和最小值.【解析】由单调函数的定义可得f(x)max =f(3)=4,f(x)min =f(7)=85 .类型三 常见函数的最值问题(直观想象、数学运算)不含参数的最值问题【典例】函数f(x)=-2x 2+x +1在区间[-1,1]上最小值点为________,最大值为________.【思路导引】求出一元二次函数的对称轴,利用对称轴和区间的关系解题.【解析】函数f(x)=-2x 2+x +1的对称轴为x =-12×(-2) =14 ,函数的图像开口向下,所以函数的最小值点为-1,最大值为f ⎝ ⎛⎭⎪⎫14 =-2×116 +14 +1=98 .答案:-1 98含参数的最值问题【典例】设a 为实数,函数f(x)=x 2-|x -a|+1,x ∈R .(1)当a =0时,求f (x )在区间[0,2]上的最大值和最小值.【思路导引】代入a 的值,化简后求最值.【解析】当a =0,x ∈[0,2]时函数f (x )=x 2-x +1,因为f (x )的图像开口向上,对称轴为x =12 ,所以,当x =12 时f (x )值最小,最小值为34 ,当x =2时,f (x )值最大,最大值为3.(2)当0<a <12 时,求函数f (x )的最小值.【思路导引】讨论对称轴与区间的位置关系求最值.【解析】f (x )=⎩⎪⎨⎪⎧x 2-x +a +1,x ≥a ,x 2+x -a +1,x <a .①当x ≥a 时,f (x )=x 2-x +a +1=⎝ ⎛⎭⎪⎫x -12 2 +a +34 . 因为0<a <12 ,所以12 >a ,则f (x )在[a ,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫12 =34 +a ; ②当x <a 时,函数f (x )=x 2+x -a +1=⎝ ⎛⎭⎪⎫x +12 2 -a +34 .因为0<a <12 ,所以-12 <a ,则f (x )在(-∞,a )上的最小值为f ⎝ ⎛⎭⎪⎫-12 =34 -a .综上,f (x )的最小值为34 -a .将本例的函数改为f (x )=x 2-2ax +1,试求函数在区间[0,2]上的最值.【解析】函数的对称轴为x =a ,(1)当a <0时,f (x )在区间[0,2]上是增函数,所以f (x )min =f (0)=1;当0≤a ≤2时,f (x )min =f (a )=-a 2+1;当a >2时,f (x )在区间[0,2]上是减函数,所以f (x )min =f (2)=5-4a ,所以f (x )min =⎩⎪⎨⎪⎧1,a <0,-a 2+1,0≤a ≤2,5-4a ,a >2.(2)当a ≤1时,f (x )max =f (2)=5-4a ;当a >1时,f (x )max =f (0)=1,所以f (x )max =⎩⎨⎧5-4a ,a ≤1,1,a >1.一元二次函数的最值(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值点,代入函数解析式求最值.(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x =m ,区间[a ,b ]为例,①最小值:f (x )min =⎩⎪⎨⎪⎧f (a ),m ≤a ,f (m ),a ≤m ≤b ,f (b ),m ≥b .②最大值:f (x )max =⎩⎨⎧f (a ),m ≥a+b 2,f (b ),m <a +b 2. 当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.(1)已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值.【解析】因为函数f (x )=x 2-ax +1的图像开口向上,其对称轴为x =a 2 ,当a 2 ≤12 ,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2 >12 ,即a >1时,f (x )的最大值为f (0)=1.(2)已知函数f (x )=x 2-x +1,求f (x )在[t ,t +1](t ∈R )上的最小值.【解析】f (x )=x 2-x +1,其图像的对称轴为x =12 , ①当t ≥12 时,f (x )在[t ,t +1]上是增函数,所以f (x )min =f (t )=t 2-t +1; ②当t +1≤12 ,即t ≤-12 时,f (x )在[t ,t +1]上是减函数,所以f (x )min =f (t +1)=t 2+t +1;③当t <12 <t +1,即-12 <t <12 时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12 上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1 上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12 =34 .1.(2020·西安高一检测)函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )A .9B .9(1-a )C .9-aD .9-a 2【解析】选A.因为a >0,所以f (x )=9-ax 2开口向下,以y 轴为对称轴,所以f (x )=9-ax 2在[0,3]上单调递减,所以x =0时,f (x )最大值为9.2.函数f (x )=x +2x -1 ( )A .有最小值12 ,无最大值B .有最大值12 ,无最小值C .有最小值12 ,有最大值2D .无最大值,也无最小值 【解析】选A.f (x )=x +2x -1 的定义域为⎣⎢⎡⎭⎪⎫12,+∞ ,在定义域内单调递增,所以f (x )有最小值f ⎝ ⎛⎭⎪⎫12 =12 ,无最大值. 3.(2021·菏泽高一检测)设f (x )=x 2-2ax +a 2,x ∈[0,2],当a =-1时,f (x )的最小值是________,若f (0)是f (x )的最小值,则a 的取值范围为________.【解析】当a =-1时,f (x )=x 2+2x +1,开口向上,对称轴为x =-1, 所以函数f (x )=x 2+2x +1在(0,2)上单调递增,所以函数在x ∈[0,2]上的最小值f (x )min =f (0)=1.若f (0)是f (x )的最小值,说明对称轴x =a ≤0,则a ≤0,所以a 的取值范围为(-∞,0].答案:1 (-∞,0]【补偿训练】二次函数f (x )=12 x 2-2x +3在[0,m ]上有最大值3,最小值1,则实数m 的取值范围是________.【解析】因为f (x )=12 x 2-2x +3在[0,2]上单调递减,在[2,+∞)上单调递增.则当0<m <2时,⎩⎨⎧f (0)=3,f (m )=1, 此时无解;当2≤m ≤4时,x =2时有最小值1,x =0时有最大值3,此时条件成立; 当m >4时,最大值必大于f (4)=3,此时条件不成立.综上可知,实数m 的取值范围是[2,4].答案:[2,4]备选类型 函数最值的应用(数学建模)【典例】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:厘米)满足关系式:C (x )=k 3x +5 (0≤x ≤10).若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式.(2)隔热层修建多厚时,总费用f (x )最小?并求其最小值.【思路导引】【解析】(1)由题意知C(0)=8,代入C(x)的关系式,得k =40,因此C(x)=403x +5 (0≤x≤10),而每厘米厚的隔热层建造成本为6万元, 所以隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+6x =8003x +5+6x(0≤x≤10). (2)令t =3x +5,由0≤x≤10,得5≤t≤35,从而有函数h(t)=800t +2t -10(5≤t≤35).令5≤t 1<t 2≤35,则h(t 1)-h(t 2)=(t 1-t 2)⎝ ⎛⎭⎪⎫2-800t 1t 2 , 当5≤t 1<t 2≤20时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)>0; 当20≤t 1<t 2≤35时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)<0. 所以h(t)=800t +2t -10(5≤t≤35)在区间[5,20]上单调递减,在区间[20,35]上单调递增,所以当t =20时,h(t)min =70,即当t =3x +5=20,x =5时,f(x)min =70.所以当隔热层修建5厘米厚时,总费用达到最小,为70万元.(1)通过换元,使函数式变得简单,易于研究其单调性.(2)以20为分界点将[5,35]分成两个单调区间,可结合对勾函数的单调性规律来理解.(2020·枣庄高一检测)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20 000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=⎩⎨⎧400x -12x 2,0<x ≤400,80 000,x>400,x 是“玉兔”的月产量(单位:件),总收益=成本+利润. (1)试将利润y 表示为月产量x 的函数.(2)当月产量为多少件时利润最大?最大利润是多少?【解析】(1)依题设,总成本为20 000+100x ,则y =⎩⎪⎨⎪⎧-12x 2+300x -20 000,0<x≤400,且x ∈N ,60 000-100x ,x >400,且x ∈N .(2)当0<x ≤400时,y =-12 (x -300)2+25 000,则当x =300时,y max =25 000;当x >400时,y =60 000-100x 是减函数,则y <60 000-100×400=20 000,所以当月产量为300件时,有最大利润25 000元.1.函数f (x )的图像如图,则其最大值、最小值点分别为( )A .f ⎝ ⎛⎭⎪⎫32 ,-32B .f (0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32 ,f (0) D .f (0),32 【解析】选D.观察函数图像,f (x )最大值、最小值点分别为f (0),32 .2.已知函数f (x )=x 2+2x +a (x ∈[0,2])有最小值-2,则f (x )的最大值为( )A .4B .6C .1D .2【解析】选B.f (x )=x 2+2x +a (x ∈[0,2])为增函数,所以最小值为f (0)=a =-2,最大值f (2)=8+a =6.3.(2021·大冶高一检测)若函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(2,+∞)B .⎝⎛⎭⎪⎫-∞,12 ∪[2,+∞) C .(-∞,2] D .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 【解析】选D.因为函数y =2x -1在(-∞,1)和[2,5)上都是单调递减函数,当x <1时,y <0,x =2时,y =2,x =5时,y =12 ,所以函数的值域是(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 . 4.(教材练习改编)函数y =1x -3在区间[4,5]上的最小值为________. 【解析】作出图像可知y =1x -3在区间[4,5]上是减函数(图略),所以其最小值为15-3=12 . 答案:125.定义在R 上的函数f (x )对任意两个不等实数a ,b ,总有f (a )-f (b )a -b>0成立,且f (-3)=a ,f (-1)=b ,则f (x )在[-3,-1]上的最大值是________.【解析】由f (a )-f (b )a -b>0,得f (x )在R 上是增函数, 则f (x )在[-3,-1]上的最大值是f (-1)=b .答案:b6.已知函数f (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.(1)求a ,b 的值;(2)若不等式f (x )-kx ≤0在x ∈[2,3]上恒成立,求实数k 的取值范围.【解析】(1)因为f (x )=ax 2-2ax +1+b (a >0)的图像开口向上,且对称轴为x =1,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (x )min =f (2)=4a -4a +1+b =1f (x )max =f (3)=9a -6a +1+b =4. 所以a =1,b =0; (2)由(1)得f (x )=x 2-2x +1,所以不等式f (x )-kx ≤0,即x 2-(2+k )x +1≤0在x ∈[2,3]上恒成立, 令g (x )=x 2-(2+k )x +1,g (x )的图像开口朝上, 则要使g (x )≤0在x ∈[2,3]上恒成立,所以⎩⎨⎧g (2)=4-4-2k +1≤0g (3)=9-6-3k +1≤0,解得k ≥43 , 所以实数k 的取值范围为k ≥43 .。

函数的最大值最小值

函数的最大值最小值

最小值.
x 1
解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,

f (x1)
f
(x2 )

2 x1 1
2 x2 1
2[(x2 1) (x1 1)] (x2 1)(x1 1)
2(x2 x1) (x2 1)(x1 1)
由于2<x1<x2<6,得x2- x1>0,(x1-1)(x2-1)>0,于是
结论:闭区间上的单调函数的最值在区间 的端点处取得。
利用函数单调性判断函数的最大(小)值的方法
1.利用二次函数的性质(配方法)求函数的最大(小)值
2. 利用图象求函数的最大(小)值
3.利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a,b]上单调递增,则函 数y=f(x)在x=a处有最小值f(a),在x=b处有最大值 f(b如) 果;函数y=f(x)在区间[a,b]上单调递减,在区 间[b,c]上单调递增则函数y=f(x)在x=b处有最小值 f(b);
课堂练习
1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,
则a的取值范围是( ) D
A、a≥3
B、a≤3
C、a≥-3
D、a≤-3
2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上 递减,在[-2,+∞)上递增,则f(x)在[1,2]上的 值域__[2_1_,_3_9_] _____.
例3、“菊花”烟花是最壮 观的烟花之一.制造时一般是 期望在它达到最高点时爆裂. 如果在距地面高度h m与时 间t s之间的
关系为:
h(t)= -4.9t2+14.7t+18 ,

函数的最大值、最小值

函数的最大值、最小值

2x 2

3

2x 2

1
5 2x1

5
)<0,
所以f(x1)<f(x2),
所以f(x)是增函数,则f(x)的最小值为 f( 3) 1 .
22
方法二:f(x)有意义,则满足
2x 2x
3 5
00,, 得x


3. 2
则f(x)的定义域为[ 3 ,+∞).
2
由于y=2x+3是递增的,所以y= 2x 3 也是递增的;而y=2x+5在
min
24
max
【延伸探究】
题2(2)改为求f(x)在[0,m](m>0)上的最小值. 【解题指南】注意分对称轴 x 1 在区间[0,m]内、外两种情
2
况讨论.
【解析】当m≥ 1 时,对称轴x= 1 ∈[0,m],
2
2
此时函数f(x)的最小值为f( 1 )= 3;
24
当m< 1 时,f(x)在区间[0,m]上单调递减,此时函数f(x)
3.函数f(x)在[-2,2]上的图象如图所示,则函
数的最小值为
;最大值为
.
【解析】观察图象,由图知最低点的纵坐标为
-1,最高点的纵坐标为2.
答案:-1 2
4.函数f(x)= 2 ,x∈[2,4],则f(x)的最大值为______;最
x
小值为______.
【解析】由函数f(x)= 2 (x∈[2,4])的图象可知,函数f(x)
3a .某市一家报刊摊点,从该市报社买进该市的晚报价格是每份
0.40元,卖出价格是每份0.60元,卖不出的报纸以每份0.05元的
价格退回报社.一个月按30天算,其中有18天每天可以卖出400

函数的最大值和最小值教案

函数的最大值和最小值教案

3.8函数的最大值和最小值(第1课时)容县高中封云文科选修数学第三册(选修一)【教材分析】本节教材知识间的前后联系,以及地位与作用本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有重要的理论价值和现实价值.高中阶段对用导数求可导函数在闭区间上的最值的方法不要求作严密的理论推导,这一方法完全可以由学生通过对函数图象的观察、归纳得到,所以本节教材还有一个重要的教育功能,那就是培养学生的探索精神,体验自主学习的成功愉悦.【教学目标】根据本节教材特点,结合学生已有的认知水平,制定本节如下的三维教学目标:1.知识和技能目标(1)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.(2)理解上述函数的最值存在的可能位置.(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.2.过程和方法目标(1)在学习过程中,观察、归纳、表述、交流、合作,最终形成认识.(2)培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题.3.情感和价值目标(1)认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.【教学重点、难点】1.教学重点基于以上对本节教材特点和教学目标的分析,将本节课的教学重点确定为:(1)培养学生的探索精神,积累自主学习的经验;(2)会求闭区间上的连续函数的最大值和最小值.2.教学难点高二年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是(1)发现闭区间上的连续函数f (x)的最值只可能存在于极值点处或区间端点处;(2)理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.3.教学关键本节课突破难点的关键是:通过合作探究的方式,让学生在运动变化的过程中通过观察、比较,发现结论.【教法选择】关于教法与学法:(1)班杜拉的社会学习原理认为:观察学习是重要的学习方法.这节课采用的第一个方法就是“观察、比较法”;(2)为了克服学生已有知识经验和阅历不足的弱点,采用多媒体辅助教学,设计了一个有图案的课件,让学生在函数图象的变化中观察、比较,发现数学本质;(3)根据新课标的教学理念,教学中要培养学生合作共事的团队精神,这节课还采用了“合作、讨论法”,让学生共同探讨、合作学习、取长补短、形成共识.【学法指导】对于求函数的最值,已经和学生共同通过观察图像的情况,发现怎样会有最大值的方法,剩下的问题就是没有图像,通过怎样的计算方法来找最值?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.【教学过程】本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈建构”四个环节进行组织.教学环节教学内容设计意图一、创设情境,铺垫导入1.问题情境:在日常生活、生产和科研中,常常会遇到求什么条件下可以使成本最低、产量最大、效益最高等问题,这往往可以归结为求函数的最大值与最小值.如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm且不大于20cm.设长方体的高为xcm,体积为Vcm3.问x为多大时,V最大?并求这个最大值.解:由长方体的高为xcm,可知其底面两边长分别是(80-2x)cm,(60-2x)cm,(10≤x≤20).所以体积V与高x有以下函数关系V=(80-2x)(60-2x)x=4(40-x)(30-x)x.2.引出课题:分析函数关系可以看出,以前学过的方法在这个问题中较难凑效,这节课我们将学习一种很重要的方法,来求某些函数的最值.以实例引入新课,有利于学生感受到数学来源于现实生活,培养学生用数学的意识,.通过运用几何画板演示,增强直观性,帮助学生迅速准确地发现相关的数量关系.实际问题中,在设元、列式后将这个实际问题转化为求函数在闭区间上的最值问题.这时学生经思考后会发现,以前学习过的知识不能解决这一问题,从而激发起学生的学习热情.二、合作学习,探索新知1.我们知道,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2.如图为连续函数f(x)的图象:在闭区间[a,b]上连续函数f(x)的最大值、最小值分别是什么?分别在何处取得?yxOyxOyxOyxO ba baba ba3.以上分析,说明求函数f(x)在闭区间[a,b]上最值的关键是什么?归纳:设函数f(x)在[a,b]上连续,在(a,b)内可导,求f (x)在[a,b]上的最大值与最小值的步骤如下:(1)求f (x)在(a,b)内的极值;(2)将f (x)的各极值与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值.通过对已有相关知识的回顾和深入分析,自然地提出问题:闭区间上的连续函数最大值和最小值在何处取得?如何能求得最大值和最小值?以问题制造悬念,引领着学生来到新知识的生成场景中.为新知的发现奠定基础后,提出教学目标,让学生带着问题走进课堂,既明确了学习目的,又激发起学生的求知热情.为让学生更好地进行发现,教学中通过改变区间位置,引导学生观察同一函数在不同区间内图象上最大值最小值取得的位置,形成感性认识,进而上升到理性的高度.学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作.在整个新知形成过程中,教师的身份始终是启发者、鼓励者和指导者,以提高学生抽象概括、分析归纳及语言表述等基本的数学思维能力.环节三、指导应用,鼓励创新例2如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm不大于20cm,设长方体的高为xcm,体积为V cm3.问x为多大时,V最大?并求这个最大值.分析:建立V与x的函数的关系后,问题相当于求x为何值时,V最大,可用本节课学习的导数法加以解决.例题2的解决与本课的引例前后呼应,继续巩固用导数法求闭区间上连续函数的最值,同时也让学生体会到现实生活中蕴含着大量的数学信息,培养他们用数学的意识和能力.四、归纳小结,反思建构课堂小结:1.在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值;2.求闭区间上连续函数的最值的方法与步骤;3.利用导数求函数最值的关键是对可导函数使导数为零的点的判定..作业布置:P1341.选做题:已知抛物线y =4 x2的顶点为O,点A(5,0),倾斜角为4的直线与线段OA相交,且不过O、A两点,l交抛物线于M、N两点,求使△AMN面积最大时的直线l的方程..通过课堂小结,深化对知识理解,完善认识结构,领悟思想方法,强化情感体验,提高认识能力.课外作业分必做题与选做题,因材施教、及时反馈,让不同的学生在数学上得到不同的发展.同时有利于教师发现教学中的不足,及时反馈调节.【教学设计说明】本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开.1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念.2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能动性.3.为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的数学教学思想,引导学生主动参与到课堂教学全过程中.4.在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第45课函数的最大值和最小值(1)
1.通过对本课时的教学,使学生掌握函数最大值和最小值的概念,理解和熟悉函数
f(x)必有最大值和最小值的充分条件.
2.掌握求在闭区间[a,b]上连续的函数ƒ)
(x的最大值和最小值的思想方法和步骤. 由于本课时图象与例题较多, 如能采用多媒体手段进行教学,可节约作图的时间,以提高课堂教学效率.
1.课题引入
前面已经明确了函数极值的概念,并掌握了求函数极值的步骤和方法.在社会生活实践中,为了发挥最大的经济效益,常常会遇到如何能使用料最省、产量最高、效益最大等问题,这样的问题有时就可以化为求一个函数的最大值和最小值的问题.教师板书课题:“函数的最大值和最小值”.
2.设问质疑,释疑
函数在什么条件下—定具有最大值和最小值?最值与极值的关系如何?求函数的最值
的方法与步骤怎样?请看下面的问题:
问题1 已知下图是一个定义在区间[a,b]上的函数ƒ)
(x的图象.
教师引导启发学生观察出如下结果:图中ƒ)
(x是极小值。

f(0)是极大值,
(x与ƒ)
ƒ)
(x是最小值,ƒ(b)是最大值,并引导学生归纳,从而得到结论:
一般地,在区间[a,b]上连续的函数f)
(x在[a,b]上必有最大值与最小值.问题2 函数ƒ)
(x在[a,b]上间断或在开区间(a,b)上连续是否也必有最大值和最
小值呢?
已知下面两个函数和它们的图象.
教师引导学生观察分析图象得到如下结果:函数f(x)定义在闭区间[a,b]上,但有
间断点,没有最大值;函数g(x)定义在开区间(0,1)上,且在(0,1)上连续,没有最大值
和最小值.再引导学生深入思考联想,函数ƒ)
(x定义在闭区间[a,b]上,但有间断点,或定义在开区间(0,1)上但连续是否就一定没有最大或最小值呢?回答是否定的.必要时教
师可通过图象举出反例,由此得到结论,函数ƒ)
(x定义在闭区间[a,b]上且在[a,b]上连续是使得ƒ)
(x有最大值与最小值的充分条件而非必要条件.
问题3 如果函数ƒ)
(x在
(x在[a,b]上连续,在(a,b)内可导,那么如何求ƒ)
[a,b]内的最大值和最小值呢?
教师引导学生观察教科书图3—11,总结步骤并板书如下:
①求函数ƒ)
(x在(a,b)内的极值;
②求函数ƒ )(x 在区间端点的值ƒ (a)、ƒ (b);
③将函数ƒ )(x 的各极值与ƒ (a)、ƒ (b)比较,其中最大的是最大值.其中最小的是
最小值.
3.例题讲解
例1 (见教科书例1)
注意引导学生对照有关步骤,要求能正确表达、规范书写,同时结合图象,直观认识所
得的结论.
说明:
本题用初等数学方法(配方分析法)也可以解答,但导数解法更具一般性.提醒学生以
后解题时,勿就题论题,应发挥联想,尝试一题多解.
例2 求函数ƒ (x)=5x+2 — 的值域.
分析:由⎩⎨⎧≥-≥+0
403x x 得ƒ)(x 的定义域为43≤≤-x 。

问题就转化为求ƒ )(x 在闭区间
[]4,3-上的最大值和最小值的问题。

考虑其单调性,因为y '=f '另解:令一 3x ≤x1<x2≤4, 得结果.
4.课堂练习,教科书第138页练习第(1)、(2)题
5.归纳与小结
(1)函数最大值及最小值的点必在下列各种点之中:导数等于零的点,导数不存在的点,
端点.
(2)函数ƒ )(x 在区间[a ,b]上连续是ƒ )(x 在[a ,b]上存在最大值与最小值的充分而非
必要条件.
(3)本节课介绍的求最值的方法和步骤是指对于在[a ,b]上连续、在(a ,b)内可导的函数.
碉嚼江作胁
教科书习题3.9第1(1)、(2)、(3)题
第46课
函数最大值与最小值(2)
1.通过本课的教学,对学生进行函数思想和方法的培养.
2.通过本课例题的分析与解答,培养学生的发散思维能力和逐步形成运用导数知识
解决实际问题的能力.
1.复习引导
求可导函数ƒ )(x 的最大值和最小值的方法和步骤如何?(学生思考回答)
2.本课内容引入与分析
在日常生活、生产和科研中,常常会遇到一些实际问题,这些问题有的可以转化成求
函数最大值和最小值的问题(从而引出例题).
例2 在边民为60cm 的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线
折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多
少?
例题分析:
3+x x -4
思路一:设箱底边长为xcm,则箱高h=
r(1):
思路二
y(工)
思路三

y是箱底边长z的函
ac2h二60x~-x3(o<az<60)。

具体解法见课本.
^
设箱底高为~'12C1TI,则箱底边长为(60-2x)OTI,则得箱子容积V是I的函数
;(60—2az)9·I (0<x<30)
:对于·用初等方法解答
y(J)二十(60一J)J’二÷(60一J)·J·工二2(60-丁)·号·号.由60一工二号啤I=40 y(x)二(60—2az)’·x‘÷(60-2x)(60-2z)·4x
9
由60-2x:4J)J‘10
思路四:由一知当c过小(接近于0)或过大(接近于60)时箱子容积很小,由二知当x
过小(接近于0)或过大(接近于;30)时箱子容积很小.以上可导函数ƒ)
(x:(60—2a:)’x 或y(。

);丛与卫·,’在各自定义域中都只有一个极值点,从图象角度理解即只有一个波峰,即是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值.请注意这一点.思路五:从二求得的结果发现,箱子的高恰好是原正方形边长的,这个结论是否具有一般性?建议课后完成下列变式题,得出相关结论。

变式:从一块边长为a的正方形铁皮的各角截去相等的方块,把各边折起来,做成一个无盖的箱子,箱子的高是这个正方形边长的几分之几时,箱子容积最大?
提示:
答案:x=
例3 (本章章头图中所提出的问题)
圆柱形金属饮料罐的容积一定时,它的高与底面半径怎样选取才能使所用材料最省?
例题分析
分析l:没金属饮料罐高为h,底面半经为R,则材料最省即是表面积最小,且表面积
是R和h的二元函数,S=2~Rh+2zcR2必须消去一个自变量.由常数(定值)V=rR’^,注意:从解答结果发现,罐高与地面直径相等时,所用材料最省。

请量一量日常生活中使用的铁皮茶缸,看是否也有这个结论,想一想这是为什么?
变式:当如图所示的圆柱形金属罐的表面积为定值S时,应怎样制作,才能使其容积最大.
3.课堂练习教科书第137页练习第1、2题.
4.本课内容小结
(1)生活、生产和科研中会遇到许多实际问题,要善于用数学的观点和方法去分析问题
(2)解题时,应该考虑一题多解、方法对比、注意联想,推测有些问题是否有一般性自
(3)注意总结例题中涉及的知识点、重点和难点.
教科书习题3.9第2.3.4.5题。

相关文档
最新文档