高考数学圆复习课件

合集下载

(江苏专用)高考数学总复习 第八章第3课时 圆的方程课件

(江苏专用)高考数学总复习 第八章第3课时 圆的方程课件

【解】 设点M的坐标是(x,y),点A 的坐标是(x0,y0),由于点B的坐标是 (4,3)且M是线段AB的中点,
所以 x=x0+2 4,y=y0+2 3, 于是有 x0=2x-4,y0=2y-3. ① 因为点 A 在圆(x+1)2+y2=4 上运动,
所以点 A 的坐标满足方程(x+1)2+y2= 4, 即(x0+1)2+y20=4. ② 把 ①代入 ②, 得(2x- 4+ 1)2+ (2y- 3)2 =4,
(2)求圆的方程有两类方法 ①几何法,即通过研究圆的性质、直 线和圆、圆和圆的位置关系,进而求 得圆的基本量(圆心、半径)和方程;
②代数法,即用“待定系数法”求圆 的方程,其一般步骤是:a.根据题意 选择方程的形式——标准形式或一般 形式(本例题中涉及圆心及切线,故设 标准形式较简单);b.利用条件列出关 于a,b,r或D,E,F的方程组;c.解 出a,b,r或D,E,F,代入所设的标 准方程或一般方程.
第八章 平面解析几何
第3课时 圆的方程
回归教材•夯实双基
基础梳理 1.圆的方程 (1)标准方程:(x-a)2+(y-b)2=r2,其中 (a_,__b_)____为圆心,r为半径.
(2)一般方程:x2+y2+Dx+Ey+F=
0(D2+E2-4F>0)其中圆心为
__-__D2_,__-__E2___,半径为_12__D__2_+__E_2- __4_F_.
d=|2--1-1|= 2.
1+1
又直线y=x-1被圆截得的弦长为2, ∴2=2,即2=2,解得r=2. ∴所求圆的方程为(x-2)2+(y+1)2= 4.
(2)法一:设圆的标准方程为(x-a)2+(y
-b)2=r2,则有
b=-4a,
3-a2+-2-b2=r2, |a+b-1|=r, 2

高考数学一轮复习第九章直线和圆的方程圆的方程课件

高考数学一轮复习第九章直线和圆的方程圆的方程课件

解析 设圆心的坐标为x,41x2,据题意得14x2+1=-x,解得 x=-2,此时圆心的坐标为(-2,1),圆 的半径为 2,故所求圆的方程是(x+2)2+(y-1)2=4.
9 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3.直线 y=x-1 上的点到圆 x2+y2+4x-2y+4=0 的最近距离为( )
解法二:从形的角度,AB 为圆的弦,由平面几何知识知,圆心 P 应在 AB 中垂线 x=4 上,则由
2x-y-3=0, x=4,
得圆心 P(4,5).
∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第九章 直线和圆的方程
1 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第2讲 圆的方程及点、线、圆的位置关系
2 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
注意点 圆的标准方程与一般方程的关系 圆的标准方程展开整理即可得到圆的一般方程,而圆的一般方程通过配方亦可转化为圆的标准方程, 二者只是形式的不同,没有本质区别.
7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为 t 的一个圆.( × ) (2)方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆心为-a2,-a,半径为12 -3a2-4a+4的圆.( × ) (3)方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的充要条件是 A=C≠0,B=0,D2+E2-4AF>0.( √ ) (4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+F>0.( √ ) (5)已知点 A(x1,y1),B(x2,y2),则以 AB 为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √ )

高考数学复习---动圆过定点PPT考向课件

高考数学复习---动圆过定点PPT考向课件
6
动圆过定点问题本质上是向量垂直的问题.
7
在平面直角坐标系xOy中,动点E到定点(1,0)的距离与 它到直线x=-1的距离相等.
(1)求动点E的轨迹C的方程; (2)设动直线l:y=kx+b与曲线C相切于点P,与直线x=-1相交 于点Q,证明:以PQ为直径的圆恒过x轴上某定点. [解] (1)设动点E的坐标为(x,y),由抛物线的定义知,动点E的 轨迹是以(1,0)为焦点,x=-1为准线的抛物线,所以动点E的轨迹C 的方程为y2=4x.
8
(2)证明:易知 k≠0.由yy= 2=k4xx+b,消去 x,得 ky2-4y+4b=0.因为 直线 l 与抛物线相切,所以 Δ=16-16kb=0,即 b=1k,所以直线 l 的 方程为 y=kx+1k,令 x=-1,得 y=-k+1k,所以 Q(-1,-k+1k).设 切点 P(x0,y0),则 ky20-4y0+4k=0,解得 P(k12,2k),设 M(m,0),
高考数学复习---动圆过定点 PPT考向课件
动圆过定点 动圆过定点问题求解时可以先取特殊值或者极值,找出
这个定点,再用向量法证明用直径所对圆周角为直角.
2
(2019·北京高考)已知抛物线 C:x2=-2py 经过点(2, -1).
(1)求抛物线 C 的方程及其准线方程; (2)设 O 为原点,过抛物线 C 的焦点作斜率不为 0 的直线 l 交抛 物线 C 于两点 M,N,直线 y=-1 分别交直线 OM,ON 于点 A 和 点 B.求证:以 AB 为直径的圆经过 y 轴上的两个定点.
9
则M→Q·M→P=(k12-m)·(-1-m)+2k(-k+1k,
即 m=1 时,M→Q·M→P=0,即 MQ⊥MP.
所以,以 PQ 为直径的圆恒过 x 轴上的定点 M(1,0).

高考数学一轮复习 第八章 立体几何 8.4 直线与圆、圆与圆的位置关系课件

高考数学一轮复习 第八章 立体几何 8.4 直线与圆、圆与圆的位置关系课件

12/13/2021
第十页,共四十一页。
1.思考辨析 判断下列结论正误(在括号内打“√”或“×”) (1) 如果 两个 圆 的方 程 组成 的方 程 组只 有一 组 实数 解 ,则 两 圆 外
切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公
(4)由题意知圆的方程为 x2+(y+1)2=4,所以圆心坐标为(0, -1),半径为 2,则圆心到直线 y=x+1 的距离 d=|-1-2 1|= 2, 所以|AB|=2 22- 22=2 2.
(5)由xx22+ +yy22- -44= x+04,y-12=0, 得两圆公共弦所在直线为 x -y+2=0.又圆 x2+y2=4 的圆心到直线 x-y+2=0 的距离为 2
若|AB|=2 3,则圆 C 的面积为( A )
A.4π
B.2π
C.9π
D.22π
12/13/2021
第十九页,共四十一页。
【解析】 (1)因为圆心(0,0)到直线 ax+by+c=0 的距离 d=
a2|c+| b2=
|c| = 2|c|
22,因此根据直角三角形的关系,弦长的一半
就等于 1- 222= 22,所以弦长为 2. (2)易知圆 C:x2+y2-2ay-2=0 的圆心为(0,a),半径为
置关系是( A )
A.相交
B.相切
C.相离
D.不确定
解析:直线 l:mx-y+1-m=0 过定点(1,1),因为点(1,1) 在圆 x2+(y-1)2=5 的内部,所以直线 l 与圆相交.
12/13/2021
第二十七页,共四十一页。
2.(方向 2)已知直线 y=ax 与圆 C:x2+y2-6y+6=0 相交于 A,B

高考数学第四章圆与方程4.2.1直线与圆的位置关系课件新人教A版必修2

高考数学第四章圆与方程4.2.1直线与圆的位置关系课件新人教A版必修2
k2+1· x1+x22-4x1x2= k2+1|x1-x2|.
3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方 程时,要考虑该点是否在圆上.当点在圆上时,切线只有一条;当点在圆 外时,切线有两条.
返回
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
|1+4-5+ 5|
圆心 C 到直线 AB 的距离 d=|CP|=
12+22 =1.
在 Rt△ACP 中,|AP|= r2-d2=2,故直线被圆截得的弦长|AB|=4.
解析答案
数学思想
数形结合思想
例 4 直线 y=x+b 与曲线 x= 1-y2有且只有一个交点,则 b 的取值范
围是( ) A.|b|= 2 C.-1≤b<1
线的距离等于
12-222=0,即圆心(1,2)位于直线 kx-y=0 上.
于是有k-2=0,即k=2,
因此所求直线方程是2x-y=0.
解析答案
课堂小结 1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质 进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算 量大,不如几何法简捷. 2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长 的一半,圆的半径构成的直角三角形.还可以联立方程组,消去 y,组成 一个一元二次方程,利用方程根与系数的关系表达出弦长 l=
返回
题型探究
重点突破
题型一 直线与圆的位置关系的判断 例1 已知直线方程mx-y-m-1=0,圆的方程x2+y2-4x-2y+1=0. 当m为何值时,圆与直线 (1)有两个公共点; (2)只有一个公共点; (3)没有公共点.

高考数学一轮总复习教学课件第八章 平面解析几何第3节 圆的方程

高考数学一轮总复习教学课件第八章 平面解析几何第3节 圆的方程



+
+Dx0+Ey0+F>0.
( √)
(4)方程x2+y2-4x-2y+5=0表示圆心为(2,1)的圆.( × )
2.已知圆的标准方程是(x-3)2+(y+2)2=16,下列各点中在圆内的是
(
)
A.(2,2)
B.(1,3)
C.(-1,-2)

D.(0,-1)
解析:A中(2-3)2+(2+2)2=17>16,在圆外;
(1)直角顶点C的轨迹方程;
解:(1)法一
设C(x,y),因为A,B,C三点不共线,所以y≠0.
因为AC⊥BC,且BC,AC斜率均存在,
所以 kAC·kBC=-1,又 kAC=

所以+·

-

,kBC=

+
-
,
=-1,
化简得x2+y2-2x-3=0.
因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).
连线组成的三角形为直角三角形,该直角三角形的外接圆的圆心为
点(0,0)和点(4,2)所连线段的中点,即(2,1),直径2R等于点(0,0)和


点(4,2)所连线段的长,即 2R= (-) + (-) ,可得 R= ,所以圆的
2
2
方程为(x-2) +(y-1) =5.
③若圆过(0,0),(-1,1),(4,2)三点,设过这三点的圆的一般方程为
已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
[针对训练]
(1)经过坐标原点,且圆心坐标为(-1,1)的圆的一般方程是(

高考数学总复习直线与圆、圆与圆的位置关系PPT课件

高考数学总复习直线与圆、圆与圆的位置关系PPT课件

16-34k2>0,解得-8
3
38 <k<
3
3,
.
由题易知点(1,2)应在已知圆的外部, 把点代入圆的方程得 1+4+k+4+k2-15>0, 即(k-2)·(k+3)>0,解得 k>2 或 k<-3, 则实数 k 的取值范围是-83 3,-3∪2,8 3 3.
[答案]
1.已知圆 C 的半径为 2,圆心在 x 轴的正半轴上, 直线 3x+4y+4=0 与圆 C 相切,则圆 C 的方程为( )
A.x2+y2-2x-3=0 B.x2+y2+4x=0 C.x2+y2+2x-3=0 D.x2+y2-4x=0
解析:选 D 设圆心的坐标为(a,0)(a>0), 又因为直线 3x+4y+4=0 与圆 C 相切, 所以 |33a2++44|2=2,解得 a=2 或-134(舍), 因此圆的方程为(x-2)2+y2=22, 即 x2+y2-4x=0.
(2)过点( 2,0)引直线 l 与曲线 y= 1-x2相交于 A,B
两点,O 为坐标原点,当△AOB 的面积取最大值时,直线
l 的斜率等于( )
A. 3 B.- 3 C.± 3 D.- 3
3
3
3
[自主解答] (1)圆的标准方程为(x+1)2+(y-1)2=2- a,圆心 C(-1,1),半径 r 满足 r2=2-a,则圆心 C 到直线 x +y+2=0 的距离 d= 12+1= 2,所以 r2=4+2=2-a⇒a =-4.
解析:法一:几何法:圆心到直线
的距离为d=
|0-2| 2

2 ,圆的半径r=
2,所以弦长l=2× r2-d2 =2 4-2 =
2 2.

2025年高考数学一轮复习-9.4-直线与圆、圆与圆的位置关系【课件】

2025年高考数学一轮复习-9.4-直线与圆、圆与圆的位置关系【课件】
第九章
第四节
直线与圆、圆锥曲线
直线与圆、圆与圆的位置关系
必备知识·逐点夯实
核心考点·分类突破
【课标解读】
【课程标准】
1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.
2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
【核心素养】
数学抽象、数学运算、逻辑推理.
【命题说明】
考向
考法
(3)若两圆外切,则两圆有且只有一个公共点,反之也成立.(
×
)
提示:(3)若两圆外切,则两圆有且只有一个公共点;若两圆有且只有一个公共点,则两
圆外切或内切,故(3)错误;
(4)若两圆有公共点,则|r1-r2|≤d≤r1+r2.(

)
提示:(4)若两圆有公共点,则两圆外切或相交或内切,所以|r1-r2|≤d≤r1+r2,故(4)正确.
2.当两圆外切时,两圆有一条内公切线,该公切线垂直于两圆圆心的连线;当两圆内
切时,两圆有一条外公切线,该公切线垂直于两圆圆心的连线.
3.两圆相交时公共弦的性质
圆C1:x2+y2+D1x+E1y+F1=0(12 +12 -4F1>0)与圆C2:x2+y2+D2x+E2y+F2 =0(22 +22 -
x= 或x+2 y-5 =0
______________________.
【解析】由圆C方程知:圆心C(0,1),半径r= 2;
当过P的直线斜率不存在,即直线方程为
x= 2时,直线与圆C相切;
设过P点且斜率存在的圆C的切线方程为y-2=k(x- 2),即kx-y- 2k+2=0,

高考数学一轮总复习课件:圆的方程及直线与

高考数学一轮总复习课件:圆的方程及直线与
所以圆的方程为x2+y2-4x-235y-5=0. 将D(a,3)代入得a2-4a-21=0. 解得a=7或a=-3(舍).
(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.

高考数学一轮总复习课件:圆与圆的位置关系

高考数学一轮总复习课件:圆与圆的位置关系

【解析】 设圆心到直线l:mx+y+3m- 3 =0的距离为d,
则弦长|AB|=2
12-d2 =2
3
,得d=3,即
|3m- 3| m2+1
=3,解得m=
- 33,则直线l:x- 3y+6=0,数形结合可得|CD|=co|sA3B0°| =4.
(3)【多选题】已知直线l与圆C:x2+y2+2x-4y+a=0相交
因为kMN=65- -31=34,所以两圆的公切线的斜率是-43. 设切线方程为y=-43x+b,则有43×143+23+-1b= 11. 解得b=133±5 311. 容易验证,当b=133+5 311时,直线与后一圆相交,舍去. 故所求公切线方程y=-43x+133-5 311, 即4x+3y+5 11-13=0.
状元笔记
在研究弦长及弦中点问题时,可设弦AB两端点的坐标分别 为A(x1,y1),B(x2,y2).
(1)若OA⊥OB(O为原点),则可转化为x1x2+y1y2=0,再结 合根与系数的关系,代入方程简化运算过程,这在解决垂直关 系问题中是常用的.
(2)若弦AB的中点为(x0,y0),圆的方程为x2+y2=r2, xx1222+ +yy1222= =rr22, ,∴k=yx22- -yx11=-xy22+ +xy11=-xy00.
2+P→C·(C→B+C→A)+C→B·C→A=|P→C|2-1=(x-1)2+(x+1)2-1=2x2
+1,所以P→A·P→B的最小值为1,故选D.
授人以渔
题型一 圆与圆的位置关系
例1 已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+ m=0.求:
(1)m取何值时两圆外切? (2)m取何值时两圆内切,此时公切线方程是什么? (3)求m=45时两圆的公共弦所在直线的方程和公共弦的 长.

2025版高考数学一轮总复习第八章平面解析几何8.3圆的方程课件

2025版高考数学一轮总复习第八章平面解析几何8.3圆的方程课件
=
0 +3

2
=
0 +0
,所以0
2
= 2 − 3,0 = 2.
由①,知点的轨迹方程为 − 1
2
+ 2 = 4 ≠ 0 ,
将0 = 2 − 3,0 = 2代入得 2 − 4
因此动点的轨迹方程为 − 2
2
2
+ 2
2
= 4,即 − 2
+ 2 = 1 ≠ 0 .
= 0.
所以圆的方程为 − 3
2
+ 2 = 2.
4−3
2
+ 1−0
2
= 2.
(方法二)设圆的方程为 −
2
+ −
2
= 2 > 0 .
因为点 4,1 , 2,1 在圆上,
4−
所以൝
2−
又因为
−1
−2
2
+ 1−
2
+ 1−
2
2
= 2,
= 2.
= −1,解得 = 3, = 0, = 2.
2
+ +
2
= 16.由
4−
2
+ 2 = 16,解得 = 0或 = 4.故所求圆的标准方程为 2 + 2 = 16或
−4
2
+ +4
2
= 16.故填 2 + 2 = 16或 − 4
2
+ +4
2
= 16.
(
(2)过点 4,1 的圆与直线 − − 1 = 0相切于点 2,1 ,则圆的方程为_______
2

高考数学复习考点知识讲解课件44 直线与圆 圆与圆的位置关系

高考数学复习考点知识讲解课件44 直线与圆 圆与圆的位置关系

— 12 —
(新教材) 高三总复习•数学
— 返回 —
5.(教材P98T3改编)已知直线l:y=k(x-2)被圆C:x2+y2-2x-4y=0截得的弦长的范 围是(0, 10),则k的取值范围是____-__13_,__12__∪__12_,__3______.
[解析] 圆C的标准方程为(x-1)2+(y-2)2=5,直线l过定点(2,0),且点(2,0)在圆C
— 6—
(新教材) 高三总复习•数学
— 返回 —
2.直线被圆截得的弦长的求法 (1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|= 2 r2-d2. (2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程 代入圆的方程中,消去y,得关于x的一元二次方程,求出xM+xN和xM·xN,则|MN|= 1+k2· xM+xN2-4xM·xN. 3.两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(新教材) 高三总复习•数学
— 返回 —
(2)∵(3-1)2+(1-2)2=5>4,
∴点M在圆C外部.
当过点M的直线斜率不存在时,直线方程为x=3,即x-3=0.
又点C(1,2)到直线x-3=0的距离d=3-1=2=r,
即此时满足题意,所以直线x=3是圆的切线;
当切线的斜率存在时,设切线方程为y-1=k(x-3),即kx-y+1-3k=0,
核心考点突破
02
(新教材) 高三总复习•数学
— 返回 —
考点一 直线与圆的位置关系的判断——自主练透
对点训练
1.(2022·广东茂名一模)过三点A(0,0),B(0,2),C(2,0)的圆M与直线l:kx-y+2-2k

2025高考数学一轮复习-2.1.2-圆的一般方程【课件】

2025高考数学一轮复习-2.1.2-圆的一般方程【课件】

[跟进训练] 2.已知圆 C:x2+y2+Dx+Ey+3=0,圆心在直线 x+y-1=0 上,且圆心在第二象限,半径长为 2,求圆的一般方程. [解] 圆心 C-D2 ,-E2, ∵圆心在直线 x+y-1=0 上, ∴-D2 -E2-1=0, 即 D+E=-2.①
又∵半径长 r= D2+2E2-12= 2, ∴D2+E2=20.② 由①②可得DE==-2,4 或ED==2-. 4, 又∵圆心在第二象限,∴-D2 <0,即 D>0. 则DE==-2,4. 故圆的一般方程为 x2+y2+2x-4y+3=0.
+Ey0+F>0.
()
[解析] (1)正确.圆的方程都能写成一个二元二次方程. (2)正确.圆的一般方程和标准方程是可以互化的. (3)错误.当 a2+(2a)2-4(2a2+a-1)>0,即-2<a<23时才表示圆. (4) 正 确 . 因 为 点 M(x0 , y0) 在 圆 外 , 所 以 x0+D2 2 + y0+E2 2 >D2+E42-4F,即 x20+y20+Dx0+Ey0+F>0. [答案] (1)√ (2)√ (3)× (4)√
方程
条件
图形
D2+E2-4F<0
不表示任何图形
x2+y2+ Dx+Ey+
F=0
D2+E2-4F=0 D2+E2-4F>0
表示一个点-D2 ,-E2



-D2 ,-E2





1 2
D2+E2-4F为半径的圆
么?
方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的条件是什
[提示] A=C≠0,B=0 且 D2+E2-4F>0.
(2)圆心坐标和半径. [解] (2)将方程 x2+y2+2mx-2y+m2+5m=0 写成标准方程为(x +m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径 r= 1-5m.

2025年高考数学总复习课件64第八章第四节直线与圆、圆与圆的位置关系

2025年高考数学总复习课件64第八章第四节直线与圆、圆与圆的位置关系
有|a|=4+1=5,所以a=±5;当两圆内切时,有|a|=4-1=3,所以a=±3.
第四节 直线与圆、圆与圆的位置关系
必备知识 落实“四基”
核心考点 提升“四能”
核心回扣
圆与圆的位置关系(⊙O1,⊙O2的半径分别为r1,r2,d=|O1O2|)
位置关系
图形
量的关系
课时质量评价
外离
__d_>_r_1_+__r_2 __
圆心分别为M(1,3),N(5,6),半径分别为 11和 61-m. ①当两圆外切时, 5-1 2+ 6-3 2= 11+ 61-m,解得m=25+10 11.
第四节 直线与圆、圆与圆的位置关系
必备知识 落实“四基”
②m取何值时两圆内切,此时公切线方程是什么? 解:(方法一:作差法)
核心考点 提升“四能”
第四节 直线与圆、圆与圆的位置关系
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
应用1 圆Q:x2+y2-4x=0在点P 1, 3 处的切线方程为( )
A.x+ 3y-2=0
B.x+ 3y-4=0
C.x- 3y+4=0
√D.x- 3y+2=0
D 解析:圆Q的标准方程为(x-2)2+y2=4.因为P 1, 3 在圆Q上,所以所求
第四节 直线与圆、圆与圆的位置关系
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
2.(教材改编题)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )
A.内切 C.外切
√B.相交
D.相离
B 解析:两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=

高考数学(文通用)一轮复习课件:第八章第3讲圆的方程

高考数学(文通用)一轮复习课件:第八章第3讲圆的方程

第3讲第八章平面解析几何圆的方程教材回顾▼夯实基础1.圆的定义及方程平面内与定点的距离等于定长的点的集合(轨迹)课本温故追根求源标准方程(x —a)2+(y —〃)2=以0>0)心:(…),半径:丄_____一般方程x2+j2+£>x+Ey+F=0(D2+E2-4F>0)111半径:|\/z>2+E2-4F心:2•点与圆的位置关系点M(x0,旳)与圆(x—af+(y—b)2=r2的位置关系: (1)若旳)在圆外,贝l|(x0—a)2+(yo—^)2(2)若旳)在圆上,贝!|(xo-a)2+(y o-^)2(3)若为)在圆内,贝!Kx0-«)2+(y0-^)2―\,1.辨明两个易误点⑴求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.(2)对于方程X2+J2+D X+£^+F=0表示圆时易忽视Z)2+ 炉一4尸>0这一条件.2.求解有关圆的问题的转化路径(1)注意二元二次方程表示圆的充要条件,善于利用切割线定理、垂径定理等平面中动点到定点、定直线的距离转化为圆心到它们的距离.(2)在圆中,注意利用半径、半弦长及弦心距组成的直角三角形.双基自测,1•圆心在丿轴上,半径为1,且过点(1,2)的圆的方程为(A ) A. x 2+(y-2)2=l B. x 2+(y+2)2=l C. (x-1)2+ (y~3)2= 1D. x 2+(y-3)2= 1\ (0—1) 2+ (b_2) —I,解得b=2,故圆的方程为x + (y —2)2=1.2.方程^2+j 2+ 4wx —2j + 5w=0(B ) (0 , b ),则由题意知,1A•一 svl4r 1C. m<rD. m>l解析:S(W+4-4XSw>0,得m>l.43.圆心在丿轴上且经过点(3, 1)的方程是(B )A. X2+J2+10J=0B. x2+/-10y = 0C. x2+j2+10x=0 D・ x2+j2—10x=0所以9 +(1—方)2=方「解得方=5.解析:设圆心为(0,b)9半径为八Jl!| r= \b\9x2+(y —bf=b)因为点(3, 1)所以圆的方程为x2+j2—10y=0.4.点(1, 1)在圆(x-a)2+(y+a)2=4内,则实数日的取值范围思’J .解析:因为点(1, 1)在圆的内部,所以(1-a)2+(1+a)2<4, 所以一1<a<1.5.(必修2P124习题4.1 A组T4改编)圆C的圆心在x轴上, 并且过点4(-1, 1)和B(1, 3),则圆C的方程为(X—2)2+j2=10解析:设圆心坐标为C(a, 0),因为点A(-l, 1)和B(l, 3)在圆C所以IC4I= ICBI,即7(a+1)彳+1=7 (a—l) 解得a=2f所以圆心为C(2, 0), 半径IC4I=〈(2+1) 2+1=莎,所以圆C的方程为(X-2)2+/=10.典例剖析▼考点突破*考点一求圆的方程(1)经过卩(一2, 4)、0(3, 一1)两点,并且在兀轴上截得的弦 长等于6;(2)圆心在直线j=-4x±,且与直线Z : x+y-l=0相切于 点 P(3, -2).[解]⑴设圆的方程为X 2+J 2+D X +E J +F=0, 将P 、0点的坐标名师导悟以例说法根据下列条件,求圆的方程:分别代入得2D-4E-F=20,①3D-E+F=-1Q.②又令J=O,得x2+Z)x+F=0e③设帀,兀2是方程③的两根, 由I X!-X2I=6,有Q2_4F=36,④由①②④解得D=—2, E=—4, F=_8 或D = _6, E= —,F=0・故所求x2+j2—2x—4y—8=0或x2+j2—6x—8j=0.(2站^沿^啟»1窘)2+Q—y o )2H >{yoH— 4X0》(3—XO )2+(—2—YO )2H?-IF +y o —一一—— 刍J求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径, 进而写出方程. (2)待定系数法:①若已知条件与(冷方)和半径/有关,则设圆的标准方 程,依据已知条件列出关于“,"厂的方程组,从而求出“,b,厂的值;②若已知条件没有明确给出般方 程,依据已知条件列出关于D, E, F 的方程组,进而求岀D, E, F的值.跟踪训练(2)若不同的四点 4(5, 0)、5(-1, 0)、C(-3, 3)、D(a 9 3) 共圆,求“的值.1.(1)已知圆心为C4(0,-6), 5(1, -5),且|心在直线%兀一丿+1=0上, ;解:(1)法一:设圆的方程为x2+j2+Dx+ Ey+F= 0(^+E2—4F>0),则圆心坐标为(一£,—「(一6) 2_6E+F=0,由题意可得* I2 + (-5) 2+Z>-5E+F=0,— 2=0,D+E-IO=O,— 2=0,解得*二代入求得i 所以圆的方程为x2+j2+ 6x4- 4j—12= 0,标准方程为(x+ 3)2+ (y+ 2)2= 25.丄11 y+y= — 刁'即 x+y+5=0・法二:因为 A(0, —6), B(l, —5), 所以线段4B 的中点D 的坐标为g ,—因此线段AB 的垂直平分线I 的方程是直线AB 的斜率k AB = —5— ( — 6) iPox+j+5=0,圆心C的坐标是方程组, 的解,lx-j+l=Ox=— 3,解得宀b=_2,所以圆心C的坐标是(一3, -2).圆的半径长r= IACI =yj (0+3) 2+ (-6+2) 2= 5,所以,心为C的的标准方程是(x+ 3)2+ (y+ 2f= 25.3(2)设过A 、B. C 三点的圆的方程为x 2 +J 2+D X + Ey+F= 0,分别代入A 、B. C 三点坐标,得25+5D+F=0,< l-D+F=0,5>+9-3D+3E+F=0,F=-5.解得D=-4,所以A、B、C三点确定的圆的方程为x2+j2-4x-p-5 因为ZX 偽3)也在此圆上, 所以/+9—4«— 25—5=0.所以a=7或a= —3(舍去). 即a的值为7.考点二与圆有关的最值问题(高频考点)与圆有关的最值问题,是高考命题的热点,多以选择题、填空题的形式呈现,试题难度不大,多为容易题、中档题.高考中对与圆有关的最值问题的考查主要有以下四个命题角度:(1)半径、面积型最值;⑵斜率型最值;⑶截距型最值;⑷距离型最值.鯉[2 ( 1)(2014-高考江西卷)在平面直角坐标系中分别是兀轴和V轴上的动点,若以AB为直径的圆C与直线2x+y_4= 0相切,则圆C面积的最小值为(A )A 4 口3A•一兀B•一Ji5 4C. (6—2质)兀D.討(2)(2016-河南省豫西五校联考)已知M为圆C:X2+J2-4X 一14丿+45=0上任意一点,且点2(-2, 3).①求IM0的最大值和最小值;②若M(〃,砒,求三|的最大值和最小值.加十2[解]⑴选A.因为ZAOB=90°,所以点O在圆C上. 设直线2x+y-4=0与圆C相切于点D,则点C与点O间的距离等于它到直线2x+j-4=0的距离,所以点C在以O为焦点,以直线2x+j-4=0为准线的抛物线上,所以当且仅当O, C, D共线时,圆的直径最小为IODI.4 2=质,所以圆C的最小半径为恭,所以圆C面积的最小值为兀1114 亏•IIIf 12X0+0-41 又如=—^―(2)由圆C: x2+j2— 4x— 14y+ 45= 0,可得(x-2)2+(y-7)2 =8,所以圆心C的坐标为(2, 7),半径①I0C1= 7 (2+2) ?+ (7-3) j血所以IMei max= 40+20 = 60, IM0lmin= 40 —2\{2 = 2\[i.②可知表示直线MQ的斜率, 加十2设直线MQ的方程为丿一3=饥兀+2),YI — 3即 kx-y-V 2k-\- 3= 0,则—;—=k.m + 2 由直线M0与圆C 有交点,可得 2—书WEW2+V5,所以所以加+ 2的最大值为2+书, 1小值为2—书.与圆有关的最值问题的常见解法(1)形如“=巳形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题.(3)形如(兀一a)2+® —耐?形式的最值问题,可转化为动点到定点的距离的平方的最值问题.通关练习2•已知实数x, y满足方程x2+j2— 4x+1= 0.⑴求j-x的j 【大值和最小值;(2)求x2+j2的最大值和最小值.解:原方程可化为(X—2)2+J2=3,表示以(2, 0)为圆心,\[3为半径的圆.(1)丿一兀可看作是直线丿=兀+方在丿轴上的截距,当直线y= x + b与圆相切时,纵截距b取得最大值或最小值,此时号解得―朋(如图1).所以y—x的最大值为一2+心,图2(2)X 2+J 2表示圆上的一点与原点距离的平方,由平面几何知 识知,在原点和圆心连线与圆的两个交点处取得最大值和最 小值(如图2).又圆心到原点的距离为7 (2-0)牛(0一0) 2= 2, 所以x 2+j 2的最大值是(2+书)2=7+4\伎x 2+j 2的最小值 是(2—厉)2=7—4\月・1=1oyX2考点三与圆有关的轨迹问题已知圆X2+J2=4±一定点A(2, 0), B(l, 1)为圆内一点,P, 0为圆上的动点.(1)求线段4P中点的轨迹方程;(2)若ZPBQ=W ,求线段P0中点的轨迹方程.[解]⑴设AP 的中点为M(x, j),由中点坐标公式可知,P 点坐标为(2x-2, 2y).故线段AP 中点的轨迹方程为(x-l)2+j 2=l.⑵设 P0 的中点为 j),在 RtZ\PB0 中,I PN\ = \BN\, 设O 为坐标原点,连接ON (图略),贝!|ON 丄P0,所以IOP|2 = \ON\2+\PN\2=ION?+\BN\29 所以 x 2+j 2+(x —l)2+(y —1)2=4.故线段中点的轨迹方程为x 2+j 2—X —J —1 = 0.因为P+J 2=4±,所以(2X -2)2+(2J )2=4.求与圆有关的轨迹方程的方法直接法L直接根据题设给定的条件列出方程(组)求解的方法定义法一根据圆(或直线)的定义列方程(组)求解的方法跟踪训练 3•已知直角三角形ABC 的斜边为AB,且A(-l, 0), B(3, 0),求:(1)直角顶点C 的轨迹方程; (2)直角边BC 中点M 的轨迹方程.解:⑴法一:设顶点eg j),因为AC 丄BC,且A 、B 、C 三点不共线,所以兀H3且兀H —1・所以~Z7i =— 1,即 /+丿2— 2x — 3= 0・JL eV因此,直角顶点c 的轨迹方程为x 2-\-y 2— 2x — 3= 0(X7^3且 兀工一1).又 kac=x+1法二设AB的中点为D,由中点坐标公式得n(l, 0),由直角三角形的性质知,ICDI=|lABI = 2,由圆的定义知,动点C的轨迹是以D(l, 0)为圆心,2为半径长的圆(由于4B, C三点不共线,所以应除去与兀轴的交点). 所以直角顶点C的轨迹方程为(x—1)2+/= 4(xH 3且xH —1).⑵设点M(x, j),点C(x 0, jo),因为B(3, 0), M 是线段 BC 的中点,由中点坐标公式得兀=迴兰3工3且xHl), y由(1)知,点C 在圆(x-l)2+/= 4(x^3且兀工一1)上运动,将兀o=2x —3, yo=2y 代入该方程得(2x —4『+(2刃2=4,即 (X -2)2+J 2=1(X #:3且兀Hl).因此动点M 的轨迹方程为(兀 —2)2+J 2= 1(兀工 3 且 x#= 1).=Jo + O—2 ,于是有 x 0 = 2x —3, y 0=2y.拓展升华触类旁通考题溯源一一求圆的方程(2015•高考全国卷II)己知三点4(1, 0),B(0,C(2,厉),则外接圆的圆心到原点的距离为(B.长为2的正三角形,其外接圆的圆心为 [解析]法一:设圆的方程为X 2+J 2+Z)X +£J +F=0, ri+D+F=0, 则5 3+\^E+F=0, 解得 D= — 2, E=_誓法二 在平面直角坐标系兀Oy 中画出△4BG 易知△ABC 是边咼考题溯源 本题源于人教A 版必修2 P122例4 “求过三点M+3+ 2£>+ 应 + F= 0, •因此IODI =0(0, 0), Mi(l, 1), M2(4, 2)的圆的方程,并求这个圆的半径长和圆心坐标”.考题变式〔如果一个三角形的三边所在的直线方程分别为方程为闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能解析:因为三角形三边所在的直线方程分别为x+2y—5=0,y—2= 0, x+j—4= 0,所以可得三角形的三个顶点分别是(1, 2), (2, 2), (3, 1). 设三角形外接圆的方x2+j2+Dx+Ey+F= 0,贝||D+2E+F=-5,< 2D+2E+F=一& 3D+E+F=-10,D= _3, 所以\E=-1, 、F=0,所以该三角形外接圆的方程为x2+j2—3x—y= 0,闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能点击链接本部分内容讲解结束闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能。

2025高考数学一轮复习-8.3-圆的方程【课件】

2025高考数学一轮复习-8.3-圆的方程【课件】

5
5 .
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
例 1 (1)(多选)已知圆 C 被 x 轴分成两部分的弧长之比为 1∶2,且被 y 轴截得的弦
长为 4,当圆心 C 到直线 x+ 5y=0 的距离最小时,圆 C 的方程为( AB )
A.(x+4)2+(y- 5)2=20
B.(x-4)2+(y+ 5)2=20
B( )
5 A. 5
25 B. 5
35 C. 5
45 D. 5
解析 由题意可知圆心在第一象限,设圆心坐标为(a,b)(a>0,b>0).
∵圆与两坐标轴均相切,∴a=b,且半径r=a,
∴圆的标准方程为(x-a)2+(y-a)2=a2.
∵点(2,1)在圆上,∴(2-a)2+(1-a)2=a2,
∴a2-6a+5=0,解得a=1或a=5.
1.圆心在坐标原点,半径为r的圆的方程为x2+y2=r2. 2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2) =0.
1.思考辨析(在括号内打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( √ ) (2)方程x2+y2=a2表示半径为a的圆.( × ) (3)方程x2+y2+4mx-2y+5m=0表示圆.( × )
A.a<-2
B.-32<a<0
C.-2<a<0
D.-2<a<23
解析 由方程表示圆的条件得a2+(2a)2-4(2a2+a-1)>0,
即 3a2+4ห้องสมุดไป่ตู้-4<0,∴-2<a<32.
3.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( C )

高考数学(理)复习第55讲圆的方程

高考数学(理)复习第55讲圆的方程
1-a2+0-a2=r2 a=2 得 , 2 2 2 ,解得 2 3-x-2)2+(y-2)2=5.
(方法二)设所求圆的一般方程为 x2+y2+Dx+Ex+F=0, 则由条件得
12+02+D+0+F=0 32+02+3D+0+F=0 D E - =- 2 2 D=-4 ,解得E=-4 F=3
解析:设所求方程为 x2+y2+Dx+Ey+F=0,
22+-12+2D-E+F=0 2 2 则5 +0 +5D+0+F=0 2 2 6 + 1 +6D+E+F=0 D=-4 ,解得E=-8 F=-5

故所求圆的一般方程为 x2+y2-4x-8y-5=0.
3.圆 x2-2x+y2-3=0 的圆心到直线 x- 3y-3=0 的距离为 .
(2)设圆 C 的方程为(x2+y2-4x+2y)+λ(x2+y2-2y-4) =0,即(1+λ)x2+(1+λ)y2-4x+(2-2λ)y-4λ=0,其中 λ≠ -1. λ-1 2 由圆 C( , )在 2x+4y=1 上,得 1+λ 1+λ λ-1 2 1 2· +4· =1,求得 λ= . 3 1+λ 1+λ 从而可得圆 C 的方程为 x2+y2-3x+y-1=0.
(3) x2+y2+2x-4y+5即为 [x--1]2+y-22, 可 视为点(x,y)到定点(-1,2)的距离的最值,可转化为圆心 (2,-3)到定点(-1,2)的距离与半径的和或差.又因为圆 心到定点 (- 1,2)的距离为 34,所以 x2+y2+2x-4y+5 的最大值为 34+1,最小值为 34-1.
【拓展演练 2】 已知实数 x,y 满足方程 x2+y2-4x+1=0. (1)求 y-x 的最大值和最小值; (2)求 x2+y2 的最大值和最小值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时 圆
• 要点·疑点·考点 •课 前 热 身 • 能力·思维·方法 • 延伸·拓展 •误 解 分 析
要点·疑点·考点
1.定义 平面内与定点距离等于定长的点的集合(或轨迹)是圆.
2.标准方程 设圆心C(a,b),半径为r,则标准方程为(x-a)2+(y-b)2=r2.当圆心在原点时,圆的 方程为x2+y2=r2.
y
b
rsinθ
返回
课前热身
1.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点为A、B,则△ABP的
外接圆方程是(
)
(A)(x-4)2+(y-2)2=1
(B)x2+(y-2)2=4
D
(C)(x+2)2+(y+1)2=1
(D)(x-2)2+(y-1)2=5
2.若点A、B分别在圆x2+y2=a,x2+y2=b(a≠b)上,则
OA·OB(O为原点)的取值范围是____________ -
ab,ab
3.若过点(4,2)总可以作两条直线与圆(x-3m)2+(y-4m)2=5(m+4)相切,则m
的范围是(
)
D
(A) (C)
m
19 12
(B) (D)
m
0或
m
9 5
- 4 m 19
-
4
m
12 0或 m
9 5
4.方程x2+y2-2(t+3)x+2(1-4t2)y+16t2+9=0(t∈R)表示圆方程,则t的取值范围
【解题回顾】(1)本题可以理解成在约束条件下,求 目标函数z=x+y的最值.因此可以按线性规划思想求 解.先作出可行域是一个圆,再平行移动直线x+y=0, 相切时的两切线中的较小截距即为所求.
(2)通过数形结合,本题也可求如x2+y2、 y 形式

x4
最值.
返回
延伸·拓展
4. 已知 x2+y2=z2,x,y,z,a,b∈R+. 求证:
3.一般方程 当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0叫圆的一般方程.
4.二元二次方程表示圆的充要条件 Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的方程
A=C≠0
B=0 D2+E2-4AF>0
5.圆的参数方程 设圆心C(a,b),半径为r,则参数方程为
( 为参数)
θ
x a rcosθ
是()ຫໍສະໝຸດ C(A) (C)-1 t 1 7
(B) (D)
-1 t 1
7
-1 t 1 2
1t 2
5. k∈R,直线(k+1)x-ky-1=0被圆(x-1)2+(y-1)2=4截得的弦长是(
)
(A)8
(B)C2
(C)4
(D)值与k有关
返回
能力·思维·方法
1. 求与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0截下的弦长为2√7的 圆的方程.
2.已知圆同时满足: (1)截y轴所得弦长为2; (2)被x轴分成两段圆弧,其弧长的比为3∶1; (3)圆心到直线x-2y=0的距离为55,求圆的方程.
若本题改为满足(1)(2)所有圆中,求圆心到x-2y=0的距 离最小的圆的方程,又如何求解?
3. 已知实数x,y满足x2+y2+2x-2√3y=0,求x+y的最小值.
【解题回顾】求圆的方程有两类方法:(1)几何法,通过研究圆的性质、直 线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即 用“待定系数法”求圆的方程,其一般步骤是: ①根据题意选择方程的形式,标准形式或一般形式;②利用条件列出关于a、 b、r或D、E、F的方程组;③解出a、b、r或D、E、F,代入标准方程或一 般式方程.
ax by z a2 b2
【解题回顾】本题也可用分析法求证,即要证原不等式成立,即证 (ax+by)2≤(a2+b2)(x2+y2).
5.在△ABC中,已知
cosB a ,3P是,内b切 10
圆上一点,求PA2+PB2+PC2的c最o大sA值与最b小值.4
【 解 题 回 顾 】① 对 于 圆 上 的 动 点 , 常 常 利 用 圆 的 参 数 方 程 , 设 其 坐 标 为 (a+rcosθ,b+rsinθ);②在求某一变量的最值时,常构造一个目标函数加以 解决,如本题中,PA2+PB2+PC2=80-8sinθ,θ=∠EOP∈[0,,2π].
返回
相关文档
最新文档