模型Battery&ELEC LOADS

合集下载

动力电池简化模型结构

动力电池简化模型结构

动力电池简化模型结构动力电池的结构包括以下部件:1、电池盖2、正极----活性物质为氧化钴锂3、隔膜----一种特殊的复合膜4、负极----活性物质为碳5、有机电解液6、电池壳动力电池特点:高能量和高功率;高能量密度;高倍率部分荷电状态下(HRPSOC)的循环使用;工作温度范围宽(一30~65℃);使用寿命长,要求5—10年;安全可靠。

动力电池结构与原理?动力电池系统的工作原理如下:电池单元。

电池是将化学能直接转化为电能的基本单元设备,包括电极、隔板、电解质、外壳和端子,设计为可充电。

电池模块。

电池模块以串联、并联或串并联方式组合多个电池单元,只有一对正负输出端子,作为电源组合使用。

单位。

电池由几十个电池单元或电池模块串联组成一个电池单元。

多个电池单元串联连接以形成动力电池组件。

CSC采集系统。

每个电池单元具有多个CSC 采集系统,以监控每个电池单元或电池组单元的电压和温度信息。

CSC采集系统向电池控制单元报告相关信息,并根据BMU指令进行单体电压均衡。

电池控制单元。

安装在动力电池组件内部,是电池管理系统的核心部件。

电池控制单元将整车单体电压、电流、温度、高压绝缘等信息上报给整车控制器,并根据∨CU的指令控制动力电池。

高压电池分配装置。

它安装在动力电池组件的正负输出端,由高压正继电器、高压负继电器、预充电继电器、电流传感器和预充电电阻等组成。

维护开关。

位于动力电池总成的中间面,打开驾驶室内辅助仪表的手套箱开关,操作维修开关。

在检查和维护高压部件之前关闭维修开关可以确保切断高压。

结构主要分为主控模块和从控模块两大块。

具体来说,由中央处理单元(主控模块)、数据采集模块、数据检测模块、显示单元模块、控制部件(熔断装置、继电器)等构成。

一般通过采用内部CAN总线技术实现模块之间的数据信息通讯。

原理:电池放电时,负极发生氧化反应向外电路释放电子,正极发生还原反应,从外电路得到电子,电池充电时过程正好相反,负极得到电子发生还原反应,正极失去电子发生氧化反应。

三种常用动力锂电池模型分析与比较

三种常用动力锂电池模型分析与比较

三种常用动力锂电池模型分析与比较姬伟超;傅艳;罗钦【摘要】To figure out how to choose battery models for the state of charge estimation of electric vehicles, modeling, parameter identification and simulation were respectively carried out with Matlab/Simulink to three types of non-linear models namely PNGV model, Thevenin model and Universal model suitable for Lithium-ion battery SOC estimation in special work conditions, and the precision, response characteristics and availability for application were analyzed and compared based on the experiment results. Finally,it was concluded that PNGV model was more precise and more suitable for application.%为了获得更优的用于电动汽车荷电状态(SOC)估计的动力锂电池模型,分别针对美国新一代汽车合作伙伴计划(PNGV)模型、Thevenin模型、Universal模型三种常用的适合于锂电池SOC估计的非线性模型在特定放电工况下利用matlab/simulink进行建模、参数辨识和仿真,依据实验结果分析比较其模型精确度、响应特性以及应用可行性。

最终综合比较得出PNGV模型精度更高、鲁棒性强,也更加适合实践应用的结论。

电源系统Battery Pack模型为BP48V48RT4U的说明说明书

电源系统Battery Pack模型为BP48V48RT4U的说明说明书

SpecificationsExternal 48V 4U Battery Pack for select UPS Systems (BP48V48RT4U)MODEL NUMBER: BP48V48RT4UDescriptionThe BP48V48RT4U 4U external battery pack offers extended battery runtime when used in conjunction with expandable 48V rack-mount and tower UPS systems. 4U reduced-depth configuration with included 2-post mounting accessories is ideal for use with compact rack-mount models SMART2200CRMXL and SMART3000CRMXL. Includes heavy-gauge cabling with high-current DC connector for safe, simpleinstallation. Included daisy-chain connector enables the connection of additional compatible 48V external battery packs to the host UPS. Included mounting accessories support 4U balanced two-point center-mounting rack-mount installation in 2-post racks. Options for 4-post mounting available.Compatible with these UPS Systems: SMART2200CRMXL, SMART3000CRMXL and other UPS systems that specify the use of this battery pack. (Note: BP48V48RT4U, SMART2200CRMXL andSMART3000CRMXL include hardware for 2-post rack-mount installation. Most other rack-mount UPS systems and battery packs include hardware for 4-post rack-mount installation.)FeaturesOffers extended-run UPS operation when used in conjunction with compatible 48V DC UPS systems q Reduced-depth configuration is ideal for use with Compact rack-mount UPS systems SMART2200CRMXL and SMART3000CRMXLqIncludes heavy-gauge cabling with high-current DC connectors for simple installationq Daisychain connector enables the connection of additional compatible 48V external battery packs to the host UPSqIncluded mounting brackets support rack-mount installation in 4-post racks using only 4 rack spaces (4U)q4POSTRAILKIT option supports 4-post rack-mount installationqHighlightsExtends the runtime of 48V DC UPS Systemsq4U reduced-depth configuration with included 2-post mounting accessories is ideal for use with SMART2200CRMXL and SMART3000CRMXL UPS systemsqIncluded daisychain connector supports the addition of multiple compatible external battery packsqSupports 4U rack-mountinstallation; 2-post installation accessories included qOptions for 4-post rack-mount availableqPackage IncludesBP48V48RT4U external battery pack with attached DC cabling q2 post compatible mounting hardware qOwner's manualqProduct Warranty Period(International)1-year limited warrantyProduct Warranty Period (Mexico)1-year limited warrantyProduct Warranty Period (PuertoRico)1-year limited warranty© 2023 Eaton. All Rights Reserved.Eaton is a registered trademark. All other trademarksare the property of their respective owners.。

battery_modelling(电池模型)

battery_modelling(电池模型)

3
Datastore
All the data and programs used in this thesis will be collected and placed on a CD-ROM or a USB drive. This will be referred to as the thesis datastore through this work, and will be deposited with the Battery group at the Center for Automotive Research (CAR), at The Ohio State University. The thesis will refer to directories in this datastore, and will serve as a lengthy user manual to the software and data.
2
Acknowledgments
Many warm thanks to Drs Rizzoni and Guezennec for their support and inspiration. To Jim Shively, Annalisa Scacchioli, Pierluigi Pisu, and Shawn Midlam-Mohler, and all the research staff and faculty at the Center for Automotive Research. Also to fellow students and colleagues, Zakaria Chehab, Weiwu Li, John Neal, and Lorenzo Serrao. And Don Butler, Frank Ohlemacher, and Darrin Orr. And of course Drs Moses, Cruz, and Utkin for one heck of an Autumn quarter. And naturally, many thanks to family, and the friends made over the course of this project, especially in ECE and Challenge X.

a-battery-ageing-model-used-in-stand-alone-pv-systems(电池寿命衰减模型)

a-battery-ageing-model-used-in-stand-alone-pv-systems(电池寿命衰减模型)

A battery ageing model used in stand alone PV systemsA.Cherif *,M.Jraidi,A.DhouibLaboratoire d'EnergeÂtique ENIT,Engineering Institute of Tunis,BP 37,Le Belve Âde Áre,1002Tunis,Tunisia Received 17J anuary 2002;received in revised form 15May 2002;accepted 27May 2002AbstractThe authors present a new model for the ageing of a lead-acid battery which is based on the initial model of Shepherd.The proposed modelallows to predict temporal variations of the Shepherd coef®cients and to control the deterioration of the battery parameters and performances.The model validation has been realised by the recursive least square (RLS)algorithm by using long-term measurements under several solicitations.This study will improve the storage section of stand-alone photovoltaic systems and reduce overloads and deep discharges.#2002Elsevier Science B.V .All rights reserved.Keywords:Shepherd model;Recursive least square algorithm;Less battery storage system1.IntroductionThe electrochemical storage section constitute the weak point of photovoltaic stand alone PV plants due to their maintenance,life period and breakdowns.Thus,the improv-ing and the conception of new storage strategies constitute a promising research area of PV applications.In fact,we have presented in a previous study [1]two alternatives of PV systems.The ®rst one is the less battery storage system (LBSS)in which the electrical storage is substituted by hydraulic,thermal,eutectic or latent storage.Among its main applications,we can note PV pumping,desalination and refrigeration.These plants,which work to the thread of the sun,require more favourable climatic conditions and high ef®ciency of dc±dc and dc±ac converters.The second PV system is the battery storage system which uses a lead-acid battery,a dc±dc converter and a ®xed frequency self commutated inverter.These systems,which are,used in rural electri®cation and grid connected PV plants require optimal battery regulation and control by reducing the overloads and the high discharges.2.The storage battery modelThanks to their sturdiness and stability,the lead-acid batteries are the most used in rural PV electri®cation.Suchbattery is mainly characterised by the following three rela-tions:the relation between the state of charge (Q )and the charging current (I )[2,3],the variation of the voltage (V )according to the current and the state of charge (Q ),the capacity variation (C )in function of the current [4].The synoptic diagram of the battery model is presented in Fig.1.2.1.Presentation of the battery modelThe simulation model,which predicts the charge±dis-charge phenomena,is that proposed by Shepherd [5].This model presents the relation between voltage,current and the battery state of charge Q as follows:in discharge (I <0):U t U d Àg d It C R d I 1 M d ItC 1 C d ÀIt(1)in charge (I >0):U t U c Àg c 1ÀIt C R c I 1 M c ItCC c ÀIt(2)where U is the battery output voltage,g the coef®cient withcharacterise D U f (Q ),C the capacity,R the internal resistance,I the current,t the time,T the temperature,M the slope of the U f (t ,I ,Q )characteristic,SOC the state of charge (1À(Q /C )),DOD the deep of discharge (Q /C )and c ,d are the indices of charge and discharge,respectively.Journal of Power Sources 112(2002)49±53*Corresponding author.Tel.: 216-1-874700;fax: 216-1-872729.E-mail addresses:adnen2fr@,adnane.cher@fst.rnu.tn (A.Cherif).0378-7753/02/$±see front matter #2002Elsevier Science B.V .All rights reserved.PII:S 0378-7753(02)00341-52.2.Experimental tests and resultsTo validate the model of Shepherd,we have proceeded experimentally to the tests of charge and discharge of the battery with ®xed currents.The measured values enabled us to determine the model parameters (G d ,R d ,M d ,C d ,C c ,g c ,R c ,M c ,C c )relating to discharge and charge processes [6].The two parameters U d and G d are calculated according to the measured linear characteristic U f (t )obtained for I 0and 4.5A (Figs.2and 3).The discharge resistance R d is obtained for the origin value (t 0),as:R d U I 0 ÀU I 0 I À1(3)The parameters C d and M d can be deduced with the choice of experimental points.The model parameters of the charge process are computed with the same method.These parameters are deduced from empirical expressions obtained from a Tunisian battery,type ASSAD/TV90(12V/90Ah)which is the most used in the photovoltaic applica-tions in Tunisia (such as PV electri®cation,pumping,refrig-eration,...).The measured values of the Shepherd parameters relatives to a battery element are presented in the following Table 1.3.Modelling of the battery ageingThe main reasons for the ageing process are the corrosion of the positive grid,the degradation of the active material and the sulfatation during long periods in low states of charge [6].These procedures increase the internal resis-tance,decrease the capacity and reduce the battery life period.However,the Shepherd model given by expressions (1)and (2)does not represent the ageing of the main parameters in function of the time.In order to take into account the dynamic behaviour of the battery,we will identify the temporal model of each parameter by using experimental input/output measurements under several soli-citations (I 0,1,4.5A,...)and state of charge Q (new,1month old,3months old,1year old,...).3.1.Procedure and experimental resultsFrom the measured results,we have calculated the para-meters values of the Shepherd model for each state of ageing.As application,we have operated tests of charge and discharge to the same type of the battery ASSAD 12V/90Ah for four various states of its ageing:new,4,13and 30months old.The obtained curves are presented by the Figs.2±4for the discharge and Figs.5±7for the charge.Table 2repre-sents the values of the same parameters for the other states ofageing.Fig.1.Synoptic diagram of the batterymodel.Fig.2.Discharge characteristic U f (t )with I 0A for four states of ageing (battery ASSAD 12V/90Ah).Fig.3.Discharge variation U f (t )with I 4:5A for four states of ageing (battery ASSAD 12V/90Ah).Table 1Experimental values of the Shepherd model parameters relatives to discharge and charge of the battery ASSAD 12V/90Ah (new state)Parameters Values U d (V) 2.175g d (V)0.21R d (O )0.0053M d 0.065C dÀ0.005U c (V) 2.205g c (V)0.25R c (O )0.011M c 0.55C c1.1550 A.Cherif et al./Journal of Power Sources 112(2002)49±533.2.Presentation of the model of ageingThus,the obtained model of ageing is the following [6]:in discharge:U U d Àg d It C R d I 1 M d ItC 1 C d ÀIt(4a)C d À0:005À0:0012t(4b)U d 2:175À0:0001D 2À0:036log 0:25t 1 (4c)M d 0:065 0:011log 0:75t 1 (4d)g d 0:210 0:0473log 0:33t 1(4e)R d 0:0053 0:0008D 20À0:5D 20À0:5D 2Àt 2q 0B @1CA(4f)in charge:U U c Àg c1ÀIt CR c I 1M c It CC c ÀIt(4a H )C c 1:15 0:0004t t 30(4b H )U c 2:01 0:00013D 2 0:0266t log t 1 (4c H )M c 0:55 0:053log 0:25t 1(4d H )g c 0:250À0:078log 0:125t 1(4e H )R c 0:011 0:001D expÀtt À20 0:5D(4f H )where D is the battery age (in months),t the time variable (in hours).The values at origin (t 0)indicate the new state of the battery.3.3.The life time reductionThe lifetime reduction depends on the daily cycles,the deep of discharge,the sulfatation and corrosion process.Hence,the lifetime reduction due to sulfatation can be expressed by the empirical expression [7]:X s C 0:6 0:1C(5)Fig.4.Variation of discharge resistance R d f (t )for four states of ageing (battery ASSAD 12V/90Ah).Fig.5.Charge characteristic U f (t )with I 0A for four states of ageing (battery ASSAD 12V/90Ah).Fig.6.Charge variation U f (t )with I 4:5A for four states of ageing (battery ASSAD 12V/90Ah).Fig.7.Variation of the charge resistance R c f (t )for four states of ageing (battery ASSAD12V/90Ah).A.Cherif et al./Journal of Power Sources 112(2002)49±5351Table 2Effect of the ageing on the battery parameters (battery ASSAD 12V/90Ah)Months U d (V)g d (V)R d (O )M d C d U c (V)g c (V)R c (O )M c C c4 2.150.1700.0080.080À0.01 2.1670.230.0140.58 1.1713 2.120.1300.0140.092À0.02 2.1300.170.0190.62 1.25302.100.0970.0250.100À0.042.1150.130.0300.651.80Fig.8.The validationalgorithm.Fig.9.Configuration of a photovoltaicplant.parison between measured and simulated energetic efficiency(with and without battery ageing PV 55Wcr,B 90Ah)parison between measured and simulated Ah efficiency (with and without battery ageing PV 55Wcr,B 90Ah).52 A.Cherif et al./Journal of Power Sources 112(2002)49±53Yet,the life period resulting from corrosion is:X c C 0:88 13:3C À3:4(6)The battery capacity for a discharge current (I )can be given by:C I C 01:661 0:66 I =I 0 0:9!1 0:005D T (7)where D T T b ÀT a (battery cell temperature Àambient temperature)and I 0 4:5A (discharge current with remark-able solicitation)(DOD 80%).3.4.ResultsThe capacity of the battery is the most sensitive parameter to ageing since its slope is raised and remarkable.The other parameters U d ,G d ,U c ,g c ,R d and R c decrease according to logarithmic,exponential and linear laws.C c and C d have an in¯uence on the speed of the end of charge and discharge processes,respectively.4.ValidationTo validate the model of the battery ageing,we have used the recursive least square algorithm of Fig.8which was integrated in the software environment (INSEL [8]).The experimental and simulated values are compared in order to minimise the quadratic error [9].Besides we have compared in Figs.9±11the measured and simulated ef®ciency and satis-faction rate of a domestic PV rural electri®cation system.This hardware platform which is illustrated by Fig.9is constituted by:a domestic PV electrification system fed by a 55power peak panel,a 90Ah battery and a load of 350WH per day (lighting 20W TV30W);a data acquisition system MODAS (16inputs)which collect the experimental voltages,currents,efficiencies,temperatures,solar radiation,....For example,we presented in the Figs.11and 12the experimental and simulated variation of the satisfaction rate and the energetic ef®ciency.These parameters were simu-lated by considering two cases of the battery behaviour with ageing and without ageing.We can observe how the ageing factor affects not only the battery parameters but also the PV system performances especially the satisfaction rate.5.ConclusionIn this paper,we have identi®ed the temporal model of a lead-acid battery.Moreover,we demonstrated how the battery ageing affects all parameters of the Shepherd model.This variation is most remarkable with dynamic solicitations (in current and load consumption).However,in nominal functioning conditions,the ageing affects slightly the output voltage and is not signi®cant before the ®rst year.To protect the battery from deep discharges and irrever-sible sulfatations,the load request and the power consump-tion must be limited and controlled.To avoid deep discharge,the voltage output must be ®xed in function of the discharge current.Finally,the battery regulator in insuf®cient to reduce ageing consequences and thus must be assisted by an optimal management and monitoring of the PV plant.References[1]A.Cherif,in:Proceedings of the Renewable Energy Congress on theEvaluation of Less Battery Storage System in Stand Alone PV Plants,Florenze,1998.[2]F.W.Anthony,Modelling and simulation of lead-acid batteries forphotovoltaic systems,Ph.D.Thesis,1983.[3]J.R.Wood,Mobil Solar Corp.,Personal Communication,Waltham,Mussachusetts,1980.[4]R.Wagdy,et a1.,in:Proceedings of the 5th European PhotovoltaicSolar Energy Conference,Athens,1983.[5]C.M.Shepherd,Design of primary and secondary cells,Anequationdescribing battery discharge,J.Electrochem.Soc.112(1965).[6]M.JraõÈdi,Contribution a Ála caracte Ârisation et a Ála mode Âlisation des systeÁmes photovoltaõÈques,DEA Thesis,ENIT,Tunis,1993.[7]F.Al Chenlo,in:Proceedings of the 12th EPSEC on Life Timeand Sizing of Batteries in Stand Alone PV Plants,Amsterdam,1994.[8]H.G.Bloos,On the validation of programs for the simulation ofPV-battery systems,Master Thesis,University of Oldenbourg,1989.[9]A.Cherif,ModeÂlisation dynamique d'une unite Âde refrigeration solaire,Doctorate Thesis,Tunis,1997.parison between measured and simulated satisfaction rate (with and without battery ageing PV 55Wcr,B 90Ah).A.Cherif et al./Journal of Power Sources 112(2002)49±5353。

锂离子电池热滥用模型

锂离子电池热滥用模型

5
AABC-08
The 4th International Symposium on Large Lithium Ion Battery Technology and Application
Thermal Runaway - Background
External Abuse Conditions
External Heating Over-Charging Over-Discharging
May 13-16, 2008
Tampa, Florida
Gi-Heon Kim, Ahmad Pesaran, and Kandler Smith (ahmad_pesaran@)
National Renewable Energy Laboratory
NREL/PR-540-43186
Causing or Energizing Internal Events or Exothermic Reactions
Electrode-Electrolyte Reactions
Leak Smoke
Lithium Plating If Heating rate exceeds Dissipation rate
Background
• Last year, in LLIBTA-3, we introduced our approach for modeling Li-ion thermal abuse1
– Chemical reactions at elevated temperatures
• • • • SEI decomposition Negative-solvent reaction Positive-solvent reaction Electrolyte decomposition

B-D模型

B-D模型

里顿-戴维逊(Britten-Davidson)协同调节模型1969年提出,1973年补充,1979年修改。

该模型认为在个体发育期,许多基因被协同调控,而重复序列在调控中具有重要的作用。

设想不连锁基因发生协同诱导是通过结构基因以外的三个遗传因子参与作用。

模型结构:a.结构基因=生产基因(P,produce gene)。

它的前端有一受体位点(R,recepter site)。

可被激活因子(activator)激活。

b.整合基因(I,integrator gene)是产生激活物的基因。

c.感受位点(S,sensor sit)负责接受生物体对基因表达的调控信号。

调控机理:a.通过特定的激活因子可以同时控制不连锁但含有相同受体位点的许多结构基因的协同表达。

含有相同受体位点的基因组成一组(set)。

b.如果一个结构基因的邻近具有几个不同的受体位点,每个受体位点可以被一个特异性的激活因子所识别,那么这个结构基因就能在不同情况下表达,也就是说,这一结构基因可以属于几个不同的组。

c.如果一个感受位点可以控制几个整合基因,可同时产生几种激活因子,那么,不同组的基因也可以同时被激活进行协同表达,这种同处于一个感受位点之下的所有结构基因称为一套(battery)基因。

3转录后水平一种基因编码的初级转录物(hnRNA)。

细胞通过调节选择其不同的加工、拼接途经,在一个生物的不同组织内合成类似但不同的蛋白质(形成两种或两种以上的mRNA,从而合成两种或两种以上的蛋白质)。

如降钙和免疫球蛋白基因的mRNA形成过程。

(neuropeptide)(calcitonin-gene-retated protein)证明:编码降钙素的DNA片段也能与脑下垂体中的mRNA杂交,从而证实降钙素的初级转录产物不仅存在于甲状腺中,而且也存在于脑下垂体细胞中。

剪接途经:图示.在甲状腺中,转录物在第一polyA添加位点处切开,并加上polyA,转录物的前面4个外显子经剪接后,形成mRNA。

Ethernet regenerative battery pack测试系统模型17040E说明书

Ethernet regenerative battery pack测试系统模型17040E说明书

EthernetREGENERA TIVE BA TTERY PACK TEST SYSTEM MODEL 17040EMODEL 17040EKEY FEATURESMeets international standards for battery testing: IEC, ISO, UL, and GB/T, etc. Regenerative battery energy discharge (Eff. >90%, PF >0.95, I_THD <5%)Auto-ranges with multiple voltage and current ranges for optimal resolution High accuracy current/voltage measurement0.02% r.d.g. + 0.02% r.n.g. (0.05% of r.n.g.)Current slew rate (0%~90%)1ms (100~600kW)10ms (800kW~1.2MW)Dynamic (current/power) driving profile simulation tests for NEDC, FUDS, HPPC Test channel parallel function Test data analysis function Data recovery protection (after power failure)Automatic protection for abnormalities Battery simulator (option) High power test equipment Voltage range: 100~1700V Current range: 0~4800A Power range: 0~1.2MWCustomized integration functions -Integrated temperature chamber -BMS data analysis-Multi-channel voltage/temp. recordingFIELDS OF APPLICATIONPower battery module Energy storage system Motor driverPower control system0.05%Chroma 17040E Regenerative Battery P a c k Te s t S y s t e m i s a h i g h -p re c i s i o n system specifically designed for secondary battery module and pack tests. The energy regenerative function greatly reduces power consumption during discharge, and ensures a stable power grid without generating harmonic pollution on other devices - even under dynamic charge and discharge conditions. Where traditional equipment discharges waste energy in the form of heat, Chroma 17040E can recycle the electric energy discharged by the battery module back to the grid, thus reducing waste energy and alleviating HVAC requirements.The 17040E has built-in parallel channels and dynamic profile simulation functions. The parallel capability maximizes the charge and discharge current and power, thus increasing the efficiency and flexibility of equipment utilization. The dynamic profile simulation allows users to load a battery waveform of a given drive profile in either current or power mode to meet the NEDC/FUDS requirements.I t s b i d i re c t i o n a l a rc h i t e c t u re a s s u re s uninterrupted current during the charge and discharge transient state so that the driving conditions can be accurately simulated in line with the ISO, IEC, UL, and GB/T international test standards.Equipped with Chroma's powerful Battery Pro software, the test system offers flexible test editing functions to perform independent channel tests, and conforms to various requirements for testing secondary battery packs with high safety and stability.Chroma 17040E ensures protected charge/discharge testing through multiple safety features including Over Voltage Protection, Over Current Protection, Over Temperature Protection, and external parameter detection. The recovery functions prevent that test data is interrupted or lost in the case of power failure. 800-404-ATEC (2832)PrecisionEfficiencySecurityPrecisionHigh-precision Measurements for Improved Product QualityThe auto voltage/current range function switches between multiple ranges. When there is a dynamic change between large or small currents, the test system automatically adjusts to the right range to optimize the measurement accuracy. Voltage accuracy: (0.02% of rdg. 0.02% of F .S.) Current accuracy: (0.05% of r.n.g.)Specifically designed for secondary battery module and pack tests, Chroma 17040E Regenerative Battery Pack Test System offers ultimate precision, safety, and efficiency. The main features include recycled energy, parallel channels,high power for battery applications, and high accuracy in voltage and current measurement as well as drive cycle simulation.Auto current rangesOthers' charging/discharging sampling speedChroma charging/discharging sampling speedHigh-frequency Sampling for Battery Pack Capacity CaptureThe high-frequency sampling measurement technology reaches a 50kHz sampling rate to ensure dynamic measurement accuracy. Other battery chargers and dischargers use software to read current values for power computing; however, limited data sampling speed could result in large errors when calculating the dynamic current capacity. Chroma increased the V/I sampling rate and added a double-sampling integrator, so the 17040E test system is able to provide capacity calculation with much higher accuracy. When the current changes, the data is not lost and the transmission speed is not affected. V/I sampling rate: 50KHz (per 20µs)Quick Response Testing for Battery Pack Limit VerificationChroma 17040E supports dynamic driving profile simulation (waveform), which simulates the current and power states of actual driving conditions to comply with NEDC, FUDS, and HPPC standards. The quick current response enables optimized charge/discharge switch control; the current is smooth without overshoot to avoid damage to the battery.Current slew rate: 2ms (-90% to 90%)Discharge to charge:Current slew rate < 2ms (-90% to 90%)Charge to discharge:Current slew rate < 2ms (-90% to 90%)Dynamic Driving Profiles for Actual Use SimulationBattery packs are used under quick and irregular current conditions. Chroma 17040E performs actual dynamic charge/discharge waveforms to simulate working conditions and verify the response of the battery pack in real-life applications. Users can set the test steps to read a specific Excel file with stored current/power waveforms.Actual driving profile simulationCompliant with test standardsProfile simulation data loadingTransition from discharging to chargingTransition from charging to dischargingSafetyBidirectional Circuit for Power Supply ProtectionThe bidirectional circuit architecture allows highly efficient recycling of the discharge energy. Chroma 17040E accurately controls reverse current changes, the AC current waveforms are smooth and show changes in real time, and the design meets the grid requirements without contaminating otherequipment on the grid. When any abnormalities on the power grid are detected, the test system will swiftly cut off the main circuit power supply to protect its safety. Regenerative discharge efficiency > 90 Total Harmonic Distortion (THD) < 5Power Factor (PF) > 0.95BMS Status BrowseBattery TesterBattery PackBMS17040EEnergy Recovery Design for Personnel Safety (Option)VDE test requirements, in short, are the main items to consider when the generator is connected to a low-voltage distribution network on the grid. Even when using multiple devices, they can maintain the safe and reliable operation of the grid in accordance with the German Energy Industry Law and with the voltage limits in the DIN EN 50160 regulations. The optional equipment meets the VDE-4105-AE test requirements with the following protection functions:Voltage protection: V < 0.8Un, < 0.2s / V > 1.1Un, < 0.2 s / V > 1.15Un, < 0.2s Frequency protection: f < 47.5Hz, < 0.2s / f > 1.5Hz, <0.2s Islanding detection: < 5 secMultiple Output Protections for Battery Test Risk ControlChroma 17040E meets the test requirements for secondary battery packs and offers a high degree of stability and safety. The charge/discharge protection will stop the test when it detects any abnormal test status. The internal firmware and hardware provide multi-layered protection. And the protection parameter of test procedure is loaded into them directly to provide a variety of alarm and protection modes. Voltage protection: over charge / over discharge / delta voltage change Current protection: over current / over capacity / delta current changeOther protections: over temperature / wire loss / over power / CC-CV transition timeSoftware and Hardware Protections for Battery Cells (Option)The Chroma BatteryPro software can integrate third-party hardware with charge/discharge protections that will stop the test when detecting any abnormal conditions. A designated datalogger can read the charge/discharge voltage and temperature of multiple cells and use the measured data to set the protection conditions. Similarly, a designated battery management system (BMS) data acquisition system can read multiple sets of BMS data through CAN bus and RS-485 interfaces, and then convert the data for protection conditions. An additional Isolated DIO Card can be integrated in Chroma test system for controlling the high-side/low-side driver signals of device, the function support digital output, digital input, safety channel output, safety input from external devices, and digital input and output for alarms, cut-off, and power off.Data logger with test data protectionParallel Synchronization for High Power Charging (HPC)Chroma 17040 uses parallel synchronization to perform high-power testing with instant current slew synchronization. There is no delay in the slew time between the main channel and the auxiliary channel, which prevents current staircase waveforms from being generated. Users can connect up to two devices of the same model in parallel, and can operate the channels independently or in parallel. The test system provides customizable fixtures and allows parallel running of the output channels. Max. power 1.2MW; max. current 4,800AIn dynamic current mode (waveform), rated power <600kW, current rise time is 1ms (0 ~90 )In dynamic current mode (waveform), rated power 800kW~1.2mW, current rise time is 10ms (0 ~90 )Current Rise Time Waveformin CC DischargeIb MasterEfficiencyFlexible Integration for Complete Test SolutionThe Chroma BatteryPro software integrates third-party software and hardware, such as BMS communication devices, data loggers, and thermostats; and uses their data to control the test programs and create complete test solutions. Thermostat: temperature and humidity control combined with charge/discharge procedures Data logger: temperature and voltage status of single battery cells or modulesMultiple Control Commands for Test System ExpansionUsers can apply languages such as SCPI and CAN bus commands as well as LabVIEW and LabWindow driver programs to tailor the application software for operating Chroma 17040E. The powerful, versatile architecture allows users to customize and integrate into the automatedbattery pack test system. The variety of integrational interfaces are forhardware-in-the-loop (HIL) test platform. Such as CAN bus, Ethernet,Analog I/O.Battery ProData LoggerChillerBattery Pack EOL ATSSoftware PlatformCharge &Discharge17040E 100kW type17040E 200kW/300kW typeThe VCU simulation function for Battery Pack VerificationChroma 17040E offers the function which is vehicle control unit (VCU) simulation to communicate with Battery management system (BMS) during battery pack test. The test system can send SID to control the main relay of battery pack before do charging or discharging, then read the BMS data via SID "read data by identifier" and read diagnostic trouble code (DTC) via SID "read DTC information". Wake up: Tester presentUnlock: Session control, Security access (seednkey)BMS reading: Read DTC information, Read data by identifierThe software platform Battery Pro applies to Chroma 17040E and conforms to the diverse requirements for testing secondary battery packs with a high degree of safety and stability. It can save and restore data when the power is cut off to guard against potential data loss. The real-time monitor manages the test status through a variety of icons for clear multi-channel battery pack status browse. And have the operation and fault records with independent channel abnormalities.Multilingual interface: English and Chinese (Mandarin)User permission setup: easy management of user operation authorities Step Editing255 editable charge and discharge conditionsDual layer loops (cycle & loop) with 9,999 per layer Editable dynamic charge and discharge waveforms Editable charge/discharge conditions incl. CV , CC,CP , CV , with current limit, waveform current, DCIRCut-off conditions: time, power, voltage, current, temperature Step completed: next, end, jump, restReport WizardCustomized report formats, exports in PDF , CSV , and XLSUsers can determine the X- and Y-axis parameters for report drawing and analysis, and directly produce the necessary test reports Reports generated: channel, cut-off, life-cycle, Q-V , V/I/T, etc.Recipe Executor☑Data display updates automatically in real time☑Flexible graphic and toolbar display based on the number of channelsData Analyzer☑Draw test charts at one click☑Define chart and favorite functions ☑Compare multiple test objectsRecipe Editor☑ISO 12405, GB/T 31467, GB/T 31484, IEC 61960 DCIR and other test curves ☑Interface for setting BMS data control charge/discharge equipment☑Variable editing functions, external parameters, if-then judgment functionsBatteryPro main window*1*2*3: All specifications are subject to change without notice.*4: The output range of voltage is referred by the cabling. The connection between the device and battery is 10 meters long as standard accessory.*5: User have to reduce the power load of the test system from 115% to 25% of the power and rest for 10 minutes after finishing the "over current capability".*6: Please reserve distance of maintenance space for equipment placement.*7: When the rated load change from 10% to 90%, the item is stability time of voltage.*8: When the bi-directional rated load change from -90% to 90%, the item is stability time of voltage.*9: The spending time from zero to the maximum voltage is at no-load condition.*10: UKCA certification is applying.*11: Please refer to the Chroma User Manual for the announcement content.*12: The core part of isolated states is via Bender ISO685.*13: The interface between BatteryPro (IPC) to 17040E is through Ethernet.*14: This is used for specific application, please contact Chroma's sales representative.*15: VDE test report is applying.*16: The voltage accuracy is (±0.05%rdg + 0.05%rng).17040E-EN-202203-PDFGet more product & global distributor information in Chroma ATE APPSearch Keyword 17040EiOSAndroid1. Control panel: manual setup mode and equipment calibration mode2. Power switch/indicator/emergency buttons3. Output/input interface: Ethernet, HIL, BMS, and I/O4. DC Power output terminalJAPANCHROMA JAPAN CORP .888 Nippa-cho, Kouhoku-ku,Yokohama-shi,Kanagawa,223-0057 Japan T +81-45-542-1118F +81-45-542-1080www.chroma.co.jp **************.jpU.S.A.CHROMA SYSTEMS SOLUTIONS, INC.19772 Pauling, Foothill Ranch, CA 92610T +1-949-600-6400F + *******************EUROPECHROMA ATE EUROPE B.V . Morsestraat 32, 6716 AH Ede, The Netherlands T +31-318-648282F + ********************CHROMA GERMANY GMBH Südtiroler Str. 9, 86165,Augsburg, Germany T +49-821-790967-0F + ********************CHINA CHROMA ELECTRONICS (SHENZHEN) CO., LTD.8F , No.4, Nanyou Tian An Industrial Estate,Shenzhen, China T +86-755-2664-4598F +86-755-2641-9620 ******************SOUTHEAST ASIA QUANTEL PTE LTD.(A company of Chroma Group)25 Kallang Avenue #05-02 Singapore 339416T +65-6745-3200F + ************************HEADQUARTERS CHROMA ATE INC.88 Wenmao Rd., Guishan Dist.,Taoyuan City 333001, Taiwan T +886-3-327-9999F + ******************KOREACHROMA ATE KOREA BRANCH 3F Richtogether Center, 14,Pangyoyeok-ro 192, Bundang-gu,Seongnam-si,Gyeonggi-do 13524, KoreaT +82-31-781-1025F +82-31-8017-6614www.chromaate.co.kr ******************。

锂电池等效电路模型双极化模型

锂电池等效电路模型双极化模型

锂电池等效电路模型双极化模型英文回答:Bipolar Model of the Lithium-Ion Battery Equivalent Circuit.The bipolar model is an equivalent circuit model for lithium-ion batteries that captures the cell's charge storage and discharge characteristics. It consists of two resistors, two capacitors, and a voltage source. The resistors represent the internal resistance of the battery, while the capacitors represent the charge storage capacity. The voltage source represents the open-circuit voltage of the battery.The bipolar model is a simplified representation of the actual battery, but it is still able to capture the main characteristics of the cell. It is useful for simulating the behavior of batteries in different applications, such as electric vehicles and portable electronics.The equivalent circuit model is based on the assumption that the battery can be represented as a two-terminal device. The terminals are the positive and negative terminals of the battery. The model assumes that the current flows through the battery from the positive terminal to the negative terminal.The internal resistance of the battery is represented by the resistors R1 and R2. R1 represents the resistance of the positive electrode, while R2 represents the resistance of the negative electrode. The charge storage capacity of the battery is represented by the capacitors C1 and C2. C1 represents the capacitance of the positive electrode, while C2 represents the capacitance of the negative electrode. The open-circuit voltage of the battery is represented by the voltage source V.The bipolar model can be used to simulate the behavior of batteries in different applications. For example, it can be used to simulate the discharge of a battery in an electric vehicle. The model can also be used to simulatethe charging of a battery in a portable electronic device.The bipolar model is a useful tool for understandingthe behavior of lithium-ion batteries. It is a simplified representation of the actual battery, but it is still ableto capture the main characteristics of the cell.中文回答:锂离子电池等效电路模型中的双极化模型。

sinmulink中battery用法

sinmulink中battery用法

sinmulink中battery用法Sinmulink中Battery用法Sinmulink是一款Matlab的仿真工具箱,它可以帮助用户快速地建立模型、进行仿真和分析。

其中,Battery是Sinmulink中的一个组件,它可以模拟电池的行为。

在本文中,我们将详细介绍Sinmulink中Battery的用法。

一、Battery组件概述Battery是Sinmulink中的一个组件,它可以模拟电池的行为。

用户可以通过设置参数来模拟电池的特性,如容量、内阻、开路电压等。

同时,Battery还支持多种不同类型的电池模型,如理想电池、Peukert电池等。

二、创建Battery组件在Sinmulink中创建一个新模型后,用户可以从左侧工具栏中选择“Simulink”->“Sources”->“Battery”,然后将其拖动到画布上即可创建一个新的Battery组件。

三、设置参数在创建好Battery组件后,用户需要设置相应的参数才能进行仿真。

下面我们将介绍一些常用参数及其含义:1. Capacity:电池容量(单位:Ah)。

2. Initial charge:初始电荷(单位:Ah)。

3. Internal resistance:内阻(单位:Ω)。

4. Open circuit voltage:开路电压(单位:V)。

5. Battery type:电池类型。

可选项包括:Ideal、Peukert、Simscape电池等。

用户可以通过双击Battery组件打开其属性对话框,然后在“Parameters”选项卡中设置相应的参数。

四、连接Battery组件在设置好Battery组件的参数后,用户需要将其与其他组件进行连接才能进行仿真。

下面我们将介绍一些常用的连接方式:1. 与负载连接:将Battery组件的正极连接到一个负载上,将负载的负极连接到Battery组件的负极上。

2. 与充电器连接:将Battery组件的正极连接到一个充电器上,将充电器的负极连接到Battery组件的负极上。

simulink中battery model模块

simulink中battery model模块

simulink中battery model模块xSimulink中Battery Model模块摘要:本文介绍了在Simulink中使用Battery Model模块进行电池模型仿真的基本步骤。

该模型利用模型电池的材料和结构特性,对电池的电压、容量和温度的变化进行模拟。

通过模型仿真可以帮助电池设计人员更好地了解电池的性能,从而提高电池的效率和可靠性。

1、介绍Battery Model模块,简称BM模块,是Simulink(一种用于表示和仿真电路的流程图化编程工具)中的一种基础模块。

它主要用于模拟电池的运行,包括电压、容量和温度变化情况。

该模块利用模型电池的材料和结构特性,对电池的电压、容量和温度的变化进行模拟,从而为电池设计人员提供参考。

2、工作原理Battery Model模块的模拟原理主要是运用了模型电池的相关参数和结构特性,将电池的电压,容量,温度变化,以及电池的充放电行为,进行模拟出来。

电池表面温度的变化利用模型电池的热传导特性来模拟,当电池进行放电时,放电过程中的电池电压变化利用模型电池的容量曲线来模拟,并利用模型电池的容量和电压的关系来模拟,以及模拟电池在放电过程中的容量衰减。

3、模型使用(1)模型建立要使用Battery Model模块,首先要建立Simulink模型,在模型中添加Battery Model模块,然后添加模型中的信号源,并配置它们的参数,最后将模型中的端口连接好,就可以完成模型的搭建和配置工作。

(2)仿真运行在完成模型的搭建和配置工作后,可以点击Simulink的“仿真”按钮,从而开始运行模型仿真,此时系统会根据模型设置的参数,对电池的电压、容量和温度的变化情况进行仿真。

(3)仿真结果完成仿真后,Simulink会将仿真结果用图像形式显示出来,可以查看电池的电压、容量和温度的变化情况,以及电池充放电的行为等,从而获取电池的运行情况。

4、总结Battery Model模块可以根据模型电池的材料和结构特性,对电池的电压、容量和温度的变化进行模拟,从而为电池设计人员提供参考,促进电池性能的提高。

几种锂离子电池的模型与设计

几种锂离子电池的模型与设计

几种锂离子电池的模型与设计锂离子电池是目前最为广泛应用的电池之一,其高能量密度、长寿命、高效率等特点使得其在移动电源、电动车、储能等领域得到了广泛应用。

不同的应用场景和需求,需要设计不同的锂离子电池模型,而锂离子电池的设计又涉及到许多因素,本文将探讨几种锂离子电池的模型与设计。

一、圆柱形电池模型圆柱形电池是一种常见的锂离子电池模型,它的设计主要涉及到电池容量、放电倍率、循环寿命、可靠性等因素。

电池容量可以通过改变正极、负极材料的数量和质量、电解液浓度等来实现。

放电倍率的大小决定了电池的能否满足高功率应用的需求,可以通过改变正极、负极的材料和设计参数来实现。

循环寿命是电池的重要指标之一,主要受到材料的老化、电解液的降解、自放电等因素的影响。

为了提高循环寿命,需要选择耐高温、耐老化的材料,并采取合理的充放电策略或者采用智能电池管理系统。

可靠性是电池的安全性能指标,主要考虑电池在极端环境下的稳定性和安全性,需要选择优质的材料、优化电池结构和附加安全措施等。

二、软包电池模型软包电池是一种现代化、轻量级的电池模型,具有面积小、体积小、高能量密度、安全性好等优点,适用于移动电源、电子产品等领域。

软包电池的设计需要充分考虑电池的热管理问题,避免因为过度发热而导致电池老化、安全隐患等问题。

另外,软包电池还需要设计合理的电极结构和电解液配方,以实现高能量密度、高效率的目标。

例如,可以采用高容量的电极材料、高浓度的电解液、采用新的电解液体系等方式提高软包电池的能量密度和效率。

三、固态电池模型固态电池是一种全固态的锂离子电池,采用固态电解质代替传统的液态电解液,具有安全性高、循环寿命长、快速充放电等优点。

固态电池的设计需要考虑到电解质的选择、电极材料的选择和设计、电池结构和加工等方面。

电解质材料需要具有高离子传导性、满足高温环境下的性能要求、具有良好的机械性质等要求。

电极材料需要优化电极结构和表面性质,增加电极的反应表面积和离子传输速率。

battery management system battery modeling译文

battery management system battery modeling译文

battery management system battery modeling译文
电池管理系统电池建模
电池管理系统(BMS)是一种监控、控制和保护电池的设备。

电池建模是指对电池进行数学模型的建立,以帮助预测和优化其性能。

这些模型通常使用电化学方程和实验数据进行开发。

电池建模的目的是提供关于电池状态、容量和寿命等信息的准确预测。

这些模型可以帮助决策者制定电池的使用策略,以延长其使用寿命并提高其性能。

电池建模的常见方法包括等效电路模型、物理模型和经验模型。

等效电路模型是基于电池的等效电路参数进行建立的,可以用电流和电压等参数来描述电池的响应。

物理模型基于电池的物理过程和化学反应进行建立,可以更准确地描述电池的行为。

经验模型是基于实验数据进行建立的,通过拟合实验数据来预测电池的性能。

电池建模对于电池管理系统的设计和优化至关重要。

它可以帮助优化电池的充放电策略,提高电池的能量利用率和循环寿命。

同时,电池建模也为电池的故障诊断和安全保护提供了重要的依据。

总而言之,电池管理系统的电池建模是通过数学模型来预测和优化电池性能的过程。

它在电池的使用、设计和优化中起着重要的作用。

国内外电池模型的研究现状

国内外电池模型的研究现状

国内外电池模型的研究现状电池模型是指对电池内部化学反应机理和电池行为进行建模和仿真的研究。

由于电池在能源领域的重要性日益凸显,电池模型的研究也越来越受到关注。

下面将分别介绍国内外电池模型研究的现状。

国内电池模型研究的现状主要体现在以下几个方面:首先,国内学者在电池化学反应机理的研究上取得了一些进展。

例如,中国科学院过程工程研究所的研究人员通过实验和理论计算相结合的方法,揭示了锂离子电池中锂离子的输运机制和锂离子插入材料的相变行为。

这些研究为电池模型的建立提供了重要的理论基础。

其次,国内研究人员在电池模型的参数辨识和优化方法方面也取得了一些成果。

电池模型的参数辨识是指通过对电池实验数据的拟合来确定模型参数的值。

目前,国内学者已经提出了多种参数辨识和优化方法,例如基于粒子群算法的参数辨识方法和基于遗传算法的参数优化方法。

这些方法可以提高电池模型的精度和预测能力。

此外,国内学者还开展了一些电池模型仿真软件的开发工作。

这些软件可以通过输入电池的工况和参数等信息,对电池的充放电过程进行仿真和预测。

例如,清华大学与电动汽车企业合作开发了一款基于物理模型的电池仿真软件,该软件可以用于电池包的设计和电池管理系统的研究。

国外电池模型研究的现状相对来说更加成熟和广泛。

国外研究人员在电池模型的建立和应用方面取得了很多重要的成果。

首先,国外学者在电池化学反应机理的研究上做出了一系列的贡献。

例如,美国阿贡国家实验室的研究人员提出了一种基于锂离子电池内部化学环境的动力学模型,可以较好地预测电池的性能和寿命。

这些研究有助于深入理解电池内部的化学反应过程。

其次,国外学者在电池模型的参数辨识和优化方法方面也取得了显著进展。

例如,英国剑桥大学的研究人员提出了一种基于自适应滑模观测器的电池参数辨识方法,可以提高电池模型的辨识精度。

这些方法可以提高电池模型的准确性和可靠性。

此外,国外学者还开发了一些电池模型仿真软件和工具。

例如,美国阿贡国家实验室的Argonne National Laboratory Battery Modeling Toolkit是一个开源的电池模型开发和仿真工具,可以用于各种类型的电池设计和预测。

电池模型定义

电池模型定义

电池模型定义电池是一个装有两个或更多电池单元,以便产生更大的电场、电压或电流的设备。

它是一种能够将化学能转化为电能并存储的设备,工作原理是通过化学反应将电子移动形成电势差,产生电流,从而为电子设备供电。

电池模型定义是指描述电池工作原理的理论模型,通常包括电芯、外壳、电解质、电极、电流输出和容量等要素。

下面对这些要素进行详细介绍:1. 电芯电芯是电池的核心部分,通常由正极、负极和电解质组成。

正极和负极之间通过电解质进行化学反应,产生电荷,并造成电势差,这样电荷就能够流动,从而形成电流并驱动外部电子设备。

2. 外壳外壳是电池的外部包装,通常由金属材料(如铁、铝等)构成。

它能够保护电池内部的电芯、电解液和电极,同时也能够提供与外界连接的金属引脚,方便电流流向外部电子设备。

3. 电解质电解质是电池中放置于正负电极之间的液体或固体各种化合物。

它能够在化学反应中起到催化作用,并且承载电荷流动的负离子和正离子。

通过电解质的流动,电池就能够产生比起静态的电势差更为稳定和持久的电流。

4. 电极电极是电池的两个端点,在电化学反应中起到载体的作用,能够吸附和释放离子、电子源以及参与氧化还原反应。

通常,正极使用的是金属氢化物结构,负极使用的是碳/石墨等化学结构,不同的化学反应方式决定了电池的不同性能。

5. 电流输出电流输出是电池的关键参数之一,它表示电池能够为外部电气设备提供的输出电流,并且在使用过程中会随着电池的容量而逐渐减少。

6. 容量容量是电池储存电量的能力,通常使用单位为安时(Ah)或毫安时(mAh)来表示。

容量越大,电池储存的电能就越多,能够为外部电气设备提供更长时间的运行时间。

总的来说,电池模型定义是包含了上述各要素,能够清晰地描述电池的工作原理和性能特点,为电池的设计和制造提供了基础理论支持。

建模实例练习题

建模实例练习题

建模实例练习题在实际问题中,建模常常是解决难题的关键。

通过将问题转化为数学模型,并应用数学工具进行分析和求解,可以帮助我们更好地理解问题本质,并找到解决问题的方法。

下面,我们将通过一个建模实例练习题来展示建模的过程和思路。

假设你是一家汽车制造公司的产品经理,你的公司计划推出一款新型电动汽车。

为了满足不同消费群体的需求,公司提出了以下两种电池可选方案:方案一:锂电池(Lithium-ion battery)方案二:铅酸电池(Lead-acid battery)你需要根据以下条件对这两种电池方案进行比较,并给出合理的建议:1. 续航里程(Driving Range):锂电池续航里程为300公里,铅酸电池续航里程为200公里。

2. 充电时间(Charging Time):锂电池充电时间为4小时,铅酸电池充电时间为8小时。

3. 成本(Cost):锂电池成本为10000元,铅酸电池成本为5000元。

4. 环境友好性(Environmental Friendliness):锂电池材料可回收利用,而铅酸电池材料含有有毒物质。

首先,我们需要确定一个目标或者评价指标来衡量两种电池方案的优劣性。

在这个问题中,一个明显的目标是:选择一种电池方案,既能够满足消费者的需求,又能够降低成本,并且对环境友好。

基于这个目标,我们可以建立以下几个模型来分析比较两种电池方案的优劣性:模型一:续航里程评估模型假设续航里程是一个重要的考量因素,我们可以给续航里程设定一个评估指标(Driving Range Index),通过续航里程(公里数)除以最大续航里程(300公里)来得到。

根据这个指标,我们可以计算出锂电池的续航里程评估值为1(300/300=1),铅酸电池的续航里程评估值为0.67(200/300=0.67)。

可以看出,锂电池在续航里程方面更有优势。

模型二:充电时间评估模型假设充电时间也是一个重要的考量因素,我们可以给充电时间设定一个评估指标(Charging Time Index),通过充电时间(小时数)除以最小充电时间(4小时)来得到。

电池建模技术

电池建模技术

电池建模技术
电池建模技术是利用数学和物理原理来描述电池的性能和特性的技术。

通过建立电池的数学模型,可以预测电池在不同工作条件下的电压、电流、容量、内阻等重要参数,以及电池的寿命和循环特性。

常见的电池建模技术包括:
1. 电化学模型:通过考虑电池内部的电化学反应过程来描述电池的性能。

这种模型通常基于电化学动力学和电化学方程,并考虑了电解液、电极材料、电极表面反应等因素。

2. 电路模型:将电池抽象为电路中的一个元件,通过电路元件的电压-电流特性来描述电池的行为。

常见的电路模型包括电压源模型、电流源模型、内阻模型等。

3. 统计模型:利用大量实验数据来建立电池的统计模型,以预测电池的平均寿命、故障概率等。

这种模型通常基于可靠度理论和统计学原理。

4. 机器学习模型:利用机器学习算法来建立电池的预测模型,通过对大量历史数据的学习,预测电池的容量衰减、剩余寿命等。

常见的机器学习模型包括决策树、神经网络、支持向量机等。

电池建模技术可以帮助人们更好地了解电池的性能和特性,提高电池的使用效率和可靠性。

电池等效电路模型建模

电池等效电路模型建模

锂离子电池等效电路建模电池作为复杂的非线性系统,通常运用一些物理化学性能参数描述电池性能特点,这些性能参数主要有:容量、、倍率、温度、效率、寿命。

这些性能参数可以从某种程度代表电池。

但为描述电池的这些特性表征电池,需要建立电池模型。

电池模型的建立主要明确以下几个方面:(1)选择合适模型。

根据电池自身性能特点、用途,模型精度等方面确定电池建模技术路线。

可在合适模型集内选择合适的模型,模型集可以根据机理所得的未知参数模型结构,或者是待定参数仅作为数据拟合工具的黑箱模型结构。

(2)设计实验方案,辨识模型参数。

电池模型参数的辨识需要依据实际的测量数据。

模型参数的辨识目的是使拟合的曲线与实测的曲线误差最小,常用的模型参数辨识方法有最小二乘法,遗传算法,神经网络法,卡尔曼滤波算法等。

(3)模型准确性的验证。

验证方式主要有4种:1)利用先验知识验证,根据对系统已有知识判断模型是否实用。

2)利用一组数据辨识得到一个模型后,通过另外一组未参与辨识的数据验证模型适用性。

3)利用比较分析实际响应和脉冲响应。

4)利用激励信号自相关函数验证。

根据建模基点不同,电池模型可分为机理模型和经验模型。

机理模型基于电化学理论采用数学方法描述电池内部的反应过程,此种模型能够描述电池衰退的基本规律,从容量衰退机理出发考虑了发生在电池内的电化动力学,电荷传递等过程。

经验模型是在不考虑电池内物理化学反应过程的条件下,分析大量实际实验数据,预测电池行为的一种模型。

通常采用多项式、指数、幂函数、对数以及三角函数等来表示经验模型。

目前常用的经验模型主要有等效电路模型,等效电路模型是一种不考虑电池内部的化学成分及其相应的反应,根据电池的电特性特点用电源、电感、电容和电阻构建与原来电化学模型的电特性完全一致的模型。

等效电路模型常用的主要有:Rint模型、Thevenin模型、PNGV模型和GNL 模型。

Rint模型由美国爱达荷国家实验室基于用理想电压源描述电池开路电压设计,是最简单的等效电路模型,如图1所示。

蓄电池的建模

蓄电池的建模

蓄电池的建模摘要:蓄电池的容量限制了电网的发展,本文详细建立了蓄电池的等效电路模型,分析了其充放电过程,这对于蓄电池的开发利用具有重要意义。

关键词:蓄电池;等效电路模型;充放电引言:本文介绍了电池模型的分类、蓄电池的容量、影响蓄电池容量的因素,并进一步对蓄电池进行建模,分析了其充放电过程和工作原理,这对于蓄电池的开发利用有重要意义。

1 电池模型分类目前电池模型可分为三类: 实验模型,电化学模型和电路模型。

其中,电路模型可以反映出电池的电气特性,适用于仿真研究。

基于电路的电池模型有简单电池模型、一阶RC模型、二阶动态模型甚至更高阶次的电池模型等。

简单电池模型仅由一个恒压源与一个电阻串联得到,但过于理想化,未考虑电池SOC与电压的对应关系,不能反映电池的动态特性。

电池的一阶RC模型将电池内阻分为欧姆内阻和极化内阻两部分,并联电容用于模拟电池在极化产生和消除过程中所展现出的动态特性,此模型可以较好地模拟电池特性,且结构简单,但是此模型中采用的电源为恒压源,同样未考虑电池SOC与电池端电压的对应关系。

至于更高阶的电池模型,结构比较复杂,而且参数分离困难。

2 蓄电池的容量蓄电池的容量可以分为理论容量、实际容量和额定容量。

理论容量是将活性物质的质量按法拉第定律计算而得到的最高理论值;实际容量是指蓄电池在一定条件下所能输出的电量,其值小于理论容量;额定容量是按照国家或者有关部门颁发的标准,蓄电池在一定放电条件下放电至最低限度时,输出的电量。

3 影响蓄电池容量的因素影响蓄电池实际容量的因素有多种,如蓄电池放电电流、温度、终止电压等。

放电电流越大,电池能够释放的电量越小,由于极化和内阻的存在,电流增大使蓄电池端电压迅速降低,导致蓄电池容量降低。

随着电解液温度的升高,蓄电池的实际容量增大,反之减小。

当铅酸蓄电池放电至某电压值之后,其电压将会急剧下降,继续放电实际上获得的容量很少,其意义不大,相反还会对蓄电池的使用寿命造成不良影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Battery:
纯电动汽车在去除了发动机作为整个系统的动力源后,以一款高压(384V)能量型电池作为新的能量源,驱动整车。

BMS: Battery Management System 电池管理系统
(1)准确估测动力电池组的荷电状态:
准确估测动力电池组的荷电状态 (State of Charge即SOC),即电池剩余电量,保证SOC维持在合理的范围内,防止由于过充电或过放电对电池的损伤,从而随时预报混合动力汽车储能电池还剩余多少能量或者储能电池的荷电状态。

(2)动态监测动力电池组的工作状态:
在电池充放电过程中,实时采集电动汽车蓄电池组中的每块电池的端电压和温度、充放电电流及电池包总电压,防止电池发
生过充电或过放电现象。

同时能够及时给出电池状况,挑选出有问题的电池,保持整组电池运行的可靠性和高效性,使剩余电量估计模型的实现成为可能。

除此以外,还要建立每块电池的使用历史档案,为进一步优化和开发新型电、充电器、电动机等提供资料,为离线分析系统故障提供依据。

(3)单体电池间的均衡:
即为单体电池均衡充电,使电池组中各个电池都达到均衡一致的状态。

总结:
BMS对电池进行检测,管理电池的运行状态,同时将相应的电池状态,如电池电压、电流、温度、单体状态、故障状态及需用功率等信息通过CAN网络发送给VMS。

同时接受VMS控制信号实时控制高压电池继电器的开、闭及充放电功能。

BMS作为一个单独的ECU开发。

Theta_ambient_batt :环境温度(标定量)
:截至
、为输入变量
:截至
、为输出参量
:电池损失功率( battery power loss )
[cnnt]为系数0或1
1、Internal Heating
Ambient Temp(K):环境温度Current(A):电流
Lost V oltage(V):电压heat_battery: 电池热量
公式:电功率P=UI
输出信号取绝对值
电池单体串&并行的容量C:电池容量公式?
2、Derive SOC
Battery Temperature: 电池温度
Ambient Temperature: 环境温度
I_batt:电流
SOC:见纸
锂电池随着电池充电次数增加而逐渐老化,其实际容量会减少对此可用公式:Q=100*Q1/(SOC1-SOC2)
其中,Q是实际修正后容量,SOC1表示充电前在静止状态时的SOC值,SOC2表示充电后在静止状态时的SOC值,Q1表示充电状态下冲入电池的电量。

公式?
3、R&V tables
SOC(State of Charge): 电池剩余电量
DOD:(Depth of discharge):放电深度
公式:SOC+DOD=1
放电深度(DOD):
在电池使用过程中,电池放出的容量占其额定容量的百分比称为放电深度。

放电深度的高低和二次电池的充电寿命有很深的关系,当二次电池的放电深度越深,其充电寿命就越短,因此在使用时应尽量避免深度放电。

OC: Open Cricuit V oltage:开路电压
定义:指电路没有负载流过,电池达到平衡时正、负之间的电位差OC与DOD关系:如果电池正、负极材料完全相同,当电池的放电深度(DOD)相同时,不管电池体积多大,集合结构如何变化,其开路电压(OC)都是一样的。

小结:在充放电过程中,由于极化内阻的存在,充放电截止瞬间电压与开路电压(实际电压)间存在偏差,且充放电电流越大,偏差越大。

Internal Resistance:内阻
4、V_drop
V_battery_OC: 电压理论值
R_battery: 电阻I_battery_charge: 充电电流公式:V=RI
V_battery_drop: 压降V_battery_out: 实际输出电压公式:实际输出电压=理论值—压降
5、Battery power limitations
MaxDis_current_Temp: 最大放电电流温度MaxDis_current_SOC: 最大放电剩余电量MaxChgs_current_Temp: 最大充电电流温度MaxChgs_current_SOC: 最大充电剩余电量
ELEC LOADS 电负载
FBKIN:Feedback 反馈V_battery_out: 电池输出电压PWRIN: power in 输入功率P_Battery_Max:电池最大功率P_loom: 功率损失P_Battery_Min:电池最小功率
I_loom: 电流损失
公式:I1=P/U 公式:I=I1+I损
将电池输出电压、最大功率、最小功率信号合成为一个向量信号输出。

相关文档
最新文档