上海市2018届九年级上学期期末(一模)数学试卷分类汇编填空题专题含答案

合集下载

2018年上海市虹口区中考数学一模试卷(解析版)

2018年上海市虹口区中考数学一模试卷(解析版)
【答案】
【解析】
:∵在RT△ABC中,∠C=90°,BC=8,tanA= ,∴AC= ,
∴AB= ,∵边AB的垂直平分线交边AB于点E, ∴BE= ,∵在RT△BDE中,∠BED=90°, ∴cosB= ,∴BD= ,故答案为 .
点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.
2.抛物线 的顶点在( )
A.x轴上B.y轴上C.第三象限D.第四象限
【答案】B
【解析】
【分析】
将解析式化为顶点式即可得到答案.
【详解】 =2(x+0)²-4
得:对称轴为y轴,则顶点坐标为(0,-4),在y轴上,
故选B.
3.如果将抛物线y=﹣x2﹣2向右平移3个单位,那么所得到的新抛物线的表达式是( )
解得:
∴AD=4x+3x=
②当逆时针旋转时,如图2所示.
设DE=3x,则B′D=4x,
∴BE=B′D﹣DE=x,
∴AD=x,AB=AD+DE+B′E=x+3x+x=10,
解得:x=2,
∴DE=6,B′D=8,
∴B′E=10>B′C′,
∴该情况不存在.
故答案为
【点睛】考查旋转的性质,掌握旋转不改变线段的长度是解题的关键.
17.如图,点P为∠MON平分线OC上一点,以点P为顶点的∠APB两边分别与射线OM、ON相交于点A、B,如果∠APB在绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的关联角.如果∠MON=50°,∠APB是∠MON的关联角,那么∠APB的度数为_____.
【答案】155°
【解析】
把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.

2018届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析

2018届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析

2
2
2 …………………(1 分)

ME

5 2

m

2

5 2

m

9 2
,∴
M
(1

9) 2 .……………………(1
分)
10
2018 届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析 普陀区 21.(本题满分 10 分)
结 BE 并延长,交边 AD 于点 F.
(1)求证:DC=EC;
A
F
D
(2)求△EAF 的面积.
E H
B
C
第 21 题图
21.(本题满分 10 分, 第(1)小题 5 分,第(2)小题 5 分)
解:(1)∵正方形 ABCD,
∴DC=BC=BA=AD, ∠BAD=∠ADC=∠DCB=∠CBA=90°
A
F
D
AH=DH=CH=BH, AC⊥BD, ∴∠ADH=∠HDC=∠DCH=∠DAE= 45°.
…………(2 分)
E H
又∵DE 平分∠AD B ∴∠ADE=∠EDH
∵∠DAE+∠ADE=∠DEC, ∠EDH+∠HDC=∠EDC…………(1 分) B 第 21 题图 C
∴∠EDC=∠DEC
…………(1 分)
6
2018 届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析
2 在△ABH 中,AB=6,cosB= 3 ,∠AHB=90°,
26 4
得 BH= 3
,AH=
62 42 2
5 ,————————————(2 分)
则 BC=8,
12 58 8 5

上海市2018届九年级数学上学期期中阶段质量调研试题沪教版五四制

上海市2018届九年级数学上学期期中阶段质量调研试题沪教版五四制

精品文档,欢迎下载如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!上海市学2018届九年级数学上学期期中阶段质量调研试题(完卷时间:100分钟 满分:150分)考生注意:答题写在答题纸上,在草稿纸、本试卷上答题一律无效。

一、选择题:(本大题共6题,每题4分,满分24分)1.在△ABC ,直线DE ∥BC ,DE 分别交边AB 、AC 于D 、E ,在下列比例式中,不能成立的是…………………………………………………( ▲ ) (A)EC AE DB AD =;(B)EC AE BC DE =;(C)AE AC AD AB =;(D)AC ABEC DB =. 2.在Rt △ABC ,∠C=90°,AC=3,BC=4,则∠A 的余切值等于( ▲ ) (A)34; (B)43; (C)54;(D)53.3.如图,在四边形ABCD 中,如果∠ADC=∠BAC ,那么下列条件中不能判定△ADC 和△BAC 相似的……………( ▲ )(A)∠DAC=∠ABC ;(B)AC 是∠BCD 的平分线; (C) AC 2=BC •CD ;(D)ACDCAB AD =. 4.下列关于向量的运算,正确的是…………( ▲ ) (A)+-=-2)2-(;(B)a a =+0;(C)0)(=-+a a ;a e =⋅ (是一个单位向量).5.已知在△ABC 中,DE //BC ,DE 分别交边AB 、AC 于D 、E ,且AD :DB=2:1,则△ADE 与△ABC 的面积比是……………………………………( ▲ ) (A)2:1;(B) 4:1;(C) 2:3; (D) 4:9.6.如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=53,则BC 的长( ▲)DCBA NMCB AD(A)4cm ; (B) 6cm ; (C) 8cm ;(D) 10cm .二、填空题:(本大题共12题,每题4分,满分48分) 7.已知43=b a ,则ba a+2的值为 ▲ . 8.已知线段AB=20cm ,点C 是线段AB 的黄金分割点,则较长线段AC 的长为 ▲ cm . 9.如图,已知AB ∥CD ,AD 与BC 相交于点O .若32=OC BO ,AD=10,则AO=▲. 10.计算:tan 45°﹣3cot 60°=▲.11.已知在Rt △ABC 中,∠C=90°,BC=6,∠A=60°,那么AB=▲.12.如图,直线a ∥b ∥c ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .若AB :BC=1:2,DE=3,则EF 的长为▲.13.a 的长度是单位向量e 长度的2倍,方向相反,用e 表示a ,=a ▲.14.如图,在□ABCD 中,E 是BC 上的一点,且EC=2BE ,联结DE ,若a BA =,b BC =,则DE 关于a 、b 的分解式是=DE ▲.第9题图 第12题图 第14题图 15.△ABC 中,中线AD 和BE 交于点G ,AG=6,则GD=▲.16.如果两个相似三角形的两条对应边长分别是20cm 和25cm ,其中小三角形一边上的中线长是12cm ,那么大三角形对应边上的中线长是▲cm .17.如图,在△ABC 中,AD 是BC 边上的高,∠C=45°,sinB=31,AD=1.则BC 的长▲.18.如图,矩形ABCD 中,E 是AB 上的一点,且AE :BE=3:2,DA 边上有一点F ,EF=18,将矩形沿着EF 翻折,使A 落在BC 上的G 处,则AB= ▲.EDCBAGFEDC BA OCBA Dl 2l 1FED CBA c ba DBAC第17题图 第18题图 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 已知线段a 、b 、c 满足875cb a ==,且1823=+-c b a ,求c b a 342+-的值.20.(本题满分10分)已知:如图,两个不平行的向量a 和b .先化简,再求作:)86(21)32b a b a +-+(. (不要求写作法,但要指出图中表示结论的向量)21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,已知△ABC 中,点D 、E 分别在边AB 和AC 上,DE ∥BC ,点F 是DE 延长线上的点,EF DEDB AD =,联结FC ,(1)求证:AB //CF ;(2)若32=AC AE ,FC=6,求AB 的长.baFECBAD22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,△ABC 中,∠ACB=90°,sinA=54,BC=8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为点E .(1)求线段CD 的长; (2)求cos ∠ABE 的值.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,D 和E 分别是BC 和AB 上的点,BE=EC ,联结DE ,EC 交AD 于点F ,且FC BC DC AB ⋅=⋅. (1)求证:△FCD ∽△ABC ; (2)若AF=FD ,求证:DE ⊥BC .24.(本题满分12分,每小题4分)从三角形一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的优美线.(1)如图,在△ABC 中,AD 为角平分线,∠B=50°,∠C=30°,求证:AD 为△ABC 的优美线; (2)在△ABC 中,∠B=46°,AD 是△ABC 的优美线,且△ABD 是以AB 为腰的等腰三角形,求∠BAC 的度数;(3)在△ABC 中,AB=4,AC=2,AD 是△A B C 的优美线,且△ABD 是等腰三角形,直接..写出优美线AD 的长.E DCBAF EDCBADAC25.(本题满分14分,第一小题3分,第二小题4分,第三小题7分)在Rt △AOB 中,∠AOB=90°,OA=OB=4厘米,点P 从B 出发,以1厘米/秒的速度沿边BO 运动,设点P 运动时间为x (x >0)秒.△APC 是以AP 为斜边的等腰直角三角形,且C ,O 两点在直线AB 的同侧,连接OC . (1)当x=1时,求AOAC的值; (2)当x=2时,求tan ∠CAO 的值; (3)设△POC 的面积为y ,求y 与x的函数解析式,并写出定义域.CPOBA数学阶段质量调研参考答案一、选择题:(本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6 答案BBCBDA二、填空题:(本大题共12题,每题4分,满分48分) 题号 789 10 1112 答案 7610510-4 0 346 题号 131415 16 1718答案e 2-b a 32-- 315122+ 65三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解:(1)设k cb a ===875则k a 5=,k b 7=,k c 8=………………………………………………………1分 代入1823=+-c b a1881415=+-k k k ………………………………………………………………1分解得2=k …………………………………………………………………………2分所以10=a ,14=b ,16=c ……………………………………………………3分 所以12342=+-c b a ……………………………………………………………3分 20.(本题满分10分)解:)86(21)32+-+( 4-362-+=…………………………………………………………………2分 2-+=……………………………………………………………………………3分作图正确得4分,结论1分21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分) 解:(1)∵BC DE // ∴ECAEDB AD =……………………………………………………………………2分∵EFDEDB AD = ∴ECAEEF DE =……………………………………………………………………2分 ∴AB //CF …………………………………………………………………1分(2)∵DE ∥BC ,AB //CF∴四边形DBCF 是平行四边形………………………………………………1分 ∴BD=CF=6……………………………………………………………………1分 ∵AB //CF ∴AECEAD CF =…………………………………………………………………1分 ∴AD=12………………………………………………………………………1分 ∴AB=18………………………………………………………………………1分 或:先证明△FCE ∽△ABC (2分),得AC EC AB CF =(1分),得316=AB (1分) 所以AB=18(1分)22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 解:(1)在△ABC 中,∵∠ACB=90°,∴sinA=AB BC…………………………………………………………………1分 ∴AB854=……………………………………………………………………1分 ∴AB=10………………………………………………………………………1分 ∵D 是AB 中点∴CD=5;………………………………………………………………………1分 (2)在Rt △ABC 中,∵AB=10,BC=8∴AC=6………………………………………………………………………1分 又∵D 是AB 中点∴CD=BD=5∴ABC BCD ∠=∠………………………………………………………………1分 ∵CE BE ⊥∴︒=∠=∠90ACB E∴△BCE ∽△ABC ………………………………………………………………1分∴ABBCAC BE =……………………………………………………………………1分 ∴524=BE ……………………………………………………………………1分∴cos ∠ABE 2524==BD BE ………………………………………………………1分 23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) (1)证明:∵BE=EC ,∴∠ECB =∠B ………………………………………………………2分∵FC BC DC AB ⋅=⋅ ∴BCDCAB CF =…………………………………………………………2分 ∴△FCD ∽△ABC ;………………………………………………2分(2)证明:∵△FCD ∽△ABC∴BCDCAC FD =…………………………………………………………1分 ∠ADC =∠ACB ,…………………………………………………1分 ∴AD=AC ,…………………………………………………………1分 ∵AF=FD ,∴21==AC FD AD FD ………………………………………………………1分 ∴21=BC DC ……………………………………………………………1分 ∴DC BD =∵BE=EC ,(此条件不写,下列不得分)∴DE ⊥BC ……………………………………………………………1分24.(本题满分12分,每小题4分) (1)证明:∵∠B=50°,∠C=30°,∴∠BAC=100°, ∵AD 平分∠BAC ,∴∠BAD=∠DAC=50°,…………………………………………………………1分 ∴∠B=∠BAD=50°,∴DB=DA ,…………………………………………1分 ∴△ABD 是等腰三角形, ∵∠C=∠C ,∠DAC=∠B=50°,∴△CAD ∽△CBA ,………………………………………………………………1分 ∴线段AD 是△ABC 的优美线.…………………………………………………1分 (2)若AB=AD ,舍去,…………………………………………………………1分,(理由若△CAD ∽△CBA ,则∠B=∠ADB=∠CAD ,则AC ∥BC ,) 若AB=BD ,∠B=46°,∴∠BAD=∠BDA=67°,………………………………………………………1分 ∵△CAD ∽△CBA ,∴∠CAD =∠B=46°,……………………………………………………………1分 ∴∠BAC=67°+46°=113°.………………………………………………………1分 (3)334=AD 或4-24=AD ………………………………………………2分+2分25.(本题满分14分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分7分) 解:(1)当x=1时,OP=3,OA=4,在Rt △AOP 中,AP=5,…………………………………………………………1分 ∵△ACP 为等腰三角形, ∴AC=AP •cos45°=225,……………………………………………………1分 ∴825=AO AC ……………………………………………………………………1分 (2)作AB PH ⊥,交AB 于H ,垂足为H ∵△AOB ,△ACP 都是等腰三角形, ∴∠BAO=∠PAC=∠B=∠APC=45°,∴∠BAP=∠OAC ,……………………………………………………………………1分 当x=2时,BP=2,在Rt △BPH 中,∠B=45°,BP=2∴2==PH BH ………………………………1分 ∵Rt △ABO 中,AO=BO=4 ∴24=AB∴23=AH …………………………………………………………………………1分 ∴tan ∠CAO =tan ∠BAP=31…………………………………………………………1分 (3)∵∠BAO=∠PAC=∠B=∠APC =45°, ∴△BAO ∽△PAC∴AC AO AP AB =∴ACAP AO AB = ∵∠BAP=∠OAC∴△APB ∽△ACO ;…………………………………………………………………2分 ∴∠B=∠AOC=45°…………………………………………………………………1分2==AOAB OC BP ∴x OC 22=…………………………………………………………………………1分 作CM ⊥BO ,垂足为M ,则CM=OC•sin 45°=x 21………………………………………………………………1分∴4421)4(21212x x x x CM PO y -=⋅-=⋅=(0<x <4)……………………1分+1分。

上海市松江区2018届九年级中考一模试卷数学试题(解析版)

上海市松江区2018届九年级中考一模试卷数学试题(解析版)
2018年上海市松江区中考数学一模试卷
一、选择题:(本大题共6题,每题4分,满分24分)
1.已知 ,那么 的值为()
A. B. C. D.
【答案】C
【解析】
分析:根据比例设a=k,b=3k,然后代入比例式进行计算即可得解.
详解:∵ = ,∴设a=k,则b=3k(k≠0),∴ = = .
故选C.
点睛:本题考查了比例的性质,利用“设k法”求解更简便.
(1)设 , .试用 、 表示 ;
(2)如果△ABC的面积是9,求四边形ADEF的面积.
【答案】(1) ;(2)4.
【解析】
【分析】
(1)由EF∥AB知 = ,据此可得 = =2,即 = = ,从而证△BDE∽△BAC得∠BDE=∠A,即可知DE∥AC、四边形ADEF是平行四边形,再利用 = = = = 及平行四边形法则可得答案;
∴A′C=A′B=2,AA′= =2 ,AB=4 ,
∴AM= AA′= ,A′N=BN= ,
∴AN=AB﹣BN=3 .
∵∠EAM=∠A′AC,∠AME=∠C,
∴△AEM∽△AA′C,
∴ = ,
∴AE= .
同理:△ADM∽△AA′N,
∴ห้องสมุดไป่ตู้= ,
∴AD= = .
故答案为: .
【点睛】本题考查了折叠的性质、勾股定理以及相似三角形的判定及性质,利用相似三角形的性质求出AD、AE的长度是解题的关键.
【答案】a<﹣2
【解析】
【分析】
根据抛物线y=(a+2)x2+x﹣1的开口向下,可得a+2<0,从而可以得到a的取值范围.
【详解】∵抛物线y=(a+2)x2+x﹣1的开口向下,

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。

上海市2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案

上海市2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案

上海2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案宝山区19.(本题满分10分) 计算:01sin 60tan60cos 45sin 30π︒︒︒︒-+(+)- 长宁区19.(本题满分10分) 计算:︒-︒-︒︒30cos 60tan 45sin 445cot 2. 崇明区19.(本题满分10分) 计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒奉贤区虹口区19.(本题满分10分) 计算:22sin 60sin 30cot 30cos30°°°°+-. 黄浦区19.(本题满分10分) 计算:2cot452cos 30sin60tan301︒︒+-︒︒+. 嘉定区19. (本题满分10分,每小题5分)计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot金山区19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒︒⋅︒+︒. 静安区19.(本题满分10分)计算: 60sin 60tan 160cos 2130cos 45cot 3⨯-++. 20.(本题满分10分)解方程组: . 闵行区浦东新区普陀区19.(本题满分10分)计算: 21tan60sin 452cos30cot 45-⋅- . 青浦区19.(本题满分10分)计算:()021--+- .20.(本题满分10分) 解方程:21421242x x x x +-=+--. 松江区徐汇区① ② ⎩⎨⎧=----=+03)(2)(52y x y x y x杨浦区19.(本题满分10分) 计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒参考答案 宝山区长宁区19. (本题满分10分)解:原式= 233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+ (2分) 崇明区19、解:原式322-⨯ …………………………………………5分=………………………………………………3分= ………………………………………………………2分 虹口区黄浦区19.解:原式=2222⎛⨯+- ⎝⎭4分)=33222+-————————————————————————(4分)=3(2分)嘉定区19. (本题满分10分,每小题5分)计算: 【解答】金山区︒-︒+︒-︒45tan 30cos 2260sin 30cot 12331232223345tan 30cos 2260sin 30cot +=-⋅+-=︒-︒+︒-︒静安区三、解答题:19.解:原式=…………………………………(5分)=23212-+……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---yxyx, ……………………………………(2分)得03=--yx或01=+-yx, ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5yxyx⎩⎨⎧-=-=+;1,5yxyx…………………………………(2分)解得,原方程组的解为⎩⎨⎧==;1,411yx⎩⎨⎧==3222yx…………………………………(4分)∴原方程组的解为⎩⎨⎧==;1,411yx⎩⎨⎧==3222yx.闵行区浦东新区普陀区19.解:原式2=·····································································(4分)=··················································································(4分)12=. ·····························································································(2分)青浦区19.解:原式=1+22⨯.…………………………………………………………233121212313⨯-+⨯+⨯(8分)=2.………………………………………………………………………(2分)20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分)解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)松江区徐汇区杨浦区19.(本题满分10分)解:原式=12231122⋅+⨯ --------------------------------------------------(6分)=1222-----------------------------------------------------------------(2分)=14. --------------------------------------------------------------(2分)。

2017-2018上学期九年级数学期末试卷

2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。

上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编押轴题专题宝山区25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD //BC ,AD =7,AB =CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC 一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1)求sin ∠ABC ; (2)求∠BAC 的度数;(3)设BF =x ,CH =y ,求y 与x 的函数关系式及其定义域.长宁区25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求 ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图备用图图1DCBA DCA F EP D CB A崇明区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCD FE BD FE CA(第25题图2) BD F ECA(第25题图3)奉贤区25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x . (1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作△CAE C ,△BAF 的周长记作△BAF C ,设△△CAEBAFC y C =,求y 关于x 的函数关系式,并写出它的定义域;(3)当∠ABE 的正切值是35时,求AB 的长.虹口区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB =5,AD =4,AD ∥BM ,3cos 5B =(如图),点C 、E 分别为射线BM 上的动点(点C 、E 都不与点B重合),联结AC 、AE ,使得∠DAE =∠BAC ,射线EA 交射线CD 于点F .设BC =x ,AFy AC=. (1)如图1,当x =4时,求AF 的长;(2)当点E 在点C 的右侧时,求y 关于x 的函数关系式,并写出函数的定义域; (3)联结BD 交AE 于点P ,若△ADP 是等腰三角形,直接写出x 的值.黄浦区25.(本题满分14分)如图,线段AB =5,AD =4,∠A =90°,DP ∥AB ,点C 为射线DP 上一点,BE 平分∠ABC 交线段AD 于点E (不与端点A 、D 重合).(1)当∠ABC 为锐角,且tan ∠ABC =2时,求四边形ABCD 的面积; (2)当△ABE 与△BCE 相似时,求线段CD 的长;(3)设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出定义域.嘉定区25. 在正方形ABCD 中,AB =8,点P 在边CD 上,tan ∠PBC =43,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直。

上海市青浦区2018-2019学年第一学期初三期末质量检测(一模)数学试卷(解..

上海市青浦区2018-2019学年第一学期初三期末质量检测(一模)数学试卷(解..

青浦区2018学年第一学期九年级期终学业质量调研测试数学试卷2019.1(完成时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每小题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列图形中,一定相似的是( )A. 两个正方形;B. 两个菱形;C. 两个直角三角形;D. 两个等腰三角形. 2.如图,已知AB //CD //EF ,它们依次交直线1l 、2l 于点A 、D 、F和点B 、C 、E ,如果AD ∶DF =3∶1,BE =10,那么CE 等于( ) A .103; B .203;C .52;D .152.3.在Rt △ABC 中,∠C =90º,如果∠A =α,BC =a ,那么AC 等于( )A. tan α⋅a ;B. cot α⋅a ;C.sin α⋅a ;D.cos α⋅a . 4.下列判断错误的是( )A.0=0a ; B. 如果+2= abc ,3-= a b c ,其中0≠ c ,那么 a ∥b ;C. 设e 为单位向量,那么||1= e ; D. 如果||2||=a b ,那么2= a b 或2=-a b . 5.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠B ; B .∠BDE +∠C =180°;C .⋅=⋅AD BC AC DE ; D .⋅=⋅AD AB AE AC .6.已知二次函数2=++y ax bx c A .0>ac ; B .0>b ; C .0+<a c ; D .+=0a b c +.l 2l 1FED C BAD CBA E (第2题图)(第6题图)(第5题图)二、填空题:(本大题共12题,每小题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.如果 ,那么 ▲. 8.计算:3(2)2(3)a b a b ---= ▲ .9. 如果两个相似三角形的相似比为1∶3,那么它们的周长比为 ▲.10.二次函数 的图像的顶点坐标是 ▲ .11.抛物线 的对称轴是直线1=x ,那么m = ▲ . 12.抛物线 在y 轴右侧的部分是 ▲ .(填“上升”或“下降”)13.如果α是锐角,且sin α=cos 20°,那么α= ▲ 度.14.如图,某水库大坝的橫断面是梯形ABCD ,坝高为15米,迎水坡CD 的坡度为1:2.4,那么该水库迎水坡CD 的长度为 ▲ 米. 15.如图,在边长相同的小正方形组成的网格中,点A 、B 、C都在这些小正方形的顶点上,则tan ∠ABC 的值为 ▲ . 16.在△ABC 中, AB =AC ,高AH 与中线BD 相交于点E ,如果BC=2,BD=3,那么AE= ▲.17.如图,在Rt △ABC 中,∠ACB=90°,AC=1,tan ∠CAB=2,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D , 点C 落在点E ,DE 与直线BC 相交于点F ,那么CF= ▲. 18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的 点S 称为“亮点”. 如图,对于封闭图形ABCDE ,S 1是 “亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC , AB=2,AE=1,∠B=∠C= 60°,那么该图形中所有“亮点” 组成的图形的面积为 ▲ .ABCCAA BCD241y x x =--23y x mx m =-+-22y x =-(第15题图)(第17题图)25=+xx y x y =(第18题图)(第14题图)三、解答题(本大题共7题,满分78分) [请将解题过程填入答题纸的相应位置] 19.(本题满分10分)计算:()121sin 301cot 3030cos 45-︒︒︒︒+--.20.(本题满分10分, 第(1)小题5分,第(2)小题5分)如图,在平行四边形ABCD 中,点E 在边BC 上,CE=2BE , AC 、DE 相交于点F .(1)求DF ∶EF 的值;(2)如果CB a = ,CD b =,试用 a 、b 表示向量EF .21.(本题满分10分, 第(1)小题5分,第(2)小题5分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,2=⋅AE AD AB ,∠ABE =∠ACB .(1)求证:DE ∥BC ; (2)如果 ADE S ∶DBCE S =四边形1∶8,求 ADE S ∶BDE S 的值.22.(本题满分10分)如图,在港口A 的南偏东37°方向的海面上,有一巡逻艇B ,A 、B 相距20海里,这时在巡逻艇的正北方向及港口A 的北偏东67°方向上,有一渔船C 发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈1213,cos67°≈513,tan67°≈125)23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .ED CBA北EABCDFABDEF(第21题图)(第20题图)24.(本题满分12分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,将抛物线2y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CDCAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.NHG FEDC AB (第24题图)(备用图)(第25题图)青浦区2018学年第一学期期终学业质量调研 九年级数学试卷参考答案及评分说明2019.1一、选择题:1.A ; 2.C ; 3.B ; 4.D ; 5.C ; 6.D . 二、填空题:7.23; 8. a ; 9.1:3; 10.(2,-5); 11.2; 12.上升;13.70; 14.39; 15.12; 16. 17.12;18.4. 三、解答题:19.解:原式=1211122-⎛⎫+ ⎪⎝⎭⎛ ⎝⎭. ··············································· (4分)=21+12-. ·············································································· (4分)= ································································································· (2分)20.解:(1)∵四边形ABCD 是平行四边形,∴AD=BC ,AD//BC ,·············································································· (2分)∴=DF ADEF EC. ··················································································· (1分) ∵CE=2BE ,∴32=BC EC ,······································································ (1分) ∴32=DF EF . ······················································································· (1分) (2)∵CE=2BE ,∴23=CE CB , ∴2233== CE CB a .····························· (1分)∵=- ED CD CE ,∴23=- ED b a .················································· (1分)∵32=DF EF ,∴25=EF ED , ····························································· (1分)∴25= EF ED , ···················································································· (1分)222453515⎛⎫=-=- ⎪⎝⎭b a b a . ··································································· (1分) 21.证明:(1)∵2=⋅AE AD AB ,∴=AE ABAD AE. ················································ (1分) 又∵∠EAD =∠BAE ,∴△AED ∽△ABE , ··············································· (1分) ∴∠AED =∠ABE . ··············································································· (1分) ∵∠ABE =∠ACB ,∴∠AED =∠ACB . ···················································· (1分) ∴DE ∥BC .························································································· (1分) (2)∵DE ∥BC ,∴△ADE ∽△ABC ,∴2⎛⎫= ⎪⎝⎭ADE ABC S AD S AB .············································ (1分) ∵18四边形= ADE DBCES S ,∴19= ADE ABC S S . ··················································· (1分) ∴219⎛⎫= ⎪⎝⎭AD AB , ················································································ (1分) ∴13=AD AB ,······················································································ (1分) ∴12=AD DB ,∴12= ADE BDE S S . ···························································· (1分) 22.解:过点A 作AH ⊥BC ,垂足为点H .由题意,得∠ACH =67°,∠B =37°,AB =20. 在Rt △ABH 中,∵sin ∠=AHB AB ,∴sin 20sin 3712=⋅∠=⨯︒≈AH AB B . ···················· (3分) ∵cos ∠=BHB AB,∴cos 20cos3716=⋅∠=⨯︒≈BH AB B .···················· (3分)在Rt △ACH 中, ∵tan ∠=AH ACH CH ,∴12=5tan tan 67=≈∠︒AH CH ACH . ······················· (3分) ∵BC =BH +CH ,∴BC ≈16 +5=21. ∵212125125÷=<, 所以,巡逻艇能在1小时内到达渔船C 处.················································· (1分)23.证明:(1)∵AD=AF ,∴∠ADF =∠F . ································································· (1分)∵AE CE DE EF ⋅=⋅,∴=AE EFDE CE. ·············································· (1分) 又∵∠AEF =∠DEC ,∴△AEF ∽△DEC . ·············································································· (2分) ∴∠F =∠C . ······················································································· (1分) ∴∠ADF =∠C . ·················································································· (1分) 又∵∠DAE =∠CAD ,∴△ADE ∽△ACD .············································································ (1分)(2)∵AE BD EF AF ⋅=⋅,∴AE EFAF BD=.················································ (1分) ∵AD=AF ,∴AE EFAD BD=.·································································· (1分) ∵∠AEF =∠EAD +∠ADE ,∠ADB =∠EAD +∠C ,∴∠AEF =∠ADB . ··············································································· (1分) ∴△AEF ∽△ADB . ············································································ (1分) ∴∠F =∠B ,∴∠C =∠B ,∴AB=AC . ·························································································· (1分)24.解:(1)设平移后的抛物线的解析式为2+=-+y x bx c . ·································· (1分)将A (-1,0)、B (4,0),代入得101640.,--+=⎧⎨-++=⎩b c b c ··············································································· (1分) 解得:34.,=⎧⎨=⎩b c所以,2+34=-+y x x .····································································· (1分)(2)∵2+34=-+y x x ,∴点C 的坐标为(0,4) ··············································· (1分).设直线BC 的解析式为y =kx +4,将B (4,0),代入得kx +4=0,解得k =-1, ∴y =-x +4. 设点D 的坐标为(m ,4- m ).∵CD22=2m ,解得=1m 或=1-m (舍去),∴点D 的坐标为(1,3). ············································································ (1分) 过点D 作DM ⊥AC ,过点B 作BN ⊥AC ,垂足分别为点M 、N . ∵1122⋅=⋅AC BN AB OC54=⨯BN,∴=BN . (1分) ∵DM ∥BN ,∴=DM CD BN CB,∴=DM BN17=DM . ··············· (1分)∴sin =17221∠==DM CAD AD .············································ (1分) (3)设点Q 的坐标为(n ,2+34-+n n ).如果四边形ECPQ 是菱形,则0>n ,PQ ∥y 轴,PQ =PC ,点P 的坐标为(n ,4-+n ). ∵22+3444=-++-=-PQ n n n n n,=PC ,······································ (2分)∴24-n n,解得=4n =0n (舍). ············································· (1分) ∴点Q的坐标为(42). ·························································· (1分)25.解:(1)∵AD//BC ,∴=AD DE BG EB ,=AD DFCH FC. ······························································ (2分) ∵DB =DC =15,DE =DF =5, ∴12==DE DF EB FC ,∴=AD ADBG CH. ···················································· (1分) ∴BG =CH .·························································································· (1分)(2)过点D 作DP ⊥BC ,过点N 作NQ ⊥AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP = CP =9,DP =12.········································· (1分)∵12==AD DE BG EB ,∴BG = CH =2x ,∴BH =18+2x . ································· (1分) ∵AD ∥BC ,∴=A D D N B H N B ,∴182=+x DN x NB ,∴182+15==++x DN DNx x NB DN , ∴56=+xDN x . ·················································································· (1分)∵AD ∥BC ,∴∠ADN =∠DBC ,∴sin ∠ADN =sin ∠DBC , ∴=NQ PD DN BD ,∴46=+xNQ x . ························································· (1分) ∴()21142092266=⋅=⋅=<≤++x x y AD NQ x x x x .····························· (2分)(3)∵AD ∥BC ,∴∠DAN =∠FHG .(i )当∠ADN =∠FGH 时,∵∠ADN =∠DBC ,∴∠DBC =∠FGH ,∴BD ∥FG , ·························································································· (1分) ∴=BG DF BC DC ,∴51815=BG ,∴BG =6,∴AD =3. ······························· (1分) (ii )当∠ADN =∠GFH 时, ∵∠ADN =∠DBC=∠DCB , 又∵∠AND =∠FGH ,∴△ADN ∽△FCG . ············································································· (1分) ∴=AD FC DN CG ,∴()5182106⋅-=⋅+xx x x ,整理得23290--=x x ,解得 2=x ,或32-=x (舍去).······································· (1分)综上所述,当△HFG 与△ADN 相似时,AD 的长为3或2.。

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ).A .B .(2,2)C .D .(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A.20cmB .18cmC .D .10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ).A .12-B .C .2-D . 二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 22(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、B 同时出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →C 的方向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、Q 停止运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.P22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?23.(本题满分8分)受益于国家支付新能源汽车发展和“一带一路”发展战略等多重因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =,由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,x =∴P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴BC ,OC ,故(B ,代入2y ax =中得:6a =,a =.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+. 17.±218.3三、解答题(共76分)19.⑴ 5)3(22=-x⑴ 01422=+-x x2103±=-x -----------------------2分 21)1(2=-x ---------------------- 2分2103±=x ----------------------- 4分 221±=x ----------------------- 4分 ⑶ 03322=--x x ⑷03)32=+--x x ( 3,3,2-=-==c b a03)32=---)((x x -------- 1分03342>=-ac b ------------- 1分0]31)[3=---)((x x43332233)3(±=⨯±--=x -- 2分04)3=+--)((x x ------- 2分 4333433321-=+=x x ,-----4分 4,321==x x --------------- 4分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,AC =BC = ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,AF ,AF AB AE AC =EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-, ∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

2018年上海市闵行区中考数学一模试卷含答案

2018年上海市闵行区中考数学一模试卷含答案

2018年上海市闵行区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)如图,下列角中为俯角的是()A.∠1B.∠2C.∠3D.∠42.(4分)下列线段中,能成比例的是()A.3cm、6cm、8cm、9cm B.3cm、5cm、6cm、9cmC.3cm、6cm、7cm、9cm D.3cm、6cm、9cm、18cm3.(4分)在Rt△ABC中,∠C=90°,AB=4,AC=1,那么∠B的余弦值为()A.B.C.D.4.(4分)在△ABC中,点D、E分别在AB、AC的延长线上,下列不能判定DE∥BC的条件是()A.EA:AC=DA:AB B.DE:BC=DA:ABC.EA:EC=DA:DB D.AC:EC=AB:DB5.(4分)已知抛物线c:y=x 2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.(4分)下列命题中正确的个数是()①直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为;②如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外切;③过三点可以确定一个圆;④两圆的公共弦垂直平分连心线.A.0个B.4个C.2个D.3个二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)如果,那么.8.(4分)已知两个相似三角形的相似比为2:5,其中较小的三角形面积是4,那么另一个三角形的面积为.9.(4分)抛物线y=2(x﹣3)2+4的在对称轴的侧的部分上升.(填“左”或“右”)10.(4分)如果二次函数y=x 2﹣8x+m﹣1的顶点在x轴上,那么m=.11.(4分)如果沿一条斜坡向上前进20米,水平高度升高10米,那么这条斜坡的坡比为.12.(4分)抛物线y=ax 2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣3﹣2﹣101…y…﹣60466…容易看出,(﹣2,0)是它与x轴的一个交点,则它与x轴的另一个交点的坐标为.13.(4分)如图,矩形ABCD中,点E在边DC上,且AD=8,AB=AE=17,那么tan∠AEB=.14.(4分)已知在直角坐标平面内,以点P(1,2)为圆心,r为半径画圆,⊙P与坐标轴恰好有三个交点,那么r的取值是.15.(4分)半径分别为20cm与15cm的⊙O1与⊙O2相交于A、B两点,如果公共弦AB的长为24cm,那么圆心距O1O2的长为cm.16.(4分)如图,在△ABC中,AD是中线,G是重心,,,那么向量关于、的分解式为.17.(4分)如图,在Rt△ABC中,∠ACB=90°,CD是高,如果∠A=α,AC=4,那么BD=.(用锐角α的三角比表示)18.(4分)如图,在等腰△ABC中,AB=AC,∠B=30°.以点B为旋转中心,旋转30°,点A、C分别落在点A'、C'处,直线AC、A'C'交于点D,那么的值为.三、解答题:(本大题共7题,满分78分)19.(10分)如图在平面直角坐标系xOy中,O为坐标原点,点A的坐标为(﹣1,2),点B在第一象限,且OB⊥OA,OB=2OA,求经过A、B、O三点的二次函数解析式.20.(10分)如图,已知向量、和,求作:(1)向量﹣3.(2)向量分别在、方向上的分向量.21.(10分)如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,PA=6.求:(1)⊙O的半径;(2)求弦CD的长.22.(10分)歼﹣20(英文:Chengdu J﹣20,绰号:威龙,北约命名:Fire Fang)是我国自主研发的一款单座、双发动机并具备高隐身性、高态势感知、高机动性等能力的第五代战斗机.歼﹣20在机腹部位有一个主弹仓,机身两侧的起落架前方各有一个侧弹仓.歼﹣20的侧弹舱门为一片式结构,这个弹舱舱门向上开启,弹舱内滑轨的前端向外探出,使导弹头部伸出舱外,再直接点火发射.如图是歼﹣20侧弹舱内部结构图,它的舱体横截面是等腰梯形ABCD,AD∥BC,AB=CD,BE ⊥AD,CF⊥AD,侧弹舱宽AE=2.3米,舱底宽BC=3.94米,舱顶与侧弹舱门的夹角∠A=53°.求(1)侧弹舱门AB的长;(2)舱顶AD与对角线BD的夹角的正切值.(结果精确到0.01,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327).23.(12分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA 的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF?AB;(2)求证:AD?BE=DE?AB.24.(12分)抛物线y=ax 2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.25.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD是斜边上中线,点E在边AC上,点F在边BC上,且∠EDA=∠FDB,联结EF、DC交于点G.(1)当∠EDF=90°时,求AE的长;(2)CE=x,CF=y,求y关于x的函数关系式,并指出x的取值范围;(3)如果△CFG是等腰三角形,求CF与CE的比值.2018年上海市闵行区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)如图,下列角中为俯角的是()A.∠1B.∠2C.∠3D.∠4【解答】解:根据俯角的定义,首先确定水平线,水平线以下与视线的夹角,即是俯角.故选:C.2.(4分)下列线段中,能成比例的是()A.3cm、6cm、8cm、9cm B.3cm、5cm、6cm、9cmC.3cm、6cm、7cm、9cm D.3cm、6cm、9cm、18cm【解答】解:根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.所给选项中,只有D符合,3×18=6×9,故选D.3.(4分)在Rt△ABC中,∠C=90°,AB=4,AC=1,那么∠B的余弦值为()A.B.C.D.【解答】解;由勾股定理得BC,cos∠B,故选:A.4.(4分)在△ABC中,点D、E分别在AB、AC的延长线上,下列不能判定DE∥BC的条件是()A.EA:AC=DA:AB B.DE:BC=DA:ABC.EA:EC=DA:DB D.AC:EC=AB:DB【解答】解:A.∵EA:AC=AD:AB,∴DE∥BC,选项A能判定DE∥BC;B.由DE:BC=DA:AB,不能得到DE∥BC,选项B不能判定DE∥BC;C.∵EA:EC=DA:DB,∴DE∥BC,选项C能判定DE∥BC;D.∵AC:EC=AB:DB,∴DE∥BC,选项D能判定DE∥BC.故选:B.5.(4分)已知抛物线c:y=x 2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′【解答】解:∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x =1与A点对称.则B点平移后坐标应为(4,﹣3)..因此将抛物线C向右平移4个单位.故选:B.6.(4分)下列命题中正确的个数是()①直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为;②如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外切;③过三点可以确定一个圆;④两圆的公共弦垂直平分连心线.A.0个B.4个C.2个D.3个【解答】解:①直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为5,①是假命题;如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外离,②是假命题;过不在同一直线上的三点可以确定一个圆,③是假命题;两圆的连心线垂直平分公共弦,④是假命题,故选:A.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)如果,那么.【解答】解:∵,∴,设a=2t,b=3t,∴.故答案为.8.(4分)已知两个相似三角形的相似比为2:5,其中较小的三角形面积是4,那么另一个三角形的面积为25.【解答】解:设另一个三角形的面积为x,由题意得,()2,解得x=25.故答案为:25.9.(4分)抛物线y=2(x﹣3)2+4的在对称轴的右侧的部分上升.(填“左”或“右”)【解答】解:∵a=2>0,∴抛物线开口向上,∴在抛物线对称轴右侧,y随x增大而增大.故答案为:右.10.(4分)如果二次函数y=x 2﹣8x+m﹣1的顶点在x轴上,那么m=17.【解答】解:∵二次函数y=x2﹣8x+m﹣1的顶点在x轴上,∴0,即4m﹣68=0,∴m=17.故答案为:17.11.(4分)如果沿一条斜坡向上前进20米,水平高度升高10米,那么这条斜坡的坡比为1:.【解答】解:如图所示:AC=20米,BC=10米,则AB10米,则坡比1:.故答案为1:.12.(4分)抛物线y=ax 2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣3﹣2﹣101…y…﹣60466…容易看出,(﹣2,0)是它与x轴的一个交点,则它与x轴的另一个交点的坐标为(3,0).【解答】解:∵抛物线y=ax2+bx+c经过(0,6)、(1,6)两点,∴对称轴x;点(﹣2,0)关于对称轴对称点为(3,0),因此它与x轴的另一个交点的坐标为(3,0).13.(4分)如图,矩形ABCD中,点E在边DC上,且AD=8,AB=AE=17,那么tan∠AEB=4.【解答】解:如图,过点E作EF⊥AB于F,则四边形EFBC为矩形,∴EF=AD=BC=8,EF⊥AF,在直角△AEF中,AE=17,EF=8,由勾股定理知,AF15.∴BF=AB﹣AF=17﹣15=2,∵AB=AE,∴∠AEB=∠ABE,∴tan∠AEB=tan∠ABE4.故答案是:4.14.(4分)已知在直角坐标平面内,以点P(1,2)为圆心,r为半径画圆,⊙P与坐标轴恰好有三个交点,那么r的取值是2或.【解答】解:∵以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,∴⊙P与x轴相切(如图1)或⊙P过原点(如图2),当⊙P与x轴相切时,r=2;当⊙P过原点时,r=OP.∴r=2或.故答案为:2或;15.(4分)半径分别为20cm与15cm的⊙O1与⊙O2相交于A、B两点,如果公共弦AB的长为24cm,那么圆心距O1O2的长为25或7cm.【解答】解:如图,∵⊙O1与⊙O2相交于A、B两点,∴O1O2⊥AB,且AD=BD;又∵AB=24厘米,∴AD=12厘米,∴在Rt△AO1D中,根据勾股定理知O1D=9厘米;在Rt△AO2D中,根据勾股定理知O2D=16厘米,∴O1O2=O1D+O2D=25厘米;同理知,当小圆圆心在大圆内时,解得O1O2=16厘米﹣9厘米=7厘米.故答案是:25或7;16.(4分)如图,在△ABC中,AD是中线,G是重心,,,那么向量关于、的分解式为.【解答】解:∵,∵AD是中线,∴,∴,根据三角形的重心定理,AG AD,于是.故.故答案为:17.(4分)如图,在Rt△ABC中,∠ACB=90°,CD是高,如果∠A=α,AC=4,那么BD=4sinαtanα.(用锐角α的三角比表示)【解答】解:在Rt△ABC中,∠ACB=90°,CD是高,∴∠BCD=∠A=α,∴CD=AC?sinα=4sinα,∴BD=CDtanα=4sinαtanα.故答案为:4sinαtanα.18.(4分)如图,在等腰△ABC中,AB=AC,∠B=30°.以点B为旋转中心,旋转30°,点A、C分别落在点A'、C'处,直线AC、A'C'交于点D,那么的值为1或2.【解答】解:作AH⊥BC于H,如图,设AH=1,∵AB=AC,∴BH=CH,在Rt△ABH中,∵∠ABC=30°,∴AB=2AH=2,BH AH,∴BC=2,当△ABC绕点B顺时针旋转30°得到△A′BC′,如图1,A′C′交AB于E,∴∠ABA′=∠CBC′=30°,BC′=BC=2,∠C=∠C′=30°,∵∠ABC′=60°,∴∠BEC′=90°,在Rt△BC′E中,BE BC′,∴AE=2,∵∠DAB=∠ABC+∠C=60°,∴AD=2AE=2(2),∴2;当△ABC绕点B逆时针旋转30°得到△A′BC′,如图2,∴∠ABA′=∠CBC′=30°,BC′=BC=2,∠C=∠C′=30°,∵∠CBC′=60°,∴∠ADC′=30°,∵∠ADC′=∠C′,∴AD=AC′=BC′﹣AB=22,∴1,综上所述,的值为1或2.故答案为1或2.三、解答题:(本大题共7题,满分78分)19.(10分)如图在平面直角坐标系xOy中,O为坐标原点,点A的坐标为(﹣1,2),点B在第一象限,且OB⊥OA,OB=2OA,求经过A、B、O三点的二次函数解析式.【解答】解:如图作AE⊥x轴于E,BF⊥x轴于F.∵OA⊥OB,∴∠AEO=∠AOB=∠OFB=90°,∴∠AOE+∠A=90°,∠AOE+∠BOF=90°,∴△AOE∽△OBF,∴,∵AE=2,OE=1,∴OF=4,BF=2,∴B(4,2),∵抛物线经过原点,所以可以假设抛物线的解析式为y=ax2+bx,把A(﹣1,2),B(4,2)代入得到,解得,∴;20.(10分)如图,已知向量、和,求作:(1)向量﹣3.(2)向量分别在、方向上的分向量.【解答】解:(1)向量3,如图1中所示:(2)向量分别在、方向上的分向量、如图所示;21.(10分)如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,PA=6.求:(1)⊙O的半径;(2)求弦CD的长.【解答】解:(1)设OC=x,∵弦CD垂直平分半径AO,∴OE OA x,∵PC⊥OC,CD⊥OP,∴∠PCO=∠CEO=90°,∴∠P+∠COP=90°,∠ECO+∠COP=90°,∴∠P=∠ECO,∴△CEO∽△PCO,∴,∴,x=6则⊙O的半径为6;(2)由(1)得:OC=6,OE=3,由勾股定理得:CE3,∵CD⊥OA,∴CD=2CE=6.22.(10分)歼﹣20(英文:Chengdu J﹣20,绰号:威龙,北约命名:Fire Fang)是我国自主研发的一款单座、双发动机并具备高隐身性、高态势感知、高机动性等能力的第五代战斗机.歼﹣20在机腹部位有一个主弹仓,机身两侧的起落架前方各有一个侧弹仓.歼﹣20的侧弹舱门为一片式结构,这个弹舱舱门向上开启,弹舱内滑轨的前端向外探出,使导弹头部伸出舱外,再直接点火发射.如图是歼﹣20侧弹舱内部结构图,它的舱体横截面是等腰梯形ABCD,AD∥BC,AB=CD,BE ⊥AD,CF⊥AD,侧弹舱宽AE=2.3米,舱底宽BC=3.94米,舱顶与侧弹舱门的夹角∠A=53°.求(1)侧弹舱门AB的长;(2)舱顶AD与对角线BD的夹角的正切值.(结果精确到0.01,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327).【解答】解:(1)在直角△ABE中,∵∠AEB=90°,∠A=53°,AE=2.3米,∴AB 3.82(米).故侧弹舱门AB的长约为 3.82米;(2)在直角△ABE中,∵∠AEB=90°,∠A=53°,AE=2.3米,∴BE=AE?tan∠A≈2.3×1.327≈3.05(米).由题意,可得CF=BE≈3.05米,CD=AB≈3.82米,EF=BC=3.94米.在直角△CDF中,∵∠CFD=90°,∴DF 2.30(米),∴DE=EF+DF≈3.94+2.30=6.24(米),∴tan∠ADB0.49.23.(12分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA 的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF?AB;(2)求证:AD?BE=DE?AB.【解答】证明:(1)∵∠BAC=2∠B,∠DAB=∠DAC,∴∠B=∠DAB,∵DF∥AB,∴∠ADF=∠BAD,∴∠FAD=∠FDA=∠B=∠BAD,∴△FAD∽△DAB,∴,∴AD2=AF?AB.(2)∵∠B=∠DAB,∴DA=DB,∵∠E=∠C,∠CAD=∠B,∴△CAD≌△EBD,∴AC=BE,∵∠E=∠C,∠B=∠B,∴△EBD∽△CBA,∴,∵BD=AD,AC=BE,∴AD?BE=DE?AB.24.(12分)抛物线y=ax 2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x).将C(0,3)代入得:a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为.设BM的解析式为y x+b,将点B的坐标代入得:b=0,解得b.∴BM的解析式为y x.将y=3x+3与y x联立解得:x,y.∴MC=BM═.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k.∴CF的解析式为y x+3.将y x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x.将x代入y x+3得:y.∴D(,).25.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD是斜边上中线,点E在边AC上,点F在边BC上,且∠EDA=∠FDB,联结EF、DC交于点G.(1)当∠EDF=90°时,求AE的长;(2)CE=x,CF=y,求y关于x的函数关系式,并指出x的取值范围;(3)如果△CFG是等腰三角形,求CF与CE的比值.【解答】解:(1)如图1,在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∵CD是斜边上中线,∴AD=BD AB,∴sin A,cosA,过点E作EN⊥AB,∴EN=AEsinA AE,AN AE,∵∠EDF=90°,∴∠ADE+∠BDF=90°,∵∠ADE=∠BDF,∴∠ADE=45°,∴DN=EN AE,∴AD=AN+DN AE,∴AE;(2)如图1,∵AC=4,CE=x,∴AE=4﹣x,过点E作EN⊥AB于N,过F作FM⊥AB于M,在Rt△AEN中,EN(4﹣x),AN(4﹣x),∴DN=AD﹣AN(4﹣x)(8x﹣7),同理:FM(3﹣y),DM(6y+7),∵∠ADE=∠BDE,∠DNE=∠MDF=90°,∴△DEN∽△DFM,∴,∴,∴y,∵y≥0,∴0,∴x,即:x<4,∴y,(x<4)(3)∵CD是Rt△ABC的斜边的中线,∴∠ACD=∠A,∠BCD=∠B,∴sin A cosB,cosA sinB,∵△CFG是等腰三角形,∴①CG=FG,∴∠CFG=∠FCG,∴∠CFG=∠B,∴EF∥AB,∵∠EDA=∠FDB,∴∠DEF=∠DFE,∴DE=DF,在△ADE和△BDF中,,∴△ADE≌△BDF(SAS),∴∠A=∠B,∴AC=BC,而AC=4,BC=3,所以,此种情况不存在;②GF=CF=y,过点F作FQ⊥CD于Q,过点E作EP⊥CD于P,在Rt△CFQ中,FQ y,CQ y=QG,∴CG=2CQ y,在Rt△CEP中,EP x,CP x,∴PG=CP﹣CG x y(2x﹣3y),∵EP⊥CD,FQ⊥CD,∴PE∥FQ,∴,∴,∴,即:,③CG=CF=y,由①知,FQ y,CQ y,∴QG=CG﹣CQ y,由①知,EP x,CP x,∴PG=CP﹣CG x﹣y,∵EP⊥CD,FQ⊥CD,∴PE∥FQ,∴,∴,∴即:△CFG是等腰三角形,CF与CE的比值为,.。

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。

2018-2019学年九年级上学期期末数学试题(解析版)

2018-2019学年九年级上学期期末数学试题(解析版)

2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

2018年上海市长宁区中考数学一模试卷(解析版)

2018年上海市长宁区中考数学一模试卷(解析版)

2018年上海市长宁区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.(4分)在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB的长可以表示为()A.B.C.3sinαD.3cosα2.(4分)如图,在△ABC中,点D、E分别在边BA、CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A.B.C.D.3.(4分)将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+34.(4分)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P 与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能5.(4分)已知是单位向量,且=﹣2,=4,那么下列说法错误的是()A.B.||=2 C.||=﹣2|| D.=﹣6.(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.(4分)若线段a、b满足,则的值为.8.(4分)正六边形的中心角等于度.9.(4分)若抛物线y=(a﹣2)x2的开口向上,则a的取值范围是.10.(4分)抛物线y=x2﹣4x+3的顶点坐标为.11.(4分)已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF 的面积为36,则△ABC的面积等于.12.(4分)已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP 的长为.13.(4分)若某斜面的坡度为1:,则该坡面的坡角为度.14.(4分)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m n.(填“>”、“<”或“=”)15.(4分)如图,在Rt△ABC中,∠BAC=90°,点G是重心,联结AG,过点G 作DG∥BC,DG交AB于点D,若AB=6,BC=9,则△ADG的周长等于.16.(4分)已知⊙O1的半径为4,⊙O2的半径为R,若⊙O1与⊙O2相切,且O1O2=10,则R的值为.17.(4分)如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于.18.(4分)如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(10分)计算:﹣cos30°.20.(10分)如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF 分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设=,=,用含、的式子表示.21.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,=,联结AC、OB,若CD=40,AC=20.(1)求弦AB的长;(2)求sin∠ABO的值.22.(10分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:≈1.414,≈1.732.结果精确到0.1米)23.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE 交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.24.(12分)在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D 的坐标.25.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.2018年上海市长宁区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.(4分)在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB的长可以表示为()A.B.C.3sinαD.3cosα【解答】解:∵Rt△ABC中,∠C=90°,∠A=α,AC=3,∴coaα=,∴AB==.故选:A.2.(4分)如图,在△ABC中,点D、E分别在边BA、CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A.B.C.D.【解答】解:∵当=时,DE∥BC,∴选项D正确,故选:D.3.(4分)将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+3【解答】解:∵将抛物线y=﹣(x+1)2+3向右平移2个单位,∴新抛物线的表达式为y=﹣(x+1﹣2)2+3=﹣(x﹣1)2+3,故选:B.4.(4分)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P 与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能【解答】解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,故选:A.5.(4分)已知是单位向量,且=﹣2,=4,那么下列说法错误的是()A.B.||=2 C.||=﹣2|| D.=﹣【解答】解:∵=﹣2,=4,∴∥,||=2,=﹣,∴A、B、D正确,故选:C.6.(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA【解答】解:A、∵∠DAC=∠DBC,∠AOD=∠BOC,∴△AOD∽△BOC,故此选项正确,不合题意;B、∵△AOD∽△BOC,∴=,∴=,又∵∠AOB=∠COD,∴△AOB∽△DOC,故此选项正确,不合题意;C、∵△AOB∽△DOC,∴∠BAO=∠ODC,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BAC=∠BDC,∵∠DAC=∠DBC,∴∠CDB=∠CBD,∴CD=BC,故此选项正确,不合题意;D、无法得出BC•CD=AC•OA,故此选项错误,符合题意.故选:D.二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.(4分)若线段a、b满足,则的值为.【解答】解:因为,所以,故答案为:;8.(4分)正六边形的中心角等于60度.【解答】解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.9.(4分)若抛物线y=(a﹣2)x2的开口向上,则a的取值范围是a>2.【解答】解:∵抛物线y=(a﹣2)x2的开口向上,∴a﹣2>0,解得a>2.故答案为:a>2;10.(4分)抛物线y=x2﹣4x+3的顶点坐标为(2,﹣1).【解答】解:∵﹣=﹣=2,==﹣1,∴顶点坐标是(2,﹣1).11.(4分)已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF 的面积为36,则△ABC的面积等于16.【解答】解:∵△ABC~△DEF,相似比为2:3,∴△ABC的面积与△DEF的面积比为:4:9,∵△DEF的面积为36∴△ABC的面积为16,故答案为16.12.(4分)已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP 的长为6﹣2.【解答】解:由于P为线段AB=4的黄金分割点,且AP<BP,则BP=×4=(2 ﹣2)cm.∴AP=4﹣BP=6﹣2故答案为:(6﹣2)cm.13.(4分)若某斜面的坡度为1:,则该坡面的坡角为30度.【解答】解:∵某斜面的坡度为1:,∴tanα==,∴α=30°.故答案为:30.14.(4分)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m<n.(填“>”、“<”或“=”)【解答】解:∵y=x2+2x﹣t=(x+1)2﹣t﹣1,∴a=1>0,有最小值为﹣t﹣1,∴抛物线开口向上,∵抛物线y=x2+2x﹣t对称轴为直线x=﹣1,∵﹣2<0<2,∴m<n.故答案为:<15.(4分)如图,在Rt△ABC中,∠BAC=90°,点G是重心,联结AG,过点G 作DG∥BC,DG交AB于点D,若AB=6,BC=9,则△ADG的周长等于10.【解答】解:延长AG交BC于H.∵G是重心,∴AG:AH=2:3,∵DG∥BH,∴===,∴==,∴AD=4,DG=3,∵∠BAC=90°,AH是斜边中线,∴AH=BC=4.5,∴AG=AH=3,∴△ADG的周长=4+3+3=10.故答案为10;16.(4分)已知⊙O1的半径为4,⊙O2的半径为R,若⊙O1与⊙O2相切,且O1O2=10,则R的值为6或14cm.【解答】解:当⊙O1和⊙O2内切时,⊙O2的半径为10+4=14cm;当⊙O1和⊙O2外切时,⊙O2的半径为10﹣4=6cm;故答案为:6或14cm.17.(4分)如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于16.【解答】解:如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.∵AB∥CD,易知四边形BEDF是矩形,∴DE=BF,∵点B是等距点,∴BA=BD=BC=10,在Rt△ABM中,cosA==,∴AM=DM=,BM=3,∵•AD•BM=•AB•DE,∴DE=BF=6,∵BD=BC,BF⊥CD,∴DF=CF==8,∴CD=2DF=16.故故答案为16.18.(4分)如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于.【解答】解:如图,作GH⊥BA交BA的延长线于H,EF交BG于O.∵四边形ABCD是菱形,∠D=60°,∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,∴∠BAD=120°,∠HAG=60°,'∵AG=GD=1,∴AH=AG=,HG=,在Rt△BHG中,BG==,∵△BEO∽△BGH,∴=,∴=,∴BE=,故答案为.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(10分)计算:﹣cos30°.【解答】解:原式=﹣=﹣=2+﹣=2+.20.(10分)如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF 分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设=,=,用含、的式子表示.【解答】解:(1)∵=,∴=,∵DE∥BC,∴==,又∵DF∥AC,∴==;(2)∵=,∴=,∵=,与方向相反,∴=﹣,同理:=,又∵=+=﹣.21.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,=,联结AC、OB,若CD=40,AC=20.(1)求弦AB的长;(2)求sin∠ABO的值.【解答】解:(1)∵CD过圆心O,=,∴CD⊥AB,AB=2AD=2BD,∵CD=40,AC=20,∠ADC=90°,∴AD==20,∴AB=2AD=40;(2)设圆O的半径为r,则OD=40﹣r,∵BD=AD=20,∠ODB=90°,∴BD2+OD2=OB2,即202+(40﹣r)2=r2,解得,r=25,OD=15,∴sin∠ABO==.22.(10分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:≈1.414,≈1.732.结果精确到0.1米)【解答】解:过点B作BE⊥CD与点E,由题意可知∠DBE=45°,∠DAC=60°,CE=AB=16,设AC=x,则CD=x,BE=AC=x,∵DE=CD﹣CE=x﹣16,∵∠BED=90°,∠DBE=45°,∴BE=DE,∴x=x﹣16,∴x=8+8,CD=x=24+8≈37.9(米),答:商务楼CD的高度为37.9米.23.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE 交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.【解答】证明:(1)∵AD2=DE•DF,∴,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴∠F=∠DAE,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴△BFD∽△CAD;(2)∵△BFD∽△CAD,∴,∵,∴,∵△BFD∽△CAD,∴∠B=∠C,∴AB=AC,∴,∴BF•DE=AB•AD.24.(12分)在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D 的坐标.【解答】解:(1)当y=0时,x+2=0,解得x=﹣4,则A(﹣4,0);当x=0时,y=x+2=2,则C(0,2),把A(﹣4,0),C(0,2)代入y=﹣+bx+c得,解得,∴抛物线的解析式为y=﹣﹣x+2;(2)过点E作EH⊥AB于点H,如图1,当y=0时,﹣﹣x+2=0,解得x1=﹣4,x2=1,则B(1,0)设E(x,x+2),∵S=•(1+4)•2=5,△ABC而△ABE的面积与△ABC的面积之比为4:5,=4,∴S△AEB∴•(1+4)•(x+2)=4,解得x=﹣,∴E(﹣,),∴BH=1+=,在Rt△BHE中,cot∠EBH===,即∠DBA的余切值为;(3)∠AOC=∠DFC=90°,若∠DCF=∠ACO时,△DCF∽△ACO,如图2,过点D作DG⊥y轴于点G,过点C作CQ⊥DC交x轴于点Q,∵∠DCQ=∠AOC,∴∠DCF+∠ACQ=90°,即∠ACO+∠ACQ=90°,而∠ACO+∠CAO=90°,∴∠ACQ=∠CAO,∴QA=QC,设Q(m,0),则m+4=,解得m=﹣,∴Q(﹣,0),∵∠QCO+∠DCG=90°,∠QCO+∠CQO=90°,∴∠DCG=∠CQO,∴Rt△DCG∽Rt△CQO,∴=,即===,设DG=4t,CG=3t,则D(﹣4t,3t+2),把D(﹣4t,3t+2)代入y=﹣﹣x+2得﹣8t2+6t+2=3t+2,整理得8t2﹣3t=0,解得t1=0(舍去),t2=,∴D(﹣,);当∠DCF=∠CAO时,△DCF∽△CAO,则CD∥AO,∴点D的纵坐标为2,把y=2代入y=﹣﹣x+2得﹣﹣x+2=2,解得x1=﹣3,x2=0(舍去),∴D(﹣3,2),综上所述,点D的坐标为(﹣,)或(﹣3,2).25.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.【解答】解:(1)如图,∵矩形ABCD,∴∠BAD=∠ABF=90°,∴∠ABD+∠ADB=90°,∵A、P、F在一条直线上,且PF⊥BD,∴∠BPA=90°,∴∠ABD+∠BAF=90°,∴∠ADB=∠BAF,∵tan∠ADB===,∴tan∠BAF==,∴BF=1,∴S=•AB•BF=×2×1=1.△ABF(2)如图1中,∵PF⊥BP,∴∠BPF=90°,∴∠PFB+∠PBF=90°,∵∠ABF=90°,∴∠PBF+∠ABP=90°,∴∠ABP=∠PFB,又∵∠BAP=∠FPE∴△BAP∽△FPE,∴=,∵AD∥BC,∴∠ADB=∠PBF,∴tan∠PBF=tan∠ADB=,即=,∵BP=2﹣x,∴PF=(2﹣x),∴=,∴y=(≤x<2).(3)①当点F在线段BC上时,如图1﹣1中,∵∠FPB=∠BCD=90°,∴∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3,∵∠4=∠5,∠4+∠7=90°,∠5+∠6=90°,∴∠6=∠7,∴△PEF∽△PCD,∴=,∴=,整理得:x2﹣2x+4=0,解得x=±1.②如图2中,当点F在线段BC的延长线上时,作PH⊥AD于H,连接DF.由△APH∽△DFC,可得=,∴=,解得x=或(舍弃),综上所述,PD的长为±1或.。

2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)

2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)

= .故选 B.
二、填空题 (每小题 2 分,共 20 分) 11.x ≤2;12.5;13.8;14.3π;15.解:函数与 x 轴的另一交点的坐标是:(-3,0),
则一元二次方程的根是:x1=1,x=-3.故答案是:x1=1,x2=-3.;16.解:设 A 点坐标
为(0,a),(a>0),则 x2=a,解得 x= ,∴点 B( ,a), =a,则 x= ,
DE
AB=
.
17.现定义运算“★”,对于任意实数 a、b,都有 a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,
若 x★2=6,则实数 x 的值是

版权所有@蔡老师数学
- 2 - / 12
18.如图,AB 是⊙O 的弦,AB=4,点 C 是⊙O 上的一个动点,且∠ACB=45°.若点 M,N 分 别是 AB,BC 的中点,则 MN 长的最大值是 .
(2)设点 D 是线段 AB 上的动点,过点 D 作 y 轴的平行线交抛物线于点 E,求线段 DE
长度的最大值.
y
版权所有@蔡老师数学
CO B
Ax
- 4 - / 12
„„„„„„„„„„„„„„„„„„„„„„„装„„„„„订„„„„„线„„„„„„„„„„„„„„„„„„„„„„
.
学号
26.(8 分)如图,AP 是∠MAN 的平分线,B 是射线 AN 上的一点,以 AB 为直径作⊙O 交
19.解:原式=(4 3- 3)× 6…………………………………………………………2 分
=3 3× 6……………………………………………………………………4 分
= 9 2 ……………………………………………………………………6 分

最新上海市2022届中考一模数学试卷分类汇编:三角函数综合运用(含答案)

最新上海市2022届中考一模数学试卷分类汇编:三角函数综合运用(含答案)

九年级上学期期末(一模)数学试卷分类汇编三角函数综合运用专题21.(本题满分10分)已知在港口A 的南偏东75°方向有一礁石B ,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C 后测得礁石B 在其南偏西15°处,求轮船行驶过程中离礁石B 的最近距离.22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)22.(本题满分10分)如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远? (参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)CDAB第22题图22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°. (1)求传送带AB的长度;(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确≈)到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2 1.41≈,5 2.24如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)22.(本题满分10分)如图,坡AB 的坡比为1∶2.4,坡长AB =130米,坡AB 的高为BT .在坡AB 的正面有一栋建筑物CH ,点H 、A 、T 在同一条地平线MN 上. (1)试问坡AB 的高BT 为多少米?(2)若某人在坡AB 的坡脚A 处和中点D 处,观测到建筑物顶部C 处的仰角分别为60°和30°,试求建筑物的高度CH .(精确到米,3≈1.73,2≈1.41)21.如图4,某湖心岛上有一亭子A ,在亭子A 的正东方向上的湖边有一颗树B ,在这个湖心岛的湖边C 处测得亭子A 在北偏西45o 方向上。

(汇总3份试卷)2018年上海市青浦区九年级上学期数学期末学业水平测试试题

(汇总3份试卷)2018年上海市青浦区九年级上学期数学期末学业水平测试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.半径为R 的圆内接正六边形的面积是( ) A .R 2 B .3R 2 C .33R 2D .3R 2 【答案】C【分析】连接OE 、OD ,由正六边形的特点求出判断出△ODE 的形状,作OH ⊥ED ,由特殊角的三角函数值求出OH 的长,利用三角形的面积公式即可求出△ODE 的面积,进而可得出正六边形ABCDEF 的面积. 【详解】解:如图示,连接OE 、OD ,∵六边形ABCDEF 是正六边形, ∴∠DEF=120°, ∴∠OED=60°, ∵OE=OD=R ,∴△ODE 是等边三角形, 作OH ⊥ED ,则33R OH OE sin OED R∴2112233ODER R SDE OH R ∴2233366ODEABCDEF R R S S正六边形 故选:C . 【点睛】本题考查了正多边形和圆的知识,理解正六边形被半径分成六个全等的等边三角形是解答此题的关键. 2.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是( ) A .16 B .-4C .4D .8【答案】A【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答. 【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=- 2b a = -82=4,∵顶点在x 轴上, ∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得: 16-32+c=0, 解得:c=16, 故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.3.抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2 .正确结论的个数是( )A .1B .2C .3D .4【答案】C【分析】根据二次函数图像与b 2-4ac 的关系、对称轴公式、点的坐标及增减性逐一判断即可. 【详解】解:①由图可知,将抛物线补全,抛物线y =ax 2+bx +c(a≠0)与x 轴有两个交点 ∴b 2-4ac >0∴4ac -b 2<0,故①正确;②∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1 ∴12ba-=- 解得:2b a =∴2a -b =0,故②正确;③∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间, ∴此抛物线与x 轴的另一个交点在(0,0)和(1,0)之间 ∵在对称轴的右侧,函数y 随x 增大而减小 ∴当x=1时,y <0,∴将x=1代入解析式中,得:y =a +b +c <0 故③正确;④若点(x 1,y 1),(x 2,y 2)在对称轴右侧时, 函数y 随x 增大而减小 即若x 1<x 2,则y 1>y 2 故④错误;【点睛】此题考查的是二次函数图像及性质,掌握二次函数图像及性质和各系数之间的关系是解决此题的关键. 4.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【答案】A【解析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题5.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4【答案】D【分析】根据平行线等分线段定理列出比例式,然后代入求解即可. 【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF =解得:EF=2.4 故答案为D . 【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键. 6.方程230x x -+=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .无实数根D .只有一个实数根 【答案】C【分析】把a=1,b=-1,c=3代入△=b 2-4ac 进行计算,然后根据计算结果判断方程根的情况. 【详解】∵a=1,b=-1,c=3, ∴△=b 2-4ac=(-1)2-4×1×3=-11<0, 所以方程没有实数根. 故选C . 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根. 7.下列算式正确的是( ) A .110--=B .()33--=C .231-=D .|3|3--=【解析】根据有理数的减法、绝对值的意义、相反数的意义解答即可.--=-,故不正确;【详解】A. 112--=,正确;B. ()33-=-,故不正确;C. 231--=-,故不正确;D. |3|3故选B.【点睛】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键. 8.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有()A.8个B.7个C.3个D.2个【答案】A【分析】根据利用频率估计概率可估计摸到红球的概率,即可求出红球的个数.【详解】解:∵共摸了100次球,发现有80次摸到红球,∴摸到红球的概率估计为0.80,∴口袋中红球的个数大约10×0.80=8(个),故选:A.【点睛】本题考查了利用频率估计概率的知识,属于常考题型,掌握计算的方法是关键.9.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()A34B.5 C.8 D.4【答案】A【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】把ADE 顺时针旋转ABF 的位置,∴四边形AECF 的面积等于正方形ABCD 的面积等于25,AD DC 5∴==, DE 3=,Rt ADE ∴中,2222AE AD DE 5334=+=+=.故选A . 【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 10.如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( )A .30°B .40°C .45°D .50°【答案】B【解析】试题解析:,50.OA OB OAB ABO =∴∠=∠=在ABO 中,80.AOB ∴∠=140.2ACB AOB ∴∠=∠= 故选B.11.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .35【答案】A【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率: 【详解】列表如下: 红 红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)∵所有等可能的情况数为20种,其中两次都为红球的情况有6种, ∴63P 2010==两次红, 故选A.12.一元二次方程230x x -=的根为( ) A .123,0x x == B .3x x ==- C .x =D .3x =【答案】A【解析】提公因式,用因式分解法解方程即可. 【详解】一元二次方程230x x -=, 提公因式得:()30x x -=, ∴0x =或30x -=, 解得:1203x x ==,. 故选:A . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键. 二、填空题(本题包括8个小题)13.在阳光下,高6m 的旗杆在水平地面上的影子长为4m ,此时测得附近一个建筑物的影子长为16m ,则该建筑物的高度是_____m . 【答案】1【分析】先设建筑物的高为h 米,再根据同一时刻物高与影长成正比列出关系式求出h 的值即可. 【详解】解:设建筑物的高为h 米, 则h 16=64, 解得h =1.故答案为:1.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.【答案】5 12【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为255 3025512=++.故答案为5 12.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=2.15.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B =_____度.【答案】1【分析】由题意先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=1°,∴∠B=1°.故答案为:1.【点睛】本题考查旋转的性质,注意掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.16.如图,矩形ABCD 绕点A 旋转90°,得矩形AB C D ''',若B D C ',,三点在同一直线上,则ABAD的值为_______________【答案】512+ 【分析】连接BD C D ',,根据旋转的性质得到C B D BAD ''∆∆∽,根据相似三角形的性质得B D B C AD AB'''=,即AB AD ADAD AB-=,即可得到结论.【详解】解:连接BD C D ',,∵矩形ABCD 绕点A 旋转90°,得矩形AB C D ''', ∴B C ''=BC=AD ,AB AB '=,//AB B C '', ∵B D C ',,三点在同一直线上, ∴C B D BAD ''∆∆∽∴B D B C AD AB '''=. 即AB AD ADAD AB-=.解得15AD AB -+=或15AD AB --=(舍去) 所以5115AB AD +==-+. 故答案为:512【点睛】本题考查旋转的性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 17.在Rt ABC ∆中,90C ∠=︒,45A ∠=︒,4AC =,则AB 的长是__________.【答案】【分析】根据cosA=ACAB可求得AB 的长.【详解】解:由题意得,cosA=AC AB ,∴cos45°=4AB =AB=故答案为:. 【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形. 18.记函数()265326y x x a x =--+-≤≤的图像为图形M ,函数 4y x =-+的图像为图形N ,若N与N 没有公共点,则a 的取值范围是___________. 【答案】135a >或2920a <- 【分析】分两种情况讨论:①M 在N 的上方,因为抛物线开口向上,故只要函数2653=--+y x x a 与函数 4y x =-+组成的方程组无解即可.②M 在N 的下方,因为抛物线开口向上,对称轴为直线x=3,故只需考虑当x=-2和6时在直线的下方即可.【详解】①M 在N 的上方,因为抛物线开口向上,故只要函数2653=--+y x x a 与函数 4y x =-+组成的方程组无解即可.可得:2653=-x+4--+x x a 整理得:25510x x a ---= ∴=25204<0a ∆++29<20a -②M 在N 的下方,因为抛物线开口向上,对称轴为直线x=3,故只需考虑当x=-2和6时在直线的下方即可.当x=-2时,4+12-5a+3<6,解得:13>5a 当x=6时,36-36-5a+3<-2,解得:a >1 故13>5a 综上所述:29<20a -或13>5a 【点睛】本题考查的是二次函数与一次函数是交点问题,本题的关键在于二次函数的取值范围,需考虑二次函数的开口方向.三、解答题(本题包括8个小题)19.如图,已知抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点.(1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方 向 以1个单位/秒的速度向终点A 匀速运动,同时, 动点F 从A 点出发,沿着AB 方向以2个单位/ 秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形? (3)如图②,取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.【答案】(1)抛物线的解析式为y=﹣x 2+2x+3,直线AB 的解析式为y=﹣x+3;(2)15(532)-或9(523)41-;(3)存在面积最大,最大值是278,此时点P (32,154). 【分析】(1)将A (3,0),B (0,3)两点代入y=﹣x 2+bx+c ,求出b 及c 即可得到抛物线的解析式,设直线AB 的解析式为y=kx+n ,将A 、B 两点坐标代入即可求出解析式;(2)由题意得OE=t ,2t ,AE=OA ﹣OE=3﹣t ,分两种情况:①若∠AEF=∠AOB=90°时,证明△AOB ∽△AEF得到AF AB =AE OA,求出t 值;②若∠AFE ∠AOB=90°时,证明△AOB ∽△AFE ,得到OA AF =AB AE 求出t 的值; (3)如图,存在,连接OP ,设点P 的坐标为(x ,﹣x 2+2x+3),根据ABP OBP AOP AOB SS S S =+-,得到233(22)827ABP S x -+=-,由此得到当x=32时△ABP 的面积有最大值,最大值是278,并求出点P 的坐标.【详解】(1)∵抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点,∴9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴抛物线的解析式为y=﹣x 2+2x+3,设直线AB 的解析式为y=kx+n ,∴ 303k n n +=⎧⎨=⎩,解得13k n =-⎧⎨=⎩, ∴直线AB 的解析式为y=﹣x+3;(2)由题意得,OE=t ,,∴AE=OA ﹣OE=3﹣t ,∵△AEF 为直角三角形,∴①若∠AEF=∠AOB=90°时,∵∠BAO=∠EAF ,∴△AOB ∽△AEF ∴AF AB =AE OA ,∴353t -=,∴t=15(57-. ②若∠AFE ∠AOB=90°时,∵∠BAO=∠EAF ,∴△AOB ∽△AFE , ∴OA AF =AB AE, 53t=-,∴;综上所述,t=15(57-或3)41; (3)如图,存在,连接OP ,设点P 的坐标为(x ,﹣x 2+2x+3),∵ABP OBP AOP AOB SS S S =+-, ∴111222ABP P P S OB x OA y OA OB =⋅+⋅-⋅ =211133(2223)332x x x ++⨯+⨯-⨯⨯﹣=23922x x -+ =23327()228x --+, ∵32a =-<0, ∴当x=32时△ABP 的面积有最大值,最大值是278, 此时点P (32,154).【点睛】此题是二次函数与一次函数的综合题,考查了待定系数法求函数解析式,相似三角形的判定及性质,函数与动点问题,函数图象与几何图形面积问题.20.如图,已知A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC=BC ,AC=12OB . (1)求证:AB 是⊙O 的切线;(2)若∠ACD=45°,OC=2,求弦CD 的长.【答案】(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC 是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB 与⊙O 相切;(2)作AE ⊥CD 于点E ,由已知条件得出AC=2,再求出AE=CE ,根据直角三角形的性质就可以得到AD .【详解】(1)直线AB 是⊙O 的切线,理由如下:连接OA .∵OC=BC,AC=12 OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=2;∵∠D=30°,∴AD=22.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.【答案】(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=o35,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【点睛】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强, 注意数形结合思想的应用. 22.(8分)向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.【答案】10%.【解析】试题分析:设这两年的平均增长率为x,根据等量关系“2010年的人均收入×(1+平均增长率)2=2012年人均收入”列方程即可.试题解析:设这两年的平均增长率为x,由题意得:,解得:(不合题意舍去),.答:这两年的平均增长率为10%.考点:1.一元二次方程的应用;2.增长率问题.23.如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)(2)若AP=2,CD=8,求⊙O的半径.【答案】(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)⊙O的半径为1.【分析】(1)过P点作AB的垂线即可,作图依据是垂径定理的推论.(2)设⊙O 的半径为r ,在Rt △OPD 中,利用勾股定理构建方程即可解决问题.【详解】(1)过P 点作AB 的垂线交圆与C 、D 两点, CD 就是所求的弦,如图.依据:平分弦(非直径)的直径垂直于弦;(2)如图,连接OD ,∵OA ⊥CD 于点P ,AB 是⊙O 的直径,∴∠OPD =90°,PD =12CD , ∵CD =8,∴PD =2.设⊙O 的半径为r ,则OD =r ,OP =OA ﹣AP =r ﹣2,在Rt △ODP 中,∠OPD =90°,∴OD 2=OP 2+PD 2,即r 2=(r ﹣2)2+22,解得r =1,即⊙O 的半径为1.【点睛】本题主要考查了垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题. 24.某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?【答案】(1)50元;(2)涨20元.【分析】(1)设这种台灯上涨了x 元,台灯将少售出10x ,那么利润为(40+x-30)(600-10x )=10000,解方程即可;(2)根据销售利润=每个台灯的利润×销售量,每个台灯的利润=售价-进价,列出二次函数解析式,根据二次函数的性质即可求最大利润.【详解】解:(1)设这种台灯上涨了x 元,依题意得: ()()40306001010000x x +--=,化简得:2504000x x -+=,解得:40x =(不合题意,舍去)或10x =,售价:401050+=(元)答:这种台灯的售价应定为50元.(2)设台灯上涨了t 元,利润为y 元,依题意:()()403060010y t t =+--∴2105006000y t t =-++对称轴25t =,在对称轴的左侧y 随着t 的增大而增大,∵单价在60元以内,∴20t ≤∴当20t =时,12000y =最大元,答:商场要获得最大利润,则应上涨20元.【点睛】此题考查一元二次方程和二次函数的实际运用---销售利润问题,能够由实际问题转化为一元二次方程或二次函数的问题是解题关键,要注意的是二次函数的最值要考虑自变量取值范围,不一定在顶点处取得,这点很容易出错.25.如图,在Rt ABC 中,ACB 90∠=,DCE 是ABC 绕着点C 顺时针方向旋转得到的,此时B 、C 、E 在同一直线上.()1求旋转角的大小;()2若AB 10=,AC 8=,求BE 的长.【答案】(1)90°;(2)1.【分析】(1)根据题意∠ACE 即为旋转角,只需求出∠ACE 的度数即可.(2)根据勾股定理可求出BC ,由旋转的性质可知CE=CA=8,从而可求出BE 的长度.【详解】解:(1)∵△DCE 是△ABC 绕着点C 顺时针方向旋转得到的,此时点B 、C 、E 在同一直线上, ∴∠ACE=90°,即旋转角为90°,(2)在Rt △ABC 中,∵AB=10,AC=8,∴22AB AC -,∵△ABC 绕着点C 旋转得到△DCE ,∴CE=CA=8,∴BE=BC+CE=6+8=126.已知抛物线22y x bx c =++经过点(1,0),(0,3).(1)求该抛物线的函数表达式;(2)将抛物线22y x bx c =++平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】(1)2253y x x =-+;(2)将抛物线向左平移54个单位,向上平移18个单位,解析式变为22y x =. 【分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)把函数化为顶点式,即可得到平移方式与平移后的函数表达式.【详解】(1)把(1,0),(0,3)代入抛物线解析式得:203b c c ++=⎧⎨=⎩, 解得:53b c =-⎧⎨=⎩, 则抛物线解析式为2253y x x =-+(2)抛物线2251253248y x x x ⎛⎫=-+=-- ⎪⎝⎭ 将抛物线向左平移54个单位,向上平移18个单位, 解析式变为22y x =.【点睛】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.27.如图,在平面直角坐标系xOy 中,反比例函数y =m x的图象与一次函数y =k (x -2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.【答案】(1)y =6x ,y =2x -1;(2)C 点的坐标为()0,1或()0,9-. 【分析】(1)将点()3,2A 分别代入反比例函数和一次函数解析式中,求得参数m 和k 的值,即可得到两个函数的解析式;(2)联立反比例函数和一次函数的解析式,求得B 的坐标,再利用一次函数的解析式求得一次函数与y 轴交点的坐标点M 的坐标为()0,4-,设C 点的坐标为(0,y c ),根据12×3×|y c -(-1)|+12×1×|y c -(-1)|=10解得y c 的值,即可得到点C 的坐标.【详解】(1)∵点()3,2A 在反比例函数y =m x 和一次函数y =k (x -2)的图象上, ∴2=3m ,2=k (3-2),解得m =6,k =2, ∴反比例函数的解析式为y =6x,一次函数的解析式为y =2x -1. (2)∵点B 是一次函数与反比例函数的另一个交点,∴6x=2x -1,解得x 1=3,x 2=-1, ∴B 点的坐标为()1,6--.设点M 是一次函数y =2x -1的图象与y 轴的交点,则点M 的坐标为()0,4-.设C 点的坐标为(0,y c ),由题意知12×3×|y c -(-1)|+12×1×|y c -(-1)|=10, ∴|y c +1|=2.当y c +1≥0时,y c +1=2,解得y c =1;当y c +1<0时,y c +1=-2,解得y c =-9,∴C 点的坐标为()0,1或()0,9-.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出两个函数的解析式以及直线AB 与y 轴的交点坐标.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是二次函数2y ax bx c =++的部分图象,则240ax bx c +++=的解的情况为( )A .有唯一解B .有两个解C .无解D .无法确定【答案】C【分析】根据图象可知抛物线顶点的纵坐标为-3,把方程转化为2-4ax bx c ++=,利用数形结合求解即可.【详解】根据图象可知抛物线顶点的纵坐标为-3, 把240ax bx c +++=转化为2-4ax bx c ++= 抛物线开口向下有最小值为-3∴(-3)>(-4)即方程2-4ax bx c ++=与抛物线2y ax bx c =++没有交点. 即方程240ax bx c +++=无解. 故选C. 【点睛】本题考查了数形结合的思想,由题意知道抛物线的最小值为-3是解题的关键.2.若二次函数2y ax bx c =++的x 与y 的部分对应值如下表,则当x 1=时,y 的值为( ) x 7- 6- 5- 4-3-2-y 27- 13- 3-35 3A .5B .3-C .13-D .27-【答案】D【分析】由表可知,抛物线的对称轴为x 3=-,顶点为()3,5-,再用待定系数法求得二次函数的解析式,再把x 1=代入即可求得y 的值.【详解】设二次函数的解析式为2y a(x h)k =-+,当x 4=-或2-时,y 3=,由抛物线的对称性可知h 3=-,k 5=,2y a(x 3)5∴=++,把()2,3-代入得,a 2=-,∴二次函数的解析式为2y 2(x 3)5=-++,当x 1=时,y 27=-. 故选D . 【点睛】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为x 3=-,顶点为()3,5-,是本题的关键.3.函数y=ax +b 和y=ax 2+bx+c (a≠0)在同一个坐标系中的图象可能为( )A .B .C .D .【答案】D【分析】本题可先由一次函数y=ax +b 图象得到字母系数的正负,再与二次函数ax 2+bx +c 的图象相比较看是否一致.【详解】解:A .由一次函数的图象可知a >0,b >0,由抛物线图象可知,开口向上,a >0,对称轴x=﹣2ba>0,b <0;两者相矛盾,错误; B .由一次函数的图象可知a >0,b <0,由抛物线图象可知a <0,两者相矛盾,错误; C .由一次函数的图象可知a <0,b >0,由抛物线图象可知a >0,两者相矛盾,错误; D .由一次函数的图象可知a >0,b <0,由抛物线图象可知a >0,对称轴x=﹣2ba>0,b <0;正确. 故选D . 【点睛】解决此类问题步骤一般为:(1)根据图象的特点判断a 取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求. 4.对于反比例函数4y x=-,下列说法正确的是( ) A .y 的值随x 值的增大而增大B .y 的值随x 值的增大而减小C .当0x >时,y 的值随x 值的增大而增大D .当0x <时,y 的值随x 值的增大而减小 【答案】C【分析】根据反比例函数的增减性逐一分析即可. 【详解】解:在反比例函数4y x=-中,﹣4<0∴反比例函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大 ∴A 选项缺少条件:在每一象限内,故A 错误; B 选项说法错误;C 选项当0x >时,反比例函数图象在第四象限,y 随x 的增大而增大,故C 选项正确;D 选项当0x <时,反比例函数图象在第二象限,y 随x 的增大而增大,故D 选项错误. 故选C. 【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键. 5.若一个圆内接正多边形的内角是108︒,则这个多边形是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形【答案】A【分析】根据正多边形的内角求得每个外角的度数,利用多边形外角和为360°即可求解. 【详解】解:∵圆内接正多边形的内角是108︒, ∴该正多边形每个外角的度数为18010872︒-︒=︒, ∴该正多边形的边数为:360572︒=︒, 故选:A . 【点睛】本题考查圆与正多边形,掌握多边形外角和为360°是解题的关键.6.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为( ) A .300(1+x )2=1500 B .300(1+2x )=1500 C .300(1+x 2)=1500 D .300+2x =1500【答案】A【详解】解:设2016年到2018年该地区居民年人均收入平均增长率为x , 那么根据题意得2018年年收入为:300(1+x )2, 列出方程为:300(1+x )2=1. 故选A .7.在平面直角坐标系内,将抛物线221y x =-先向右平移2个单位,再向下平移3个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是( ) A .()2,4- B .()2,4-C .()2,3-D .()2,3-【答案】B【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【详解】抛物线221y x =-的顶点坐标为(0,−1), ∵向右平移2个单位,再向下平移3个单位, ∴平移后的抛物线的顶点坐标为(2,−4). 故选B . 【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.8.如图,⊙O 是正方形ABCD 与正六边形AEFCGH 的外接圆.则正方形ABCD 与正六边形AEFCGH 的周长之比为( )A .22∶ 3B .2∶1C .2∶3D .1∶3【答案】A【分析】计算出在半径为R 的圆中,内接正方形和内接正六边形的边长即可求出. 【详解】解:设此圆的半径为R , 则它的内接正方形的边长为2R , 它的内接正六边形的边长为R ,内接正方形和内接正六边形的周长比为:42R :6R =22∶ 1. 故选:A . 【点睛】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.9.如图,线段AB 两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)【解析】直接利用位似图形的性质得出对应点坐标乘以12得出即可.【详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C.【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.10.在Rt△ABC中,∠C = 90°,AC = 9,BC = 12,则其外接圆的半径为( )A.15 B.7.5 C.6 D.3【答案】B【详解】解:∵∠C=90°,∴AB2=AC2+BC2,而AC=9,BC=12,∴AB=22912=1.又∵AB是Rt△ABC的外接圆的直径,∴其外接圆的半径为7.2.故选B.11.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.10【答案】C【解析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键. 12.如图,在Rt △ABC 中,∠ACB=90°,若5AC =,BC=2,则sin ∠A 的值为( )A 5B 5C .23D 25【答案】C【分析】先利用勾股定理求出AB 的长,然后再求sin ∠A 的大小. 【详解】解:∵在Rt △ABC 中,5AC =BC=2∴223AC BC +=∴sin ∠A=23BC AB = 故选:C . 【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中. 二、填空题(本题包括8个小题) 13714 =______. 【答案】2【分析】利用二次根式的乘法法则计算即可. 【详解】解:原式71472=⨯=故答案为:2 【点睛】本题考查二次根式的乘法运算,熟练掌握二次根式的乘法运算法则是解题关键.14.如图,在平面直角坐标系xOy 中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数(k 0,x 0)ky x=≠>的图象过点B 、E .若1AB =,则k 的值为_____.。

2024届上海初三一模数学各区解答题(函数)

2024届上海初三一模数学各区解答题(函数)

上海市2024届初三一模数学分类汇编—解答题(函数)【2024届·宝山区·初三一模·第21题】1.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)在平面直角坐标系xOy 中,已知二次函数2y x bx c 的图像经过点 1,0A 和 0,3B .(1)求该二次函数的表达式;(2)如果点 4,E m 在该函数图像上,求ABE 的面积.【2024届·崇明区·初三一模·第21题】2.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数2246y x x .(1)用配方法把二次函数2246y x x 化为 2y a x m k 的形式,并指出这个函数图像的对称轴和顶点坐标;(2)如果该函数图像与x 轴负半轴交于点A ,与y 轴交于点C ,顶点为D ,O 为坐标原点,求四边形ADCO 的面积.第21题图3.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知抛物线2y x bx c 经过点 3,0A 、 0,3B .(1)求抛物线表达式并写出顶点坐标;(2)联结AB ,与该抛物线的对称轴交于点P ,求点P 的坐标.4.图6(本题满分4分)5.(本题满分10分,第(1)小题5分,第(2)小题5分)已知抛物线223y x x 的顶点为A ,它与y 轴的交点为B .(1)求线段AB 的长;(2)平移该抛物线,使其顶点在y 轴上,且与x 轴两交点间的距离为4,求平移后所得抛物线的表达式.【2024届·嘉定区·初三一模·第20题】6.(本题满分10分,第(1)小题5分,第(2)小题5分)已知平面直角坐标系xOy (图6),抛物线2y x bx c 经过点 3,0A 和 0,3B 两点.(1)求抛物线的表达式;(2)如果将这个抛物线向右平移k (0k )个单位,得到新抛物线经过点B ,求k 的值.第20题图7.(本题满分10分)某学校有一喷水池,如果以喷水口(点A )所在的铅垂线为y 轴,相应的地面水平线为x 轴,1米为单位长度建立直角坐标系xOy ,喷出的抛物线形水柱在最高处(点P )距离y 轴1米,水柱落地处(点B )距离y 轴4米,喷水口距离地面为2米,求抛物线形水柱的最高处距离地面的高度.【20248.2,0B .点 ,2P a 0)于点E 、F .(1)(2)图99.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在坐标平面xOy 中,一次函数2y x 的图像与反比例函数ky x(0k )的图像交于点 ,3A a ,与x 轴交于点B .(1)求这个反比例函数的解析式;(2)过点A 作AC x 轴,垂足为点C ,将一次函数图像向右平移,且经过点C ,求平移后的一次函数的解析式.【202410.如图9x点 1,A m (1)(2),第19题图11.(本题满分10分,第(1)小题5分,第(2)小题5分)二次函数2y ax bx c (0a )的图像上部分点的横坐标x 、纵坐标y 的对应值如下表.(1)由表格信息,求出该二次函数解析式,并写出该二次函数图像的顶点D 的坐标;(2)如果该二次函数图像与y 轴交于点A ,点 5,P t 是图像上一点,求PAD 的面积.【2024届·徐汇区·初三一模·第20题】12.(本题满分10分)已知抛物线23y x bx 与y 轴交于点C ,与x 轴交于点 1,0A 和点B ,顶点为D .(1)求此抛物线的表达式及顶点D 的坐标;(2)联结CD 、BD ,求CDB 的余弦值.13.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数243y x x .(1)用配方法...将函数243y x x 的解析式化为 2y a x m k 的形式,并指出该函数图像的对称轴和顶点坐标;(2)设该函数的图像与x 轴交于点A 、B ,点A 在点B 左侧,与y 轴交于点C ,顶点记作D ,求四边形ADBC 的面积.【2024届·长宁区·初三一模·第19题】14.(本题满分10分,第(1)小题5分,第(2)小题5分)已知抛物线2241y x x .(1)用配方法把2241y x x 化为 2y a x m k 的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点 1,4,求平移后的抛物线的顶点坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市2018届九年级上学期期末(一模)数学试卷分类汇编填空题专题含答案宝山区7.已知2a =3b ,那么a ∶b =_________.8.如果两个相似三角形的周长之比1∶4,那么它们的某一对对应角的角平分线之比为_________. 9.如图,D 、E 为△ABC 的边AC 、AB 上的点,当_________时,△ADE ∽△ABC 其中D 、E 分别对应B 、C .(填一个条件)10.计算:()134522a b b -+=r r r_________.11.如图,在锐角△ABC 中,BC =10,BC 上的高AD =6,正方形EFGH 的顶点E 、F 在BC 边上,G 、H 分别在AC 、AB 边上,则此正方形的边长为_________.12.如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i =_________. 13.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则tan ∠CAF =_________. 14.抛物线y =5 (x -4)2+3的顶点坐标是_________.15.二次函数y (x -1)2的图像与y 轴的交点坐标是_________.16.如果点A (0,2)和点B (4,2)都在二次函数y =x 2+bx +c 的图像上,那么此抛物线在直线_________的部分是上升的.(填具体某直线的某侧)17.如图,点D 、E 、F 分别为△ABC 三边的中点,如果△ABC 的面积为S ,那么以AD 、BE 、CF 为边的三角形的面积是__________.18.如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处,如果E 在旋转过程中曾经交AB 于G ,当EF =BG 时,旋转角∠EAF 的度数是______________.长宁区7.若线段a 、b 满足21=b a ,则bba +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,BA 第15题图D AG我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形, AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .崇明区7.已知23x y =(0)y ≠,那么x yy+= ▲ . 8.计算:13222a b a b ⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭r r rr ▲ .9.如果一幅地图的比例尺为1:50000,那么实际距离是3km 的两地在地图上的图距是▲ cm .10.如果抛物线2(1)4y a x =+-有最高点,那么a 的取值范围是 ▲ . 11.抛物线224y x =+向左平移2个单位长度,得到新抛物线的表达式为 ▲ . 12.已知点11(,)A x y 和22(,)B x y 是抛物线22(3)5y x =-+上的两点,如果124x x >>,那么1y 2y .(填“>”、“=”或“<”)13.在Rt ABC △中,90BAC ∠=︒,AD BC ⊥,垂足为点D ,如果6AC =,8AB =,那么AD 的长度为 ▲ .14.已知ABC △是等边三角形,边长为3,G 是三角形的重心,那么G A 的长度为 ▲ . 15.正八边形的中心角的度数为 ▲ 度.16.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为 ▲ . 17.如图,在55⨯正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(2,3)-,点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是 ▲ .18.如图,在ABC △中,90ACB ∠=︒,点D , E 分别在,AC BC 上,且CDE B ∠=∠,将沿DE 折叠,点C 恰好落在AB 边上的点F 处,如果8AC =,10AB =,那么CD 的长为 ▲ .CDE △第18题图A B CD奉贤区7.已知5a =4b ,那么a bb+= . 8.计算:tan60°-cos30°= .9.如果抛物线25y ax =+的顶点是它的最低点,那么a 的取值范围是 . 10.如果抛物线22y x =与抛物线2y ax =关于x 轴对称,那么a 的值是 .11.如果向量、、a b x r r r 满足关系式4()0a b x --=r r r r ,那么x r = .(用向量、a b r r表示)12.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x (x >0),十二月份的快递件数为y 万件,那么y 关于x 的函数解析式是 .13.如图,已知123∥∥l l l ,两条直线与这三条平行线分别交于点A 、B 、C 和点D 、E 、F ,如果32AB BC =,那么DEDF的值是 . 14.如果两个相似三角形的面积比是4:9,那么它们的对应角平分线之比是 .15.如图,已知梯形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,如果2△△AOB AOD S S =,AB =10,那么CD 的长是 .16.已知AD 、BE 是△ABC 的中线,AD 、BE 相交于点F ,如果AD =6,那么AF 的长是 .17.如图,在△ABC 中,AB =AC ,AH ⊥BC ,垂足为点H ,如果AH =BC ,那么sin ∠BAC 的值是 . 18.已知△ABC ,AB =AC ,BC =8,点D 、E 分别在边BC 、AB 上,将△ABC 沿着直线DE 翻折,点B 落在边AC 上的点M 处,且AC =4AM ,设BD =m ,那么∠ACB 的正切值是 .(用含m 的代数式表示)(第16题图)(第17题图)(第18题图)BAFECD虹口区7.如果23x y =,那么4y x x y-=+ . 8.如果点P 把线段AB 分割成AP 和PB 两段(AP >PB ),其中AP 是AB 与PB 的比例中项,那么AP :AB的值为 .9.如果2()a x b x +=+r r r r ,那么x =r (用向量、a b r r 表示向量x r). 10.如果抛物线2(1)3y x m x =-+-+经过点(2,1),那么m 的值为 .11.抛物线221y x x =-+-在对称轴 (填“左侧”或“右侧”)的部分是下降的.12.如果将抛物线22y x =-平移,顶点移到点P (3,-2)的位置,那么所得新抛物线的表达式为 .13.如果点A (2,-4)与点B (6,-4)在抛物线2(0)y ax bx c a =++≠上,那么该抛物线的对称轴为直线 .14.如图,已知AD ∥EF ∥BC ,如果AE =2EB ,DF =6,那么CD 的长为 . 15.在Rt △ABC 中,∠C =90°,如果AB =6,1cos 3A =,那么AC = . 16.如图,在Rt △ABC 中,∠C =90°,边AB 的垂直平分线分别交边BC 、AB 于点D 、E 如果BC =8,4tan 3A =,那么BD = .17.如图,点P 为∠MON 平分线OC 上一点,以点P 为顶点的∠APB 两边分别与射线OM 、ON 相交于点A 、B ,如果∠APB 在绕点P 旋转时始终满足2OA OB OP ⋅=,我们就把∠APB 叫做∠MON 的关联角.如果∠MON =50°,∠APB 是∠MON 的关联角,那么∠APB 的度数为 .18.在Rt △ABC 中,∠C =90°,AC =6,BC =8(如图),点D 是边AB 上一点,把△ABC 绕着点D 旋转90°得到△A B C ''',边B C ''与边AB 相交于点E ,如果AD =BE ,那么AD 长为 .黄浦区7.已知a 、b 、c 满足346a b c ==,则a bc b+-= ▲ . 8.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD ∶DB =3∶2,那么BF ∶FC = ▲ .9.已知向量e r 为单位向量,如果向量n r 与向量e r 方向相反,且长度为3,那么向量n r= ▲ .(用单位向量e r表示)10.已知△ABC ∽△DEF ,其中顶点A 、B 、C 分别对应顶点D 、E 、F ,如果∠A =40°,∠E =60°,那么∠C = ▲ 度.11.已知锐角α,满足tan α=2,则sin α= ▲ .12.已知点B 位于点A 北偏东30°方向,点C 位于点A 北偏西30°方向,且AB =AC =8千米,那么 BC =▲ 千米.13.已知二次函数的图像开口向下,且其图像顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为 ▲ (表示为2()y a x m k =++的形式).14.已知抛物线2y ax bx c =++开口向上,一条平行于x 轴的直线截此抛物线于M 、N 两点,那么线段MN 的长度随直线向上平移而变 ▲ .(填“大”或“小”)(第8题)15.如图,矩形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知AC =6,AB =8,BC =10,设EF =x ,矩形DEFG 的面积为y ,则y 关于x 的函数关系式为 ▲ .(不必写出定义域)(第15题) (第16题)16.如图,在△ABC 中,∠C =90°,BC =6,AC =9,将△ABC 平移使其顶点C 位于△ABC 的重心G 处,则平移后所得三角形与原△ABC 的重叠部分面积是 ▲ . 17.如图,点E 为矩形ABCD 边BC 上一点,点F 在边CD 的延长线上,EF 与AC 交于点O , 若CE ∶EB =1∶2,BC ∶AB =3∶4,AE ⊥AF ,则CO ∶OA = ▲ .(第17题) (第18题)18.如图,平面上七个点A 、B 、C 、D 、E 、F 、G ,图中所有的连线长均相等,则cos ∠BAF = ▲ .嘉定7.已知点P 在线段AB 上,且AP : BP=2 : 3,那么AB:PB=_____. 8.计算:+6)-4=______.9.如果函数y=(m-2)+2x+3 (m 为常数) 是二次函数,那么m 取值范围是______. 10. 抛物线向下平移4个单位后所得的新抛物线的表达式是_________。

相关文档
最新文档