一种神经网络算子及其逼近阶估计
基于BP神经网络的工程造价估算模型研究_李晓娟

0 引言
确定工程造价是建设工作中重要的一环 , 特 别是建设前的估算是工作的重点 , 它是成本控制 的基础 , 是进行成本控制的起点 . 通过工程造价的 估算, 业主单位能在进行设计招标之前大致确定 该工程的造价 . 现如今市场经济竞争十分激烈, 实 际招投标工作要求能快速准确地进行工程造价的 估算, 业主与承包商都需要快速和准确确定出工 程造价 , 这些要求了各单位需高效率工作, 而且还 得保证所计算出数字的精确性 . 建筑工程估价是 利用以往类似工程的数据, 并运用一定的模型而 进行计算的. 但估算由于影响因素多 , 加之所收集 数据的随机性、 模糊性等影响, 往往难以达到人们 满意的精度. 神经网络 ( Art ificial Neural Net w or k) 技 术 是根据生物神经系统的作用原理发展起来的并行 信息处理系统 , 它能够处理复杂非线性问题 , 具有 自组织、 自学习以及容错性等特点, 与传统的数学 方法不同 . 它是基于数据的建模 , 通过学习, 能够 有效地计算出隶属函数的最佳参数, 使得设计出 的推理系统能够最好地模拟出希望的或是实际的 输入输出关系 , 系统中的模糊隶属函数及规则是 通过对大量已知数据的学习得到的, 而不是基于 经验或是直觉任意给定的. 这对于那些特性还不 被人们所完全了解或者特性非常复杂的系统是非 常重要的, 本文正 是利用这一优点, 分析 基础类 型、 墙体形式、 内、 外墙装饰、 楼地面等 5 种主要因 素与每平方米造价和每 100 平方米的钢材、 水泥
表 2 检测结果分析 T ab. 2
测试值与序号 实际值 预测值 误差值 / % Q1 1 560 1 650 5. 7
果分别为每平方米造价和每 100 平方米的钢材、 水泥用量. 从建立模型以及估算结果来看 , 其评估 精度是令人满意的及结论是可行的. 因此 , 只要选 取的工程特征能够代表工程本质、 选取的训练样 本和待估工程类似 , 具有较好的应用价值 . 参考文献:
(仅供参考)2019年度公需科目题库及答案

2019年度公需科目人工智能与健康考试题题库及答案一、判断题(每题2分)1.经济转型是发展智慧养老的主要原因。
正确2.在全球中预期寿命最高的是中国。
错误3.《关于积极推进"互联网+"行动的指导意见》中明确提出要促进智慧健康养老产业,这样智慧养老将进入快速发展阶段。
正确4.智慧养老从老年人本身出发,能够满足老年人不同层面的需求。
正确5.智能家居监测能够使老年人的日常风险有一个响应的机制,使老年人能够有一个更加安全的生活环境。
正确6.大数据就是很大的数据。
正确7.云计算需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量等。
错误8.大数据一般规模巨大且复杂,用现有工具很难获取到数据。
正确9.Variety指的是实时获取需要的信息。
错误10.当前社会中,最为突出的大数据环境是物联网。
错误11.大数据保存的是结构化或者半结构化的数据。
错误12.大数据是除了劳动、土地、资本以及劳动者智能之外最重要的一个生产要素。
正确13.“互联网+”行动将重点促进以移动互联网、云计算、物联网、大数据等与现代制造业相结合。
正确14.大数据特征是数据量很大,价值密度很高,同时它的价值总量很高,它对于商业有很大的商业价值。
错误15.国防科工委于1989年召开了全国智能计算机及其系统学术讨论会。
错误16.个人信息安全基本原则有权责一致、目的明确、选择同意、最多够用等原则。
错误17.我国尚无法律法规界定自主机器人的法律地位、责任分担机制及监管对象。
正确18.扁平到位,我们需要的是医联体。
扁平到位针对的是病。
错误19.充分利用各种传统媒体和新兴媒体,及时宣传人工智能新进展、新成效,让人工智能健康发展成为全社会共识,调动全社会参与支持人工智能发展的积极性。
正确20.加强人工智能相关法律、伦理和社会问题研究,建立保障人工智能健康发展的法律法规和伦理道德框架。
正确二、单项选择(每题2分)21.智慧社区的新型治理形态是( )。
分数阶理论在BP神经网络中的应用

分数阶微积分的概念与性质
分数阶微积分是一种扩展的微积分理论,它允许我们使用非整数值的阶数进 行微分和积分运算。与传统的整数阶微积分相比,分数阶微积分具有更强的非线 性描述能力,能够更好地处理具有记忆和遗传性质的问题。
在分数阶微积分理论中,Riemann-Liouville定义是最常用的定义方式。通 过该定义,我们可以将传统的整数阶导数扩展到分数阶导数。分数阶导数具有一 些独特的性质,例如非局部性、非对称性和非马尔科夫性等,这些性质使得分数 阶微积分在描述复杂系统和现象方面更具优势。
分数阶微积分的算法
分数阶微积分的常见算法包括多项式插值、傅里叶变换和拉格朗日乘子等。 在多项式插值中,我们通过已知的一些点来构造一个多项式函数,然后根据这个 函数来计算分数阶导数。傅里叶变换则是一种将函数从时域转换到频域的数学工 具,它可以用于计算分数阶导数。拉格朗日乘子是一种求解分数阶微分方程的方 法,它通过引入一些辅助变量将分数阶微分方程转化为整数阶微分方程。
将分数阶微积分引入BP神经网络,可以扩展网络的动态范围,增强其对非线 性模式的描述能力。通过使用分数阶导数,我们可以更好地捕捉网络中的记忆效 应和遗传机制,从而改进网络的性能。此外,分数阶导数还具有一些特殊的性质, 例如非局部性,这有助于我们更好地理解网络的内部工作机制。
分数阶BP神经网络的实现与优势
分数阶微积分的理论
分数阶微积分的基本理论主要涉及幂级数、勒让德符号和矩阵表示等方法。 幂级数是一种通过无穷级数展开函数的数学工具,它可以用来表示分数阶导数。 勒让德符号是一种描述函数在某一点的变化率的数学工具,它可以用于计算分数 阶导数。矩阵表示则是用矩阵形式表示分数阶导数的一种方法。
在分数阶量子力学中,幂级数、勒让德符号和矩阵表示等方法的应用尤为常 见。例如,在处理分数阶拉普拉斯算子时,幂级数和勒让德符号被用来描述粒子 的行为;而在处理分数阶哈密顿算子时,矩阵表示被用来描述系统的能量等级。
BP神经网络PPT全文

输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度
BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。
BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。
关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。
人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。
人工神经网络最有吸引力的特点就是它的学习能力。
因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。
最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。
因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。
人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。
现在分别介绍人工神经元模型及人工神经网络模型。
1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。
人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。
智能控制技术复习题课后答案讲解

(2)。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、
和。知识库的设计推理机的设计人机接口的设计
13.专家系统的核心组成部分为和。知识库、推理机
一、填空题
1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。
1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制
2.传统控制包括和。2、经典反馈控制现代理论控制
3.一个理想的智能控制系统应具备的基本功能是、、和。
3、学习功能适应功能自组织功能优化能力
4.智能控制中的三元论指的是:、和。
•(6)具有获取知识的能力;
•(7)知识与推理机构相互独立。专家系统一般把推理机构与知识分开,使其独立,使系统具有良好的可扩充性和维护性。
2、简述专家系统设计的基本结构。
答:基本知识描述---系统体系结构---工具选择----知识表示方法----推理方式----对话模型.P20
4、什么是专家控制系统?专家控制系统分为哪几类?
46、二进制编码
47.遗传算法的3种基本遗传算子、和。
47、比例选择算子单点交叉算子变异算子
48.遗传算法中,适配度大的个体有被复制到下一代。更多机会
49.遗传算法中常用的3种遗传算子(基本操作)为、、和。
49、复制、交叉和变异
第一章
1
答:(1)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
(3)神经控制系统(1分)
神经网络具有某些智能和仿人控制功能。学习算法是神经网络的主要特征。
(4)遗传算法(2分)
压气机叶片一次加工合格率预测

压气机叶片一次加工合格率预测张 旭1,童一飞2*,胡骥川2(1.中国航发南方工业有限公司,湖南株洲 412002; 2.南京理工大学机械工程学院,江苏南京 210094)摘要:压气机叶片被广泛用于航空、能源等领域的气体压缩设备中,也被应用于农业装备中,以提高零部件的加工效率和质量,提高整机的可靠性和耐用性。
因此,其设计和加工的精度要求较高。
开展压气机叶片一次加工合格率预测技术研究,提出了PSO-BP预测模型,提高了网络的全局搜索能力以避免局部最优解,从而提升预测的准确度。
实验结果表明,PSO-BP模型的预测精度明显高于传统BP神经网络模型,预测的最大误差百分比为1.24%,平均误差百分比为0.24%,预测准确度达到96.67%。
关键词:压气机叶片;一次合格率;合格率预测;PSO-BP模型0 引言压气机叶片通常用于航空、能源等领域的气体压缩设备中,也应用于农业装备中,以提高零部件的加工效率和质量[1],提高整机的可靠性和耐用性。
作为航空发动机的核心部件,叶片的质量很大程度上决定了发动机的性能,因此压气机叶片的质量尤为重要。
一次加工合格指的是压气机叶片柔性加工单元完成对叶片的加工之后未经过返工返修,第一次检验就能合格的压气机叶片。
而一次加工合格率指的是一次加工合格的压气机叶片占加工单元产出的比率。
本文以F型号叶片为例,对压气机叶片柔性加工单元所产出叶片的一次加工合格率进行预测,根据预测结果采取相应的预防性措施,减小压气机叶片加工单元产出叶片的品质出现重大问题的概率。
目前,产品质量合格率预测方法主要分为传统质量预测方法和人工智能方法2个大类。
传统的质量预测方法主要是基于统计过程控制的方法,人工智能方法的典型代表则是用神经网络预测产品合格率。
在人工智能方法预测产品合格率预测方面,Apriori 算法和FP-Growth算法是2种关联性规则分析的经典算法。
为了解决Apriori算法运行效率不高的缺点,Toivonen H[2] 探究得出以采样思想算法为基础,分析和阐述数据之间的关联性规则,从而实现算法运行的并行化。
神经网络实学习 例子

神经网络实学习例子1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力更强。
BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。
这使得它特别适合于求解内部机制复杂的问题。
我们无需建立模型,或了解其内部过程,只需输入,获得输出。
只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次的学习以内收敛到最低误差附近。
而且理论上,一个三层的神经网络,能够以任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定的推广、概括能力。
bp主要应用回归预测(可以进行拟合,数据处理分析,事物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。
但无论那种网络,什么方法,解决问题的精确度都无法打到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫无意义的,有意义的解析必定会损失精度。
BP注意问题1、BP算法的学习速度很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效;结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间变短,误差收敛速度明显快些。
因此初始权值的选取对于一个网络的训练是很重要的。
1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方误差、权值、阈值的设置都对网络的训练均有影响。
综合选取合理的值,将有利于网络的训练。
在最基本的BP算法中,学习率在整个训练过程是保持不变的,学习率过大,算法可能振荡而不稳定;学习率过小,则收敛速度慢,训练时间长。