2014人教A版高中数学必修四 2.1 《平面向量的实际背景及基本概念》示范教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章平面向量

本章教材分析

1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.

2.教学的最佳契机,全新的思维视角.

向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.

3.本章充分体现出新教材特点.

以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.

4.本章教学约需12课时,具体分配如下,仅供参考.

标题课时

2.1平面向量的实际背景及基本概念1课时

2.2向量的线性运算3课时

2.3平面向量的基本定理及坐标表示2课时

2.4平面向量的数量积2课时

2.5平面向量的应用举例2课时

本章复习2课时

2.1 平面向量的实际背景及基本概念

整体设计

教学分析

本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之

间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.

三维目标

1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.

2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.

3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.

重点难点

教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.

课时安排

1课时

教学过程

导入新课

思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.

图1

思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.

推进新课

新知探究

提出问题

①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?

②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?

③数量与向量的区别在哪里?

活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.

教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、

长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.

讨论结果:

①略.

②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.

③略.

提出问题

①如何表示向量?

②有向线段和线段有何区别和联系?分别可以表示向量的什么?

③长度为零的向量叫什么向量?长度为1的向量叫什么向量?

④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?

⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?

⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?

⑦数量与向量有什么区别?

⑧数学中的向量与物理中的力有什么区别?

活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB 的两个端点中,规定一个顺序,假设A 为起点、B 为终点,我们就说线段AB 具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB .起点要写在终点的前面.

已知AB ,线段AB 的长度也叫做有向线段AB 的长度,记作|AB |.有向线段包含三个要素:起点、方向、长度.

图2

知道了有向线段的起点、方向和长度,它的终点就唯一确定.

用有向线段表示向量的方法是:

1°起点是A,终点是B 的有向线段,对应的向量记作:AB . 这里要提醒学生注意AB 的方向是由点A 指向点B,点A 是向量的起点.

2°用字母a ,b ,c ,…表示.(一定要学生规范书写:印刷用黑体a ,书写用a ) 3°向量AB (或a )的大小,就是向量AB (或a )的长度(或称模),记作|AB |(或|a |).

教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比

相关文档
最新文档