高中数学复数

合集下载

高中数学中的复数基本运算

高中数学中的复数基本运算

高中数学中的复数基本运算复数是数学中一个重要的概念,它在高中数学课程中起着重要的作用。

复数的引入为解决实数域中无解的方程提供了新的可能性,同时也为数学的发展提供了新的思路。

在高中数学中,复数的基本运算是必学的内容之一。

本文将探讨高中数学中的复数基本运算。

1. 复数的定义与表示复数是由实数和虚数构成的数,它可以表示为 a + bi 的形式,其中 a 为实部,b 为虚部,i 是虚数单位。

在复数中,实部和虚部都是实数。

复数可以用复平面表示,实部对应于横轴,虚部对应于纵轴。

2. 复数的加法与减法复数的加法和减法与实数的加法和减法类似,只需将实部和虚部分别相加或相减即可。

例如,(a + bi) + (c + di) = (a + c) + (b + d)i。

同理,复数的减法也是将实部和虚部分别相减。

3. 复数的乘法与除法复数的乘法与实数的乘法有所不同,需要使用分配律和虚数单位的性质。

例如,(a + bi) × (c + di) = (ac - bd) + (ad + bc)i。

复数的除法也是类似的,需要使用分配律和虚数单位的性质。

4. 复数的模与共轭复数的模表示复数到原点的距离,可以使用勾股定理计算。

复数的模为 |a + bi| = √(a^2 + b^2)。

复数的共轭表示实部不变,虚部取负。

例如,复数 a + bi 的共轭为a - bi。

5. 复数的乘方与开方复数的乘方可以使用展开公式进行计算,例如,(a + bi)^2 = a^2 + 2abi - b^2。

复数的开方可以使用勾股定理和三角函数进行计算,例如,√(a + bi) = ±√(r) ×(cos(θ/2) + i sin(θ/2)),其中 r 为模,θ 为辐角。

6. 复数的应用复数在实际应用中具有广泛的应用,例如在电路分析、信号处理和量子力学等领域。

复数的运算可以帮助我们解决一些实际问题,例如求解电路中的电流和电压、分析信号的频谱等。

高中数学中的复数

高中数学中的复数

高中数学中的复数在高中数学学习中,我们常常会接触到复数这个概念。

复数是由实数部分和虚数部分构成的数,学习和理解复数对于我们深入了解数学的本质和应用具有重要的意义。

本文将介绍复数的定义、性质以及在高中数学中的应用。

一、复数的定义复数是由实数部分和虚数部分构成的数,通常表示为a+bi的形式,其中a为实数部分,b为虚数部分,i为虚数单位,满足i²=-1。

二、复数的性质1. 复数的加法和减法:将实部相加或相减,虚部相加或相减。

2. 复数的乘法:实部和虚部分别相乘得到新的实部和虚部。

3. 复数的除法:分子和分母同时乘以共轭复数,并运用乘法规则进行计算。

4. 复数的模:复数的模等于实数部分和虚数部分的平方和的平方根。

5. 复数的共轭:将复数的虚数部分取相反数得到共轭复数。

6. 复数的指数表示:根据欧拉公式,复数可以表示为e^ix的形式。

三、复数在高中数学中的应用1. 解方程:复数可以用于解决各类方程,包括二次方程、三次方程等。

复数根定理告诉我们,若一个多项式方程没有实数根,则必定存在复数根。

2. 向量运算:复数可以用于表示平面上的向量,利用复数的加法和乘法可以进行向量的运算,如相加、相减、旋转等。

3. 三角函数:复数可以与三角函数建立联系,通过欧拉公式,我们可以将三角函数用复数表示,进而简化三角函数的计算。

4. 矩阵运算:复数在矩阵运算中也有广泛应用,包括复数矩阵的加法、乘法、求逆等。

5. 物理学中的应用:复数在物理学中也有重要应用,如交流电路中的分析、波动学中的表示等。

综上所述,复数在高中数学中扮演着重要的角色。

通过学习和理解复数的定义和性质,我们可以更好地应用复数解决各种数学问题,并将其应用到更广泛的领域中。

在学习过程中,我们应注重对复数概念的理解和运用能力的培养,以提高自己在数学领域的素养和能力。

通过深入研究和探索,我们能够更好地理解数学的本质,并在实际问题中灵活应用数学知识。

高中数学中的复数运算公式总结

高中数学中的复数运算公式总结

高中数学中的复数运算公式总结高中数学中,复数运算是一个重要的内容。

复数的引入为解决实数域内无解的方程提供了新的解决方法,拓展了数学的领域。

复数运算涉及到复数的加减乘除、幂运算等多个方面,下面将对这些复数运算公式进行总结。

一、复数的加减运算复数的加减运算是指两个复数相加或相减的运算。

设有两个复数a+bi和c+di,其中a、b、c、d均为实数。

则复数的加法运算公式为:(a+bi)+(c+di)=(a+c)+(b+d)i。

复数的减法运算公式为:(a+bi)-(c+di)=(a-c)+(b-d)i。

二、复数的乘法运算复数的乘法运算是指两个复数相乘的运算。

设有两个复数a+bi和c+di,其中a、b、c、d均为实数。

则复数的乘法运算公式为:(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

三、复数的除法运算复数的除法运算是指一个复数除以另一个复数的运算。

设有两个复数a+bi和c+di,其中a、b、c、d均为实数。

则复数的除法运算公式为:(a+bi)/(c+di)=((ac+bd)/(c^2+d^2))+((bc-ad)/(c^2+d^2))i。

四、复数的幂运算复数的幂运算是指一个复数的指数为整数或分数的运算。

设有一个复数a+bi,其中a、b为实数,n为整数或分数。

则复数的幂运算公式为:(a+bi)^n=r^n(cos(nθ)+isin(nθ)),其中r为复数的模,θ为复数的辐角。

五、复数的共轭运算复数的共轭运算是指一个复数的实部保持不变,虚部取负的运算。

设有一个复数a+bi,其中a、b为实数。

则复数的共轭运算公式为:(a+bi)*=(a-bi)。

六、复数的模运算复数的模运算是指计算一个复数的绝对值的运算。

设有一个复数a+bi,其中a、b为实数。

则复数的模运算公式为:|a+bi|=√(a^2+b^2)。

综上所述,高中数学中的复数运算涉及到复数的加减乘除、幂运算、共轭运算和模运算等多个方面。

这些运算公式为解决实数域内无解的方程提供了新的解决方法,也为数学的发展提供了重要的基础。

高中数学复数知识点总结

高中数学复数知识点总结

高中数学复数知识点总结复数是数学中一个重要的概念,它由实数和虚数构成。

在高中数学中,我们学习了复数的表示形式、运算法则以及复数的应用。

下面是对高中数学中复数知识点的总结,希望对您有所帮助。

一、复数的定义和表示形式复数是由实数和虚数构成的数,一般表示为a+bi,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。

实部和虚部可以是任意实数。

当虚部为0时,复数退化为实数。

二、复数的运算法则1. 复数的加法和减法:分别对实部和虚部进行相加或相减。

2. 复数的乘法:将复数写为a+bi和c+di的形式,然后应用分配律进行计算。

3. 复数的除法:将除数乘以共轭复数的分子和分母,然后将分子和分母分别展开,最后进行化简。

4. 复数的乘方和开方:使用欧拉公式、指数形式以及三角函数的相关知识,将复数转化为指数形式进行计算。

5. 复数的共轭:实部不变,虚部变号。

6. 复数的模:复数与自身的共轭复数的乘积的平方根。

三、复数的应用1. 解方程:复数可以用来解决无实数解的方程,如x²+1=0。

2. 平面向量:复数可以表示平面上的向量,方向由复数的幅角表示,长度由复数的模表示。

3. 电路分析:复数可以用于分析交流电路,计算电流、电压和功率。

4. 振动系统:复数可以用于描述和分析振动系统的运动情况。

5. 信号处理:复数可以用于处理信号的频率、相位和幅度等特征。

四、常见的复数知识点1. 欧拉公式:e^(iθ) = cosθ + isinθ,其中i为虚数单位,θ为实数。

2. 常见公式:(a+bi)(a-bi)=a²+b²,其中a、b为实数。

3. 求方程的根:如x²+1=0的根为±i。

4. 模的性质:|z₁·z₂|=|z₁|·|z₂|,其中z₁、z₂为复数。

5. 幂的性质:(a+bi)ⁿ=aⁿ+[C(n,1)aⁿ⁻¹b+C(n,2)aⁿ⁻²b²+...+C(n,n-1)abⁿ⁻¹+bn]i,其中C(n,m)为组合数。

(完整版)高中数学复数专题知识点整理

(完整版)高中数学复数专题知识点整理

专题二 复数【1】复数的基本概念(1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部实数:当b = 0时复数a + b i 为实数虚数:当0≠b 时的复数a + b i 为虚数;纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数(2)两个复数相等的定义:00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且(3)共轭复数:z a bi =+的共轭记作z a bi =-;(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习)(5)复数的模:对于复数z a bi =+,把z =叫做复数z 的模;【2】复数的基本运算设111z a b i =+,222z a b i =+(1) 加法:()()121212z z a a b b i +=+++;(2) 减法:()()121212z z a a b b i -=-+-;(3) 乘法:()()1212122112z z a a b b a b a b i ⋅=-++ 特别22z z a b ⋅=+。

(4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-⋅⋅⋅⋅⋅⋅【3】复数的化简c di z a bi+=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b++-++-==⋅=++-+ 对于()0c di z a b a bi +=⋅≠+,当c d a b=时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi+==+进一步建立方程求解。

高中数学 复数 讲义

高中数学  复数  讲义
例4.复数 ( )
(A) (B) (C) (D)
练习1.复数 ( )
A、 B、 C、 D、
练习2.复数
(A) (B) (C) (D)
例5.下面是关于复数 的四个命题:其中的真命题为( )
的共轭复数为 的虚部为
(C)
练习1.设z1,z2是复数,则下列命题中的假命题是( ).
A.若|z1-z2|=0,则 B.若 ,则
思考: 实轴上的点都表示________,原点表示, 除了原点外虚轴上的点都表示 ___________.
在复平面内 对应的点______________, 对应的点______________,
实轴上的点 表示实数,虚轴上的点 表示纯虚数_____________,
虚轴上的点 表示纯虚数____________;
例3. 已知复数 的虚部为 ,在复平面内复数 对应的向量的模为2,求复数 .
练习1.已知 ,复数z的实部为a,虚部为1,则 的取值范围是
例4. 设复数 满足 ,则 =( )
A. B. C. D.
练习1.若复数z满足 ,则z=
【知识点梳理】
1.复数 与 的和的定义:
2.复数 与 的差的定义:
3.乘法运算规则:
练习1.若 是虚数单位, ,则 为( )
A.0B.1C.2D.3
例4. 已知 是虚数单位,复数 ,当 取何实数时, 是:
(1)实数 (2) 虚数 (3)纯虚数 (4)零
例5.已知复数 ,则实数x=
练习1.若不等式 成立,则实数
专题精讲
【知识点梳理】
1. 复数 与有序实数对 是一一对应关系;若点Z的横坐标是 ,纵坐标是 ,则复数 可用点 表示,其中这个建立了直角坐标系来表示复数的平面叫做复平面, 轴叫做实轴, 轴叫做虚轴

高中数学复数与向量的运算

高中数学复数与向量的运算

高中数学复数与向量的运算复数与向量是高中数学中重要的概念与工具,在数学的各个领域都有广泛的应用。

本文将介绍复数与向量的基本概念和运算,以及它们在数学中的应用。

一、复数的基本概念与运算1.1 复数的定义复数由实部和虚部构成,通常表示为z=a+bi。

其中,a称为实部,b 称为虚部,i为虚数单位,i满足i²=-1。

1.2 复数的运算复数的四则运算与实数类似,只需注意虚部之间的运算即可。

设z1=a1+b1i,z2=a2+b2i,其中a1、b1、a2、b2为实数,则复数的运算如下:- 加法:z1+z2=(a1+a2)+(b1+b2)i- 减法:z1-z2=(a1-a2)+(b1-b2)i- 乘法:z1*z2=(a1*a2-b1*b2)+(a1*b2+a2*b1)i- 除法:z1/z2=(a1*a2+b1*b2)/(a2²+b2²)+((a2*b1-a1*b2)/(a2²+b2²))i1.3 共轭复数若z=a+bi是一个复数,则它的共轭复数记作z*=a-bi。

共轭复数是复数的实部不变,虚部取相反数的结果。

1.4 复数的模与参数对于复数z=a+bi,它的模记作|z|=√(a²+b²),参数记作θ=tan⁻¹(b/a)。

模表示复数的绝对值大小,参数表示复数所在的极坐标角度。

二、向量的基本概念与运算2.1 向量的定义向量是有方向和大小的量,通常用箭头表示。

在空间中,向量可以表示为一个有序数组(a₁, a₂, a₃),其中a₁、a₂、a₃为实数。

2.2 向量的表示与坐标在平面直角坐标系中,向量可以表示为一个有向线段,起点为原点,终点为箭头所指向的位置。

向量也可以通过坐标表示,例如向量AB可以表示为向量→AB=(x₂-x₁, y₂-y₁)。

2.3 向量的加法与减法向量的加法和减法操作可以通过将向量首尾相接的方法进行。

设向量→A=(x₁, y₁),→B=(x₂, y₂),则向量的加法和减法如下:- 加法:→A+→B=(x₁+x₂, y₁+y₂)- 减法:→A-→B=(x₁-x₂, y₁-y₂)2.4 向量的数量积与向量积向量的数量积又称为点积,表示为→A·→B=|→A||→B|cosθ,其中θ为→A和→B之间的夹角。

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数z 的代数形式为(),z a bi a b R =+∈,其中a 称为z 的实部,b 称为z 的虚部(而不是bi ),2、几类特殊的复数:(1)纯虚数:0,0a b =≠ 例如:5i ,i 等(2)实数: 0b =3、复数的运算:设()12,,,,z a bi z c di a b c d R =+=+∈(1)21i =−(2)()()12z z a c b d i ±=+++(3)()()()()212z z a bi c di ac adi bci bdi ac bd ad bc i ⋅=+⋅+=+++=−++ 注:乘法运算可以把i 理解为字母,进行分配率的运算。

只是结果一方面要化成标准形式,另一方面要计算21i =−(4)()()()()()()1222a bi c di ac bd bc ad i z a bi z c di c di c di c d +−++−+===++−+ 注:除法不要死记公式而要理解方法:由于复数的标准形式是(),z a bi a b R =+∈,所以不允许分母带有i ,那么利用平方差公式及21i =的特点分子分母同时乘以2z 的共轭复数即可。

4、共轭复数:z a bi =−, 对于z 而言,实部相同,虚部相反5、复数的模:z = 2z z z =⋅ (22z z ≠) 6、两个复数相等:实部虚部对应相等7、复平面:我们知道实数与数轴上的点一一对应,推广到复数,每一个复数(),a bi a b R +∈都与平面直角坐标系上的点(),a b 一一对应,将这个平面称为复平面。

横坐标代表复数的实部,横轴称为实轴,纵轴称为虚轴。

8、处理复数要注意的几点:(1)在处理复数问题时,一定要先把复数化简为标准形式,即(),z a bi a b R =+∈(2)在实数集的一些多项式公式及展开在复数中也同样适用。

高中数学竞赛讲义第十五章 复数【讲义】

高中数学竞赛讲义第十五章  复数【讲义】

第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算.便产生形如a+bi (a,b ∈R )的数,称为复数.所有复数构成的集合称复数集.通常用C 来表示. 2.复数的几种形式.对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射.因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量.因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式.若z=r(cos θ+isin θ),则θ称为z 的辐角.若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式.3.共轭与模,若z=a+bi,(a,b ∈R ),则=z a-bi 称为z 的共轭复数.模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z zz =⎪⎪⎭⎫ ⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=. 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若21212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2ei(θ1+θ2),.)(212121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n=r n(cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2sin2(cosnk i nk r w n πθπθ+++=,k=0,1,2,…,n-1.7.单位根:若w n=1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=ni n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q ∈Z,0≤r ≤n-1,有Z nq+r =Z r ;(2)对任意整数m,当n ≥2时,有mn m m Z Z Z 1211-++++ =⎩⎨⎧,|,,|,0m n n m n 当当特别1+Z 1+Z 2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z 1)(x-Z 2)…(x-Z n-1)=(x-Z 1)(x-21Z )…(x-11-n Z ).8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等.9.复数z 是实数的充要条件是z=z ;z 是纯虚数的充要条件是:z+z =0(且z ≠0). 10.代数基本定理:在复数范围内,一元n 次方程至少有一个根.11.实系数方程虚根成对定理:实系数一元n 次方程的虚根成对出现,即若z=a+bi(b ≠0)是方程的一个根,则z =a-bi 也是一个根.12.若a,b,c ∈R,a ≠0,则关于x 的方程ax 2+bx+c=0,当Δ=b 2-4ac<0时方程的根为.22,1aib x ∆-±-=二、方法与例题 1.模的应用.例1 求证:当n ∈N +时,方程(z+1)2n +(z-1)2n=0只有纯虚根.例2 设f(z)=z 2+az+b,a,b 为复数,对一切|z|=1,有|f(z)|=1,求a,b 的值.2.复数相等.例3 设λ∈R ,若二次方程(1-i)x 2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件.3.三角形式的应用.例4 设n ≤2000,n ∈N,且存在θ满足(sin θ+icos θ)n=sinn θ+icosn θ,那么这样的n 有多少个?4.二项式定理的应用.例5 计算:(1)100100410021000100C C C C +-+- ;(2)99100510031001100C C C C --+-5.复数乘法的几何意义.例6 以定长线段BC 为一边任作ΔABC,分别以AB,AC 为腰,B,C 为直角顶点向外作等腰直角ΔABM 、等腰直角ΔACN.求证:MN 的中点为定点.例7 设A,B,C,D 为平面上任意四点,求证:AB •AD+BC •AD ≥AC •BD.6.复数与轨迹.例8 ΔABC 的顶点A 表示的复数为3i,底边BC 在实轴上滑动,且|BC|=2,求ΔABC 的外心轨迹.7.复数与三角.例9 已知cos α+cos β+cos γ=sin α+sin β+sin γ=0,求证:cos2α+cos2β+cos2γ=0.例10 求和:S=cos200+2cos400+…+18cos18×200.8.复数与多项式.例11 已知f(z)=c 0z n +c 1z n-1+…+c n-1z+c n 是n 次复系数多项式(c 0≠0). 求证:一定存在一个复数z 0,|z 0|≤1,并且|f(z 0)|≥|c 0|+|c n |.9.单位根的应用.例12 证明:自⊙O 上任意一点p 到正多边形A 1A 2…A n 各个顶点的距离的平方和为定值.10.复数与几何.例13 如图15-2所示,在四边形ABCD 内存在一点P,使得ΔPAB,ΔPCD 都是以P 为直角顶点的等腰直角三角形.求证:必存在另一点Q,使得ΔQBC,ΔQDA 也都是以Q 为直角顶点的等腰直角三角形.例14 平面上给定ΔA 1A 2A 3及点p 0,定义A s =A s-3,s ≥4,构造点列p 0,p 1,p 2,…,使得p k+1为绕中心A k+1顺时针旋转1200时p k 所到达的位置,k=0,1,2,…,若p 1986=p 0.证明:ΔA 1A 2A 3为等边三角形.三、基础训练题1.满足(2x 2+5x+2)+(y 2-y-2)i=0的有序实数对(x,y)有__________组. 2.若z ∈C 且z2=8+6i,且z3-16z-z100=__________. 3.复数z 满足|z|=5,且(3+4i)•z 是纯虚数,则 z __________.4.已知iz 312+-=,则1+z+z 2+…+z1992=__________.5.设复数z 使得21++z z 的一个辐角的绝对值为6π,则z 辐角主值的取值范围是__________. 6.设z,w,λ∈C,|λ|≠1,则关于z 的方程z -Λz=w 的解为z=__________.7.设0<x<1,则2arctan=+-+-+2211arcsin 11x x x x __________. 8.若α,β是方程ax 2+bx+c=0(a,b,c ∈R )的两个虚根且R ∈βα2,则=βα__________. 9.若a,b,c ∈C,则a 2+b 2>c 2是a 2+b 2-c 2>0成立的__________条件.10.已知关于x 的实系数方程x 2-2x+2=0和x 2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m 取值的集合是__________.11.二次方程ax 2+x+1=0的两根的模都小于2,求实数a 的取值范围.12.复平面上定点Z 0,动点Z 1对应的复数分别为z 0,z 1,其中z 0≠0,且满足方程|z 1-z 0|=|z 1|,①另一个动点Z 对应的复数z 满足z 1•z=-1,②求点Z 的轨迹,并指出它在复平面上的形状和位置.13.N 个复数z 1,z 2,…,z n 成等比数列,其中|z 1|≠1,公比为q,|q|=1且q ≠±1,复数w 1,w 2,…,w n 满足条件:w k =z k +kz 1+h,其中k=1,2,…,n,h 为已知实数,求证:复平面内表示w 1,w 2,…,w n 的点p 1,p 2,…,p n 都在一个焦距为4的椭圆上. 四、高考水平训练题1.复数z 和cos θ+isin θ对应的点关于直线|iz+1|=|z+i|对称,则z=__________. 2.设复数z 满足z+|z|=2+i,那么z=__________.3.有一个人在草原上漫步,开始时从O 出发,向东行走,每走1千米后,便向左转6π角度,他走过n 千米后,首次回到原出发点,则n=__________.4.若12102)1()31()34(i i i z -+--=,则|z|=__________.5.若a k ≥0,k=1,2,…,n,并规定a n+1=a 1,使不等式∑∑==++≥+-nk k nk k k k k a aa a a 112112λ恒成立的实数λ的最大值为__________.6.已知点P 为椭圆15922=+y x 上任意一点,以OP 为边逆时针作正方形OPQR,则动点R 的轨迹方程为__________.7.已知P 为直线x-y+1=0上的动点,以OP 为边作正ΔOPQ(O,P,Q 按顺时针方向排列).则点Q 的轨迹方程为__________.8.已知z ∈C,则命题“z 是纯虚数”是命题“R zz ∈-221”的__________条件. 9.若n ∈N,且n ≥3,则方程z n+1+z n-1=0的模为1的虚根的个数为__________. 10.设(x2006+x2008+3)2007=a 0+a 1x+a 2x 2+…+a n x n,则2222543210a aa a a a --++-+…+a 3k -=++-++n k k a a a 222313__________. 11.设复数z 1,z 2满足z1•0212=++z A z A z ,其中A ≠0,A ∈C.证明: (1)|z 1+A|•|z 2+A|=|A|2; (2).2121Az Az A z A z ++=++12.若z ∈C,且|z|=1,u=z 4-z 3-3z 2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.13.给定实数a,b,c,已知复数z 1,z 2,z 3满足⎪⎩⎪⎨⎧=++===,1,1||||||133221321z z z z z zz z z 求|az 1+bz 2+cz 3|的值.三、联赛一试水平训练题1.已知复数z 满足.1|12|=+zz 则z 的辐角主值的取值范围是__________. 2.设复数z=cos θ+isin θ(0≤θ≤π),复数z,(1+i)z,2z 在复平面上对应的三个点分别是P,Q,R,当P,Q,R 不共线时,以PQ,PR 为两边的平行四边形第四个顶点为S,则S 到原点距离的最大值为__________.3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z 1,z 2,…,z 20,则复数1995201995219951,,,z z z 所对应的不同点的个数是__________.4.已知复数z 满足|z|=1,则|z+iz+1|的最小值为__________. 5.设i w 2321+-=,z 1=w-z,z 2=w+z,z 1,z 2对应复平面上的点A,B,点O 为原点,∠AOB=900,|AO|=|BO|,则ΔOAB 面积是__________. 6.设5sin5cosππi w +=,则(x-w)(x-w 3)(x-w 7)(x-w 9)的展开式为__________.7.已知(i +3)m =(1+i)n(m,n ∈N +),则mn 的最小值是__________.8.复平面上,非零复数z1,z2在以i 为圆心,1为半径的圆上,1z •z 2的实部为零,z 1的辐角主值为6π,则z 2=__________. 9.当n ∈N,且1≤n ≤100时,n i ]1)23[(7++的值中有实数__________个. 10.已知复数z 1,z 2满足2112z z z z =,且31π=Argz ,62π=Argz ,π873=Argz ,则321z z z Arg+的值是__________. 11.集合A={z|z 18=1},B={w|w 48=1},C={zw|z ∈A,w ∈B},问:集合C 中有多少个不同的元素? 12.证明:如果复数A 的模为1,那么方程A ixix n=-+)11(的所有根都是不相等的实根(n ∈N +). 13.对于适合|z|≤1的每一个复数z,要使0<|αz+β|<2总能成立,试问:复数α,β应满足什么条件?六、联赛二试水平训练题1.设非零复数a 1,a 2,a 3,a 4,a 5满足⎪⎪⎩⎪⎪⎨⎧=++++=++++===,)(41543215432145342312S a a a a a a a a a a a a a a a a a a 其中S 为实数且|S|≤2,求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上. 2.求证:)2(2)1(sin 2sinsin1≥=-⋅⋅⋅-n nn n n nn πππ. 3.已知p(z)=z n+c 1z n-1+c 2z n-2+…+c n 是复变量z 的实系数多项式,且|p(i)|<1,求证:存在实数a,b,使得p(a+bi)=0且(a 2+b 2+1)2<4b 2+1.4.运用复数证明:任给8个非零实数a 1,a 2,…,a 8,证明六个数a 1a 3+a 2a 4, a 1a 5+a 2a 6, a 1a 7+a 2a 8, a 3a 5+a 4a 6, a 3a 7+a 4a 8,a 5a 7+a 6a 8中至少有一个是非负数.5.已知复数z 满足11z 10+10iz 9+10iz-11=0,求证:|z|=1. 6.设z 1,z 2,z 3为复数,求证:|z 1|+|z 2|+|z 3|+|z 1+z 2+z 3|≥|z 1+z 2|+|z 2+z 3|+|z 3+z 1|.。

高中数学知识复习总结(复数)

高中数学知识复习总结(复数)

复数知识复习总结1.虚数单位i 的性质(1)它的平方等于-1,即 21i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立;(2)i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ;(3)i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, 4n =1。

2.复数的定义与表示:(1)形如(,)a bi a b R +∈的数叫复数, a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*(2)复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式。

3 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0 4.复数集与其它数集之间的关系:N Z Q R C[题目3]如果复数2(i)(1i)m m ++是实数,则实数m =____________[题目4]如果复数ibi212+-的实部与虚部互为相反数,那么实数b 等于________ [题目1] 23212123n n n n ii i i --+++++(n Z ∈)的值等于_______________[题目2] 计算2341234()n n i i i i n i --+-++-(*n N ∈)的值。

5.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d 。

这是解决复数问题时进行虚实转化的工具:一般地,两个复数只能说相等或不相等,而不能比较大小如果两个复数都是实数,就可以比较大小, 也只有当两个复数全是实数时才能比较大小。

高中数学第七章复数易错知识点总结(带答案)

高中数学第七章复数易错知识点总结(带答案)

高中数学第七章复数易错知识点总结单选题1、已知复数z =(1−i )−m (1+i )是纯虚数,则实数m =( ) A .-2B .-1C .0D .1 答案:D解析:利用纯虚数的性质可得m 的值.z =(1−i )−m (1+i )=1−m −(m +1)i ,因为z 为纯虚数且m 为实数, 故{1−m =01+m ≠0,故m =1, 故选:D2、在复平面内,复数1+i 的共轭复数所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:D解析:求出复数的共轭复数,即可得出对应点所在象限. ∵复数1+i 的共轭复数为1−i , ∴其对应的点(1,−1)位于第四象限. 故选:D.小提示:本题考查复数的几何意义,属于基础题.3、已知z =a −2+(1+2a)i 的实部与虚部相等,则实数a =( ) A .2B .−2C .3D .−3 答案:D分析:由题可得a −2=1+2a ,即得. 由题可知a −2=1+2a , 解得a =−3. 故选:D . 4、2−i1+2i =( )A.1B.−1C.iD.−i答案:D分析:根据复数除法法则进行计算.2−i 1+2i =(2−i)(1−2i)(1+2i)(1−2i)=−5i5=−i故选:D小提示:本题考查复数除法,考查基本分析求解能力,属基础题.5、若a,b∈R,i是虚数单位,a+2021i=2−bi,则a2+bi等于()A.2021+2i B.2021+4i C.2+2021i D.4−2021i答案:D分析:根据复数相等可得a=2,−b=2021,进而即得.因为a+2021i=2−bi,所以a=2,−b=2021,即a=2,b=−2021,所以a2+bi=4−2021i.故选:D.6、欧拉公式e iθ=cosθ+isinθ(e为自然底数,i为虚数单位)是瑞士数学家欧拉最早发现的,是数学界最著名、最美丽的公式之一根据欧拉公式,复数e2i在复平面内对应点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:B分析:根据欧拉公式有e2i=cos2+isin2,判断cos2,sin2即可确定e2i对应点所在象限.由题意知:e2i=cos2+isin2,而π2<2<π,∴cos2<0,sin2>0,故e2i对应点在第二象限.故选:B7、已知复数z=2−i20171+i,则z的共轭复数在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限 答案:A分析:根据复数的运算,求得复数z ,再利用复数的表示,即可得到复数对应的点,得到答案. 复数z =2−i 20171+i =2−i 1+i =(2−i )(1−i )(1−i )(1+i )=1−3i 2=12−32i ,则z =12+32i所以复数z 在复平面内对应的点的坐标为(12,32),位于复平面内的第一象限.故选:A8、下列命题正确的是( )A .复数1+i 是关于x 的方程x 2−mx +2=0的一个根,则实数m =1B .设复数z 1,z 2在复平面内对应的点分别为Z 1,Z 2,若|z 1|=|z 2|,则OZ 1⃗⃗⃗⃗⃗⃗⃗ 与OZ 2⃗⃗⃗⃗⃗⃗⃗ 重合C .若|z −1|=|z +1|,则复数z 对应的点Z 在复平面的虚轴上(包括原点)D .已知复数−1+2i ,1−i ,3−2i 在复平面内对应的点分别为A ,B ,C ,若OC ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ (i 是虚数单位,O 为复平面坐标原点,x ,y ∈R ),则x +y =1 答案:C分析:结合一元二次方程的复数根、复数模、复数对应点、向量运算等知识对选项逐一分析,由此确定正确选项.对于A :复数1+i 是关于x 的方程x 2−mx +2=0的一个根,所以:(1+i )2−m (1+i )+2=0, 2i −m −mi +2=2−m +(2−m )i =0,2−m =0,m =2,故A 错误; 对于B :设复数z 1,z 2在复平面内对应的点分别为Z 1,Z 2,若|z 1|=|z 2|, 即这两个向量的模长相等,但是OZ 1⃗⃗⃗⃗⃗⃗⃗ 与OZ 2⃗⃗⃗⃗⃗⃗⃗ 不一定重合,故B 错误;对于C :若|z −1|=|z +1|,设z =x +yi (x,y ∈R ),故:√(x −1)2+y 2=√(x +1)2+y 2,整理得:x =0,故z =yi ,故C 正确;对于D :已知复数−1+2i ,1−i ,3−2i 在复平面内对应的点分别为A ,B ,C , 若OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,所以(3,−2)=x (−1,2)+y (1,−1), (3,−2)=(−x,2x )+(y,−y )=(y −x,2x −y ),{y−x=32x−y=−2,解得:x=1,y=4,故x+y=5,故D错误.故选:C.多选题9、设z为复数,则下列命题中正确的是()A.|z|2=zzB.z2=|z|2C.若|z|=1,则|z+i|的最大值为2D.若|z﹣1|=1,则0≤|z|≤2答案:ACD分析:根据复数的运算法则,以及其几何意义,对每个选项进行逐一分析,即可判断和选择. 设z=x+yi(x,y∈R),则z=x−yi,对A:|z|2=x2+y2=(x+yi)(x−yi)=zz,故A正确;对B:z2=(x+yi)2=x2−y2+2xyi≠x2+y2=|z|2,故B错误;对C:若|z|=1,则该复数对应点为以原点为圆心,半径为1的圆上的点,而|z+i|表示复数z对应点到(0,−1)的距离,故当且仅当z对应点为(0,1)时,取得最大值2,故C正确;对D:若|z−1|=1,其表示复数z对应的点是以(1,0)为圆心,1为半径的圆上的点,又|z|表示复数z对应点到原点的距离,显然|z|∈[0,2],故D正确.故选:ACD.10、已知i为虚数单位,以下四个说法中正确的是()A.i+i2+i3+i4=0B.复数z=3−i的虚部为−iC.若z=(1+2i)2,则复平面内z对应的点位于第二象限D.已知复数z满足|z−1|=|z+1|,则z在复平面内对应的点的轨迹为直线分析:根据复数的概念、运算对选项逐一分析,由此确定正确选项.A选项,i+i2+i3+i4=i−1−i+1=0,故A选项正确.B选项,z的虚部为−1,故B选项错误.C选项,z=1+4i+4i2=−3+4i,z=−3−4i,对应坐标为(−3,−4)在第三象限,故C选项错误.D选项,|z−1|=|z+1|=|z−(−1)|表示z到A(1,0)和B(−1,0)两点的距离相等,故z的轨迹是线段AB的垂直平分线,故D选项正确.故选:AD11、已知i为虚数单位,下列说法正确的是()A.若复数z=1+i1−i,则z30=−1B.若复数z满足|z−1|=|z−i|,则复平面内z对应的点Z在一条直线上C.若(x2−1)+(x2+3x+2)i是纯虚数,则实数x=±1D.复数z=2−i的虚部为−i答案:AB分析:根据复数的运算直接计算可知A;由复数的模的公式化简可判断B;根据纯虚数的概念列方程直接求解可知C;由虚部概念可判断D.对于A:因为z=1+i1−i =(1+i)2(1−i)(1+i)=i,所以z30=i30=i4×7+2=i2=−1,故A正确;对于B:设z=x+yi(x,y∈R),代入|z−1|=|z−i|,得√(x−1)2+y2=√x2+(y−1)2,整理得y=x,即点Z在直线y=x上,故B正确;对于C:(x2−1)+(x2+3x+2)i是纯虚数,则{x 2−1=0,x2+3x+2≠0,即x=1,故C错误;对于D:复数z=2−i的虚部为−1,故D错误.故选:AB.12、已知复数ω=−12+√32i(i是虚数单位),ω是ω的共轭复数,则下列的结论正确的是()A.ω2=ω B.ω3=−1 C.ω2+ω+1=0 D.ω>ω分析:计算ω2可判断A ;计算ω3可判断B ;计算ω2+ω+1可判断C ;根据虚数不能比较大小可判断D. ∵ω=−12−√32i , ∴ω2=14−√32i −34=−12−√32i =ω,故A 正确,ω3=ω2ω=(−12−√32i)(−12+√32i)=14−(−34)=1,故B 错误,ω2+ω+1=−12−√32i −12+√32i +1=0,故C 正确;虚数不能比较大小,故D 错误. 故选:AC .小提示:本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.难度中等. 13、已知a ,b ∈R ,(a −1)i −b =3−2i ,z =(1+i )a−b ,则下列说法正确的是( ) A .z 的虚部是2i B .|z |=2C .z =−2iD .z 对应的点在第二象限 答案:BC分析:根据复数相等的定义,结合复数虚部定义、复数模的定义、共轭复数的定义、复数在复平面内对应点的特征逐一判断即可.由复数相等可得{−b =3,a −1=−2,解得{a =−1,b =−3,所以z =(1+i)a−b =(1+i)2=2i ,对于A ,z 的虚部是2,故A 错误; 对于B ,|z|=|2i|=2,故B 正确; 对于C ,z =−2i ,故C 正确;对于D ,z 对应的点在虚轴上,故D 错误. 故选:BC 填空题14、已知复数z 1=3-bi ,z 2=1-2i ,若z1z 2是实数,则实数b =________.答案:6分析:化简z1z 2,利用虚部为零,计算出b 即可.z 1z 2=3−bi 1−2i =(3−bi)(1+2i)(1−2i)(1+2i)=3+2b+(6−b)i5,∵z 1z 2是实数,∴6-b =0,即b =6.所以答案是:615、若z ∈C ,且2z−5=i ,则Re(z)=________. 答案:5分析:推导出(z −5)i =2,从而z =2i +5=5−2i ,由此能求出Re (z ).解:∵z ∈C ,且2z−5=i , ∴(z −5)i =2,∴z =2i +5=5+2ii 2=5−2i , ∴Re (z )=5. 所以答案是:5.小提示:本题考查复数的实部的求法,考查复数的运算法则等基础知识,考查运算求解能力,是基础题.关键是利用复数的运算求出z 的标准形式,并注意准确掌握实部的概念.16、已知复数z 1=1+3i ,z 2=t +i (i 为虚数单位),且z 1⋅z 2是实数,则实数t =___________. 答案:13分析:由共轭复数定义和复数乘法运算可求得z 1⋅z 2,利用实数定义可构造方程求得t . ∵z 1⋅z 2=(1+3i )⋅(t −i )=(t +3)+(3t −1)i 为实数,∴3t −1=0,解得:t =13. 所以答案是:13.解答题17、已知点P(√3,1),Q (cosx,sinx ),O 为坐标原点,函数f (x )=OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ . (1)求函数f (x )的最小正周期;(2)若A 为△ABC 的内角,f (A )=4,BC =3,求△ABC 周长的最大值. 答案:(1)2π(2)3+2√3分析:(1)先利用向量数量积和辅助角公式化简得到f (x )=4−2sin (x +π3),进而求出最小正周期;(2)利用余弦定理求出(b +c )2−9=bc ,使用基本不等式求出b +c ≤2√3,进而得到△ABC 周长的最大值. (1)f (x )=OP⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(√3,1)⋅(√3−cosx,1−sinx)=3−√3cosx +1−sinx =4−2sin (x +π3)故f (x )的最小正周期T =2π, (2)f (A )=4−2sin (A +π3)=4,解得:sin (A +π3)=0,而A ∈(0,π),故A +π3∈(π3,4π3),故A +π3=π,所以A =2π3;又BC =3,设角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理得:cosA =b 2+c 2−92bc=−12,所以(b +c )2−9=bc ,又bc ≤(b+c )24,故(b +c )2−9≤(b+c )24,解得:b +c ≤2√3,当且仅当b =c =√3时等号成立, 故a +b +c ≤3+2√3,即△ABC 周长的最大值为3+2√3. 18、已知O 为坐标原点,向量OZ 1⃗⃗⃗⃗⃗⃗⃗ 、OZ 2⃗⃗⃗⃗⃗⃗⃗ 分别对应复数z 1,z 2,且z 1=3a+5+(10−a 2)i ,z 2=21−a+(2a −5)i(a ∈R),若z 1+z 2是实数. (1)求实数a 的值;(2)求以OZ 1、OZ 2为邻边的平行四边形的面积. 答案:(1)a =3 (2)118分析:(1)由已知结合z 1+z 2为实数求得a 的值,(2)求得OZ 1⃗⃗⃗⃗⃗⃗⃗ 、OZ 2⃗⃗⃗⃗⃗⃗⃗ 对应的点的坐标,再由OZ 1⃗⃗⃗⃗⃗⃗⃗ OZ 2⃗⃗⃗⃗⃗⃗⃗ 的值计算夹角的正余弦,则可求面积. (1)由z 1=3a+5+(10−a 2)i ,得z 1=3a+5−(10−a 2)i ,则z 1+z 2=3a+5+21−a +[(a 2−10)+(2a −5)]i 的虚部为0,∴a 2+2a −15=0. 解得:a =−5或a =3. 又∵a +5≠0,∴a =3. (2)由(1)可知z 1=38+i ,z 2=−1+i .OZ 1⃗⃗⃗⃗⃗⃗⃗ =(38,1),OZ 2⃗⃗⃗⃗⃗⃗⃗ =(−1,1).∴OZ 1⃗⃗⃗⃗⃗⃗⃗ OZ 2⃗⃗⃗⃗⃗⃗⃗ =58.所以cos 〈OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ 〉=58√64⋅√2=√146,所以sin 〈OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ 〉=√146,所以以OZ 1、OZ 2为邻边的平行四边形的面积S =|OZ 1⃗⃗⃗⃗⃗⃗⃗ |⋅|OZ 2⃗⃗⃗⃗⃗⃗⃗ |⋅sin 〈OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ 〉=118。

高中数学复数的性质与运算总结

高中数学复数的性质与运算总结

高中数学复数的性质与运算总结在高中数学中,复数是一个重要的概念。

它不仅可以用来解决实数范围内无解的方程,还可以应用于电路分析、信号处理等领域。

复数的性质和运算是我们学习复数的基础,下面我将对其进行总结。

一、复数的定义与表示复数是由实部和虚部组成的数,可以表示为a+bi的形式,其中a为实部,b为虚部,i为虚数单位。

复数可以用平面上的点表示,实部对应横坐标,虚部对应纵坐标。

二、复数的性质1. 复数的相等性:两个复数a+bi和c+di相等,当且仅当实部相等且虚部相等,即a=c且b=d。

2. 复数的加法性:两个复数a+bi和c+di相加,结果为(a+c)+(b+d)i。

3. 复数的减法性:两个复数a+bi和c+di相减,结果为(a-c)+(b-d)i。

4. 复数的乘法性:两个复数a+bi和c+di相乘,结果为(ac-bd)+(ad+bc)i。

5. 复数的除法性:两个非零复数a+bi和c+di相除,结果为[(ac+bd)/(c^2+d^2)]+[(bc-ad)/(c^2+d^2)]i。

6. 复数的共轭性:一个复数a+bi的共轭复数为a-bi,记作a+bi的上横线。

7. 复数的模:一个复数a+bi的模为√(a^2+b^2),表示复数到原点的距离。

8. 复数的幂运算:一个复数a+bi的n次幂为[(a+bi)^n],可以通过展开运算得到。

三、复数的运算规则1. 加法和减法满足交换律和结合律,即(a+bi)+(c+di)=(c+di)+(a+bi),(a+bi)+(c+di)+(e+fi)=a+bi+c+di+e+fi。

2. 乘法满足交换律和结合律,即(a+bi)(c+di)=(c+di)(a+bi),[(a+bi)(c+di)](e+fi)=(a+bi)[(c+di)(e+fi)]。

3. 除法不满足交换律和结合律,即(a+bi)/(c+di)≠(c+di)/(a+bi),[(a+bi)/(c+di)]/(e+fi)≠(a+bi)/[(c+di)/(e+fi)]。

高中数学中的复数与复数运算应用相关性质解析

高中数学中的复数与复数运算应用相关性质解析

高中数学中的复数与复数运算应用相关性质解析复数是高中数学中一个重要的概念。

它由实数和虚数部分组成,可表示为a+bi的形式,其中a为实数部分,b为虚数部分,i为虚数单位。

复数在数学中有广泛的应用,特别是在代数学和物理学中。

本文将解析高中数学中的复数与复数运算应用相关的性质。

一、复数的定义与性质复数是由实数和虚数部分组成的数。

实数部分可以为任意实数,而虚数部分可以写成bi的形式,b为一个非零实数。

复数的加、减、乘、除等运算可以用代数方式进行。

复数的加法和减法遵循有理数加法和减法的规律,即实部相加或相减,虚部相加或相减。

例如,(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)-(c+di)=(a-c)+(b-d)i。

复数的乘法按照分配率进行计算。

例如,(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

复数的除法需要进行有理化处理,通过乘以共轭复数来除去分母中的虚数部分。

例如,(a+bi)/(c+di)=(ac+bd)/(c^2+d^2)+[(bc-ad)/(c^2+d^2)]i。

二、复数运算在方程中的应用复数在方程的求解中有广泛的应用。

考虑一元二次方程ax^2+bx+c=0,其中a、b、c为实数且a≠0。

当Δ=b^2-4ac<0时,方程的解为复数。

复数解由下式给出:x=(-b±√Δ)/(2a)。

例如,考虑方程x^2+1=0。

由于Δ=(-1)^2-4(1)(1)=-3<0,所以方程的两个解为虚数,即x=(-1±√(-3))/(2(1))=(-1±i√3)/2。

复数解在数学中有重要的应用,特别是在解析几何和数学模型中。

例如,复数解可用于描述平面上的向量和旋转操作。

它们还可以用于解决无理数问题,如开方运算中对负数的求根等。

三、复数运算在物理学中的应用复数在物理学中具有广泛的应用,尤其是在描述振动和波动过程中。

例如,交流电的电流和电压可以用复数来表示。

高中数学知识点归纳复数的应用

高中数学知识点归纳复数的应用

高中数学知识点归纳复数的应用在高中数学中,我们经常会遇到复数的应用。

复数是由实部和虚部组成的数,可以表达实际问题中的某些特性。

接下来,我将归纳总结一些高中数学中涉及到复数的应用知识点。

一、复数与平面几何在平面几何中,复数可以与向量相互转化。

假设复数 z = a + bi,其中 a 和 b 分别代表实部和虚部,那么可以将 z 视为平面上的一个点 P(x, y),其中x = a,y = b。

这样,复数的加减乘除运算就对应了点的平移、旋转和缩放等几何变换。

1. 复数的加法和减法设 z1 = a1 + b1i 和 z2 = a2 + b2i 是两个复数,它们的加法和减法运算如下:- 加法:z1 + z2 = (a1 + a2) + (b1 + b2)i- 减法:z1 - z2 = (a1 - a2) + (b1 - b2)i2. 复数的乘法和除法设 z1 = a1 + b1i 和 z2 = a2 + b2i 是两个复数,它们的乘法和除法运算如下:- 乘法:z1 * z2 = (a1a2 - b1b2) + (a1b2 + a2b1)i- 除法:z1 / z2 = [(a1a2 + b1b2) / (a2^2 + b2^2)] + [(a2b1 - a1b2) /(a2^2 + b2^2)]i二、复数与方程复数的引入,使得一些原本无解的方程也可以得到解决。

在高中数学中,我们常常会遇到二次方程和高次方程的求解问题。

1. 二次方程的根对于二次方程 ax^2 + bx + c = 0,其中 a、b、c 均为实数且a ≠ 0,如果其判别式Δ = b^2 - 4ac 小于 0,那么方程没有实数根,但可以用复数根来表示。

复数根的计算如下:- 当Δ < 0 时,方程的两个根为 x1 = [-b + √(-Δ)] / (2a) 和 x2 = [-b -√(-Δ)] / (2a)2. 高次方程的根在解高次方程时,复数的引入可以帮助我们找到一些特殊的根。

高中数学复数的运算与应用举例

高中数学复数的运算与应用举例

高中数学复数的运算与应用举例一、复数的定义与基本运算复数是由实数和虚数构成的数,形如a+bi,其中a为实部,b为虚部,i为虚数单位。

复数的运算包括加法、减法、乘法和除法。

例如,计算复数(3+2i)+(5-4i):实部相加得到8,虚部相加得到-2i,所以结果为8-2i。

二、复数的乘法与除法复数的乘法可以通过分配律展开,然后利用虚数单位i的平方等于-1进行计算。

例如,计算复数(2+3i)(4-5i):展开后得到8-10i+12i-15i^2,利用i^2=-1化简为8+2i-15(-1),最后结果为23+2i。

复数的除法可以通过乘以共轭复数的形式来实现。

例如,计算复数(3+4i)/(2-3i):首先将除数(2-3i)的共轭复数(2+3i)乘到被除数(3+4i)的分子和分母上,得到(3+4i)(2+3i)/(2-3i)(2+3i)。

然后展开分子和分母,得到(6+9i+8i+12i^2)/(4+6i-6i-9i^2)。

利用i^2=-1化简,得到(6+17i-12)/(4+9)。

最后结果为(6-12+17i)/(13),即-6/13+17i/13。

三、复数的应用举例1. 电路中的交流电流计算在电路中,交流电流可以表示为复数形式,其中实部表示电流的幅值,虚部表示电流的相位。

例如,某电路中的交流电流表达式为I=2∠30°A,表示电流幅值为2A,相位为30°。

若需要计算电流的实部和虚部,可以利用三角函数的性质进行计算。

实部为2cos30°=√3 A,虚部为2sin30°=1 A。

2. 复数在几何中的应用复数可以用于表示平面上的点,其中实部表示点的横坐标,虚部表示点的纵坐标。

例如,某平面上有两个点A(2,3)和B(4,1),可以将点A表示为复数2+3i,点B表示为复数4+1i。

若需要计算点A和点B之间的距离,可以利用复数的模运算进行计算。

距离为|A-B|=|2+3i-(4+1i)|=|2-4+3i-1i|=|-2+2i|=2√2。

高中数学复数的运算与应用

高中数学复数的运算与应用

高中数学复数的运算与应用复数概念的引入扩展了实数的范围,使得我们能够更加灵活地处理各种数学问题。

在高中数学中,复数的运算与应用是一个重要的内容,本文将围绕这一主题展开讨论。

一、复数的定义与表示复数是由实数和虚数部分组成的数,通常以a+bi的形式表示,其中a为实数部分,bi为虚数部分,i为虚数单位,满足关系式i²=-1。

复数的实部与虚部也可以单独表示为Re(z)与Im(z),分别表示复数z的实部和虚部。

二、复数的运算法则1. 复数的加法:两个复数相加,实部与实部相加,虚部与虚部相加。

例如:(a+bi)+(c+di) = (a+c) + (b+d)i。

2. 复数的减法:两个复数相减,实部与实部相减,虚部与虚部相减。

例如:(a+bi)-(c+di) = (a-c) + (b-d)i。

3. 复数的乘法:两个复数相乘,使用分配律展开计算,注意i的平方等于-1。

例如:(a+bi)(c+di) = (ac-bd) + (ad+bc)i。

4. 复数的除法:两个复数相除,将分母有理化为实数形式,然后使用乘法逆元的方式进行计算。

例如:(a+bi)/(c+di) = [(ac+bd)/(c²+d²)] + [(bc-ad)/(c²+d²)]i。

三、复数在代数方程中的应用复数在解代数方程中扮演着重要的角色,通过使用复数,可以求解实数范围内无解的问题。

举一个简单的例子:考虑方程x²+1=0,对于实数范围,该方程无解。

但是如果我们引入复数,可以得到解x=±i,其中i为虚数单位。

复数的应用不仅仅局限于代数方程的解,还可以应用于电路分析、信号处理等领域。

在电路中,复数的幅值和相位可以用来分析交流电路中的电流和电压。

在信号处理中,复数的频域分析更加方便,可以用来进行滤波、频谱分析等操作。

四、复数的几何解释复数可以与平面上的点一一对应,实部表示点的横坐标,虚部表示点的纵坐标,这被称为复平面。

(完整版)高中数学复数

(完整版)高中数学复数

第1章:复数与复变函数§1 复数1.复数域形如iy x z +=的数,称为复数,其中y x ,为实数。

实数x 和实数y 分别称为复数iy x z +=的实部与虚部。

记为z x Re =, z y Im =虚部为零的复数可看成实数,虚部不为零的复数称为虚数,实部为零虚部不为零的复数称为纯虚数。

复数iy x z -= 和iy x z +=称为互为共轭复数,z 的共轭复数记为z 。

设,复数的四则运算定义为加(减)法: 乘法:除法:相等:当且仅当复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ⋅=⋅④乘法结合律 321321)()(z z z z z z ⋅⋅=⋅⋅⑤乘法对加法的分配律 3121321)(z z z z z z z ⋅+⋅=+⋅全体复数在引入相等关系和运算法则以后,称为复数域。

在复数域中,复数没有大小. 正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示。

例 设i 3,i 5221+=-=z z ,求21z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。

解 为求21z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=⋅⋅=zz z z z z z 2.复平面一个复数iy x z +=本质上由一对有序实数唯一确定。

于是能够确定平面上全部的点和全体复数间一一对应的关系。

如果把x 和y 当作平面上的点的坐标,复数z 就跟平面上的点一一对应起来,这个平面叫做复数平面或z 平面,x 轴称为实轴,y 轴称为虚轴. 在复平面上,从原点到点所引的矢量与复数z 也构成一一对应关系,且复数的相加、减与矢量相加、减的法则是一致的,即满足平行四边形法则,例如:这样,构成了复数、点、矢量之间的一一对应关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章:复数与复变函数 §1 复数
1.复数域
形如iy x z +=的数,称为复数,其中y x ,为实数。

实数x 和实数y 分别称为复数iy x z +=的实部与虚部。

记为
z x Re =, z y Im =
虚部为零的复数可看成实数,虚部不为零的复数称为虚数,实部为零虚部不为零的复数称为纯虚数。

复数iy x z -= 和iy x z +=称为互为共轭复数,z 的共轭复数记为z 。


,复数的四则运算定义为
加(减)法: 乘法:
除法:
相等:
当且仅当
复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+
②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ⋅=⋅
④乘法结合律 321321)()(z z z z z z ⋅⋅=⋅⋅
⑤乘法对加法的分配律 3121321)(z z z z z z z ⋅+⋅=+⋅
全体复数在引入相等关系和运算法则以后,称为复数域. 在复数域中,复数没有大小. 正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示。

例 设i 3,i 5221+=-=z z ,求
2
1
z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。

解 为求
2
1
z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=⋅⋅=z
z z z z z z 2.复平面
一个复数iy x z +=本质上由一对有序实数唯一确定。

于是能够确定平面上全部的点和全体复数间一一对应的关系。

如果把x 和y 当作平面上的点的坐标,复数z 就跟平面上的点一一对应起来,这个平面叫做复数平面或z 平面,x 轴称为实轴,y 轴称为虚轴. 在复平面上,从原点到点
所引的矢量
与复数z 也构成一一对应
关系,且复数的相加、减与矢量相加、减的法则是一致的,即满足平行四边形法则,例如:
这样,构成了复数、点、矢量之间的一一对应关系. 3. 复数的模与辐角
向量
的长度称为复数
的模或绝对值,即:
易知:
(1)
(2)
(3)
(4) 点与点的距离为
实轴正向到非零复数所对应的向量间的夹角满足
称为复数的辐角,记为:。

任一非零复数有穷多个辐角,以表其中的一个特定值,并称合条件的一个为的主值,或称之为的主辐角。

有下述关系:
复数的幅角不能唯一地确定. 如果是其中一个幅角,则
也是其幅角,把属于的幅角称为主值幅角,记为argz. 复数“零”的幅角无定义,其模为零.
例 求 及

注意: 一般有两种含义,一种是指非零复数无穷多辐角中的一个,另一种
是指落在
之间的主辐角。

具体在题目中是指哪一种含义,需要根据上下
文来确定,一般是指主辐角。

用极坐标r,θ代替直角坐标x 和y 来表示复数z.有
则复数z可表示为: ——三角式
利用欧拉公式:,复数z可表示为:
——指数式
叫做复数z的模,θ称为复数z的幅角,记为Argz.
例 将下列复数化成三角表示式和指数表示式。

()π0isin cos 1≤≤+-ϕϕϕ;
解:
⎪⎭⎫ ⎝⎛
+=+=+-2icos 2sin 2sin
22
cos
2
i2sin
2
2sin sin cos 12
ϕϕϕϕ
ϕ
ϕ
ϕϕ
π)
(0,e 2
2sin 2πisin 2πcos 22sin 2
πi
≤≤=⎪
⎭⎫ ⎝⎛
-+-=-ϕϕϕϕϕϕ。

利用复数的指数形式作乘除法比较简单,如:
所以有
还可以得出三角不等式
例 求复数)
i 21)(i 34()
i 21)(i 34(+--+=
A 的模.
解 令i 21,i 3421-=+=z z ,有
2
121z z z z A ⋅⋅=
由共轭复数的运算结果得
12
1212
1212
121=⋅⋅=
⋅⋅=
⋅⋅=
z z z z z z z z z z z z A
4.复数的乘幂与方根
对于非零复数θi e r z =,非零复数z的整数次幂为
当r =1时, 则得棣摩弗公式
由此易知
非零复数z的整数次根式

k=0,1,2,…,n-1.
对于给定的可以取n 个不同的值,它们沿中心在原点,半径为
的圆
周而等距地分布着. 例 求8)i 1(+. 解 4
πi e 2i 1=+,故有
16e 16e )2()e 2()i 1(2πi 4
π8i 8
84
πi
8
====+⋅
例 设i z +=1,求4z .
解 因4
πi
e 2=z ,故4
arg ,2π
=
=z z .于是,z 的四个四次方根为
16
πi
8
0e
2=w 16
9πi
8
1e
2=w 16
π17i
82e
2=w 16
π25i
8
3e
2=w
例 求z 3+8=0的所有根. 解: 1))
3
2sin 32(cos 2)(2831
3
ππππ
k i k i z +++=-=-=
(k =0, 1, 2),
即 i 31+, -2, i 31-.
例 计算



5.共轭复数
复数iy x -称为 iy x z +=的共轭复数,记为z 。

22y x +称为iy x z +=的模,记为z 。

一个复数
的共轭复数为
共轭复数满足
例 求复数
z z
w -+=
11(复数1≠z )的实部、虚部和模。

解: ()()()()2
2221Im 21111111111|-|+|-|||-=|-|-+-=---+=-+=z z i z z z z z z z z z z z z z w 所以
,|
-|||-=2
2
11Re z z w
21Im 2Im |-|=
z z
w ,
()()
|-|+||+=
|
-|++=
|
-||+|=||z z z z z z z z w 1Re 21111112
例 若1||,1||<<b a ,试证:
11<--b a b
a 。

解: 0
|||1||1|||112222>---⇔-<-⇔<--b a b a b a b a b a b
a
然而
()()()()
b a b a b a b a b a b a -----=---11|||1|2
2 2222||||||||1b b a b a a b a b a b a -++---+=
()1||||||1222-+-=a b a (
)()
0||1||122>--=b a

11<--b a b
a 。

6.复数在几何上的应用举例 (1) 曲线的复数方程(略) (2) 应用复数证明几何问题(略)。

相关文档
最新文档