年高考第一轮复习数学.抛物线

合集下载

2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解

2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解

专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .32.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( )A .1B .2C .D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x =D .2x =-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为1612.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4三、填空题13.(2018·北京·高考真题(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C :26y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,线段FA 的长度为半径的圆交C 的准线于M ,N 两点,且A ,F ,M 三点共线,则AF =______.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.16.(2021·北京·高考真题)已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______; MNF 的面积为_______.四、解答题17.(2017·北京·高考真题(理))已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.22.(2021·全国·高考真题(文))已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.2.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .故选:B4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C.D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP【详解】如图所示:.故选:B.6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x = D .2x=-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅> D .2||||||BP BQ BA ⋅>所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)Cy px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =3(4p OA OB ⋅=又(4p MA MB ⋅=-又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为16 ,联立抛物线,由2AF FB =解出A 即可求出面积最小值,即可判断D 选项.【详解】由2AF FB =得直线设直线AB 的方程为4A B x x =-.由于2AF FB =,所以22x =±,所以2124A A y x ==,直线AB 的方程为),y OA ⊥所以AOB 面积的是小值为故选:BCD.12.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4220x y ,故AB k C ,切线方程TA :的方程为1xt y -=-三、填空题13.(2018·北京·高考真题(文))已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C:26=的焦点为F,y xA为C上一点且在第一象限,以F为圆心,线段FA的长度为半径的圆交C的准线于M,N两点,且A,F,M三点共线,则AF=______.【答案】6【分析】根据圆的几何性质以及抛物线的定义即可解出.故答案为:6.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F与双曲线22221(0,0)x ya ba b-=>>的左焦点重合,若两曲线相交于M,N两点,且线段MN的中点是点F,则该双曲线的离心率等于______.M在抛物线上,所以M在双曲线上,22cb=-故答案为:16.(2021·北京·高考真题)已知抛物线24y x=的焦点为F,点M在抛物线上,MN垂直x轴与于点N.若6MF=,则点M的横坐标为_______;MNF的面积为_______.FMNS.【FMNS=故答案为:四、解答题17.(2017·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点10,2⎛⎫⎪⎝⎭作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.故A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 利用3AP PB =可得y ()22,B x y 1252x x ∴+= 3AP PB = ∴则419AB =+⋅19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.D p,过F的直线交C于20.(2022·全国·高考真题(理))设抛物线2=>的焦点为F,点(),0:2(0)C y px pMF=.M,N两点.当直线MD垂直于x轴时,3(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.)(),0F c ,的方程为x =21c=+,解得抛物线2C 的方程为24y cx =,联立24x c y cx=⎧⎨=⎩,43CD =即223c ac +01e <<,解得(2)[方法一由椭圆的第二定义知所以12-a22.(2021·全国·高考真题(文))已知抛物线2=>的焦点F到准线的距离为2.C y px p:2(0)(1)求C的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. ,则(99PQ QF ==-)09,10y ,由P 在抛物线上可得Q 的轨迹方程为的斜率0025OQ y k x ==(1,0),9=PQ QF ,所以29(1)9x y =-=-,所以的斜率为244=y x t 方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.。

2023年高考数学一轮复习:抛物线

2023年高考数学一轮复习:抛物线

第八节 抛 物 线2023年高考数学总复习内容索引必备知识·自主学习核心考点·精准研析核心素养测评【教材·知识梳理】1.抛物线的定义(1)M为平面内的动点,F为平面内的定点,l 为平面内的定直线,d为M到l 的距离,满足下列两个条件的点M的轨迹为抛物线:①______;②_____.(2)当F∈l 时,点M的轨迹为过__________________.2.抛物线中参数p的几何意义:_________________.|MF|=d 点F且与l 垂直的直线焦点到准线的距离F ∉l3.标准方程的形式:(1)焦点在x轴正半轴:___________;(2)焦点在x轴负半轴:____________;(3)焦点在y轴正半轴:___________;(4)焦点在y轴负半轴:____________.4.标准位置抛物线的对称性:对称轴为焦点所在坐标轴.y 2=2px(p>0)y 2=-2px(p>0)x 2=2py(p>0)x 2=-2py(p>0)【易错点索引】序号易错警示典题索引1不会利用定义转化考点一、T1,22联想不到利用焦点弦的有关结论求解考点二、T33运算不过关导致出错考点三、角度1【教材·基础自测】1.(选修2-1P69例4改编)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( )A.9B.8C.7D.6【解析】选B.抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,根据题意可得|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.2.(选修2-1P73A组T3改编)已知抛物线y2=2px(p>0)的焦点为F,P为抛物线上任意一点,则以PF为直径的圆C与y轴( )A.相交B.相切C.相离D.以上都不对。

抛物线+讲义 高三数学一轮复习

抛物线+讲义 高三数学一轮复习

8.7.1 抛物线一、课标要求1.了解抛物线的定义几何图形和标准方程,以及它的简单几何性质.2.通过对抛物线的学习,进一步体会数形结合的思想.二、知识梳理1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离_____的点的轨迹.(2)焦点:________叫做抛物线的焦点.(3)准线:________叫做抛物线的准线.2.抛物线的标准方程和几何性质标准方程y2=2px(p>0)y2=−2px(p>0)x2=2py(p>0)x2=−2py(p>0)图形顶点对称轴焦点离心率准线方程范围开口方向三、典例探究例1 已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p= ( )A. 2B. 3C. 6D. 9变式:已知抛物线y2=8x在第一象限内的一点A到其焦点的距离为8,则点A的纵坐标为( )A. 2√3B. 6C. 4D. 4√3例2设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),则|PB|+|PF|的最小值为 ______.变式:设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),求点P到A(−1,1)的距离与点P到直线x=−1的距离之和的最小值.四、课堂练习1、平面中到点A(1,0)和直线x=−1的距离相等的点的轨迹方程为( )A. y2=2xB. y2=4xC. x2=2yD. x2=4y2、若抛物线x2=my上一点(t,2)到其焦点的距离等于4,则m= ( )A. 8B. 4C. 2D. 123、过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|等于( )A. 9B. 8C. 7D. 64、已知△ABC的三个顶点都在抛物线T:y2=2px(p>0)上,C(2,−8),且抛物线的焦点F为△ABC的重心,则|AF|+|BF|= ( )A. 40B. 38C. 36D. 345、若F为抛物线C:y2=4x的焦点,点M(m,4)在C上,直线MF交C 的准线于点N,则|FN|= ( )A. 54B. 103C. 5D. 126、设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|= ( )A.2B. 2√2C. 3D. 3√2。

高考数学第一轮复习:《抛物线》

高考数学第一轮复习:《抛物线》

高考数学第一轮复习:《抛物线》最新考纲1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合思想.3.了解抛物线的简单应用.【教材导读】1.若抛物线定义中定点F 在定直线l 上时,动点的轨迹是什么图形?提示:当定点F 在定直线l 上时,动点的轨迹是过点F 且与直线l 垂直的直线. 2.抛物线的标准方程中p 的几何意义是什么? 提示:p 的几何意义是焦点到准线的距离.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程及其简单几何性质标准 方程 y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形顶点 (0,0)对称轴 x 轴y 轴焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2 离心率 e =1准线方程x =-p 2x =p 2y =-p2y =p 2【重要结论】抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2 α(α为弦AB 的倾斜角). (3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p .1.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) (A)(-1,0) (B)(1,0) (C)(0,-1)(D)(0,1)B 解析:由准线过已知点可求出p 的值,进而可求出抛物线的焦点坐标.抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).2.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) (A)2 (B)12 (C)14(D)18D 解析:本题考查抛物线的定义.抛物线y =2x 2上的点到焦点的距离等于该点到准线的距离,所以最小距离是p 2,又2p =12,则p 2=18,即|PF |的最小值为18,故选D.3.已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( ) (A)2 (B)12 (C)32(D)52C 解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4, 又p =1,所以x 1+x 2=3, 所以点C 的横坐标是x 1+x 22=32.4.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.解析:依题意知F 坐标为p2,0, 所以B 的坐标为p4,1代入抛物线方程得 p 22=1,解得p =2,所以抛物线准线方程为x =-22,所以点B 到抛物线准线的距离为24+22=34 2. 答案:34 25.直线l 过抛物线x 2=2py (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是6,AB 的中点到x 轴的距离是1,则此抛物线方程是________.解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=y 1+y 2+p =2+p =6,∴p =4.即抛物线方程为x 2=8y .答案:x 2=8y考点一 抛物线的定义及其应用(1)长为2的线段AB 的两个端点在抛物线y 2=x 上滑动,则线段AB 的中点M到y 轴距离的最小值是________.(2)已知点P 是抛物线y 2=4x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当|a |>4时,|P A |+|PM |的最小值是________.(3)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:(1)如图,AB=2,要使AB的中点M到y轴的距离最小,则|BG|+|AE|的值最小,即|AF|+|BF|的值最小.在△ABF中,|AF|+|BF|≥|AB|,当A,B,F三点共线时取等号,即当线段AB过焦点F时,AB的中点M到y轴的距离最小,最小值为|AE|+|BG|2-14=1-14=34.(2)将x=4代入抛物线的方程y2=4x,得y=±4.又|a|>4,所以点A在抛物线的外部.由题意知F(1,0),设抛物线上点P到准线l:x=-1的距离为|PN|,由定义知,|P A|+|PM|=|P A|+|PN|-1=|P A|+|PF|-1.画出简图(图略),易知当A,P,F三点共线时,|P A|+|PF|取得最小值,此时|P A|+|PM|也最小,最小值为|AF|-1=9+a2-1.(3)由题意知F(1,0),|AC|+|BD|=|AF|+|FB|-2=|AB|-2.依据抛物线的定义知,当|AB为通径,即|AB|=2p=4时,|AB|的值最小,所以|AC|+|BD|的最小值为2.答案:(1)34(2)9+a2-1(3)2【反思归纳】利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线.(2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的相互转化.【即时训练】(1)已知抛物线方程为y2=4x,直线l的方程为x-y+4=0,在抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值是()(A)522+2 (B)522+1 (C)522-2(D)522-1(2)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )(A)(0,0) (B)⎝ ⎛⎭⎪⎫12,1 (C)(1,2)(D)(2,2)解析:(1)如图,点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线x -y +4=0的垂线,此时d 1+d 2=|PF |+d 2-1最小.因为F (0,1),则|PF |+d 2=|1-0+4|1+1=522,则d 1+d 2的最小值为522-1.(2)过M 点作左准线的垂线,垂足是N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).故选D.答案:(1)D (2)D考点二 抛物线的标准方程及性质(1)已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )(A)±3 (B)±1 (C)±34(D)±33(2)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( )(A)133 (B)143 (C)5(D)163(3)过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则|AF |=( )(A)1 (B)2 (C)3(D)4解析:(1)设M (x 0,y 0),易知焦点为F ⎝ ⎛⎭⎪⎫p 2,0,由抛物线的定义得|MF |=x 0+p 2=2p ,所以x 0=32p ,故y 20=2p ×32p =3p 2,解得y 0=±3p ,故直线MF 的斜率k =±3p 32p -p 2=±3,选A. (2)∵p =2,∴|AB |=2+103=163.故选D. (3)∵x 2=2y ,∴y =x 22,∴y ′=x ,∵抛物线C 在点B 处的切线斜率为1, ∴B ⎝ ⎛⎭⎪⎫1,12 ∵抛物线x 2=2y 的焦点F 的坐标为⎝ ⎛⎭⎪⎫0,12,∴直线l 的方程为y =12, ∴|AF |=|BF |=1.故选A. 答案:(1)A (2)D (3)A【反思归纳】 (1)抛物线几何性质的确定由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离;从而进一步确定抛物线的焦点坐标及准线方程.(2)求抛物线的标准方程的方法①因为抛物线方程有四种上标准形式,因此求抛物线方程时,需先定位,再定量.②因为未知数只有p,所以只需利用待定系数法确定p值即可.提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mx 或x2=my(m≠0).【即时训练】(1)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()(A)y2=3 2x(B)y2=3x(C)y2=9 2x(D)y2=9x(2)若双曲线C:2x2-y2=m(m>0)与抛物线y2=16x的准线交于A,B两点,且|AB|=43,则m的值是________.答案:(1)B(2)20考点三直线与抛物线的位置关系考查角度1:直线与抛物线的交点问题.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)作直线l交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y 1y 2=-8,求抛物线C 的方程;(2)若直线AF 与x 轴不垂直,直线AF 交抛物线C 于另一点B ,直线BG 交抛物线C 于另一点N .求证:直线AB 与直线MN 斜率之比为定值.解:(1)设直线AM 的方程为x =my +p ,代入y 2=2px 得y 2-2mpy -2p 2=0, 则y 1y 2=-2p 2=-8,得p =2. ∴抛物线C 的方程为y 2=4x . (2)证明:设B (x 3,y 3),N (x 4,y 4). 由(1)可知y 3y 4=-2p 2,y 1y 3=-p 2. 又直线AB 的斜率k AB =y 3-y 1x 3-x 1=2p y 1+y 3,直线MN 的斜率k MN =y 4-y 2x 4-x 2=2py 2+y 4,∴k AB k MN =y 2+y 4y 1+y 3=-2p 2y 1+-2p 2y 3y 1+y 3=-2p 2y 1y 3(y 1+y 3)y 1+y 3=2.故直线AB 与直线MN 斜率之比为定值. 【反思归纳】 直线与抛物线位置关系的判断直线y =kx +m (m ≠0)或x =my +n 与抛物线y 2=2px (p >0)联立方程组,消去y ,得到k 2x 2+2(mk -p )x +m 2=0的形式.当k =0时,直线和抛物线相交,且与抛物线的对称轴平行,此时与抛物线只有一个交点;当k ≠0时,设其判别式为Δ,(1)相交:Δ>0⇔直线与抛物线有两个交点; (2)相切:Δ=0⇔直线与抛物线有一个交点; (3)相离:Δ<0⇔直线与抛物线没有交点.提醒:过抛物线外一点总有三条直线和抛物线有且只有一个公共点;两条切线和一条平行于对称轴的直线.考查角度2:直线与抛物线的相交弦问题设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上,△ABF 是边长为4的等边三角形.(1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线与抛物线C 交于Q 、R 两点时,1|NQ |2+1|NR |2为定值?若存在,求出点N 的坐标,若不存在,请说明理由.解析:(1)由题知,|AF |=|AB |,则AB ⊥l .设准线与x 轴交于点D ,则AB ∥DF .又△ABF 是边长为4的等边三角形,∠ABF =60°,所以∠BFD =60°,|DF |=|BF |·cos ∠BFD =4×12=2,即p=2.(2)设点N (t,0),由题意知直线的斜率不为零, 设直线的方程为x =my +t ,点Q (x 1,y 1),R (x 2,y 2),由⎩⎪⎨⎪⎧x =my +t y 2=4x 得,y 2-4my -4t =0,则Δ=16m 2+16t >0,y 1+y 2=4m ,y 1·y 2=-4t .又|NQ |2=(x 1-t )2+y 21=(my 1+t -t )2+y 21=(1+m 2)y 21,同理可得|NR |2=(1+m 2)y 22,则有1|NQ |2+1|NR |2=1(1+m 2)y 21+1(1+m 2)y 22=y 21+y 22(1+m 2)y 21y 22=(y 1+y 2)2-2y 1y 2(1+m 2)y 21y 22=16m 2+8t 16(1+m 2)t 2=2m 2+t (2m 2+2)t2. 若1|NQ |2+1|NR |2为定值,则t =2,此时点N (2,0)为定点. 又当t =2,m ∈R 时,Δ>0,所以,存在点N (2,0),当过点N 的直线与抛物线C 交于Q 、R 两点时,1|NQ |2+1|NR |2为定值14.【反思归纳】 直线与抛物线相交问题处理规律(1)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时都要注意利用根与系数的关系,避免求交点坐标的复杂运算.解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.(2)对于直线与抛物线相交、相切、中点弦、焦点弦问题,以及定值、存在性问题的处理,最好是作出草图,由图象结合几何性质做出解答.并注意“设而不求”“整体代入”“点差法”的灵活应用.抛物线的综合问题已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.审题点拨关键点 所获信息 抛物线y 2=4x 可求焦点坐标 ∠AMB =90°k MA ·k MB =-1解题突破:把∠AMB =90°转化为斜率之积为-1.解析:由题意知,抛物线的焦点坐标为F (1,0),设直线方程为y =k (x -1),直线方程与y 2=4x 联立,消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,x 1+x 2=2k 2+4k 2. 由M (-1,1),得AM→=(-1-x 1,1-y 1),BM →=(-1-x 2,1-y 2).由∠AMB =90°,得AM →·BM →=0,∴ (x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0, ∴ x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0. 又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1], y 1+y 2=k (x 1+x 2-2),∴ 1+2k 2+4k 2+1+k 2⎝ ⎛⎭⎪⎫1-2k 2+4k 2+1-k ⎝ ⎛⎭⎪⎫2k 2+4k 2-2+1=0,整理得4k 2-4k +1=0,解得k =2.答案:2命题意图:本题重点考查直线与抛物线的应用,考查考生的运算能力.课时作业基础对点练(时间:30分钟)1.若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )(A)12 (B)1 (C)32(D)2B 解析:设P (x p ,y p ),由题可得抛物线焦点为F (1,0),准线方程为x =-1,又点P 到焦点F 的距离为2,∴由定义知点P 到准线的距离为2,∴x P +1=2,∴x P =1,代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.故选B.2.若抛物线y =ax 2的焦点坐标是(0,1),则a =( ) (A)1 (B)14 (C)2(D)12B 解析:因为抛物线方程为x 2=1a y ,所以其焦点坐标为⎝ ⎛⎭⎪⎫0,14a ,则有14a =1,a =14,故选B.3.已知P 为抛物线y 2=-6x 上一个动点,Q 为圆x 2+(y -6)2=14上一个动点,那么点P 到点Q 的距离与点P 到y 轴距离之和的最小值是( )(A)317-72(B)317-42 (C)317-12(D)317+12B 解析:结合抛物线的定义知,P 到y 轴的距离为P 到焦点的距离减去32,则所求最小值为抛物线的焦点到圆心的距离减去半径及32,即62+⎝ ⎛⎭⎪⎫322-12-32=317-42,故选B.4.若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为43,则该抛物线方程是()(A)y2=233x(B)y2=3x(C)y2=23x(D)y2=3 3xA解析:根据对称性,AB⊥x轴,由于正三角形的面积是43,故34AB2=43,故AB=4,正三角形的高为23,故可以设点A的坐标为(23,2),代入抛物线方程得4=43p,解得p=33,故所求的抛物线方程为y2=233x.故选A.5.已知直线l1:4x-3y+7=0和直线l2:x=-2,抛物线y2=8x上一动点P到直线l1和l2的距离之和的最小值是()(A) 5 (B)2 5(C)3 (D)3 5C解析:如图所示,过点P作PH1⊥l1,PH2⊥l2,连接PF,H1F,过F作FM⊥l1,交l1于M,由抛物线方程为y2=8x,得l2为其准线,焦点为F(2,0),由抛物线的定义可知|PH1|+|PH2|=|PH1|+|PF|≥|FH1|≥|FM|=|4×2-0+7|42+32=3,故选C.6.已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A ,B 两点,如果OA →·OB→=-12,那么抛物线C 的方程为( )(A)x 2=8y (B)x 2=4y (C)y 2=8x(D)y 2=4xC 解析:由题意,设抛物线方程为y 2=2px (p >0), 直线方程为x =my +p2,联立⎩⎨⎧y 2=2px ,x =my +p2,消去x 得y 2-2pmy -p 2=0, 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=my 1+p 2my 2+p 2+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12⇒p =4,即抛物线C 的方程为y 2=8x .7.过抛物线y =14x 2的焦点F 作一条倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |=________.解析:依题意,设点A (x 1,y 1),B (x 2,y 2),题中的抛物线x 2=4y 的焦点坐标是F (0,1),直线AB 的方程为y =33x +1,即x =3(y -1).由⎩⎪⎨⎪⎧x 2=4y ,x =3(y -1),消去x 得3(y -1)2=4y ,即3y 2-10y +3=0,y 1+y 2=103,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=y 1+y 2+2=163.答案:1638.抛物线y 2=2px (p >0)的焦点为F ,AB 为抛物线上的两点,以AB 为直径的圆过点F ,过AB 的中点M 作抛物线的准线的垂线MN ,垂足为N ,则|MN ||AB |的最大值为__________.解析:由抛物线定义得|MN ||AB |=|AF |+|BF |2|AF |2+|BF |2≤|AF |2+|BF |22|AF |2+|BF |2=22,即|MN ||AB |的最大值为22.答案: 229.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,若|AF |=5,则|BF |=________. 解析:由题意,设A (x 1,y 1),B (x 2,y 2), 则|AF |=x 1+1=5⇒x 1=4,y 21=4x 1=16, 根据对称性,不妨取y 1=4, 所以直线AB :y =43x -43,代入抛物线方程可得,4x 2-17x +4=0, 所以x 2=14, 所以|BF |=x 2+1=54. 答案:5410.在平面直角坐标系中,动点M (x ,y )(x ≥0)到点F (1,0)的距离与到y 轴的距离之差为1.(1)求点M 的轨迹C 的方程;(2)若Q (-4,2),过点N (4,0)作任意一条直线交曲线C 于A ,B 两点,试证明k QA +k QB 是一个定值.解析:(1)M 到定点F (1,0)的距离与到定直线x =-1的距离相等, ∴M 的轨迹C 是一个开口向右的抛物线,且p =2, ∴M 的轨迹方程为y 2=4x .(2)设过N (4,0)的直线的方程为x =my +4,联立方程组⎩⎪⎨⎪⎧y 2=4x ,x =my +4整理得y 2-4my -16=0,设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2), 则有y 1+y 2=4m ,y 1y 2=-16, 又k QA +k QB =y 1-2x 1+4+y 2-2x 2+4=y 1-2my 1+8+y 2-2my 2+8=-8m 2-3216m 2+64=-12, 因此k QA +k QB 是一个定值为-12.能力提升练(时间:15分钟)11.已知直线l 1:x =2,l 2:3x +5y -30=0,点P 为抛物线y 2=-8x 上的任一点,则P 到直线l 1,l 2的距离之和的最小值为( )(A)2 (B)234 (C)181734(D)161534C 解析:抛物线y 2=-8x 的焦点为F (-2,0),准线为l 1:x =2. ∴P 到l 1的距离等于|PF |,∴P 到直线l 1,l 2的距离之和的最小值为F (-2,0)到直线l 2的距离d =|-6+0-30|9+25=181734.故选C.12.已知点A (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM ||MN |=55,则p 的值等于( )(A)18 (B)14 (C)2(D)4C 解析:设M (x M ,y M ),N ⎝ ⎛⎭⎪⎫-p 2,y N ,由|FM ||MN |=55,知|FM ||FN |=15+1,所以y N =(5+1)y M ;由k F A =k FN 知,y N -p =2-p 2,所以y N =4,所以y M =45+1;又|FM ||FN |=15+1,所以p 2-x M =15+1⎝ ⎛⎭⎪⎫p 2+p 2=p 5+1,所以x M =()5-1p 2(5+1),将(x M ,y M )代入y 2=2px ,得⎝ ⎛⎭⎪⎫45+12=2p ×(5-1)p 2(5+1),解得p =2.故选C.13.已知抛物线C :x 2=2py (p >0)的焦点为F ,O 为坐标原点,点M ⎝ ⎛⎭⎪⎫-4,p 2,N ⎝ ⎛⎭⎪⎫1,p 2,射线MO ,NO 分别交抛物线C 于异于点O 的点A ,B ,若A ,B ,F 三点共线,则p 的值为________.解析:直线OM 的方程为y =-p8x ,将其代入x 2=2py , 解方程可得⎩⎪⎨⎪⎧x =-p 24y =p 332,故A ⎝ ⎛⎭⎪⎫-p 24,p 332.直线ON 的方程为y =p2x ,将其代入x 2=2py ,解方程可得⎩⎨⎧x =p 2y =p 32,故B ⎝ ⎛⎭⎪⎫p 2,p 32.又F ⎝ ⎛⎭⎪⎫0,p 2,所以k AB =3p 8,k BF =p 2-12p ,因为A ,B ,F 三点共线,所以k AB =k BF ,即3p 8=p 2-12p ,解得p =2.答案:214.顶点在原点,经过圆C :x 2+y 2-2x +22y =0的圆心且准线与x 轴垂直的抛物线方程为________.解析:将圆C 的一般方程化为标准方程为(x -1)2+(y +2)2=3,圆心为(1,-2).由题意,知抛物线的顶点在原点,焦点在x 轴上,且经过点(1,-2).设抛物线的标准方程为y 2=2px ,因为点(1,-2)在抛物线上,所以(-2)2=2p ,解得p =1,所以所求抛物线的方程为y 2=2x .答案:y 2=2x15.已知AB 是抛物线x 2=4y 的一条焦点弦,若该弦的中点纵坐标是3,则弦AB 所在的直线方程是________.解析:设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为x =m (y -1),由抛物线的定义及题设可得,y 1+y 2=6, 直线与抛物线方程联立消去x 可得 m 2y 2-(2m 2+4)y +m 2=0, 则y 1+y 2=2m 2+4m 2,即6=2m 2+4m 2, 可得m =1或m =-1.故直线方程为x -y +1=0或x +y -1=0. 答案:x -y +1=0或x +y -1=016.已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q ,①求抛物线C 的焦点坐标.②若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值.③是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.解析:①因为抛物线C :x 2=1m y ,所以它的焦点F (0,14m ). ②因为|RF |=y R +14m ,所以2+14m =3,得m =14.③存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0恒成立.解得m >-12.设A (x 1,mx 21),B (x 2,mx 22),则⎩⎪⎨⎪⎧x 1+x 2=2m,x 1·x 2=-2m .(*)因为P 是线段AB 的中点,所以P ⎝ ⎛⎭⎪⎫x 1+x 22,mx 21+mx 222, 即P ⎝ ⎛⎭⎪⎫1m ,y P ,所以Q ⎝ ⎛⎭⎪⎫1m ,1m .得QA →=⎝ ⎛⎭⎪⎫x 1-1m ,mx 21-1m , QB →=⎝⎛⎭⎪⎫x 2-1m ,mx 22-1m , 若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形, 则QA →·QB→=0,即⎝ ⎛⎭⎪⎫x 1-1m ·⎝ ⎛⎭⎪⎫x 2-1m +⎝ ⎛⎭⎪⎫mx 21-1m ⎝ ⎛⎭⎪⎫mx 22-1m =0, 结合(*)化简得-4m 2-6m +4=0,即2m 2-3m -2=0, 所以m =2或m =-12.而2∈(-12,+∞),-12∉(-12,+∞).。

高三第一轮复习抛物线课件理

高三第一轮复习抛物线课件理

特点:对称性、 不变性、可逆性
应用:解决实际问 题,如求抛物线的 顶点、焦点等
注意事项:选择合 适的对称点或对称 直线,避免出现错 误
抛物线在实际生 活中的应用
物理中的抛物线运动
抛物线运动是物体在重力作用下,沿着抛物线轨迹运动的一种运动形式。 抛物线运动的特点是物体在运动过程中,速度、加速度和位移都是变化的。 抛物线运动的应用广泛,如炮弹、火箭、卫星等物体的运动都可以用抛物线运动来描述。 抛物线运动在物理学中具有重要的理论意义和实际应用价值。
抛物线与直线、圆的区别:抛物线是二次函数,其图像是一条曲线,而直线是直线方程,其 图像是一条直线;抛物线是二次函数,其图像是一条曲线,而圆是圆方程,其图像是一个圆。
与双曲线的联系与区别
抛物线与双曲线都是二次曲线,具有共同的性质和特点
抛物线是开口向上的曲线,双曲线是开口向下的曲线
抛物线与双曲线的焦点位置不同,抛物线的焦点在x轴上,双曲线的焦点在y轴 上
抛物线在工程学中的应用: 如桥梁设计、建筑设计等
抛物线在生物学中的应用: 如种群增长、生态平衡等
抛物线与其他曲 线的联系与区别
与直线、圆的关系
抛物线与直线的关系:抛物线是二次函数,其图像是一条曲线,而直线是直线方程,其图像是 一条直线。
抛物线与圆的关系:抛物线是二次函数,其图像是一条曲线,而圆是圆方程,其图像是一个圆。
抛物线的几何变 换
平移变换
平移变换的定义:将抛物线沿x轴或y轴移动一定距离 平移变换的公式:y=ax^2+bx+c,其中a、b、c为常数 平移变换的图形:抛物线沿x轴或y轴移动后的图形 平移变换的应用:解决实际问题,如求抛物线的顶点、对称轴等
伸缩变换
定义:将抛物线沿x轴或y轴进行伸缩变换,得到新的抛物线 伸缩变换公式:x'=kx,y'=ky,其中k为伸缩系数 伸缩变换对抛物线形状的影响:k>1时,抛物线变长;k<1时,抛物线变短 伸缩变换对抛物线顶点的影响:k>1时,顶点向上移动;k<1时,顶点向下移动 伸缩变换对抛物线对称轴的影响:伸缩变换不改变抛物线的对称轴位置

高考数学一轮辅导抛物线常用公式总结知识点总结

高考数学一轮辅导抛物线常用公式总结知识点总结

高考数学一轮辅导抛物线常用公式总结知识点总结
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。

以下是抛物线常用公式总结,请打击学习记忆。

抛物线:y = a_ _+ b_ + c
就是y等于a_ 的平方加上 b_再加上 c
a 0时开口向上
a 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(_+h)_ + k
就是y等于a乘以(_+h)的平方+k
-h是顶点坐标的_
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y =2p_
它表示抛物线的焦点在_的正半轴上,焦点坐标为(p/2,0) 准线方程为_=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y =2p_ y =-2p_ _ =2py
_ =-2py
抛物线常用公式总结的全部内容就是这些,希望对考生复习数学有帮助。

____年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,大家来一起看看吧_。

第29讲 抛物线(解析)-2023年高考一轮复习精讲精练必备

第29讲   抛物线(解析)-2023年高考一轮复习精讲精练必备

第29讲抛物线学校____________姓名____________班级____________一、知识梳理1.抛物线的定义(1)一般地,设F 是平面内的一个定点,l 是不过点F 的一条定直线,则平面上到F 的距离与到l 的距离相等的点的轨迹称为抛物线,其中定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离).2.抛物线的标准方程与几何性质y x 二、考点和典型例题1、抛物线的定义和标准方程【典例1-1】过抛物线24y x =焦点F 的直线交抛物线于A ,B 两点,若||3AF =,则BF 的值为()A .52B .2C .32D .12【答案】C 【详解】如图所示,设,(0,)AFx θθπ∠=∈,BF m =,因为||3AF =,所以点A 到准线:1l x =-的距离为3,所以323cos θ=+,得1cos 3θ=,因为2cos()m m πθ=+-,所以2cos m m θ=-,所以123m m =-,得32m =,所以BF 的值为32,故选:C【典例1-2】抛物线26y x =上一点()11,M x y 到其焦点的距离为92,则点M 到坐标原点的距离为()A .B .CD .2【答案】A 【详解】由题意知,焦点坐标为3,02⎛⎫⎪⎝⎭,准线方程为32x =-,由()11,M x y 到焦点距离等于到准线距离,得13922x +=,则13x =,2118y ∴==故选:A.【典例1-3】已知抛物线22(0)x py p =>上的一点0(,1)M x 到其焦点的距离为2,则该抛物线的焦点到其准线的距离为()A .2B .3C .4D .5【答案】A 【详解】由题可知,抛物线准线2p y =-,可得122p+=,解得2p =,所以该抛物线的焦点到其准线的距离为2p =.故选:A.【典例1-4】焦点在直线34120x y --=上的抛物线的标准方程为()A .216y x =或216x y =B .216y x =或212x y =-C .216y x =或212x y =D .212y x =-或216x y=【答案】B 【详解】解:直线34120x y --=与x 轴的交点为(4,0),与y 轴的交点为(0,-3),当以(4,0)为焦点时,抛物线的标准方程为216y x =,当由(0,-3)为焦点时,抛物线的标准方程为212x y =-,故选:B【典例1-5】已知直线120mx y m -+-=恒过定点A ,抛物线E :()220y px p =>的焦点坐标为()1,0F ,P 为抛物线E 上的动点,则PA PF +的最小值为()A .1B .2C .3D .4【答案】C 【详解】方程120mx y m -+-=可化为()12y m x -=-,所以直线120mx y m -+-=恒过定点(2,1)A ,因为抛物线E :()220y px p =>的焦点坐标为()1,0F ,所以12p=,即2p =,所以24y x =,过点P 作1PP ⊥准线1x =-,垂足为1P ,则1PP PF =,过点A 作1AA ⊥准线1x =-,垂足为1A ,所以113PA PF PA PP AA +=+≥=,当且仅当1,,A P A 三点共线时取等号,所以PA PF +的最小值为3,故选:C.2、抛物线的几何性质及应用【典例2-1】对抛物线218y x =,下列描述正确的是()A .开口向上,焦点为()02,B .开口向上,焦点为1032⎛⎫⎪⎝⎭,C .开口向右,焦点为()20,D .开口向右,焦点为1032⎛⎫⎪⎝⎭【答案】A 【详解】由题知,该抛物线的标准方程为28x y =,则该抛物线开口向上,焦点坐标为()0,2.故选:A.【典例2-2】已知过点()2,0的直线与抛物线22y x =相交于P ,Q 两点,点()2,2A -,若直线AP ,AQ 的斜率分别为1k ,2k ,则12k k ⋅的取值范围是()A .11,22⎡⎤-⎢⎥⎣⎦B .⎡⎢⎣⎦C .11,44⎡⎤-⎢⎥⎣⎦D .44⎡-⎢⎣⎦【答案】C 【详解】因为过点()2,0的直线与抛物线22y x =相交于P ,Q 两点,所以可设()11,P x y ,()22,Q x y ,直线PQ 的方程为:2x my =+,由222x my y x=+⎧⎨=⎩得2240y my --=,因此122y y m +=,124y y =-,且24160m ∆=+>,又直线AP ,AQ 的斜率分别为1k ,2k ,点()2,2A -,所以111112224y y k x my --==++,222222224y y k x my --==++,因此()()12121212222212121224224444441648164y y y y y y m mk k my my m y y m y y m m m -++----+-⋅=⋅===+++++-+++,当0m =时,120k k ⋅=;当0m >时,12204mk k m -⋅=<+,且12211444m k k m m m -⋅==-≥=-++,当且仅当4m m=,即2m =时,等号成立;所以12104k k -≤⋅<;当0m <时,12204mk k m -⋅=>+,且()12211444mk k m m m -⋅===+⎛⎫-+- ⎪⎝⎭,当且仅当4m m-=-,即2m =-时,等号成立;所以12104k k <⋅≤,综上1211,44k k ⎡⋅∈⎤-⎢⎥⎣⎦.故选:C.【典例2-3】抛物线2:4E x y =与圆22:(1)16M x y +-=交于A 、B 两点,圆心(0,1)M ,点P 为劣弧 AB 上不同于A 、B 的一个动点,平行于y 轴的直线PN 交抛物线于点N ,则PMN ∆的周长的取值范围是A .(6,12)B .(8,10)C .(6,10)D .(8,12)【答案】B 【详解】解:如图,可得圆心(0,1)M 也是抛物线的焦点,过P 作准线的垂线,垂足为H ,根据抛物线的定义,可得MN NH =故PMN ∆的周长4l NH NP MP PH =++=+,由2224(1)16x y x y ⎧=⎨+-=⎩可得B ,3).PH 的取值范围为(4,6)PMN ∴∆的周长4PH +的取值范围为(8,10)故选:B .【典例2-4】已知圆()2220x y r r +=>与抛物线23y x =相交于M ,N ,且MN =r =()AB .2C .D .4【答案】B 【详解】因为圆()2220x y r r +=>与抛物线23y x =相交于M ,N ,且MN =由对称性,不妨设(M x ,代入抛物线方程,则33x =,解得1x =,所以M ,故||2r OM ==故选:B【典例2-5】已知抛物线()2:20C y px p =>,以()2,0M -为圆心,半径为5的圆与抛物线C 交于,A B 两点,若8AB =,则p =()A .4B .8C .10D .16【答案】B 【详解】以()2,0M -为圆心,半径为5的圆的方程为()22225x y ++=,由抛物线()2:20C y px p =>,得到抛物线关于x 轴对称,又∵上面的圆的圆心在x 轴上,∴圆的图形也关于x 轴对称,∴它们的交点A ,B 关于x 轴对称,因为|AB |=8,∴A ,B 点的纵坐标的绝对值都是4,∵它们在抛物线上,于是A 点的横坐标的值2482p p =,不妨设A 在x 轴上方,则A 点的坐标为8,4p ⎛⎫⎪⎝⎭,又∵A 在圆上,∴2282425p ⎛⎫++= ⎪⎝⎭,解得8p =,故选:B.3、抛物线的综合问题【典例3-1】已知F 为抛物线22y x =的焦点,()00,A x y 为抛物线上的动点,点()1,0B -.则221AB AF +最大值的为()A .12BC.2D【答案】C 【详解】由题意知:00x ≥,1,02F ⎛⎫⎪⎝⎭;AB == 012AF x =+,00221AB AF ∴==+令011t x =+≥,则01x t =-,221AB AF ∴=+则当12142t =-=-,即2t =时,221AB AF +取最大值,此时2212AB AF =+.故选:C.【典例3-2】如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点()1,4,圆222:8120C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于点P ,Q ,M ,N ,则4PM QN +的最小值为()A .23B .26C .36D .62【答案】B 【详解】解法一:设抛物线的方程()220y px p =>,则1621p =⨯,得8p =,所以抛物线方程为216y x =,焦点()4,0F ,圆()222:44C x y -+=,圆心()24,0C ,半径2r =,可得圆心恰好是抛物线的焦点,即直线l 过焦点F .设直线l 的方程为:4x ty =+,设P 、Q 坐标分别为()11,x y 和()22,x y ,由2164y x x ty ⎧=⎨=+⎩联立,得216640y ty --=,∴1216y y t +=,1264y y ⋅=-,∴()212128168x x t y y t +=++=+,1216x x ⋅=,()4242410PM QN PF QF PF QF +=-+-=+-()()12124441041010101026x x x x =+++-=++≥==+=,当且仅当124x x =,即18x =,22x =时取等号.解法二:()4242410PM QN PF QF PF QF +=-+-=+-,又11214PF QF p +==,()4114441041026QF PF PF QF PF PM QN P QF QF F +=+-⎛⎫⎛⎫++ ⎪ ⎪ ⎪ ⎪⎭=+⎝≥⎭⎝,当且仅当2PF QF =,即12PF =,6QF =时等号成立.故选:B.【典例3-3】已知直线l 过点()2,0,且垂直于x 轴.若l 被抛物线24y ax =截得的线段长为)A .()1,0B .()0,1C .()1,2D .()2,1【答案】A 【详解】当2x =时,28y a =,显然0a >,解得y =±(-=,解得1a =,故抛物线24y x =,焦点坐标为()1,0故选:A【典例3-4】已知点23,2P p p ⎛⎫ ⎪⎝⎭-在抛物线()2:20C x py p =>上.(1)求抛物线C 的方程;(2)过点()0,1M 的直线l 交抛物线C 于A ,B 两点,设直线OA ,OB 的斜率分别为1k ,2k ,O 为坐标原点,求证:12k k 为定值.【解析】(1)∵点23,2P p p ⎛⎫⎪⎝⎭-在抛物线C 上,∴22322p p p ⎛⎫=- ⎪⎝⎭,解得1p =,∴抛物线C 的方程为22x y =.(2)证明:设直线:1l y kx =+,()11,A x y ,()22,B x y ,联立221x y y kx ⎧=⎨=+⎩,消去y 可得,2220x kx --=,由韦达定理有,122x x =-,∴121212121222y y x x k k x x =⋅=⋅=-,即得证.【典例3-5】已知抛物线()2:20C y px p =>的焦点为F ,O 为坐标原点.(1)过F 作垂直于x 轴的直线与抛物线C 交于,A B 两点,AOB 的面积为2.求抛物线C 的标准方程;(2)抛物线上有,M N 两点,若MON △为正三角形,求MON △的边长.【答案】(1)24y x =(2)【解析】(1)由抛物线方程知:,02p F ⎛⎫⎪⎝⎭,AB 为抛物线的通径,则2AB p =,2111222222AOB p S OF AB p p ∴=⋅=⨯⨯== ,解得:2p =,∴抛物线C 的标准方程为:24y x =.(2)MON 为正三角形,OM ON MN ∴==,由抛物线对称性可知:MN x ⊥轴,设:MN x t =,则22y pt =,解得:1y =,2y =MN ∴=,12tan 303MNt∴==,解得:6t p =,MN ∴=,即MON △的边长为.。

2023年新高考数学一轮复习9-5 抛物线(知识点讲解)含详解

2023年新高考数学一轮复习9-5 抛物线(知识点讲解)含详解

专题9.5 抛物线(知识点讲解)【知识框架】【核心素养】1.考查抛物线的定义、求抛物线方程、最值等问题,凸显直观想象、数学运算的核心素养.2.结合抛物线的几何性质及几何图形,求抛物线相关性质及其应用,凸显数学运算、直观想象的核心素养.3.考查直线与抛物线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(二)抛物线的标准方程及几何性质y 2=2px (p >0) (三)直线和抛物线的位置关系(1)将直线的方程y kx m =+与抛物线的方程y 2=2px (p >0)联立成方程组,消元转化为关于x 或y 的一元二次方程,其判别式为Δ.2220ky py pm -+=若0k =,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点;若0k ≠①Δ>0 ⇔直线和抛物线相交,有两个交点; ②Δ=0⇔直线和抛物线相切,有一个公共点; ③Δ<0⇔直线和抛物线相离,无公共点. (2)直线与抛物线的相交弦设直线y kx m =+交抛物线22221x y a b-=(0,0)a b >>于点111222(,),(,),P x y P x y 两点,则12||PP =12|x x -同理可得1212|||(0)PP y y k =-≠[来源:Z*xx*] 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -12||y y -=(四)焦半径、焦点弦1.通径过焦点垂直于轴的弦称为抛物线的通径,其长为__2p __.2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A (x 0,y 0),则四种标准方程形式下的焦半径公式为3.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l __相切__; (2)|AB |=2(x 0+p2)=x 1+x 2+__p __;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=p 24,y 1·y 2=-p 2.【常考题型剖析】题型一:抛物线定义的应用例1.(2023·全国·高三专题练习(文))已知抛物线C :()220y px p =>的焦点为1,04F ⎛⎫ ⎪⎝⎭,A 00(,)x y 是C 上一点,|AF |=054x ,则0x =( ) A .1B .2C .4D .8例2.(2020·全国·高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .9【总结提升】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.2.抛物线上的点到焦点距离等于到准线距离,注意转化思想的运用.3.利用抛物线定义可以解决距离的最大和最小问题,该类问题一般情况下都与抛物线的定义有关.实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解. (2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.提醒:利用抛物线定义进行距离转化的同时,要注意平面几何知识在其中的重大运用. 题型二:抛物线的标准方程例3.(2021·全国高二课时练习)已知动圆M 经过点A (3,0),且与直线l :x =-3相切,则动圆圆心M 的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=12yD .x 2=12y例4.(2023·全国·高三专题练习)过抛物线22(0)y px p =>的焦点F 的直线交抛物线于点A ,B ,交其准线于点C ,若2,3CB BF AF ==,则此抛物线方程为__________. 【规律方法】1.求抛物线标准方程的方法:①直接法:直接利用题中已知条件确定焦参数p .②待定系数法:先设出抛物线的方程,再根据题中条件,确定焦参数p.当焦点位置不确定时,应分类讨论或设抛物线方程为y 2=mx 或x 2=my . 2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;已知焦点坐标或准线方程可确定抛物线标准方程的形式;已知抛物线过某点不能确定抛物线标准方程的形式,需根据四种抛物线的图象及开口方向确定.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 题型三:抛物线的焦点及准线例5.(2023·全国·高三专题练习)抛物线243y x =的焦点坐标为( ) A .10,3⎛⎫ ⎪⎝⎭B .1,03⎛⎫ ⎪⎝⎭C .30,16⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭例6.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)例7.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【规律总结】求抛物线的焦点及准线方程的步骤: (1)把抛物线解析式化为标准方程形式; (2)明确抛物线开口方向;(3)求出抛物线标准方程中参数p 的值; (4)写出抛物线的焦点坐标或准线方程. 题型四 抛物线对称性的应用例8.(2021·全国高二课时练习)已知A ,B 是抛物线22(0)y px p =>两点,O 为坐标原点.若OA OB =,且AOB 的垂心恰是此抛物线的焦点,则直线AB 的方程为________.例9.(2023·全国·高三专题练习)已知抛物线()2:20C y px p =>的焦点为F ,O 为坐标原点.(1)过F 作垂直于x 轴的直线与抛物线C 交于,A B 两点,AOB 的面积为2.求抛物线C 的标准方程; (2)抛物线上有,M N 两点,若MON △为正三角形,求MON △的边长. 【总结提升】1.为了简化解题过程,有时可根据抛物线方程的特征利用参数表示抛物线上动点的坐标,有时还可以利用抛物线的对称性避免分类讨论.2.不能把抛物线看作是双曲线的一支.虽然两者都是沿开口方向越来越远离对称轴,但抛物线却越来越接近于对称轴的平行线. 题型五 抛物线的焦点弦问题例10.C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.例11.(2018·全国·高考真题(理))已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C交于A ,B 两点.若90AMB ∠=︒,则k =________. 【总结提升】解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.题型六 抛物线的最值问题例12.(2022·云南民族大学附属中学模拟预测(理))已知点P 为抛物线24y x =-上的动点,设点P 到2:1l x =的距离为1d ,到直线40x y +-=的距离为2d ,则12d d +的最小值是( )A .52B C .2 D例13.(2023·全国·高三专题练习)已知以F 为焦点的抛物线2:4C y x =上的两点A ,B ,满足133AF FB λλ⎛⎫=≤≤ ⎪⎝⎭,则弦AB 的中点到C 的准线的距离的最大值是( )A .2B .83 C .103D .4例14.【多选题】(2022·全国·高三专题练习)设抛物线2:8C x y =的焦点为F ,准线为l ,()00,P x y 为C 上一动点,(2,1)A ,则下列结论正确的是( )A .当02x =时,抛物线C 在点P 处的切线方程为220x y --=B .当04x =时,||PF 的值为6C .||||PA PF +的最小值为3D .||||PA PF -【规律方法】1.求抛物线最值的常见题型是求抛物线上一点到定点距离的最值、求抛物线上一点到定直线距离的最值,解有关抛物线的最值问题主要有两种思路:一是利用抛物线的定义,进行到焦点的距离与准线的距离的转化,数形结合,利用几何意义解决;二是利用抛物线的标准方程,进行消元代换,得到有关距离的含变量的代数式,用目标函数最值的求法解决.2. 常见题型及处理方法:(1)求抛物线上一点到定直线的最小距离.可以利用点到直线的距离公式表示出所求的距离,再利用函数求最值的方法求解,亦可转化为抛物线的切线与定直线平行时两直线间的距离问题.(2)求抛物线上一点到定点的最值问题.可以利用两点间的距离公式表示出所求距离,再利用函数求最值的方法求解,要注意抛物线上点的设法及变量的取值范围.(3)方法:设P (x 0,y 0)是抛物线y 2=2px (p >0)上一点,则x 0=y 202p ,即P (y 202p,y 0).由两点间距离公式,点到直线的距离公式表示出所求距离,再用函数求最值的方法求解.(4)此类问题应注意抛物线几何性质的应用,尤其范围的应用.如:y 2=2px (p >0),则x ≥0,y 2≥0. 题型七:与抛物线有关的综合问题例15.(2022·天津·高考真题)已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=例16.(2019·北京·高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.例17. (2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.例18.(2020·山东·高考真题)已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A +,求直线l 的方程. 【总结提升】抛物线的综合问题常常涉及方程、几何性质,以及与直线、圆、椭圆、双曲线、向量等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线、圆、圆锥曲线有关时,常常联立方程组,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.专题9.5 抛物线(知识点讲解)【知识框架】【核心素养】1.考查抛物线的定义、求抛物线方程、最值等问题,凸显直观想象、数学运算的核心素养.2.结合抛物线的几何性质及几何图形,求抛物线相关性质及其应用,凸显数学运算、直观想象的核心素养.3.考查直线与抛物线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(二)抛物线的标准方程及几何性质y 2=2px (p >0) (三)直线和抛物线的位置关系(1)将直线的方程y kx m =+与抛物线的方程y 2=2px (p >0)联立成方程组,消元转化为关于x 或y 的一元二次方程,其判别式为Δ.2220ky py pm -+=若0k =,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点;若0k ≠①Δ>0 ⇔直线和抛物线相交,有两个交点; ②Δ=0⇔直线和抛物线相切,有一个公共点; ③Δ<0⇔直线和抛物线相离,无公共点. (2)直线与抛物线的相交弦设直线y kx m =+交抛物线22221x y a b-=(0,0)a b >>于点111222(,),(,),P x y P x y 两点,则12||PP =12|x x -同理可得1212|||(0)PP y y k =-≠[来源:Z*xx*] 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -12||y y -=(四)焦半径、焦点弦1.通径过焦点垂直于轴的弦称为抛物线的通径,其长为__2p __.2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A (x 0,y 0),则四种标准方程形式下的焦半径公式为3.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l __相切__; (2)|AB |=2(x 0+p2)=x 1+x 2+__p __;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=p 24,y 1·y 2=-p 2.【常考题型剖析】题型一:抛物线定义的应用例1.(2023·全国·高三专题练习(文))已知抛物线C :()220y px p =>的焦点为1,04F ⎛⎫ ⎪⎝⎭,A 00(,)x y 是C 上一点,|AF |=054x ,则0x =( ) A .1 B .2 C .4 D .8例2.(2020·全国·高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .96p.【总结提升】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.2.抛物线上的点到焦点距离等于到准线距离,注意转化思想的运用.3.利用抛物线定义可以解决距离的最大和最小问题,该类问题一般情况下都与抛物线的定义有关.实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解. (2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.提醒:利用抛物线定义进行距离转化的同时,要注意平面几何知识在其中的重大运用. 题型二:抛物线的标准方程例3.(2021·全国高二课时练习)已知动圆M 经过点A (3,0),且与直线l :x =-3相切,则动圆圆心M 的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=12y D .x 2=12y【答案】A 【分析】设出点M 的坐标,由题意可知|MA |=|MN |,进而根据抛物线的定义即可得到答案. 【详解】设动点M (x ,y ),圆M 与直线l :x =-3的切点为N ,则|MA |=|MN |,即动点M 到定点A 和定直线l :x =-3的距离相等.∴点M 的轨迹是抛物线,且以A (3,0)为焦点,以直线l :x =-3为准线, 故动圆圆心M 的轨迹方程是y 2=12x . 故选:A.例4.(2023·全国·高三专题练习)过抛物线22(0)y px p =>的焦点F 的直线交抛物线于点A ,B ,交其准线于点C ,若2,3CB BF AF ==,则此抛物线方程为__________.30,结合2【详解】30,在直角三角形ACE轴交于G【规律方法】1.求抛物线标准方程的方法:①直接法:直接利用题中已知条件确定焦参数p.②待定系数法:先设出抛物线的方程,再根据题中条件,确定焦参数p.当焦点位置不确定时,应分类讨论或设抛物线方程为y2=mx或x2=my.2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;已知焦点坐标或准线方程可确定抛物线标准方程的形式;已知抛物线过某点不能确定抛物线标准方程的形式,需根据四种抛物线的图象及开口方向确定.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;(3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 题型三:抛物线的焦点及准线例5.(2023·全国·高三专题练习)抛物线243y x =的焦点坐标为( ) A .10,3⎛⎫ ⎪⎝⎭B .1,03⎛⎫ ⎪⎝⎭C .30,16⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭例6.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.例7.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2p Q PQ p ∴+∴=-因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【规律总结】求抛物线的焦点及准线方程的步骤: (1)把抛物线解析式化为标准方程形式; (2)明确抛物线开口方向;(3)求出抛物线标准方程中参数p 的值; (4)写出抛物线的焦点坐标或准线方程.题型四 抛物线对称性的应用例8.(2021·全国高二课时练习)已知A ,B 是抛物线22(0)y px p =>两点,O 为坐标原点.若OA OB =,且AOB 的垂心恰是此抛物线的焦点,则直线AB 的方程为________. 【答案】52p x = 【分析】由抛物线的性质知,A B 关于x 轴对称,设出坐标,利用三角形垂心的性质,结合斜率之积为1-,求出,A B 坐标即可求解. 【详解】由抛物线的性质知,A B 关于x 轴对称, 设(,)A x y ,则(,)B x y -,焦点为,02p F ⎛⎫⎪⎝⎭.由题意知AF OB ⊥,21AF OB y k x yk p x ∴⋅=⋅-⎛⎫=- ⎪⎝⎭-, 所以22p y x x ⎛=-⎫ ⎪⎝⎭,即22p px x x ⎛=-⎫ ⎪⎝⎭.因为0x ≠,所以22p p x =-,即52p x =,所以直线AB 的方程为52px =. 故答案为:52p x =例9.(2023·全国·高三专题练习)已知抛物线()2:20C y px p =>的焦点为F ,O 为坐标原点.(1)过F 作垂直于x 轴的直线与抛物线C 交于,A B 两点,AOB 的面积为2.求抛物线C 的标准方程; (2)抛物线上有,M N 两点,若MON △为正三角形,求MON △的边长.230MNt =AOB S =)MON为正三角形,2pt =230MN t =【总结提升】1.为了简化解题过程,有时可根据抛物线方程的特征利用参数表示抛物线上动点的坐标,有时还可以利用抛物线的对称性避免分类讨论.2.不能把抛物线看作是双曲线的一支.虽然两者都是沿开口方向越来越远离对称轴,但抛物线却越来越接近于对称轴的平行线. 题型五 抛物线的焦点弦问题例10.C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163例11.(2018·全国·高考真题(理))已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C交于A ,B 两点.若90AMB ∠=︒,则k =________. 【答案】2【分析】利用点差法得到AB 的斜率,结合抛物线定义可得结果. 【详解】详解:设()()1122A ,,B ,x y x y【总结提升】解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解. 题型六 抛物线的最值问题例12.(2022·云南民族大学附属中学模拟预测(理))已知点P 为抛物线24y x =-上的动点,设点P 到2:1l x =的距离为1d ,到直线40x y +-=的距离为2d ,则12d d +的最小值是( ) A .52B .2C .2 D【答案】B【分析】直线2:1l x =为抛物线24y x =-的准线,点P 到准线的距离等于点P 到焦点F 的距离,过焦点F 作直线40x y +-=的垂线,此时12d d +最小,再根据点到直线距离公式即可求解.【详解】直线2:1l x =为抛物线24y x =-的准线,点P 到准线的距离等于点P 到焦点F 的距离,过焦点F 作直()1,0F -,则121045222d d --==++. 例13.(2023·全国·高三专题练习)已知以F 为焦点的抛物线2:4C y x =上的两点A ,B ,满足133AF FB λλ⎛⎫=≤≤ ⎪⎝⎭,则弦AB 的中点到C 的准线的距离的最大值是( )A .2B .83 C .103D .4【分析】根据抛物线焦点弦的性质以及AF FB λ=,联立可得的焦点坐标为()1,0,准线方程为为AF FB λ=,所以所以AB AF =+=3λ时,AB =12λ⎛⎫++例14.【多选题】(2022·全国·高三专题练习)设抛物线2:8C x y =的焦点为F ,准线为l ,()00,P x y 为C 上一动点,(2,1)A ,则下列结论正确的是( )A .当02x =时,抛物线C 在点P 处的切线方程为220x y --=B .当04x =时,||PF 的值为6C .||||PA PF +的最小值为3D .||||PA PF -由题意得:()0,2F ,连接AF 并延长,交抛物线于点P ,此点即为||||PA PF -取最大值的点,此时415PA PF AF -==+=,其他位置的点P ',由三角形两边之差小于第三边得:5P A P F AF ''-<=,故||||PA PF -的最大值为5,D 正确.故选:BCD【规律方法】1.求抛物线最值的常见题型是求抛物线上一点到定点距离的最值、求抛物线上一点到定直线距离的最值,解有关抛物线的最值问题主要有两种思路:一是利用抛物线的定义,进行到焦点的距离与准线的距离的转化,数形结合,利用几何意义解决;二是利用抛物线的标准方程,进行消元代换,得到有关距离的含变量的代数式,用目标函数最值的求法解决.2. 常见题型及处理方法:(1)求抛物线上一点到定直线的最小距离.可以利用点到直线的距离公式表示出所求的距离,再利用函数求最值的方法求解,亦可转化为抛物线的切线与定直线平行时两直线间的距离问题.(2)求抛物线上一点到定点的最值问题.可以利用两点间的距离公式表示出所求距离,再利用函数求最值的方法求解,要注意抛物线上点的设法及变量的取值范围.(3)方法:设P (x 0,y 0)是抛物线y 2=2px (p >0)上一点,则x 0=y 202p ,即P (y 202p,y 0).由两点间距离公式,点到直线的距离公式表示出所求距离,再用函数求最值的方法求解.(4)此类问题应注意抛物线几何性质的应用,尤其范围的应用.如:y 2=2px (p >0),则x ≥0,y 2≥0. 题型七:与抛物线有关的综合问题例15.(2022·天津·高考真题)已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=例16.(2019·北京·高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4.【分析】由抛物线方程可得焦点坐标,即圆心,焦点到准线距离即半径,进而求得结果. 【详解】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.例17. (2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,)()743,11,⎤⎡-++∞⎦⎣.)求出p 的值后可求抛物线的方程)方法一:设:1AB x ty =+,()11,,A x y B 24y t =,求出直线,MA MB 的方程,联立各直线方程可求出1m.-++∞.3)[743,1)(1,)ab=-.,即1+3][1483,-++∞.3][743,1)(1,)【整体点评】本题主要是处理共线的线段长度问题,主要方法是长度转化为坐标方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.例18.(2020·山东·高考真题)已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A +,求直线l 的方程. 联立,并利用韦达定理表示OM ON +,并利用()12//OM ON B A +,求直线的斜率,验证后,即可得到直线21y +=可知2a ,21b =,)2,0,(2)由椭圆2214x y +=可知()12,0A -,()20,1B -,则(1OM ON x +=+因为()12//OM ON B A +,且12(2,0)B A =所以2284820k k k --⨯=,解得2k =-+因为11k -<<,且0k ≠,26=--不符合题意,舍去, )【总结提升】抛物线的综合问题常常涉及方程、几何性质,以及与直线、圆、椭圆、双曲线、向量等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线、圆、圆锥曲线有关时,常常联立方程组,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。

高考数学一轮复习第七章第七讲抛物线课件

高考数学一轮复习第七章第七讲抛物线课件

解析:如图 D81,分别过 P,Q 两点作准线 x=-2p的垂线,
垂足分别为 P1,Q1.分别过 P,Q 两点ห้องสมุดไป่ตู้ x 轴
的垂线,垂足分别为 P2,Q2.准线 x=-p2交
x 轴于点 D-p2,0.
∵|PP1|=|PF|=4,|FP2|=12|PF|=2,
图 D81
∴|DF|=|DP2|-|FP2|=4-2=2. ∵|FQ2|=21|QF|=12|QQ1|, ∴|DF|=|QQ1|+|FQ2|=23|QF|. ∴32|QF|=2,|QF|=43. 答案:34
A.直线 AB 的斜率为 2 6 B.|OB|=|OF| C.|AB|>4|OF| D.∠OAM+∠OBM<180°
解析:如图 7-7-5,
图 7-7-5 ∵Fp2,0,M(p,0),且|AF|=|AM|,
∴A34p, 26p, 由抛物线焦点弦的性质可得 xA·xB=p42,则 xB=p3,
则 Bp3,- 36p,
F0,-p2 y≤0,x∈R
(续表) 准线方程 开口方向
焦半径 通径长
x=-p2 向右 x0+p2
x=p2 向左 -x0+2p
2p
y=-p2 向上 y0+p2
y=p2 向下 -y0+2p
【名师点睛】 如图 7-7-1,设 AB 是过抛物线 y2=2px(p>0)焦点 F 的弦,若 A(x1,y1),B(x2,y2),则
由yy= 2=k4(xx-,1), 得 k2x2-(2k2+4)x+k2=0,
得 xA·xB=1,① 因为|AF|=2|BF|,由抛物线的定义得 xA+1=2(xB+1), 即 xA=2xB+1,② 由①②解得 xA=2,xB=21, 所以|AB|=|AF|+|BF|=xA+xB+p=29. 答案:B

抛物线课件 高三数学一轮复习

抛物线课件 高三数学一轮复习
解析:抛物线x2=4y的焦点F(0,1),准线方程为y=-1, 延长PM交准线于N,连PF,显然PN垂直于抛物线的准线,由抛物线定义知: |PA|+|PM|=|PA|+|PN|-1=|PA|+|PF|-1≥|AF|-1,当且仅当点P是线段AF与 抛物线的交点时取等号, 而|AF|= 5,所以|PA|+|PM|的最小值为 5-1.
解析:由题意知F(1,0),设A,B,C的横坐标 分别为x1,x2,x3,
由AF=13 (AB + AC),得1-x1=13(x2-x1+x3-x1), 所以x1+x2+x3=3,
由抛物线的定义得|AF|+|BF|+|CF|=x1+1+x2+ 1+x3+1=x1+x2+x3+3=6.
(2)[2024·广东广州模拟]设动点P在抛物线y=14x2上,点P在x轴上的射 影为点M,点A的坐标是(2,0),则|PA|+|PM|的最小值是___5_-__1__.
题后师说
求抛物线标准方程的常用方法
巩固训练2
(1)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距
离大1,则抛物线的标准方程为( )
A.y2=x
B.y2=2x
C.y2=4x
D.y2=8x
答案: C 解析:由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=-1 的距离相同,因此-p2=-1,p=2,抛物线方程为y2=4x.故选C.
题后师说
抛物线定义的应用策略
巩固训练1
(1)[2024·辽 宁 辽 阳 模 拟 ] 已 知 抛 物 线 C : x2 = 2py(p>0) 的 焦 点 为 F ,
M(m,2)在抛物线C上,且|MF|=4,则p=( )
A.2

高考数学一轮复习第八章第五节抛物线讲义含解析

高考数学一轮复习第八章第五节抛物线讲义含解析

第五节 抛物线突破点一 抛物线的定义及其应用[基本知识]抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)AB 为抛物线y 2=4x 的过焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,y 1y 2=-4,弦长|AB |=x 1+x 2+2.( )答案:(1)× (2)√ 二、填空题1.已知动点P 到定点(2,0)的距离和它到直线l :x =-2的距离相等,则点P 的轨迹方程为________.答案:y 2=8x2.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=________.答案:13.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为________.答案:54[全析考法]考法一 抛物线的定义及应用[例1] (1)(2019·赣州模拟)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )A .(0,0) B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,2)(2)(2019·襄阳测试)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于点N ,若|MN |=2|NF |,则|MF |=( )A .2B .3 C. 2D. 3[解析] (1)过M 点作准线的垂线,垂足是N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).(2)如图,过N 作准线的垂线NH ,垂足为H .根据抛物线的定义可知|NH |=|NF |,在Rt △NHM 中,|NM |=2|NH |,则∠NMH =45°.在△MFK 中,∠FMK =45°,所以|MF |=2|FK |.而|FK |=1.所以|MF |= 2.故选C.[答案] (1)D (2)C [方法技巧]利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决抛物线距离有关问题的有效途径.考法二 焦点弦问题焦点弦的常用结论以抛物线y 2=2px (p >0)为例,设AB 是抛物线的过焦点的一条弦(焦点弦),F 是抛物线的焦点,A (x 1,y 1),B (x 2,y 2),A ,B 在准线上的射影为A 1,B 1,则有以下结论:(1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AB |=x 1+x 2+p =2psin 2θ(其中θ为直线AB 的倾斜角),抛物线的通径长为2p ,通径是最短的焦点弦;(3)1|AF |+1|BF |=2p为定值; (4)以AB 为直径的圆与抛物线的准线相切; (5)以AF (或BF )为直径的圆与y 轴相切;(6)以A 1B 1为直径的圆与直线AB 相切,切点为F ,∠A 1FB 1=90°; (7)A ,O ,B 1三点共线,B ,O ,A 1三点也共线.[例2] (2019·长沙四校联考)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线的准线交于点M ,且FM ―→=3FP ―→,则|FP ―→|=( )A.32B.23C.43D.34[解析] 如图,不妨设Q 点在第一象限,过P 作PN 垂直于抛物线的准线,垂足为N , 由抛物线定义可知|PF |=|PN |, 又因为FM ―→=3FP ―→, 所以PM ―→=2FP ―→,所以|PM |=2|PF |=2|PN |, 在Rt △PNM 中,cos ∠MPN =|PN ||PM |=12, 由抛物线焦点弦的性质可知|PF ―→|=p 1+cos ∠MPN =21+12=43.故选C.[答案] C [方法技巧]焦点弦问题的求解策略解决焦点弦问题的关键是“设而不求”方法的应用,解题时,设出直线与抛物线两交点的坐标,根据抛物线的方程正确表示出焦点弦长,再利用已知条件求解.[集训冲关]1.[考法一]若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )A.12 B .1 C.32D .2解析:选B 设P (x P ,y P ),由题意可得抛物线的焦点为F (1,0),准线方程为x =-1,又点P 到焦点F 的距离为2,∴由抛物线的定义知点P 到准线的距离为2,∴x P +1=2,得x P =1,代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.故选B.2.[考法二]已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( )A.2B.12C.32D.52解析:选C 设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4, 又p =1,∴x 1+x 2=3,∴点C 的横坐标是x 1+x 22=32.故选C.3.[考法一]已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是________.解析:依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5.答案:5突破点二 抛物线的标准方程及性质[基本知识][基本能力]一、判断题(对的打“√”,错的打“×”)(1)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a4,0,准线方程是x =-a4.( )(2)抛物线既是中心对称图形,又是轴对称图形.( )(3)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( ) 答案:(1)× (2)× (3)× 二、填空题1.已知抛物线的对称轴为x 轴,顶点在原点,焦点在直线2x -4y +11=0上,则此抛物线的方程是________.答案:y 2=-22x2.抛物线y =ax 2的准线方程是y =1,则a 的值为________. 答案:-143.已知F 是抛物线x 2=8y 的焦点,若抛物线上的点A 到x 轴的距离为5,则|AF |=________.答案:7[全析考法]考法一 求抛物线的标准方程[例1] (1)(2019·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16xD .y 2=15x 2(2)(2019·江西协作体联考)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x[解析] (1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p 2=2p ,所以x =32p ,所以y =±3p ,又△MFO 的面积为43,所以12×p 2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x .(2)由已知得抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,设点A (0,2),抛物线上点M (x 0,y 0),则AF ―→=⎝ ⎛⎭⎪⎫p 2,-2,AM ―→=⎝ ⎛⎭⎪⎫y 202p ,y 0-2.由已知得AF ―→·AM ―→=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝ ⎛⎭⎪⎫8p ,4.由|MF |=5得, ⎝ ⎛⎭⎪⎫8p -p 22+16=5,又p >0,解得p =2或p =8,故选C. [答案] (1)B (2)C [方法技巧]求抛物线方程的3个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系. (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.考法二 抛物线的几何性质[例2] (1)(2019·兰州双基过关考试)抛物线y 2=2px (p >0)上横坐标为6的点到此抛物线焦点的距离为10,则该抛物线的焦点到准线的距离为( )A .4B .8C .16D .32(2)(2018·赣州二模)抛物线C :y 2=2px (p >0)的焦点为F ,A 是抛物线上一点,若A 到F 的距离是A 到y 轴距离的两倍,且三角形OAF 的面积为1,O 为坐标原点,则p 的值为( )A .1B .2C .3D .4[解析] (1)设抛物线的准线方程为x =-p2(p >0),如图,则根据抛物线的性质有|PF |=p2+6=10,解得p =8,所以抛物线的焦点到准线的距离为8. (2)不妨设A (x 0,y 0)在第一象限,由题意可知⎩⎪⎨⎪⎧ x 0+p2=2x 0,S △OAF=12·p2·y 0=1,即⎩⎪⎨⎪⎧x 0=p2,y 0=4p ,∴A ⎝ ⎛⎭⎪⎫p 2,4p ,又∵点A 在抛物线y 2=2px 上,∴16p 2=2p ×p 2,即p 4=16,又∵p >0,∴p =2,故选B. [答案] (1)B (2)B [方法技巧]用抛物线几何性质的技巧涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题.[集训冲关]1.[考法一]顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( )A .y 2=-x B .x 2=-8yC .y 2=-8x 或x 2=-y D .y 2=-x 或x 2=-8y解析:选D 设抛物线为y 2=mx ,代入点P (-4,-2),解得m =-1,则抛物线方程为y 2=-x ;设抛物线为x 2=ny ,代入点P (-4,-2),解得n =-8,则抛物线方程为x 2=-8y .2.[考法二]已知抛物线C :y 2=4x 的焦点为F ,点A (0,-3).若线段FA 与抛物线C 相交于点M ,则|MF |=( )A.43B.53C.23D.33解析:选A 由题意,F (1,0),|AF |=2,设|MF |=d ,则M 到准线的距离为d ,M 的横坐标为d -1,由三角形相似,可得d -11=2-d2,所以d =43,故选A. 3.[考法一、二]已知A 是抛物线y 2=2px (p >0)上一点,F 是抛物线的焦点,O 为坐标原点,当|AF |=4时,∠OFA =120°,则抛物线的准线方程是( )A .x =-1B .y =-1C .x =-2D .y =-2解析:选A 过A 向准线作垂线,设垂足为B ,准线与x 轴的交点为D .因为∠OFA =120°,所以△ABF 为等边三角形,∠DBF =30°,从而p =|DF |=2,因此抛物线的准线方程为x =-1.选A.。

高考第一轮复习——抛物线及其几何性质

高考第一轮复习——抛物线及其几何性质

x∈R y≥0
关于x轴对称 关于y轴对称
(0,0)
p 2

x0
(0,0)
p 2

y0
p x1 x2
p (x1 x2 )
p y1 y2
x2 = -2py (p>0)
y
l
O F
x
x∈R y≤0
关于y轴对称
(0,0)
p 2

y0
p ( y1 y2 )
5、抛物线的焦点弦的性质( 以 y2 2 px( p 0) 为例)
y
图形
F
o
x
. .
y F ox
焦点 准线
F( p ,0) 2
x p 2
F ( p ,0) 2
x p 2
y
F
x o
F(0, p) 2
y p 2
y
o
x
F
F (0, p) 2
y p 2
( 以 y2 2 px( p 0)为例) y
P(x0 ,y0)
1、离心率 e=1 2、焦半径 |PF|=x0+p/2 3、焦点弦长

p

y
A
由此我们得到一种抛物线的简单画法:
O
F
x
B
抛物线 方程
图 形
范围
对称性 顶点 焦半径 公式 焦点弦 长
y2 = 2px (p>0)
y
l OF x
x≥0 y∈R 关于x轴对称
(0,0)
p 2 x0
y2 = -2px (p>0)
yl
x2 = 2py (p>0)
y
F
FO x
O
x

高考数学一轮复习第8章解析几何第7讲抛物线

高考数学一轮复习第8章解析几何第7讲抛物线

第七讲 抛物线知识梳理·双基自测 知识梳理知识点一 抛物线的定义 抛物线需要满足以下三个条件: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离__相等__; (3)定点F 与定直线l 的关系为__点F ∉l __. 知识点二 抛物线的标准方程与几何性质标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 离心率 e =__1__ 准线 方程 __x =-p 2____x =p 2____y =-p 2____y =p 2__范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 向上 向下 焦半径 (其中P (x 0,y 0)) |PF |=__x 0+p2__|PF |=__-x 0+p2__|PF |=__y 0+p2__|PF |=__-y 0+p2__重要结论抛物线焦点弦的处理规律直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图.(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |=2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°. (7)A 、O 、D 三点共线;B 、O 、C 三点共线.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × ) (3)抛物线既是中心对称图形,又是轴对称图形.( × ) (4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )题组二 走进教材2.(必修2P 69例4)(2021·甘肃张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( B )A .9B .8C .7D .6[解析] 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.(2021·河南郑州名校调研)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B ) A .-1716B .-1516C .716D .1516[解析] 由抛物线的方程y =-4x 2,可得标准方程为x 2=-14y ,则焦点坐标为F ⎝⎛⎭⎫0,-116,准线方程为y =116,设M (x 0,y 0),则由抛物线的定义可得-y 0+116=1,解得y 0=-1516.故选B . 题组三 走向高考4.(2019·课标全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( D ) A .2 B .3 C .4D .8[解析] ∵抛物线y 2=2px (p >0)的焦点坐标为⎝⎛⎭⎫p 2,0, ∴椭圆x 23p +y 2p =1的一个焦点为⎝⎛⎭⎫p 2,0, ∴3p -p =p 24,∴p =8.故选D .5.(2020·新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( C )A .2B .3C .6D .9[解析] A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+p2=12⇒p =6;故选C .考点突破·互动探究考点一 抛物线的定义及应用——多维探究 角度1 轨迹问题例1 (1)动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是( D ) A .直线 B .椭圆 C .双曲线D .抛物线[解析] 设动圆的圆心为C ,则C 到定圆A :(x +2)2+y 2=1的圆心的距离等于r +1,而动圆的圆心到直线x =1的距离等于r ,所以动圆到直线x =2距离为r +1,即动圆圆心到定点(-2,0)和定直线x =2的距离相等,根据抛物线的定义知,动圆的圆心轨迹为抛物线,所以答案为D .角度2 到焦点与到定点距离之和最小问题(2)①(2021·河北保定七校联考)已知M是抛物线x2=4y上一点,F为其焦点,C为圆(x+1)2+(y-2)2=1的圆心,则|MF|+|MC|的最小值为(B)A.2 B.3C.4 D.5②(2021·山西运城联考)已知抛物线C:x2=8y的焦点为F,O为原点,点P是抛物线C的准线上的一动点,点A在抛物线C上,且|AF|=4,则|P A|+|PO|的最小值为(B)A.4 2 B.213C.313 D.4 6[解析]①设抛物线x2=4y的准线方程为l:y=-1,C为圆(x+1)2+(y-2)2=1的圆心,所以C的坐标为(-1,2),过M作l的垂线,垂足为E,根据抛物线的定义可知|MF|=|ME|,所以问题求|MF|+|MC|的最小值,就转化为求|ME|+|MC|的最小值,由平面几何的知识可知,当C,M,E在一条直线上时,此时CE⊥l,|ME|+|MC|有最小值,最小值为|CE|=2-(-1)=3,故选B.②由抛物线的定义知|AF|=y A+p2=y A+2=4,∴y A=2,代入x2=8y,得x A=±4,不妨取A(4,2),又O关于准线y=-2的对称点为O′(0,-4),∴|P A|+|PO|=|P A|+|PO′|≥|AO′|=(-4-2)2+(0-4)2=213,当且仅当A、P、O′共线时取等号,故选B.[引申]本例(2)①中,(ⅰ)|MC|-|MF|的最大值为__2__;最小值为__-2__;(ⅱ)若N为⊙C上任一点,则|MF|+|MN|的最小值为__2__.角度3到准线与到定点距离之和最小问题(3)已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为d,则d+|PC|的最小值为(A)A.41 B.7C.6 D.9[解析]由题意得圆的方程为(x+3)2+(y+4)2=4,圆心C的坐标为(-3,-4).由抛物线定义知,当d+|PC |最小时为圆心与抛物线焦点间的距离,即d +|PC |=(-3-2)2+(-4)2=41.角度4 到两定直线的距离之和最小问题(4)(2021·北京人大附中测试)点P 在曲线y 2=4x 上,过P 分别作直线x =-1及y =x +3的垂线,垂足分别为G ,H ,则|PG |+|PH |的最小值为( B )A .322B .2 2C .322+1D .2+2[解析] 由题可知x =-1是抛物线的准线,焦点F (1,0),由抛物线的性质可知|PG |=|PF |,∴|PG |+|PH |=|PF |+|PH |≤|FH |=|1-0+3|2=22,当且仅当H 、P 、F 三点共线时取等号,∴|PG |+|PH |的最小值为22.故选B .名师点拨利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线. (2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的关系进行相互转化.(3)看到准线想焦点,看到焦点想准线,这是解决抛物线焦点弦有关问题的重要途径. 〔变式训练1〕(1)(角度1)到定点A (0,2)的距离比到定直线l :y =-1大1的动点P 的轨迹方程为__x 2=8y __. (2)(角度1)(2021·吉林省吉林市调研)已知抛物线y 2=4x 的焦点F ,点A (4,3),P 为抛物线上一点,且P 不在直线AF 上,则△P AF 周长取最小值时,线段PF 的长为( B )A .1B .134C .5D .214(3)(角度2)(2021·山西大学附中模拟)已知点Q (22,0)及抛物线y =x 24上一动点P (x ,y ),则y +|PQ |的最小值是__2__.(4)(角度3)(2021·上海虹口区二模)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为( C )A .3716B .115C .2D .74[解析] (1)由题意知P 到A 的距离等于其到直线y =-2的距离,故P 的轨迹是以A 为焦点,直线y =-2为准线的抛物线,所以其方程为x 2=8y .(2)求△P AF 周长的最小值,即求|P A |+|PF |的最小值,设点P 在准线上的射影为D ,根据抛物线的定义,可知|PF |=|PD |,因此,|P A |+|PF |的最小值,即|P A |+|PD |的最小值.根据平面几何知识,可得当D ,P ,A 三点共线时|P A |+|PD |最小,此时P (94,3),且|PF |=94+1=134,故选B .(3)抛物线y =x 24即x 2=4y ,其焦点坐标为F (0,1),准线方程为y =-1.因为点Q 的坐标为(22,0),所以|FQ |=(22)2+12=3.过点P 作准线的垂线PH ,交x 轴于点D ,如图所示.结合抛物线的定义,有y +|PQ |=|PD |+|PQ |=|PH |+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=3-1=2,即y +|PQ |的最小值是2.(4)直线l 2:x =-1是抛物线y 2=4x 的准线,抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF ,过点F 作直线l 1:4x -3y +6=0的垂线,和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和到直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2,故选C .考点二 抛物线的标准方程——自主练透例2 (1)过点P (-3,2)的抛物线的标准方程为__y 2=-43x 或x 2=92y __.(2)焦点在直线x -2y -4=0上的抛物线的标准方程为__y 2=16x 或x 2=-8y __,准线方程为__x =-4或y =2__.(3)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( B )A .y 2=32xB .y 2=3xC .y 2=92xD .y 2=9x[解析] (1)设所求抛物线的方程为y 2=-2px (p >0)或x 2=2py (p >0). ∵过点(-3,2),∴4=-2p ·(-3)或9=2p ·2. ∴p =23或p =94.∴所求抛物线的标准方程为y 2=-43x 或x 2=92y .(2)令x =0,得y =-2,令y =0,得x =4. ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,p2=4,∴p =8,此时抛物线方程为y 2=16x ; 当焦点为(0,-2)时,p2=2,∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的标准方程为y 2=16x 或x 2=-8y , 对应的准线方程分别是x =-4,y =2.(3)如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30°. 在直角三角形ACE 中,∵|AE |=|AF |=3,|AC |=3+3a ,2|AE |=|AC |, ∴3+3a =6,从而得a =1.∵BD ∥FG ,∴|BD ||FG |=|BC ||FC |,即1p =23,求得p =32,因此抛物线的方程为y 2=3x .名师点拨求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,若焦点位置确定,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.一般焦点在x 轴上的抛物线的方程可设为y 2=ax (a ≠0);焦点在y 轴上的抛物线的方程可设为x 2=ay (a ≠0).〔变式训练2〕(1)(2021·重庆沙坪坝区模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点(p,0)且垂直于x 轴的直线与抛物线C 在第一象限内的交点为A ,若|AF |=1,则抛物线C 的方程为( A )A .y 2=43xB .y 2=2xC .y 2=3xD .y 2=4x(2)(2021·安徽蚌埠一中期中)已知抛物线的顶点在原点,焦点在y 轴上,其上的点P (m ,-3)到焦点的距离为5,则抛物线方程为( D )A .x 2=8yB .x 2=4yC .x 2=-4yD .x 2=-8y[解析] (1)由题意知x A =p ,又|AF |=x A +p 2=3p 2=1,∴p =23,∴抛物线C 的方程为y 2=43x ,故选A .(2)由题意可知抛物线的焦点在y 轴负半轴上,故设其方程为x 2=-2py (p >0),所以3+p2=5,即p =4,所以所求抛物线方程为x 2=-8y ,故选D .考点三 抛物线的几何性质——师生共研例3 (1)(2021·广西四校联考)已知抛物线y 2=2px (p >0)上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( C )A .4B .9C .10D .18(2)(2021·四川眉山模拟)点F 为抛物线C :y 2=2px (p >0)的焦点,过F 的直线交抛物线C 于A ,B 两点(点A 在第一象限),过A 、B 分别作抛物线C 的准线的垂线段,垂足分别为M 、N ,若|MF |=4,|NF |=3,则直线AB 的斜率为( D )A .1B .724C .2D .247[解析] (1)抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线方程为x =-p 2.由题意可得4+p2=9,解得p =10,所以该抛物线的焦点到准线的距离为10.故选C .(2)由抛物线定义知|AM |=|AF |,|BN |=|BF |,∴∠AFM +∠BFM =360°-∠MAF -∠NBF2=90°,∴∠MFN =90°, 又|MF |=4,|NF |=3, ∴|MN |=5,∴p =|KF |=|MF |·|NF ||MN |=125, 又∠AFM =∠AMF =∠MFK ,∴k AB =tan(180°-2∠MFK )=-2tan ∠MFK 1-tan 2∠MFK =-831-⎝⎛⎭⎫432=247.故选D .名师点拨在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.〔变式训练3〕(1)(2021·广东茂名五校联考)设抛物线y 2=2px (p >0)的焦点为F (1,0),过焦点的直线交抛物线于A 、B 两点,若|AF |=4|BF |,则|AB |=__254__.(2)(2021·湖北荆州模拟)从抛物线y 2=4x 在第一象限内的一点P 引抛物线准线的垂线,垂足为M ,且|PM |=9,设抛物线的焦点为F ,则直线PF 的斜率为( C )A .627B .1827C .427D .227[解析] (1)∵p2=1,∴p =2,不妨设直线AB 方程为x =my +1, A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=4x x =my +1,得y 2-4my -4=0, ∴y 1y 2=-4,又|AF |=4|BF |,∴y 1=-4y 2, ∴y 2=-1,从而x 2=14,∴|BF |=1+14=54,∴|AB |=5|BF |=254.(2)设P (x 0,y 0),由抛物线y 2=4x , 可知其焦点F 的坐标为(1,0), 故|PM |=x 0+1=9,解得x 0=8, 故P 点坐标为(8,42), 所以k PF =0-421-8=427.故选C .考点四 直线与抛物线的综合问题——师生共研例4 (1)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y 24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( B )A .28B .32C .20D .40(2)(2021·陕西师大附中期中)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是( B )A .y =x -1B .y =2x -1C .y =-x +2D .y =-2x +3(3)(2021·湖南五市十校联考)已知抛物线C :y 2=2px (p >0),直线y =x -1与C 相交所得的长为8. ①求p 的值;②过原点O 的直线l 与抛物线C 交于M 点,与直线x =-1交于H 点,过点H 作y 轴的垂线交抛物线C 于N 点,求证:直线MN 过定点. [解析] (1)双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0).因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y 2=16x ,y =x -4,可得x 2-24x +16=0,故x 1+x 2=24. 故|AB |=x 1+x 2+p =24+8=32.故选B .(2)设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2,由⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,知k AB =y 1-y 2x 1-x 2=4y 1+y 2=2, ∴AB 的方程为y -1=2(x -1),即2x -y -1=0,故选B .(3)①由⎩⎪⎨⎪⎧y 2=2px y =x -1,消x 可得y 2-2py -2p =0,∴y 1+y 2=2p ,y 1y 2=-2p ,∴弦长为1+12·(y 1+y 2)2-4y 1y 2=2·4p 2+8p =8,解得p =2或p =-4(舍去),∴p =2,②由①可得y 2= 4x ,设M ⎝⎛⎭⎫14y 20,y 0, ∴直线OM 的方程y =4y 0x , 当x =-1时,∴y H =-4y 0, 代入抛物线方程y 2=4x ,可得x N =4y 20, ∴N ⎝⎛⎭⎫4y 20,-4y 0, ∴直线MN 的斜率k =y 0+4y 0y 204-4y 20=4y 0y 20-4, 直线MN 的方程为y -y 0=4y 0y 20-4⎝⎛⎭⎫x -14y 20,整理可得y =4y 0y 20-4(x -1), 故直线MN 过点(1,0).名师点拨(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要将两方程联立,消元,用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率问题一般用“点差法”求解.〔变式训练4〕(1)(2021·甘肃诊断)直线l 过抛物线y 2=2px (p >0)的焦点,且交抛物线于A ,B 两点,交其准线于C 点,已知|AF |=4,CB →=3BF →,则p =( C )A .2B .43C .83D .4(2)(2021·安徽皖南八校模拟)已知抛物线C :y 2=2px (p >0)的焦点F 到直线x -y +1=0的距离为2. ①求抛物线C 的方程;②过点F 的直线l 与C 交于A ,B 两点,交y 轴于点P .若|AB →|=3|BP →|,求直线l 的方程.[解析] (1)过A ,B 分别作准线的垂线交准线于E ,D 两点,设|BF |=a ,根据抛物线的性质可知,|BD |=a ,|AE |=4,根据平行线段比例可知|BD ||AE |=|CB ||AC |, 即a 4=3a 3a +a +4,解得a =2, 又|BD ||GF |=|BC ||CF |,即a p =3a 4a, 解得p =43a =83,故选C .(2)①由抛物线C :y 2=2px (p >0),可得焦点F ⎝⎛⎭⎫p 2,0,因为焦点到x -y +1=0的距离为2,即⎪⎪⎪⎪p 2+12=2,解得p =2,所以抛物线C 的方程y 2=4x .②由①知焦点F (1,0),设直线l :y =k (x -1),A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,整理得 k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k2, ① x 1x 2=1,②又由|AB →|=3|BP →|,得AB →=3BP →,可得x 1=4x 2,③ 由②③,可得x 1=2,x 2=12, 代入①,可得2+4k 2=52,解得k =±22, 所以直线l 的方程为22x - y -22=0或22x +y -22=0.名师讲坛·素养提升巧解抛物线的切线问题例5 (1)抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( D )A .316B .38C .233D .433(2)(2019·新课标Ⅲ,节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[解析] (1)抛物线C 1:x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),两点连线的方程为y =-p 4(x -2),联立⎩⎨⎧ y =-p 4(x -2),y =12p x 2,得2x 2+p 2x -2p 2=0.设点M 的横坐标为m ,易知在M 点处切线的斜率存在,则在点M 处切线的斜率为y ′⎪⎪⎪⎪x =m =⎝⎛⎭⎫12p x 2′x=m =m p. 又双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,所以m p =33,即m =33p ,代入2x 2+p 2x -2p 2=0,得p =433或p =0(舍去). (2)设D ⎝⎛⎭⎫t ,-12,A (x 1,y 1),则x 21=2y 1,由于y ′=x , ∴切线DA 的斜率为x 1,故y 1+12x 1-t=x 1, 整理得:2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0,即y -12=tx . ∴直线AB 过定点⎝⎛⎭⎫0,12.名师点拨利用导数工具解决抛物线的切线问题,使问题变得巧妙而简单,若用判别式解决抛物线的切线问题,计算量大,易出错.注意:直线与抛物线只有一个公共点是直线与抛物线相切的必要不充分条件,过抛物线外一点与抛物线只有一个公共点的直线有0条或3条;过抛物线上一点和抛物线只有一个公共点的直线有2条.〔变式训练5〕(1)已知抛物线C :y 2=2px (p >0),过点M ⎝⎛⎭⎫-p 2,0作C 的切线,则切线的斜率为__±1__. (2)已知抛物线x 2=8y ,过点P (b,4)作该抛物线的切线P A ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( C )A .(4,0)B .(3,2)C .(0,-4)D .(4,1)[解析] (1)设斜率为k ,则切线为y =k ⎝⎛⎭⎫x +p 2代入y 2=2px 中得k 2x 2+p (k 2-2)x +k 2p 24=0. Δ=0,即p 2(k 2-2)2-4·k 2·k 2p 24=0.解得k 2=1,∴k =±1.(2)设A ,B 的坐标为(x 1,y 1),(x 2,y 2),∵y =x 28,y ′=x4,∴P A ,PB 的方程y -y 1=x 14(x -x 1),y -y 2=x 24(x -x 2),由y 1=x 218,y 2=x 228,可得y =x 14x -y 1,y =x 24x -y 2,∵切线P A ,PB 都过点P (b,4),∴4=x 14×b -y 1,4=x 24×b -y 2,故可知过A ,B 两点的直线方程为4=b4x -y ,当x =0时,y =-4,∴直线AB 恒过定点(0,-4).故选C .。

2025高考数学一轮复习-8.7-抛物线【课件】

2025高考数学一轮复习-8.7-抛物线【课件】
(2)如图,过点 B 作 BQ 垂直准线于点 Q,交抛物线于点 P1,
x0+p2 |PF|=-x0+p2 |PF|=y0+p2
|PF|=-y0+p2
提醒:(1)焦点在 x 轴上时,方程的右端为±2px,左端为 y2,焦点在 y 轴上时,方程的 右端为±2py,左端为 x2.
(2)过焦点且垂直于对称轴的弦称为通径,长等于 2p,是过焦点最短的弦.
『基础过关』 思考辨析 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹一定是抛物线.( × ) (2)抛物线既是中心对称图形,又是轴对称图形.( × ) (3)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( × ) (4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通 径,那么抛物线 x2=-2ay(a>0)的通径长为 2a.( √ ) (5)方程 y=ax2(a≠0)表示的曲线是焦点在 x 轴上的抛物线,且其焦点坐标是a4,0, 准线方程是 x=-a4.( × )
易错点睛:(1)求抛物线方程时容易忽视 p 的几何意义致错,解题时应注意. (2)直线与抛物线相交时,忽视与抛物线的对称轴平行的直线致错,如 6 题中忽视对 k =0 的讨论.
课堂考点突破
——精析考题 提升能力
考点一 抛物线的定义及其应用
【例 1】 (1)(2020·全国卷Ⅰ)已知 A 为抛物线 C:y2=2px(p>0)上一点,点 A 到 C 的
的点的轨迹
2.抛物线的标准方程和几何性质 标准方程 y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) p 的几何意义:焦点 F 到准线 l 的距离

高考数学一轮复习第九章解析几何7抛物线课件新人教A版文

高考数学一轮复习第九章解析几何7抛物线课件新人教A版文
∠MKO=(
)
°°°°
关闭
由题意得点 M 的坐标为


2
, ± ,MF⊥KF.
∵K - 2 ,0 ,∴|KF|=p,|KF|=|MF|,
∴∠MKO=45°,故选 C.
关闭
C
解析
答案
-10知识梳理
双基自测
1
2
3
4
5
4.已知过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)
不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与
△ACF的面积之比是(
)
||2 -1
||-1
A.
B.
C.
D.
||2 -1
||2 +1
||-1
||+1
||2 +1
||+1
关闭
设 A(x1,y1),B(x2,y2),
思考如何灵活运用抛物线的定义解决距离问题?
关闭

抛物线的准线方程为 x=- ,则点 A(2,1)到抛物线 y2=ax 准线的距离为

4
2 + =1,解得 a=-4 或 a=-12.故选 C.
4
C
关闭
解析
答案
-9知识梳理
双基自测
1
2
3
4
5
3.已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,O为
坐标原点,若|MF|=p,K是抛物线C的准线与x轴的交点,则
上一点,Q 是直线 PF 与 C 的一个交点,若=4,则|QF|=( C )
7
5
A.2
B.2
C.3

抛物线(高三一轮复习)

抛物线(高三一轮复习)

可知当A,P,H三点共线时周长最小,为6+2 2,故选C.
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 抛物线的标准方程
例2 (1)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其
准线于点C,准线与对称轴交于点M,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程
A.y2=4x或y2=16x B.y2=x或y2=8x C.y2=2x或y2=4x D.y2=x或y2=4x
数学 N 必备知识 自主学习 关键能力 互动探究
— 23 —
解析 (1)由抛物线定义,知|BF|等于B到准线的距离,因为|BC|=2|BF|,所以∠
BCM=30°,又|AF|=3,从而A
p2+32,3
数学 N 必备知识 自主学习 关键能力 互动探究
思维点睛► 求抛物线的标准方程的方法
(1)定义法; (2)待定系数法:当焦点位置不确定时,分情况讨论.
— 26 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 27 —
针对训练
1.(2023·张家界质检)若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点
2
3
,A在抛物线上,代入抛物线方程y2=
2px,得247=p2+3p,解得p=32. 故抛物线方程为y2=3x.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)设P为(x0,y0),则M→P =(x0,y0-2), 又Fp2,0,∴M→F =p2,-2. ∵MF⊥PM,∴M→F ·M→P =0,
第八章 平面解析几何
第7讲 抛物线
数学 N 必备知识 自主学习 关键能力 互动探究 课标解读

高考一轮复习 抛物线 知识点+例题+练习

高考一轮复习 抛物线 知识点+例题+练习

自主梳理1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离________的点的轨迹叫做抛物线.点F 叫做抛物线的________,直线l 叫做抛物线的________.2.抛物线的标准方程与几何性质标准方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F (p2,0) F (-p2,0)F (0,p 2)F (0,-p2)离心率 e =1准线 方程 x =-p 2x =p 2 y =-p 2y =p 2 范围 x ≥0, y ∈R x ≤0, y ∈R y ≥0, x ∈R y ≤0, x ∈R 开口 方向向右向左向上向下自我检测1.抛物线y 2=8x 的焦点到准线的距离是________.2.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.3.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是________.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|=________.5.已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN =________.学生姓名 教师姓名班主任 日期时间段年级课时教学内容 抛物线复习教学目标 1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. 2.理解数形结合的思想. 重点 同上 难点同上探究点一抛物线的定义及应用例1已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求P A +PF的最小值,并求出取最小值时P点的坐标.变式迁移1已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为________.探究点二求抛物线的标准方程例2已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程.变式迁移2 根据下列条件求抛物线的标准方程:(1)抛物线的焦点F 是双曲线16x 2-9y 2=144的左顶点; (2)过点P (2,-4).探究点三 抛物线的几何性质例3 过抛物线y 2=2px 的焦点F 的直线和抛物线相交于A ,B 两点,如图所示.(1)若A ,B 的纵坐标分别为y 1,y 2,求证:y 1y 2=-p 2;(2)若直线AO 与抛物线的准线相交于点C ,求证:BC ∥x 轴.变式迁移3 已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2).求证:(1)x 1x 2=p 24;(2)1AF +1BF为定值.一、填空题1.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB 等于________.2.将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则n =________.3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是________.4.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________.5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为________.6.设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.7.已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则AB =________.8.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.二、解答题9.已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得的弦长为15,求抛物线方程.10.已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.轨迹方程自主梳理1.曲线的方程与方程的曲线如果曲线C 上点的坐标(x ,y )都是方程f (x ,y )=0的解,且以方程f (x ,y )=0的解(x ,y )为坐标的点都在曲线C 上,那么,方程f (x ,y )=0叫做曲线C 的方程.曲线C 叫做方程f (x ,y )=0的曲线.2.求曲线方程的一般方法(五步法)求曲线(图形)的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.3.求曲线方程的常用方法:(1)直接法;(2)定义法;(3)代入法;(4)参数法.自我检测1.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程为______________.2.一动圆与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,那么动圆的圆心P 的轨迹是__________________________________________________________________.3.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是______________________.4.若M 、N 为两个定点且MN =6,动点P 满足PM →·PN →=0,则P 点的轨迹方程为________.5.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是__________________.探究点一 直接法求轨迹方程例1 动点P 与两定点A (a,0),B (-a,0)连线的斜率的乘积为k ,试求点P 的轨迹方程,并讨论轨迹是什么曲线.变式迁移1 已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为______________.探究点二 定义法求轨迹方程例2 已知两个定圆O 1和O 2,它们的半径分别是1和2,且O 1O 2=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.变式迁移2 在△ABC 中,A 为动点,B 、C 为定点,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a2,0,且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程为____________________________________.探究点三 相关点法(代入法)求轨迹方程例3 如图所示,从双曲线x 2-y 2=1上一点Q 引直线x +y =2的垂线,垂足为N . 求线段QN 的中点P 的轨迹方程.变式迁移3 已知长为1+2的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,P是AB 上一点,且AP →=22PB →.求点P 的轨迹C 的方程.一、填空题1.已知椭圆的焦点是F 1、F 2,P 是椭圆的一个动点,如果M 是线段F 1P 的中点,则动点M 的轨迹是_________________________________________________________________.2.已知A 、B 是两个定点,且AB =3,CB -CA =2,则点C 的轨迹方程为______________.3.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC →=2CB →,则点C 的轨迹方程为____________.4.如图,圆O :x 2+y 2=16,A (-2,0),B (2,0)为两个定点.直线l 是圆O 的一条切线,若经过A 、B 两点的抛物线以直线l 为准线,则抛物线焦点所在的轨迹是________.5.P 是椭圆x 216+y 29=1上的动点,作PD ⊥y 轴,D 为垂足,则PD 中点的轨迹方程为____________.6.已知两定点A (-2,0),B (1,0),如果动点P 满足P A =2PB ,则点P 的轨迹所包围的图形的面积等于______.7.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长CD =3,则顶点A 的轨迹方程为______________.8.平面上有三点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为__________.二、解答题9.已知抛物线y2=4px (p>0),O为顶点,A,B为抛物线上的两动点,且满足OA⊥OB,如果OM⊥AB于点M,求点M的轨迹方程.10.已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C的方程;(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,OPOM=λ,求点M 的轨迹方程,并说明轨迹是什么曲线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线●知识梳理定义到定点的距离与到定直线的距离相等的点的轨迹方程=2px (p ≠0),焦点是F (2p,0) =2py (p ≠0),焦点是F (0,2p)性质S :y 2=2px (p >0) 1.范围:x ≥02.对称性:关于x 轴对称3.顶点:原点O4.离心率:e =15.准线:x =-2p6.焦半径P (x ,y )∈S ,|PF |=x +2p 思考讨论对于抛物线x 2=2py (p >0),其性质如何?焦半径公式如何推导? ●点击双基1.(2004年春季北京)在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为5,则p 的值为A.21 解析:抛物线的准线方程为x =-2p ,由抛物线的定义知4+2p=5,解得P =2. 答案:C2.设a ≠0,a ∈R ,则抛物线y =4ax 2的焦点坐标为 A.(a ,0) B.(0,a ) C.(0,a 161) D.随a 符号而定 解析:化为标准方程. 答案:C3.以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴位置关系为 A.相交 B.相离 C.相切 D.不确定 解析:利用抛物线的定义. 答案:C4.以椭圆252x +162y =1的中心为顶点,以椭圆的左准线为准线的抛物线与椭圆右准线交于A 、B 两点,则|AB |的值为___________.解析:中心为(0,0),左准线为x =-325,所求抛物线方程为y 2=3100x .又椭圆右准线方程为x =325,联立解得A (325,350)、B (325,-350).∴|AB |=3100.答案:31005.(2002年全国)对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号) 解析:由抛物线方程y 2=10x 可知②⑤满足条件. 答案:②⑤ ●典例剖析【例1】 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2);(2)焦点在直线x -2y -4=0上.剖析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p ;从实际分析,一般需确定p 和确定开口方向两个条件,否则,应展开相应的讨论.解:(1)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0), ∵过点(-3,2),∴4=-2p (-3)或9=2p ·2. ∴p =32或p =49.∴所求的抛物线方程为y 2=-34x 或x 2=29y ,前者的准线方程是x =31,后者的准线方程是y =-89.(2)令x =0得y =-2,令y =0得x =4, ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,2p=4, ∴p =8,此时抛物线方程y 2=16x ; 焦点为(0,-2)时,2p=2, ∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的方程为y 2=16x 或x 2=-8y ,对应的准线方程分别是x =-4,y =2. 评述:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.【例2】如下图所示,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1,以A 、B 为端点的曲线段C 上任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|NB |=6,建立适当的坐标系,求曲线段C 的方程.剖析:由题意所求曲线段是抛物线的一部分,求曲线方程需建立适当的直角坐标系,设出抛物线方程,由条件求出待定系数即可,求出曲线方程后要标注x 、y 的取值范围.解:以直线l 1为x 轴,线段MN 的垂直平分线为y 轴,建立直角坐标系,由条件可知,曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段.其中A 、B 分别为曲线段C 的端点.设曲线段C 的方程为y 2=2px (p >0)(x A ≤x ≤x B ,y >0),其中x A 、x B 为A 、B 的横坐标,p =|MN |,所以M (-2p ,0) 、N (2p,0). 由|AM |=17,|AN |=3,得(x A +2p )2+2px A =17, ① (x A -2p)2+2px A =9.②①②联立解得x A =p4,代入①式,并由p >0, p =4, p =2, x A =1 x A =2.因为△AMN 为锐角三角形,所以2p>x A . P =2, P =4, x A =2. x A =1.由点B 在曲线段C 上,得x B =|BN |-2p=4. 综上,曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).评述:本题体现了坐标法的基本思路,考查了定义法、待定系数法求曲线方程的步骤,综合考查了学生分析问题、解决问题的能力.【例3】 设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .剖析:证直线AC 经过原点O ,即证O 、A 、C 三点共线,为此只需证k OC =k OA .本题也可结合图形特点,由抛物线的几何性质和平面几何知识去解决.证法一:设AB :x =my +2p,代入y 2=2px ,得y 2-2pmy -P 2=0. 由韦达定理,得y A y B =-p 2,解得或 故舍去所以即y B =-Ay p 2.∵BC ∥x 轴,且C 在准线x =-2p上, ∴C (-2p,y B ). 则k OC =2p y B -=A y p 2=A Ax y =k OA .故直线AC 经过原点O .证法二:如下图,记准线l 与x 轴的交点为E ,过A 作AD ⊥l ,垂足为D . 则AD ∥EF ∥BC .连结AC 交EF 于点N ,则||||AD EN =||||AC CN =||||AB BF ,BCNF ||=||||AB AF . ∵|AF |=|AD |,|BF |=|BC |, ∴|EN |=||||||AB BF AD ⋅=||||||AB BC AF ⋅=|NF |,即N 是EF 的中点.从而点N 与点O 重合,故直线AC 经过原点O .评述:本题的“几何味”特别浓,这就为本题注入了活力.在涉及解析思想较多的证法中,关键是得到y A ·y B =-p 2这个重要结论.还有些证法充分利用了平面几何知识,这也提醒广大师生对圆锥曲线几何性质的重视,也只有这样才能挖掘出丰富多彩的解析几何的题目.思考讨论本题也可用平面向量来证明,读者不妨一试. ●闯关训练 夯实基础1.(2003年高考·新课程)设a >0,f (x )=ax 2+bx +c ,曲线y =f (x )在点P (x 0,f (x 0))处切线的倾斜角的取值范围为[0,4π],则P 到曲线y =f (x )对称轴距离的取值范围为A.[0,a 1] B.[0,a 21] C.[0,|ab 2|] D.[0,|ab 21-|]解析:tan α=k =f ′(x )=2ax +b , ∴0≤2ax 0+b ≤1. ∴0≤x 0+a b 2≤a21. 答案:B2.(2004年全国Ⅰ,8)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A.[-21,21] B.[-2,2] C.[-1,1] D.[-4,4]解析:∵y 2=8x ,∴Q (-2,0)(Q 为准线与x 轴的交点),设过Q 点的直线l 方程为y = k (x +2).∵l 与抛物线有公共点, y 2=8x , y =k (x +8)即k 2x 2+(4k 2-8)+4k 2=0有解. ∴Δ=(4k 2-8)2-16k 4≥0,即k 2≤1. ∴-1≤k ≤1. 答案:C3.(2003年春季上海)直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是___________.解析:将y =x -1代入抛物线y 2=4x ,经整理得x 2-6x +1=0. 由韦达定理得x 1+x 2=6,221x x +=3, ∴方程组有解,221y y +=2221-+x x =226-=2.∴所求点的坐标为(3,2). 答案:(3,2)4.在抛物线y =4x 2上求一点,使该点到直线y =4x -5的距离最短,该点的坐标是____________.解法一:设与y =4x -5平行的直线y =4x +b 与y =4x 2相切,则y =4x +b 代入y =4x 2,得 4x 2-4x -b =0.①Δ=16+16b =0时b =-1,代入①得x =21, ∴所求点为(21,1).解法二:设该点坐标为A (x 0,y 0),那么有y 0=4x 02.设点A 到直线y =4x -5的距离为d ,则d =14|54|200+--y x =171|-4x 02+4x 0-5|=171|4x 02-4x 0+5|=171|4(x 0-21)2+1|.当且仅当x 0=21时,d 有最小值, 将x 0=21代入y =4x 2解得y 0=1. 故A 点坐标为(21,1). 答案:(21,1)5.下图所示的直角坐标系中,一运动物体经过点A (0,9),其轨迹方程是y =ax 2+c (a <0),D =(6,7)为x 轴上的给定区间.(1)为使物体落在D 内,求a 的取值范围;(2)若物体运动时又经过点P (2,),问它能否落在D 内?并说明理由.解:(1)把点A 的坐标(0,9)代入y =ax 2+c 得c =9,即运动物体的轨迹方程为y =ax 2+9. 令y =0,得ax 2+9=0,即x 2=-a9. 若物体落在D 内,应有6<a9-<7, 解得-41<a <-499. (2)若运动物体又经过点P (2,),则=4a +9,解得a =-409, ∴-41<-409<-499,∴运动物体能落在D 内.6.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.解:设CD 所在直线的方程为y =x +t , y =x +t , y 2=x , x 2+(2t -1)x +t 2=0, ∴|CD |=]4)21[(222t t -- =)41(2t -.又直线AB 与CD 间距离为|AD |=2|4|-t ,∵|AD |=|CD |, ∴t =-2或-6.从而边长为32或52.面积S 1=(32)2=18,S 2=(52)2=50. 培养能力∵消去y 得7.给定抛物线y 2=2x ,设A (a ,0),a >0,P 是抛物线上的一点,且|P A |=d ,试求d 的最小值.解:设P (x 0,y 0)(x 0≥0),则y 02=2x 0,∴d =|P A |=2020)(y a x +-=0202)(x a x +-=12)]1([20-+-+a a x . ∵a >0,x 0≥0,∴(1)当0<a <1时,1-a >0, 此时有x 0=0时, d min =12)1(2-+-a a =a . (2)当a ≥1时,1-a ≤0, 此时有x 0=a -1时, d min =12-a .8.过抛物线y 2=2px (p >0)焦点F 的弦AB ,点A 、B 在抛物线准线上的射影为A 1、B 1,求∠A 1FB 1.解:由抛物线定义及平行线性质知∠A 1FB 1=180°-(∠AF A 1+∠BFB 1) =180°-21(180°-∠A 1AF )-21(180°-∠B 1BF ) =21(∠A 1AF +∠B 1BF )=90°. 探究创新9.(2003年春季北京)已知动圆过定点P (1,0),且与定直线l :x =-1相切,点C 在l 上.(1)求动圆圆心的轨迹M 的方程;(2)设过点P ,且斜率为-3的直线与曲线M 相交于A 、B 两点. ①问△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由.②当△ABC 为钝角三角形时,求这时点C 的纵坐标的取值范围.解:(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x ,如下图.(2)①由题意得,直线AB 的方程为 y =-3(x -1). y =-3(x -1),y 2=4x , 解得A (31,332),B (3,-23), 若△ABC 能为正三角形,设C (-1,y ),则|AC |=|AB |=|BC |,(31+1)2+(332-y )2=(3-31)2+(23+332)2, ① (3+1)2+(23+y )2=(3-31)2+(23+332)2. ②解得y =-9314.但y =-9314不符合(1),所以①②组成的方程组无解.因此直线l 上不存在点C 使△ABC 是正三角形.②设C (-1,y )使△ABC 成钝角三角形,由 y =-3(x -1),x =-1,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=928-334y +y 2,|BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当|BC |2>|AC |2+|AB |2,由消去y ,得3x 2-10x +3=0.∴得y =23,即28+43y +y 2>928-334y +y 2+9256, 即y >923时,∠CAB 为钝角.当|AC |2>|BC |2+|AB |2, 即928-334y +y 2>28+43y +y 2+9256, 即y <-3103时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即9256>928-334y +y 2+28+43y +y 2,即 y 2+343y +34<0,(y +32)2<0. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23). ●思悟小结本节主要内容是抛物线的定义、方程及几何性质.解决本节问题时应注意以下几点:1.求抛物线方程时,若由已知条件可知曲线是抛物线,一般用待定系数法;若由已知条件可知曲线的动点的规律,一般用轨迹法.2.凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算.3.解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.●教师下载中心教学点睛本节重点是抛物线的定义、四种方程及几何性质.难点是四种方程的运用及对应性质的比较、辨别和应用,关键是定义的运用.建议在教学中注意以下几点:1.圆锥曲线统一定义:平面内与一定点F 和定直线l 的距离之比为常数e 的点的轨迹,当0<e <1时,表示椭圆;当e =1时,表示抛物线;当e >1时,表示双曲线.2.由于抛物线的离心率e =1,所以与椭圆及双曲线相比,它有许多特殊的性质,而且许多性质是可以借助于平面几何的知识来解决的.3.抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p 等于焦点到抛物线顶点的距离.牢记它对解题非常有益.4.求抛物线方程时,要依据题设条件,弄清抛物线的对称轴和开口方向,正确地选择抛物线标准方程.5.在解题中,抛物线上的点、焦点、准线三者通常与抛物线的定义相联系,所以要注意相互转化.拓展题例【例题】 (2003年北京东城区模拟题)已知抛物线C 1:y 2=4ax (a >0),椭圆C 以原点为中心,以抛物线C 1的焦点为右焦点,且长轴与短轴之比为2,过抛物线C 1的焦点F 作倾斜角为4π的直线l ,交椭圆C 于一点P (点P 在x 轴上方),交抛物线C 1于一点Q (点Q 在x 轴下方).(1)求点P 和Q 的坐标;(2)将点Q 沿直线l 向上移动到点Q ′,使|QQ ′|=4a ,求过P 和Q ′且中心在原点,对称轴是坐标轴的双曲线的方程.解:(1)由题意可知F (a ,0),设椭圆方程为22m x +22ny =1(m >n >0). n m =2, m 2=2a 2, m 2-n 2=a 2, n 2=a 2,由 解得∴椭圆方程为222a x +22ay =1,直线l :y =x -a . y =x -a , 222a x +22a y =1, y =x -a , y 2=4ax , (2)将Q 点沿直线l 向上移动到Q ′点,使|QQ ′|=4a ,则可求出Q ′点的坐标为(3a ,2a ).设双曲线方程为s x 2-ry 2=1(s ·r >0). 由于P 、Q ′在双曲线上,则有s a 2)3(-ra 2)2(=1, s a 2)34(-ra 2)31(=1.s 1=2117a , r 1=21113a . ∴双曲线方程为2117a x 2-21113a y 2=1. 由 可求出P (34a ,31a ). 由 可求出Q ((3-22)a ,(2-22)a ).解得。

相关文档
最新文档