函数的单调性教学反思

合集下载

函数单调性的教学反思

函数单调性的教学反思

函数单调性的教学反思本节课的基本流程是先从具体的函数图象引入,直观认识增减函数,然后引导学生给出增减函数的定义,由图象说出函数的单调区间,利用定义证明函数单调性,接着练习、交流、巩固,最后学生归纳小结,教师评价。

图象能够很好的说明函数的单调性,也能给学生一个非常直观正确的认识。

教学重点是形成增减函数的形式化定义,难点是形成增减函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的教学符号语言表述;用定义证明函数的单调性。

通过向学生展示几种不同的函数图象,就同一函数在不同区间内的增减情况启发学生突出重点。

对于任意给定的两个实数,它们对应函数的值会有什么变化,如何用数学语言来表述。

本节课采用启发和引导的教学办法,启发法能够启发学生主动思考,让他们养成自我思考的思维习惯,在给函数增减定义时也有了更直观的认识。

函数单调性的教学反思本节课的基本流程是先从具体的函数图象引入,直观认识增减函数,然后引导学生给出增减函数的定义,由图象说出函数的单调区间,利用定义证明函数单调性,同一函数的不同区间上的单调性。

接着练习、交流、巩固,最后学生归纳小结,教师评价。

图象能够很好的说明函数的单调性,也能给学生一个非常直观正确的认识,让学生能更好的接受函数图像变化。

教学重点是形成增减函数的形式化定义,难点是形成增减函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的教学符号语言表述;用定义证明函数的单调性。

通过向学生展示几种不同的函数图象,就同一函数在不同区间内的增减情况启发学生突出重点。

对于任意给定的两个实数,它们对应函数的值会有什么变化,如何用数学语言来表述。

本节课采用启发和引导的教学办法,启发法能够启发学生主动思考,让他们养成自我思考的思维习惯,在给函数增减定义时也有了更直观的认识。

对于学生的学习方法,采用的是以练补差。

学生在理解概念的基础上,通过典型例题的讲解,让他们对函数单调性的证明的主要过程以及解题思路有大体认识,在以后的解题中知道如何下手。

函数的单调性之教学反思.doc

函数的单调性之教学反思.doc

《函数的单调性》一教学反思余姚第七中学康秀华《函数的单调性》是必修1第一•章“集合与函数概念”中“函数的基本性质”第一节内容。

是一节典型的概念新授课,经常作为公开课时选用课题。

教学已有五年,函数的单调性这节课也已经上过两次,去年在“青年教师比武”中还作为说课内容,当时题FI是自定的,我凭感觉选择了这个课题,但是由于准备不够充分,最后也没有什么作为,今年,学校组织优质课评比,我乂赶上这个进度,理所当然选择了《函数的单调性》作为上课内容。

回忆汽时的准备过程,我翻开教材,教材先由学生熟悉的一次函数和二次函数的图像去引导学生观察这两个函数的单调性,然后从y的数值随x的数值变化的情况,引出单调递增(减)的定义,得出定义后,完成概念部分,顺理成章讲解例题。

是一•堂典型的概念课。

可是,这个内容我并不陌生,何况还有去年的失败经历,我感觉就这样上一定算不上什么优质课。

于是,我在百度里输入“函数的单调性”想看看别的老师是怎么上这节课的, 铺天盖地的课件展示在我的面前,打开又关闭,关了这个再开那个…….,因为我的脑子里一直盘旋着这样一个问题:到底为什么要学习函数单调性的定义?教学动机是什么?有一个课件的引子吸引了我:数与形,本是和倚依,焉能分作两边飞;数无形时少直觉,形少数时•难入微;数形结合百般好,隔离分家万事休。

切莫忘,儿何代数统一体,永远联系莫分离。

这段文字出自数学大师华罗庚。

我的课堂有了一个灵魂:课堂内容的呈现体现了数形结合的数学思想。

但是,这还不能回答我的问题,为什么要学习函数单调性的定义呢,在我苦思冥想想得到答案时,我突然发现答案还是在这句话中:“数无形时少直觉,形少数时难入微”不正是这堂课的数学动机吗?以前学生认识的单调性都是从形上去认识的,但是,所有的函数的单调性都需要用图像去研究吗?有很多复合函数的图像是很难在中学时代完成的,就是作为教师,有的函数也只能借助数学软件,所以有必要从数的角度去研究函数的单调性。

函数的单调性性教学反思

函数的单调性性教学反思

函数的单调性性教学反思
在教学过程中针对学生已经初步认识了函数是刻画某些运动变化数量关系的数学概念,在教学中借助图像对函数进行研究特别是对函数加以直接考察,利用一次函数,二次函数,反比例函数等几个具体函数了解它们的图像和性质。

“图像是上升的,函数是单调增的;图像是下降的,函数是单调减的”仅就图像角度直观描述函数单调性的特征,学生并不感到困难。

困难在于,把具体的,直观形象的函数单调性抽象出来,用数学的符号语言描述,教学中通过像及数值变化特征的研究,得到“图像是上升的”,相应地,即“随着x的增大,Y也增大,”初步提出单调性的说法。

通过讨论、交流,让学生尝试,就一般情况进行刻画,提出单调性的定义,然后通过辨析,练习等帮助学生理解一概念。

在教学中要适当把握节奏,在一节课企图让学生完成对单调性的真正理解是不可能的,在今后的教学中学生通过判断函数单调性,寻找函数单调区间,应用函数单调性解决具体问题,等一系列学习活动逐步理解这一概念。

“函数单调性”的教学反思

“函数单调性”的教学反思

“函数单调性”的教学反思一、教学流程:在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,而本小节内容,正是初中有关内容的深化、提高。

后面讨论指数函数、对数函数、三角函数的性质时都要用到这个性质。

所以这是非常重要的一个内容,在教材中起到承上启下的作用。

1、复习回顾,温故知新复习初中时学过的有关函数的增减性的问题一次函数和二次函数在R上是增函数还是减函数?如何得出函数的增减性?(观察函数图像)2、创设情境,设疑导新在学生阅读前提出三个问题:1、增函数、减函数的定义是什么?2、什么叫单调函数、单调区间?3、如何判断简单函数的单调性?阅读自学是学生的薄弱环节,为了锻炼学生的自学能力,本堂课通过三个阅读思考题的提出,引导学生在阅读中学会正确地思考,可以让学生更快进入数学课的氛围,也对新的概念作一个提前了解。

3、分析概念,落实双基函数的单调性的概念的引入,就是通过设问从具体形象到抽象,由感性到理性。

引导学生通过自己的观察、思考形成新的知识结构。

在引出增、减函数的定义时,强调要注意“任意”、“都有”几个关键的词。

又在分析单调区间的概念时,说明单调区间分单调递增区间和单调递减区间,并通过图形直观地理解定义。

这样使学生不仅掌握新授概念,而且掌握了相关概念间的纵横联系,形成知识结构。

例1是根据图象来说明一个函数的单调区间,以及在每个单调区间上是增函数还是减函数,可让学生根据图象自己回答,并指出从图象上进行观察是一种虽然常用,但较为粗略的方法,严格来说还需要推理论证。

这种对概念进行辩析,加深理解,融能力培养于概念之中的教学方法,是加强基础开发潜能的有效手段。

例2是用推理证明一个一次函数是增函数。

由于学生在初中学习代数时,其结论一般是通过对具体事例的不完全归纳、观察图象等方式得出,应该说这里的例2是学生第一次接触“代数证明”,因而可能会感到不习惯。

应该指出,对于某些较复杂的函数,其是否具有单调性是很难从对图象的观察得出的,本例中所采用的推理,是数学中最基本的、从定义出发进行证明的方法。

《导数在函数中的应用——单调性》教学反思(精选15篇)

《导数在函数中的应用——单调性》教学反思(精选15篇)

《导数在函数中的应用——单调性》教学反思〔精选15篇〕篇1:《导数在函数中的应用——单调性》教学反思本节课是一节新授课,教材所提供的信息很简单,假如直接得出结论学生也能承受。

可学生只能进展简单的模拟应用,为了突出知识的发生过程,不把新授课上成习题课。

设计思路如下以便学生会考虑解决问题。

1、首先从同学们熟悉的过山车模型入手,将实际问题转化为数学模型,提出如何刻画函数的变化趋势,引出课题。

研究从学生熟悉的一次函数,二次函数入手,寻找导数和单调性的`关系,用几何画板演示特殊的三次函数的图像,研究单调性和导数。

在此根底上提出问题:单调性和导数到底有怎样的关系?学生通过考虑、讨论、交流形成结论。

也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。

2、在结论得出后,继续引导学生考虑,提出自己的困惑,因为确实有学生对结论有不一样的想法,所以,尽可能地暴露问题,让学生彻底理解、掌握。

3、铺垫:在引入部分,我涉及到了一个三次的函数,而例2就是此题的变式,这样既可以在开场引起学生兴趣,后来他们自己解决了看似复杂的问题,增加了信心,也做到了首尾照应。

4、在知识应用中重点指导学生解题步骤,在学生自己总结解题步骤时,发现学生忽略了第一点求函数定义域,所以我就将错就错,给出了求函数的单调区间,很多学生栽了跟头,然后自己总结出应该先求函数定义域。

虽然这道题花了些时间,但我觉得很值得,我想学生印象也会更深化。

5、数形结合:数形结合不是光口头去说,而是利用一切时机去施行,在例1的教学中,我让学生先纯熟法那么,再从形上分析^p ,加深印象,这样在后面紧接的高考题中〔没有给解析式〕,学生会迎刃而解。

为了培养学生的自主学习、自主考虑的才能,激发学习兴趣,在教学中采取引导发现法,利用多媒体等手段引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探究新知。

让学生分组讨论,合作交流,共同讨论问题。

但是,真正做到以学生为中心,学生100%参与,表达三维目的,培养学习才能还是比拟困难。

函数单调性课后反思

函数单调性课后反思

《函数单调性》课后反思
函数是整个高中的重点和难点,是贯穿整个高中的始终,是函数一个重要的性质。

如何学好它,用好它,是值得我们去反思的,也是高考必考的内容。

反思一:对函数单调性的概念的本质的理解,如何用概念判断或证明函数在某一区间上的单调性,是教学重要的一环。

反思二:培养学生函数应用意识,特别是单调性的应用。

如求在某一点处的切线方程,用导数来判断函数单调性问题,极值点偏移问题等。

反思三:如何教会学生用函数单调性来解决数学中的问题,不断渗透数学思想和方法,如有的题可以用数形结合方法来求某一参数的取值范围。

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思函数的单调性是函数的一个重要性质,是研究函数最值,极值等问题的基本工具,也是研究比较函数值大小,判断函数零点,讨论函数图像变化趋势的重要依据.函数的单调性作为数学概念,在数学中有着重要的地位和作用.我所任教的班级的学生数学基础参差不齐,接受能力也有高有低.但他们都具备了初中阶段所学的函数的概念和性质的基础知识,同时也有能力去理解和掌握本节课的内容.因此我在设计教学时充分考虑到这些因素对教学的影响,尽量使教学内容符合学生的认知结构和心理特征,做到因材施教.理解函数单调性的概念,掌握判断函数单调性的基本方法.通过观察、实验、归纳、推理,探究函数单调性的证明方法.通过函数单调性的应用,进一步理解函数的概念和性质.通过实例,培养学生的观察、分析、归纳、推理的能力和解决问题的能力.通过实例,对学生进行辩证唯物主义教育,培养学生严谨的科学态度和良好的学习习惯.本节课采用直观演示法、引导发现法、范例教学、情感激励法等多种教学方法相结合使用.通过教具的使用,范例的讲解和训练,引导学生观察、分析、归纳、推理得出结论,使学生既动脑又动手,充分体现以学生为主体,教师为主导的教学思想,通过练习和例题的教学培养学生的观察分析问题和解决问题的能力.通过提问的方式复习相关知识,为新课的引入做准备.通过提问的方式激发学生的学习兴趣和学习动机,调动学生参与课堂活动的积极性.通过观察图像,描述图像的变化趋势引入新课.通过练习题和例题的教学培养学生的观察分析问题和解决问题的能力.通过小结和反馈练习进一步巩固本节课所学知识.“函数的单调性”是数学分析中一个重要的概念,它对于学生理解函数的性质,掌握函数的应用有着重要的意义。

然而,由于该概念较为抽象,学生在学习过程中往往感到困难。

因此,如何设计合理的教学方案,帮助学生有效地掌握这一概念,是数学教师需要思考的问题。

通过举例和图像描述,引导学生了解函数单调性的概念。

函数单调性反思.doc

函数单调性反思.doc

教学反思1、新课标明确指出:函数是描述客观世界变化规律的重耍数学模型,不仅把函数看成是变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想将贯穿高屮数学课程的始终《函数的单调性》的课标教学要求,从结合实际问题出发,,让学生感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的间断问题。

数学新课标还捉到:要注重提高学生的数学思维能力,即“在学生学习数学运用数学解决问题时,应经历直观感知,观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程”。

所以在本节课的教学设计中在分析学生的认知发展水平和已冇的只是经验的基础上,让学生通过观察函数图像的变化规律,然后归纳猜测,勇于实践探究式的教学方法,取得了较好的教学成果。

2、函数的单调性是函数的一个重要性质在理解函数单调性的定义吋,值得注意下列三点:(1)单调性是与“区间”紧密相关的概念,一个函数在不同的区间上可以冇不同的单调性.在讨论函数的单调性时,特别要注意,若f(x)在区间DI, D2上分别是増函数,但f(x)不一定在区间D1UD2±是增函数,例如:函数f(x)二x + 1在(一1)上是增函数,在(一1,+°°)上也是增函数,但在(一8,— 1)U(— 1,+ OO)上不是增函数,f(l)<f(-3)便是一例.⑵单调性是函数在某一区间上的“整体”性质,因此定义中的xl,x2具有任意性, 不能用特殊性替代.⑶由于定义都是充要性命题,因此由f(x)是增(减)函数且f(xl)vf(x2)=xlvx2(xl>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推” •2.判断函数的单调性或单调区间时,可以结合函数的图象升降进行判定,对于一般函数需用增、减函数定义加以证明,用定义的证明函数的单调性学生还存在问题较多。

教学反思:函数的单调性(五篇范文)

教学反思:函数的单调性(五篇范文)

教学反思:函数的单调性(五篇范文)第一篇:教学反思:函数的单调性《函数单调性》的教学反思新课标明确指出:函数是描述客观世界变化规律的重要数学模型,不仅把函数看成是变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想将贯穿高中数学课程的始终《函数的单调性》的课标教学要求,从结合实际问题出发,让学生感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的间断问题。

数学新课标还提到:要注重提高学生的数学思维能力,即“在学生学习数学运用数学解决问题时,应经历直观感知,观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程”。

对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成;确定本节课的重点和难点.在本节课的教学设计中在分析学生的认知发展水平和已有的只是经验的基础上,让学生通过观察函数图像的变化规律,然后归纳猜测,勇于实践探究式的教学方法,取得了较好的教学成果。

为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:一、函数单调性可以从三个方面理解(1)图形刻画:对于给定区间上的函数,函数图象如从左向右连续上升,则称函数在1 该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减。

(2)定性刻画:对于给定区间上的函数,如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。

高中数学函数的单调性教学反思

高中数学函数的单调性教学反思

高中数学函数的单调性教学反思高中数学函数的单调性教学反思。

因此,在教学的整个过程中,弱化抽象概念的讲解,从具体函数的图象分析入手,使学生对增、减函数有一个直观的印象。

进一步,通过分析函数图象的变化趋势,启发学生归纳出增、减函数中函数值与自变量之间的变化规律,使学生会熟练的通过函数的图象来判断一个函数是增函数,还是减函数。

在次基础上,给出函数单调性,函数单调区间的概念。

在课堂上重点训练了学生从函数图象上来判断函数单调区间,以及在每个单调区间上的单调性的能力,从学生的的课堂反应来看,学生能熟练的通过函数的图象来判断函数的单调性,然后用定义证明一个函数是增函数(减函数),整堂课下来,使学生会通过函数图象来判断函数单调性这一目标基本上达到,学生课堂反应积极、热情。

当然,其中还是存在了很多的问题,譬如最大的问题就是学生探究还没有放开,教师讲多了。

在以后的教学中多注意从学生的已有知识和生活经验出发,围绕知识目标展开新知识出现的情境,丰富学生的情感体验,在知识目标得到有效落实的同时,达成能力目标.突出基础知识的应用和基本技能的运用,强化知识目标,培养学生学习数学的情感,在知识应用方面,应强调数学走向生活,解决具有现实意义的生活问题,培养学生的数学建模能力.在教学时,我们也要适当使用多媒体教学手段,帮助学生可以更加直观的理解函数的图象变化。

篇四:为了使学生从知识上、能力上、思想上得到尽可能大的发展,我采取发现法、多媒体辅助教学。

首先创设情境、激发兴趣。

研究实际生活中上下楼梯的问题,充分调动学生积极性,营造亲切活跃的课堂氛围;渗透建模思想,培养学生应用数学的意识,通过实例使学生感受单调性的内涵,缩短心理距离,降低理解难度。

其次,探索新知。

引导学生经历直观感知、观察发现、归纳类比的思维过程,发展数学思维能力。

针对函数图象,依据循序渐进原则,设计三个问题,学生直接回答的同时教师利用多媒体的优势,展示图象及动画,使学生理解增减函数定义。

《函数的单调性》教学反思(一)

《函数的单调性》教学反思(一)

《函数的单调性》教学反思(一)
《函数的单调性》教学反思(一)
2010-01-11 16:02:55| 分类:默认分类 | 标签: |字号大中小订阅
函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据。

本节课我从学生熟悉的生活情境引入,给出了今年夏天本县某一天的气温变化图,由气温的变化趋势引出函数值随自变量的增大而增大,函数值随自变量的增大而减小,让学生对函数单调性产生感性认识,为引出单调性的定义打好基础,有利于定义的自然生成,也揭示了单调性最本质的东西。

函数单调性定义产生是本节课的难点,难在:如何使学生从描述性语言过渡到严谨的数学语言。

通过问题的分解,引导学生步步深入,直至找到最准确的数学语言来描述定义。

为了使学生能得到一个直观的概念,通过三个具体的函数图象由学生简单归纳概念,教师作相应的补充。

这里体现以学生为主体,师生互动合作的教学新理念。

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思一、教学内容本节课的教学内容选自人教A版高中数学必修1第三章函数的单调性。

具体包括:函数单调性的定义,单调增函数和单调减函数的性质,以及利用单调性解决实际问题。

二、教学目标1. 理解函数单调性的概念,掌握单调增函数和单调减函数的性质。

2. 能够运用函数单调性解决简单的实际问题。

3. 培养学生的逻辑思维能力和数学建模能力。

三、教学难点与重点1. 教学难点:函数单调性的证明和应用。

2. 教学重点:函数单调性的定义和性质。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、笔、计算器。

五、教学过程1. 实践情景引入:通过生活中常见的物价变化现象,引导学生思考函数的单调性。

2. 概念讲解:介绍函数单调性的定义,并通过示例进行讲解。

3. 性质探讨:引导学生探究单调增函数和单调减函数的性质,并通过示例进行验证。

4. 例题讲解:讲解利用函数单调性解决实际问题的例题,引导学生学会运用单调性分析问题。

5. 随堂练习:布置随堂练习题,让学生巩固所学知识。

六、板书设计1. 函数单调性的定义。

2. 单调增函数和单调减函数的性质。

3. 利用函数单调性解决实际问题的方法。

七、作业设计1. 题目:判断下列函数的单调性,并给出证明。

函数1:y = x^2函数2:y = x^2答案:函数1单调增,函数2单调减。

2. 题目:利用函数单调性解决实际问题。

问题:某商品原价为100元,商家进行两次折扣促销,第一次折扣为8折,第二次折扣为7折,求最终成交价。

答案:最终成交价为84元。

八、课后反思及拓展延伸1. 课后反思:本节课通过生活实例引入函数单调性,让学生能够更好地理解概念。

在讲解性质时,通过示例进行验证,增强了学生的理解。

在例题讲解环节,培养了学生的实际应用能力。

2. 拓展延伸:引导学生思考函数单调性在其他数学领域的应用,如微积分中的极值问题。

重点和难点解析一、函数单调性的定义函数单调性是函数性质的重要组成部分,它反映了函数值随着自变量变化的大致趋势。

函数单调性教学反思

函数单调性教学反思

对“函数的单调性”反思一、函数的单调性的教学聚集了数学教学的诸多矛盾从高中数学知识体系的角度,函数单调性是高中阶段刻画函数“变化”的一个最基本的性质,函数单调性的学习和运用将贯穿在高中代数课程的始终,在教学要求上体现出螺旋上升的特征.高中数学课程中对于函数单调性的研究可以分为两个阶段:第一阶段,用运算的性质研究单调性,知其变化趋势;第二阶段,用导数的性质研究单调性,知其变化快慢.高一对函数单调性的学习处于第一个阶段,需要教师把握好教学要求,稳步推进,不能急于求成,超越阶段.从学生学习的角度,函数的单调性是学生学习了函数概念后研究的函数的第一个性质,也是学生进入高中阶段后接触的第一个用数学符号语言刻画的数学概念,它的学习对学生来说具有一定的挑战性.同时,函数单调性的研究过程具有较好的示范性,可以为学生进一步学习函数的其他性质提供方法范例,对学生提升数学认识具有引领作用.由于函数单调性的学习既有重要价值,又有一定的难度,因此,在教学设计中,就需要教师在把握学生学情的基础上体现数学本质,有效突破教学难点.从教师教学的角度,“函数的单调性”第一课时既是一节较为抽象的数学概念课,也是一节数学方法课,同时也包含着数学认知策略的教学.教师既需要从数学学科体系的宏观角度进行整体把握,也要从教材编排的中观角度进行单元设计,还要从教学方法的微观角度进行具体的课堂教学设计.可以说,“函数的单调性”这一课时聚集了数学教学的诸多矛盾,它的教学设计和教学过程对每个数学教师都是一个挑战,教师在教学中设定怎样的教学目标,选择怎样的教学策略,设计怎样的问题情境和问题链,可以充分反映教师在数学教学上的关注点,体现教师的教学能力和教学智慧.二、从教学设计中反思1、教学目标是一堂课的灵魂和统帅,明确教学目标是教学设计的第一个环节.本节课设定的教学目标中,知识与技能目标定位比较恰当,但从后面实际的教学设计看,教师对一些定位教学目标的关键词,如“理解”、“简单”等并没有很好的理解,也没有很好地贯彻,制定教学目标这个过程成了无用的文字摆设.同时,过程与方法目标,情感、态度与价值观目标显得空洞无物,存在套用新课程理念,把三维目标当作标签来贴的问题.2、本节课的教学重点、难点的设定不够准确,缺乏对教学要求的细致分析,缺乏对学生学情的准确把握,比较随意.我觉得本节课的第一个教学重点是理解函数单调性的概念,第二个教学重点是运用函数单调性的定义进行函数单调性严格的推理论证并完成规范的书面表达.函数单调性的定义是一个符号化特征很强的数学概念,这样的概念高一学生是第一次接触,如何让学生理解这种符号化的、抽象的数学语言,参与函数单调性概念的符号化过程是本节课的第一个难点.同时,由于学生第一次接触到代数证明,如何运用函数单调性的定义严格证明函数的单调性并完成规范的书面表达则是本节课的另一难点.3、课题导入:函数单调性是函数性质中的一个重要概念,教师需要创设恰当的情境让学生体会函数单调性概念产生的必要性和价值,并引领后续的教学.但本教学设计在创设情境时重视了情境的生动性而忽视了情境的数学性,存在为情境而情境的不足.引例1的股价走势图可以反映股价的变化,但与高中数学所研究的函数单调性严格来讲有一定的不同,且股价走势情境包含学生所不具备的一些股市专业知识,作为本节课的教学情境不妥.此外,本节课选用两个情境也显多余.4.教学设计的四个要素是学情分析、目标分析、知识定位与问题设计.如果把教学看作是教师带领学生一起去远足,那么学情分析的目的是要分析学生的认知基础,确定一个合情合理的教学起点;目标分析则是要教师分析预期达到的教学效果,即远足所期望到达的目的地,这是教学的根本指向和核心任务,是教学设计的关键;知识定位则好比是教师要预先分析通往目的地的道路状况,从而决定前进的方法和策略;问题设计则好比是设计行程,设定远足过程中的途经点,恰当的行程安排可以指引师生高效地向着目的地前行.因此,要完成一个优秀的教学设计,教师就一定要在学情分析、目标分析、知识定位与问题设计这四个方面下功夫.5.本节课的第一个教学难点是如何让学生充分参与函数单调性概念的符号化建构过程,这实际上是策略性知识的教学.笛卡儿曾说过:“最有用的知识是关于方法的知识”,函数单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观感知到自然语言描述,再到数学符号语言描述的进化过程,这个过程充分反映了数学的理性精神,是一个很有价值的数学教育载体,因此,让学生体验数学知识的发生发展过程应该成为这节课的一个重要教学目标.本节课的第二个教学难点是如何运用函数单调性的定义严格证明函数的单调性,这实际上是程序性知识的教学.程序性知识学习的第一阶段是陈述性的,或者说程序性知识学习的前身是陈述性知识.程序性知识学习的第二阶段是通过应用这一规则的变式练习,使规则由陈述性形式向程序性形式转化.就“如何证明函数的单调性”来说,学生通过教师讲解和意义建构,知道了证明函数的单调性的规则,并能陈述这些规则(陈述性知识),再通过一定的变式练习,能立即根据规则对函数的单调性进行严格的证明.后一个教学设计通过情境创设和问题链的设计较好的突破了这两个难点.。

《函数的单调性》的教学反思(精选5篇)

《函数的单调性》的教学反思(精选5篇)

《函数的单调性》的教学反思〔精选5篇〕《函数的单调性》的教学反思1本节课采用导学案引导自学法。

首先,复习函数单调性的定义,单调性又名增减性,判断函数的单调性有两种方法:图像法和定义法。

然后,要求学生自行阅读课本P57—P58,完成表格,表格将课本实例分析^p 中的8个函数全部罗列出来,完成后观察表格的第3列和第6列,说明导数的正负与函数的单调性有何关系?学生易得出结论。

从而说明判断函数的单调性还可以用导数法。

接下来,讲解例1,实际操作,说明如何利用导数判断函数单调性,根据讲解过程,让学生总结求解的一般步骤,并做了2个练习。

很不巧,此时下课铃声响了,本节教学任务没有完成。

本节课,我设计了三个题型,仅完成了一个。

课堂时间之所以把控的不好,原因很多,我反思之后,主要原因有以下两点:(1)学生根底差,对单调性的知识点掌握不扎实,且自主学习习惯尚未养成,导致阅读课本填表格的时间过长。

我在想,是否可以让学生提早复习单调性的概念,并预习课本完成表格,以进步课堂效率。

其实,本来也是这样打算的,但由于对学生的学习态度不自信,所以放弃了,想着课堂上也能完成,结果估计缺乏。

应该对学生多一点信心和耐心,行为习惯的养成不是一朝一夕能做到的。

(2)例1中,求导后的计算涉及到不等式的求解,学生对此知识点的把握也不是很到位,老师只能先带着学生回忆不等式的解法,再进展例1的求解。

如此,时间又被耽误了。

对于这一点,我也预估缺乏,说明我在备课时,对学情的分析^p 缺乏。

《函数的单调性》的教学反思21、本节课的亮点:教学过程中老师指导启发学生以的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,并推广到一般这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知.同时也浸透了归纳推理的数学思想方法,培养了学生的探究精神,积累了探究经历。

《函数的单调性》数学教学反思

《函数的单调性》数学教学反思

《函数的单调性》数学教学反思《函数的单调性》数学教学反思身为一名刚到岗的教师,我们要在教学中快速成长,借助教学反思我们可以拓展自己的教学方式,写教学反思需要注意哪些格式呢?以下是小编为大家整理的《函数的单调性》数学教学反思,欢迎阅读,希望大家能够喜欢。

教后记函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质,通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。

用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一。

另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达。

围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题:1.重视学生的亲身体验.具体体现在两个方面:(1)将新知识与学生的已有知识建立了联系,引导学生借助已学过的一次函数、二次函数的图象,从图象分析入手,使学生对增、减函数有一个直观的感知,完成对函数单调性的第一次认识。

教学中通过一次函数、二次函数两个具体函数的图像及数值变化特征的研究,得到“图象是上升的”,相应地即“y随着x的增大而增大”,初步得到单调性的说法,通过讨论交流,让学生尝试就一般情况进行刻画,提出函数单调性的定义,然后通过辨析、练习等帮助学生理解这一概念。

(2)运用新知识尝试解决新问题,重视学生的动手实践过程,通过对定义的解读、巩固,让学生动手去实践运用定义.2.重视课堂问题的设计。

通过对问题的.设计,引导学生解决问题。

3.重视方法的生成。

用函数单调性的定义证明函数的单调性,将证明过程步骤化,形成思维定势,在学生刚刚接确一个新的知识时,思维定势对理解知识本身是有益的。

使用函数单调性定义证明是本节课的一个难点,学生刚刚接确这种证明方法,给出一定的步骤是必要的,有利于学生理解概念。

当然本节课还是有些不足之处,忽视是课本上的一个重要的例题,反比例函数单调性的证明。

听课反思(函数单调性)

听课反思(函数单调性)

“函数单调性”听课反思
“ 函数单调性” 既是一个重要的数学概念,又是函数的一个重要的性质,在中学数学内容里占有十分重要的地位。

函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,函数的单调性早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中其至包含着辩证法的原理.另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.
还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较法的基本思路,现在提出要求,对今后的教学作一定的铺垫
听了这节课后,我发现学生们开始学会了思考,学生会对此类问题进行归纳,什么时候用定义法好,什么时候用其他方法好,我想,在课堂教学中,教师要善于发现学生的闪光点,给学生多一点鼓励,不歧视任何一个学生,让他们有勇气大胆展示,对他们的学习一定会有帮助的,这样他们才能对学习感兴趣。

函数的单调性教学反思

函数的单调性教学反思

函数的单调性教学反思《函数的单调性教学反思》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容函数的单调性教学反思函数的单调性是函数的一个基本的同时也是一个重要的性质,在函数部分起着举足轻重的作用,对以后的学习意义深远。

作为高一学生是第一次接触函数的单调性。

是一个比较抽象的概念,我认为讲授函数的单调性这一节,必须强调从“形”上和从“数”上两个方面来理解。

并且“数形结合”的思想也对以后做题以及数学的学习有很大的作用。

所以为了让学生更好的理解单调性,在授课的过程中,应该首先从形上来理解,弱化抽象概念的讲解,从具体函数的图象入手(y=x2和y=x),使学生从形上对增函数和减函数有一个最直观的体会。

(即:图像上升的即增函数,下降的即减函数)。

然后再运用小组合作通过相应的自变量和函数值的比较和分析,总结出增函数和减函数中函数值Y与自变量X之间的变化规律,从而引出增函数以及减函数的定义。

进而给出函数的单调性以及单调区间的概念。

在授课过程中重点训练了:一、根据函数图像来判断函数在区间上的单调性以及单调区间,通过练习学生已经可以熟练的掌握根据函数图像判断函数的单调性,要强调函数的单调性是一个局部性质。

二、用定义证明一个函数的单调性,整堂课下来,使学生会通过函数图象来判断函数单调性这一目标基本上达到,学生课堂反应积极、课堂效果良好。

当然,其中还是存在了很多的问题,如:还没有将问题完全的放给学生去探究,讲的多了。

在以后的教学中应多注意充分发挥学生的主动性和自主学习的能力,并且从学生已有的知识水平和生活经验出发,多去引导启发学生,在知识目标得到有效落实的同时,努力引导学生达成能力目标.并且注重培养学生运用知识解决实际问题的能力。

强调数学源于生活用于生活。

函数的单调性教学反思这篇文章共2107字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的单调性和最大(小)值》教学反思
本节课,我讲的是高中数学必修1第二章《函数的单调性》第一课时。

我利用导学案,借助多媒体课件进行教学。

优点:1.多媒体教学,知识容量大,配有一些彩色图案,直观性强,学生较有兴趣。

2.导入自然,注重知识的衔接。

用初中学过的一次函数,二次函数和反比例函数的三个类型的图像作为例子引入,通过学生分组画图,然后交流讨论图像的变化趋势从而引入到函数的单调性,既使学生复习了所学知识,又自然而然的引入到本节课的内容。

整个导入自然,流畅,学生也易于接受。

3.数形结合的方法贯穿始终。

导入,概念,例题,练习几个环节均可画图,从图形上直观地显示出概念,部分学生能自己总结函数单调性概念的。

4.更好地体现了以学生为主,教师指导的新教材理念。

整个数学过程均有学生参与,包括例题也让学生自己尝试着做,便于及时反馈学生学习效果。

5.亲手在黑板上画图,让学生亲身体验数形结合,很有必要。

如果只是用多媒体课件,把这些图形一闪而过,学生印象不深,反而影响教学效果。

缺点:1.有点紧张。

2. 导入环节由于一部分学生学习基础较差,对于初中所学掌握不牢固,不会画这三个函数的图像,使课堂导入所用时间较长,以至于延误了整个课堂的进度。

3.作业题应该进行分层练习,题型应分为基础和提高,使学生根据自己掌握情况选择做题。

4.学生回答问题声音有些小,整个课堂气氛不够活跃,我应及时给予鼓励,使个别差生也能参与到互动学习中。

相关文档
最新文档