必修①3.2 函数模型及其应用课件(人教A版必修1)Ⅱ

合集下载

人教A版高一数学必修一《1.3.2函数的最大、最小值》精品课件

人教A版高一数学必修一《1.3.2函数的最大、最小值》精品课件
解析: 原函数变为 y=|x-2| +|x+1|=
-2x+1 3 2x-1
x≤-1 -1<x≤2 x>2
其图象如下图所示,显然函数值 y≥3,所以函 数有最小值 3,无最大值.
必修1 第一章
集合与函数的概念
栏目导引
利用函数单调性求最值 x 求函数 f(x)= 在区间[2,5]上的最大 x-1 值与最小值.
第2课时
函数的最大值、最小值
必修1 第一章
集合与函数的概念
栏目导引
1.理解函数的最大(小) 值及其几何意义. 2.会求一些简单函数的 最大值或最小值.
1.利用函数单调性求函 数最值.(重点) 2.体会数形结合思想的 运用.(难点)
必修1 第一章
集合与函数的概念
栏目导引
1.从函数f(x)=x2的图象上还可看出,当x=0 最小值 .而对于f(x) 时,y=0是所有函数值中_______ =-x2来说,x=0时,y=0是所有函数值中 最大值 . _______
2x+6 2. 函数 f(x)= x+7
x∈[1,2] , 则 f(x) x∈[-1,1] 的最大值、最小值为( ) A.10,6 B.10,8 C.8,6 D.以上都不对
必修1 第一章
集合与函数的概念
栏目导引
解析: 本题为分段函数最值问题,其最大值 为各段上最大值中的最大值,最小值为各段上 最小值中的最小值. 当1≤x≤2时,8≤2x+6≤10, 当-1≤x≤1时,6≤x+7≤8. ∴f(x)min=f(-1)=6,f(x)max=f(2)=10. 答案: A
必修1 第一章
集合与函数的概念
栏目导引
[题后感悟] (1)实际问题.要理解题意,建立 数学模型转化成数学问题解决. (2)分清各种数据之间的关系是正确构造函数关 系式的关键.

人教版高中数学必修一全套PPT课件

人教版高中数学必修一全套PPT课件
点到平面的距离公式及应用 利用点到平面的距离公式可以求解点到平面的最短距离, 进而解决一些实际问题,如建筑设计、空间定位等。
直线与平面所成的角及应用 通过求解直线与平面所成的角,可以判断直线与平面的位 置关系,进而解决一些实际问题,如光线照射角度、物体 倾斜角度等。
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
集合的运算
详细介绍交集、并集、补集等集合 运算的定义和性质,并给出相应的 例子和练习题。
Байду номын сангаас数及其表示方法
函数的概念
讲解函数的定义、定义域、 值域等基本概念,并给出 相应的例子。
函数的表示方法
介绍解析法、列表法、图 象法等多种表示函数的方 法,并给出相应的例子。
函数的性质
讲解函数的单调性、奇偶 性、周期性等性质,并通 过实例加以说明。
2023 WORK SUMMARY
人教版高中数学必修 一全套PPT课件
REPORTING
目录
• 高中数学必修一概述 • 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间的位置关系
PART 01
高中数学必修一概述
教材内容与结构
集合与函数概念
包括集合的含义与表示、集合间的基 本关系、集合的基本运算、函数及其 表示、函数的单调性与最值、函数的 奇偶性与周期性等内容。
函数的单调性与奇偶性
函数的单调性
01
详细讲解函数单调性的定义和性质,包括增函数和减函数的判
断方法,并给出相应的例子和练习题。
函数的奇偶性
02
介绍函数奇偶性的定义和性质,包括奇函数和偶函数的判断方
法,并给出相应的例子和练习题。

高中数学人教A版 必修第一册 建立数学模型解决实际问题 课件

高中数学人教A版 必修第一册 建立数学模型解决实际问题 课件

检验模型
y
y
90
90
a = 0.92270
80
a = 0.91810
80
70
70
x
O
1
2
3
4
5
x
O
1
2
3
4
5
不难发现,采用平均值作为衰减比例与实际数据更加的吻合,
因此选取的函数模型为 y=60×0.9227x+25.
ቤተ መጻሕፍቲ ባይዱ 检验模型
这种采用平均值的方法在解决实际问题中也是很常见的.因为实验
所得的数据并不一定具有很强的规律性,所以我们在实验过程中应
观察散点图的分布状况,并考虑到茶
水温度降至室温就不能再降的事实,
可选择函数y=kax +25(k∈R,0<a<1,
x>0)来近似地刻画茶水温度随时间变
化的规律,
90
80
70
x
O
1
2
3
图1
4
5
建立模型
4.建立模型
如何利用以上实验数据求解函数模型中的参数k和a.
根据实际情况可知,当x=0时,y=85,可得k=60.
收集数据
追问:怎样保证测量数据的准确性以减少误差?
可多次重复实验,取平均值从而减小误差.
任务1:请同学们课后按照实验流程进行实验,获取并记录
一组数据.
下面我们看某研究人员每隔1 min测量一次茶水温度,得
到表1的一组数据.
分析数据
3·分析数据
观察实验数据会发现,随着时间的变化,茶水的温度也在发生
选取a的值?
a = 0.90320
80
80

【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课件 新人教A版必修1

【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课件 新人教A版必修1

当该顾客购买茶杯 40 个时,采用优惠办法 (1) 应付款 y1 =
5×40+60=260元;采用优惠办法(2)应付款y2=4.6×40+73.6 =257.6元,由于y2<y1,因此应选择优惠办法(2).
2
2
二次函数模型问题与函数的图象
西部山区的某种特产由于运输原因,长期只能
在当地销售,当地政府对该项特产的销售投资收益为:每年投 1 入 x 万元,可获得利润 P=-160(x-40)2+100(万元).当地政 府拟在新的十年发展规划中加快发展此特产的销售,其规划方 案为: 在规划前后对该项目每年都投入 60 万元的销售投资, 在 未来 10 年的前 5 年中, 每年都从 60 万元中拨出 30 万元用于修 建一条公路,5 年修成,通车前该特产只能在当地销售;
●温故知新
旧知再现 1.常见的函数模型 kx k为常数,k≠0); (1)正比例函数模型:f(x)=____(
k (2)反比例函数模型:f(x)=____( x k为常数,k≠0);
(3)一次函数模型:f(x)=________( kx+b k,b为常数,k≠0); ax2+bx+c a , b , c 为常数, (4) 二次函数模型: f(x) = ____________(
(1)分别求出通话费y1、y2与通话时间x之间的函数关系式; (2)请帮助用户计算,在一个月内使用哪种卡便宜.
[分析]
由题目可获取以下主要信息: (1)通过图象给出函
数关系, (2) 函数模型为直线型, (3) 比较两种函数的增长差 异.解答本题可先用待定系数法求出解析式,然后再进行函数 值大小的比较.
1 又由题设 P=-160(x-40)2+100 知, 每年投入 30 万元时, 795 利润 P= 8 (万元). 前 5 年的利润和为 795 2 775 8 ×5-150= 8 (万元).

人教a版必修1学案:3.2.2函数模型的应用实例(含答案)

人教a版必修1学案:3.2.2函数模型的应用实例(含答案)

3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。

新人教A版高中数学教材目录(必修+选修)【很全面】

新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。

人教版高中数学必修1全套课件

人教版高中数学必修1全套课件

函数与方程
函数与方程的基本概念
包括函数定义、函数值、自变量、因 变量等概念的介绍。
函数的表示方法
解析法、列表法、图象法等表示方法 的特点和适用范围。
函数的性质
单调性、奇偶性、周期性等性质的定 义和判断方法。
方程与不等式的解法
一元一次方程、一元二次方程、分式 方程等方程和不等式的解法,以及函 数与方程的联系。
对数函数
对数函数的定义与性质
01
介绍对数函数的基本概念、性质,包括底数、对数的定义和运
算规则。
对数函数的图像与性质
02
通过图像展示对数函数的增减性、奇偶性、周期性等性质,帮
助学生直观理解函数特点。
对数函数的应用
03
列举对数函数在生活中的实际应用,如音量的分贝计算、地震
震级的计算等,培养学生运用数学知识解决问题的能力。
数列的项与通项公式
数列中的每一个数称为数列的项;表示数列第n项的公式称为数列 的通项公式。
数列的表示方法
列表法、图象法和通项公式法。
等差数列和等比数列
等差数列的定义与性质
从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列的定义与性质
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
正切函数、余切函数的图象和性质 三角函数的最值问题
三角恒等变换
两角和与差的正弦、余弦 公式
半角公式及其应用
二倍角公式及其应用 积化和差与和差化积公式
解三角形及其应用举例
01
正弦定理及其应用
02
余弦定理及其应用
03
解三角形的常用方法:面积法、正弦定理 法、余弦定理法等
04
解三角形的实际应用举例:测量、航海、 地理等问题

【课件】函数的概念及其表示+课件高一上学期数学人教A版(2019)必修第一册

【课件】函数的概念及其表示+课件高一上学期数学人教A版(2019)必修第一册

闭区间
开区间
左开右闭区间
左闭右开区间
≤<
常见区间的含义及表示方法如下表所示:
例1
判断下列各题中的两个函数是否表示同一个函数
(1) = + 1, =
2 −1
;(2)
−1
(3) = , = 2 ;
= , =
3
3;
(4) = 1, = 0
函数,其中叫做中间变量, = 叫做内层函数, = 叫做
外层函数.Leabharlann 注意:①定义域永远是的范围;
②同一个下,括号内作用对象范围相同.
*抽象函数或复合函数的定义域
例3
1.已知函数()的定义域为 1,4 ,求函数 3 + 1 的定义域.
2.已知函数( 2 )的定义域为 1,4 ,求函数 的定义域.
食物支出金额
× 100%)反
总支出金额
映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越
高.表3.1-1是我国某省城镇居民恩格尔系数变化情况,从中可以看
出,该省城镇居民的生活质量越来越高.
问题4:国际上常用恩格尔系数( =
①年份 的变化范围是什么?恩格尔系数的变化范围是什么?
②恩格尔系数是年份的函数吗?
=
.
2.已知函数 =

.
−1
3
的定义域为,则实数的取值范围
2 +4+3

求下列函数的值域
例1 = + 1, ∈ 1,2,3,4,5 .
例2(1) = 2 − 2 + 3, ∈ 0,3 ;(2) =
− 2 + + 2;

2014年人教A版必修一课件 3.2 数学模型及其应用

2014年人教A版必修一课件 3.2  数学模型及其应用

另解: 利用几何画板画出三个函数的图ቤተ መጻሕፍቲ ባይዱ进行分析. 在 [10, 1000] 内, 最大值不能超过 5 万元, ①
16 14
y 不能超过 x 的 25%,
12
即 y≤0.25 x, ② 很明显, y=0.25x 不满足①. 指数函数随着 x 的增大增长速度很快, 用计算器算得 y=1.0021000 ≈7.37>5, y=1.002x 不满足①. 10 y=log7x+1是增函数, 用计算器算得 y=log71000+1≈4.55<5, 且在 [10, 1000] 内 log7x+1<0.25x. ∴ y=log7x+1 符合条件.
例2. 某公司为了实现1000万元利润的目标, 准备制定一 个激励销售部门的奖励方案: 在销售利润达到10万元时, 按销 售利润进行奖励, 且奖金 y (单位: 万元) 随销售利润 x (单位: 万元) 的增加而增加, 但奖金总数不超过 5万元, 同时奖金不 超过利润的 25%, 现有三个奖励模型: y=0.25x, y=log7x+1, y=1.002x, 其中哪个模型能符合公司的要求? 解: 在奖励模型中, 其定义域为 {x|10≤x≤1000}. 按要求, 三个函数的最大值不能超过 5 万元, 同时, y 又 不能超过 x 的 25%. 三个函数在 [10, 1000]上都是增函数, 其最大值分别是: y1=0.251000 =250(万元),
y2=log71000+1 ≈4.55(万元),
y3=1.0021000 ≈7.37(万元).
只有第二个函数 y=log7x+1 符合第一条要求.
例2. 某公司为了实现1000万元利润的目标, 准备制定一 个激励销售部门的奖励方案: 在销售利润达到10万元时, 按销 售利润进行奖励, 且奖金 y (单位: 万元) 随销售利润 x (单位: 万元) 的增加而增加, 但奖金总数不超过 5万元, 同时奖金不 超过利润的 25%, 现有三个奖励模型: y=0.25x, y=log7x+1, x, 其中哪个模型能符合公司的要求? y=1.002 再看函数 y=log7x+1 是否满足第二个条: y≤25%x, 解 : log 在奖励模型中 , 其定义域为 {x|10≤ 即 log7x≤0.25 x-1,x≤1000}. 7x+1≤25%x 按要求 , 0.25 三函数的最大值不能超过 5 log7x 和 x-1 都是增函数, 如图 : 万元, 同时, y 又 y 25%. 不能超过 x 的 在 [10, 1000] 内, 24 [10, log ≤0.25x-1 成立. : , 7x其最大值分别是 3.5 三函数在 y=1000] 0.25x上都是增函数 -1 5 y =0.251000 =250(万元), ∴模型 y=log7x+1 符合要求. 1 2.37 y2=log71000+1 ≈4.55(万元), y=log7x 1.5 y3=1.0021000 ≈7.37(万元). o10 200 y= 1.1 400 800 1000 x . 只有第二个函数 log7x600 +1 符合第一条要求 8 10

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

必修1(一)第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步 2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用必修四第一章基本初等函(Ⅱ) 1.1 任意角的概念与弧度制 1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式 3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1 第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

人教A版高中数学必修第一册第3章3-1-2第2课时分段函数课件

人教A版高中数学必修第一册第3章3-1-2第2课时分段函数课件

月份
1
2
3
合计
计费金额/元 114 75
45.6
234.6
问:小赵家第一季度共用电多少?
[解] (1)当0≤x≤100时,月电费=月用电量×标准电价,可得y= 0.57x; 当x>100时,月电费=100 kW·h的电费+超过100 kW·h部分的电费, 可得y=0.57×100+1.5×(x-100)=1.5x-93.
×
(2)分段函数有多个定义域. ( )
×
(3)分段函数的图象一定是其定义域上的一条连续不断的曲线 .
()
×
(4)函数f (x)=|x|可以用分段函数表示.( )

02
关键能力·合作探究释疑难
类型1 分段函数的求值问题 类型2 分段函数的图象及应用 类型3 分段函数的实际应用
◆ 类型1 分段函数的求值问题
√ √
BD [由题意知函数f (x)的定义域为(-∞,2),故A错误;当x≤-1
时,f (x)的取值范围是(-∞,1],当-1<x<2时,f (x)的取值范围是
[0,4),因此f (x)的值域为(-∞,4),故B正确;当x=1时,f (1)=
12=1,故C错误;当x≤-1时,f (x)=x+2=1⇒x=-1,当-1<x<2

发现规律 分段函数的建模 (1) 当 目 标 在 不 同 区 间 有 不 同 的 计 算 表 达 方 式 时 , 往 往 需 要 用 _分__段__函__数__模型来表示两变量间的对应关系,而分段函数图象也需 要分__段__画__. (2)分段函数模型应用的关键是确定分段的_各__分__界__点_,即明确自变量 的取值区间,对每一个区间进行分类讨论,从而写出相应的函数解 析式.

2020人教版高一数学必修1(全套)精品课件

2020人教版高一数学必修1(全套)精品课件

1.3 函数的基本性质
2020人教版高一数学必修1(全套)精 品课件
信息技术应用 用计算机绘制 品课件
1.2 函数及其表示
2020人教版高一数学必修1(全套)精 品课件
阅读与思考 函数概念的发展 历程
2020人教版高一数学必修1(全套)精 品课件
第一章 集合与函数概念
2020人教版高一数学必修1(全套)精 品课件
1.1 集合
2020人教版高一数学必修1(全套)精 品课件
阅读与思考 集合中元素的个 数
2020人教版高一数学必修1(全套)精 品课件
2020人教版高一数学必修1(全套) 精品课件目录
0002页 0067页 0148页 0224页 0242页 0264页 0286页 0330页 0365页 0417页 0475页 0505页 0551页 0624页
第一章 集合与函数概念 阅读与思考 集合中元素的个数 阅读与思考 函数概念的发展历程 信息技术应用 用计算机绘制函数图象 小结 2.1 指数函数 2.2 对数函数 探究也发现 互为反函数的两个函数图象之间的关系 小结 第三章 函数的应用 阅读与思考 中外历史上的方程求解 3.2 函数模型及其应用 实习作业 复习参考题

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

高中数学必修一3.2函数模型(共23张PPT)

高中数学必修一3.2函数模型(共23张PPT)

解:每次过滤杂质含量降为原来的
2 3
,过滤n次后杂质含量
为 2%( 2) n 2 (2)n
3 1003
结合按市场要求杂质含量不能超过0.1%,即可建立数学
模型.依题意,得 2(2)n 1 ,即 (2)n1
100 3 10003 20
例:某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%, 若初时含杂质2%,每过滤一次可使杂质含量减少 1 ,问至少应过 滤几次才能使产品达到市场要求?(已知:lg2=0.33010,lg3=0.4771)
题型三、指数、对数型函数及直线函数模型的应用
例:三个变量y1、y2、y3随变量x的变化情况如下表:
x
y1
y2
y3
其中x呈对数函数型变化的变量是 y2 呈指数函数型变化的变量是 y3
,f(x)=mlogax+n ,f(x)=abx+c
呈直线函数型变化的变量是 y1 . f(x)=kx+b
例:某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%, 若初时含杂质2%,每过滤一次可使杂质含量减少 1 ,问至少应过 滤几次才能使产品达到市场要求?(已知:lg2=0.33010,lg3=0.4771)
2、建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量 的函数,建立函数模型的过程主要是抓住某些量之间的相等关系列出函 数式,不要忘记考察函数的定义域;
3、求解函数模型:主要是计算函数的特殊值,研究函数的单调性,求函 数的值域、最大(小)值等,注意发挥函数图象的作用;
4、还原评价:应用问题不是单纯的数学问题,既要符合数学学科又要符 合实际背景,因于解出的结果要代入原问题进行检验、评判最后作出结 论,作出回答.
∴该函数在[20,30]上单调递减,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成立.
令f(x)=log7x+1-0.25x,x∈[10,1000]. 利用计算器或计算机作出函数f(x)的图象(图3.2-3)
y O -50 -100 -150 -200 -250 -300
200
400 600 800 1000 1200 x
由图象可知它是递减的,因此 f(x)<f(10)≈-0.3167<0 即 log7x+1<0.25x. 所以当x∈[10,1000]时,
y x
1 2
log 1 x 2 2
x
最后探究y a x (0 a 1), y x n (n 0), y log a x(0 a 1) 在区间(0,)上的衰减情况 .
在区间(0,+∞)上,总存在一个x0,当x>x0时,总有 xn>ax>logax(n<0,0&l量与函数值的 对应值表(表3).
x y=x2 y=log2x x y=x2 y=log2x 1 1 0 40 1600 5.322 10 100 3.322 50 2500 5.644 20 400 4.322 60 3600 5.907 30 900 4.907 „ „ „
3.2.2
函数模型的应用实例(1)
复习导入
问:对幂函数、指数函数、对数函数,你是否 注意到函数变化的速度有什么不同?
课堂例题
例1. 一辆汽车在某段路程中的行驶速率与时间的关 系如图3.2-7所示.
(1)求图3.2-7中阴影部分的面积,并说明所求面 积的实际含义; (2)假设这辆汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数关系式,并作出相应的图象.
3.2.1 几类不同增长的函数模(1)
一、实例分析 投资回报和选择奖励模型两个实例,让学生 对直线上升、指数爆炸与对数增长有一个感性的 认识,初步发现当自变量变得很大时,指数函数 比一次函数增长得快,一次函数比对数函数增长 得快.(底数a>0)
例1. 假设你有一笔资金用于投资,现有三种投资 方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多 回报10元; 方案三:第一天回报0.4元,以后每天的回报比前 一天翻一番. 请问,你会选择哪种投资方案?
我们先用计算器或计算机计算一下三种方案所得回报 的增长情况(表3-4)。 x 方案一 方案二 方案三 / y/元 增加量/元 y/元 增加量/元 y/元 增加量/元 天 1 40 10 0.4
2 3 4 5 40 40 40 40 0 0 0 0 20 30 40 50 10 10 10 10 0.8 1.6 3.2 6.4 0.4 0.8 1.6 3.2
2
80 30
3
120 60 2.8
4
160 100 6
5
200 150 12.4
6
240 210 25.2
0.4 1.2
天数
回报/元
方案 一 二 三
7
280 280 50.8
8
320 360 102
9
360 450
10
400 550
11
400 660
204.4 409.2 818.8
因此,投资1~6天,应选择方案一; 投资7天,应选择方案一或方案二; 投资8~10天,应选择方案二; 投资11天(含11天)以上,则应选择方案三.
解:设第x天所得回报是y元, 则方案一可以用函数y=40(x∈N*)进行描述; 方案二可以用函数y=10x(x∈N*)进行描述; 方案三可以用函数y=0.4×2x-1(x∈N*)进行描述. 三个模型中,第一个是常数函数,后两个都是 递增函数模型.要对三个方案作出选择,就要对它们 的增长情况进行分析.
问1:在例1中,涉及哪些数量关系?如何用函数描 述这些数量关系? 问2:根据例1表格中所提供的数据,你对三种方案 分别表现出的回报资金的增长差异有什么认识? 问3:你能借助计算器做出函数图象,并通过图象描 述一下三个方案的特点吗? 问4:由以上的分析,你认为应当如何做出选择?
分析:我们可以先建立三种投资方案所对应的函 数模型,再通过比较它们的增长情况,为选择投 资方案提供依据.
log 7 x 1 0.25. x 说明按模型y=log7x+1奖励,奖金不会超过利润的25%. 综上所述,模型y=log7x+1确实能符合公司要求.
课堂小结
通过师生交流进行小结: 确定函数的模型——利用数据表格、函数图象讨论 模型——体会直线上升、指数爆炸、对数增长等不 同函数类型增长的含义.
例2. 某公司为了实现1000万元利润的目标,准备制定 一个激励销售人员的奖励方案:在销售利润达到10万 元时,按销售利润进行奖励,且奖金y(单位:万元) 随销售利润x(单位:万元)的增加而增加,但奖金总 数不超过5万元,同时奖金不超过利润的25%.现有三个 奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个 模型能符合公司的要求?
0
对于模型y=log7x+1,它在区间[10,1000]上递增, 而且当x=1000时,y=log71000+1≈4.55<5,所以它 符合奖金总数不超过5万元的要求. 再计算按模型y=log7x+1奖励时,奖金是否不超过利 润的25%,即当x∈[10,1000]时,是否有
y log 7 x 1 0.25 x x
24 y y=x2 22 y=2x 20 18 16 14 12 10 8 6 4 2 O 1234567 8
x
从表1和图1可以看到, y=2x和y=x2的图象有两个交点, 这表明2x与x2在自变量不同的区间内有不同的大小关系, 有时2x>x2,有时2x<x2.
利用计算器或计算机,先列出自变量与函数 值的对应值表(表2).
21474 107374182 8364. .4 8
再作出三个函数的图象(图3.2-1)。
由表3-4和图3.2-1可知,方案一的函数是常数函数, 方案二、方案三的函数都是增函数,但方案三的函数与 方案二的函数的增长情况很不同. 可以看到,尽管方案一、方案二在第1天所得回报分 别是方案三的100倍和25倍,但它们的增长量固定不变, 而方案三是“指数增长”,其“增长量”是成倍增加的, 从第7天开始,方案三比其他两个方案增长得快得多,这 种增长速度是方案一、方案二所无法企及的.
首先计算哪个模型的奖金总数不超过5万. 对于模型y=0.25x,它在区间[10,1000]上递增, 而且当x=20时,y=5,因此,当x>20时,y>5,所以 该模型不符合要求; 对于模型y=1.002x,由函数图象,并利用计算 器,可知在区间(805,806)内有一个点x0满 足1.002x 5,由于它在区间[10,1000]上递增,因此 当x>x0时,y>5,所以该模型也不符合要求;
x/ 方案一 方案二 天 y/元 增加量/元 y/元 增加量/元 6 40 60 7 40 0 70 10 8 40 0 80 10 9 40 0 90 10 10 40 0 100 10 … … … … …
30 40 0 300 10
方案三 y/元 增加量/元 12.8 25.6 12.8 51.2 25.6 102.4 51.2 204.8 102.4 … …
探究:
1 通过研究y , y x , y log 1 x这三个具体的 2 2
1 2 x
函数的衰减情况,探究y a x (0 a 1), y x n (n 0), y log a x(0 a 1)在区间(0,)上的衰减情况 .
利用计算器或计算机,先列出自变量与函数值的对 应值表(表4). x
x y=2x y=x2 x 0 1 0 50 10 1024 100 60 1.15E+18 20 1.05E+06 400 70 1.18E+21 30 40 1.07E+09 1.10E+12 900 80 1.21E+24 1600 „ „
y=2x 1.13E+15
y=x2
2500
3600
4900
4.一般的,在区间(0,+∞)上, 尽管函数y=ax(a>1),y=logax(a>1)和y=xn(n>0) 都是增函数, 但它们的增长速度不同,而且不在同一个‘档次’ 上,随着x的增大, y=ax(a>1)的增长速度越来越快,会超过并远远 大于y=xn(n>0)的增长速度, 而y=logax(a>1)的增长速度则会越来越慢. 因此,总会存在一个x0,当x>x0时,就有 logax<xn<ax.
从每天所得回报看,在第1~3天,方案一最多;在 第4天,方案一和方案二一样多,方案三最少;在第 5~8天,方案二最多;第9天开始,方案三比其他两个 方案所得回报多得多,到第30天,所得回报已超过2亿 元.
下面再看累计的回报数,通过计算器或计算机列表如下: 天数 回报/元 方案 一 二 三
1
40 10
3.2.1 几类不同增长的函数模(2)
新课
1.通过图、表比较y=x2,y=2x两个函数的增长速度.
利用计算器或计算机,先列出自变量与函数值的对 应值表(表1). x
y=2x y=x2
0
1 0
1
2 1
2
4 4
3
8 9
4
16 16
5
32 25
6
7
8

64 128 256 „ 36 49 64 „
再在同一平面直角坐标系内 画出这两个函数的图象(图1)
2
3.322 1.737
1
0.515 0.152
相关文档
最新文档