初中数学中考模拟题及答案

合集下载

初中数学中考模拟数学专题练习统计与概率考试卷及答案.docx

初中数学中考模拟数学专题练习统计与概率考试卷及答案.docx

xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)试题1:要反映某地方某一周中每天的最高气温的变化趋势,宜采用( ) A .条形统计图 B . 扇形统计图 C .折线统计图 D . 频数分布统计图 试题2:一组数据3,3,4,2,8的中位数和平均数分别是( )A . 3和3 B.3和4 C. 4和3 D . 4和4 试题3:一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9 B .中位数是9 C .众数是5D .极差是5 试题4:下列说法错误的是( )A .必然事件的概率为1B .数据1、2、2、3的平均数是2C .数据5、2、-3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖试题5:袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A. 3个B. 不足3个C. 4个D. 5个或5个以上试题6:在一个不透明的口袋中,装有5个红球和3个绿球,这些球除了颜色外都相同,从口袋中随机摸出一个球,它是红球的概率是()A.B.C. 1 D.试题7:口袋中装有若干个只有颜色不同的球,如果有4个红球,且摸出红球的概率为,那么袋中共有球的个数为()A.6个B.9个C.10个D. 12个试题8:小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为、乙立方体朝上一面朝上的数字为,这样就确定点P的一个坐标(),那么点P落在双曲线上的概率为()A. B. C. D.试题9:数据1,2,3,4,5的平均数是.试题10:某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是 .试题11:某校篮球队12名同学的身高如下表:身高(㎝)180 186 188 192 195人数 1 2 5 3 1则该校篮球队12名同学身高的众数是 .试题12:为测试两种电子表的走时误差,做了如下统计:平均数方差甲0.4 0.026乙0.4 0.137则这两种电子表走时稳定的是.试题13:某初中学校的男生、女生以及教师人数的扇形统计图如图,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有人.试题14:有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.试题15:五张分别写有-1,2,0,-4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.试题16:为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有条鱼.试题17:已知一组数据4,13,24的权数分别是,试求这组数据的加权平均数.试题18:为了解居民的用水情况,小莹同学对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图.⑴.试估计该小区5月份用水量不高于12吨的户数占小区总户数的百分比;⑵.把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计该小区5月份的用水量.试题19:下表是初三某班女生的体重检查结果:体重(kg) 34 35 38 40 42 45 50人数 1 2 5 5 4 2 1根据表中信息,回答下列问题:⑴.该班女生体重的中位数是;(2).该班女生的平均体重是 kg;(3).根据上表中的数据补全条形统计图.试题20:学校举行舞蹈比赛,主要从服装、队伍、效果三个项目.按服装占,队伍占,效果占计算加权平均数,作为最后评定的总成绩.九⑴.班和九⑵.班的各项成绩如下表:参赛班级服装队伍效果九⑴.班70 80 88九⑵.班80 75⑴.计算九⑴.班的总成绩;⑵.若九⑵.班要在总成绩上超过小明同学,则他们的效果分应超过多少分?试题21:“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.试题22:网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12-35岁的网瘾人群进行了简单的随机抽样调查,得到了如图的两个不完全统计图.请根据图中的信息,解决下列问题:⑴.求条形统计图中a的值;⑵.求扇形统计图中18-23岁部分的圆心角;⑶.据报道,目前我国12-35岁网瘾人数约为2000万,请估计其中12-23岁的人数试题23:一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个,这些球除颜色外都相同,求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是是红球;试题24:株洲市通过网络投票选出了一批“最有孝心的美少年”.根据各县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:⑴.统计表中=,=;⑵.统计表后三行中哪一个数据是错误的?该数据的正确值是多少?⑶.株洲市决定从来自炎陵县的4位“最有孝心的美少年”中,任选两位作为市级形象代言人.A、B是炎陵县“最有孝心的美少年”中的两位,问A、B同时入选的概率是多少?试题1答案:. C试题2答案: B试题3答案: D试题4答案: D试题5答案: D试题6答案: A试题7答案: D试题8答案: C;试题9答案: 3;试题10答案: 5;试题11答案: 188;试题12答案: .甲;试题13答案:.108 ;试题14答案:;试题15答案:;试题16答案:1000;试题17答案:; 1试题18答案:(1)52%;(2)3960吨试题19答案:(1)40, (2)40.1; (3).图略;试题20答案:(1)83;(2)90 ;试题21答案:⑴人;⑵.图略;⑶. ;试题22答案:⑴. ;⑵. ;⑶. 1000万;试题23答案:(1);(2);试题24答案:⑴ 0.1,6 ;⑵.0.25,0.3;⑶.。

(某某市县区)初中九年级数学下学期中考复习第一次模拟考试试题卷(含答案解析)

(某某市县区)初中九年级数学下学期中考复习第一次模拟考试试题卷(含答案解析)

(某某市县区)初中九年级数学下学期中考复习第一次模拟考试试题卷(含答案解析)一、选择题。

(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.有理数,﹣5,﹣2.5,6中,最大的数是()A.B.﹣5C.﹣2.5D.62.如图,在下列四个几何体中,其主视图是矩形的是()A.B.C.D.3.据统计,第22届冬季奥运会的电视转播时间长达88000小时,其中数据88000用科学记数法表示为()A.0.88×105B.8.8×104C.88×103D.880×1024.点(1,4)关于x轴对称的点的坐标是()A.(1,﹣4)B.(﹣1,4)C.(4,1)D.(﹣1,﹣4)5.下列事件中属于必然事件的是()A.打开电视机,正在播放“天宫课堂”B.对从疫情高风险区归来的人员进行核酸检测,检测结果为阳性C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上6.下列运算正确的是()A.(﹣m2n)3=﹣m6n3B.m5﹣m3=m2C.(m+2)2=m2+4D.(12m4﹣3m)÷3m=4m37.如图,A、B、C是⊙O上的三个点,若∠AOC=100°,则∠ABC=()A.100°B.110°C.120°D.130°8.如图是一张矩形纸板,顺次连接各边中点得到四边形.将一个飞镖随机投掷在矩形纸板上,则飞镖落在阴影区域的概率是()A.B.C.D.9.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.B.C.D.10.如图,在平面直角坐标系中,Rt△ABC的顶点A,C的坐标分别是(0,2),(2,0),AC=2BC.若函数y=(k>0,x>0)的图象经过点B,则k的值为()A.3B.2C.D.11.如图,点E在矩形纸片ABCD的边CD上,将纸片沿AE折叠,点D的对应点D′恰好落在线段BE 上.若AD=2,DE=1,则AB的长为()A.B.4C.D.512.当﹣3<x<2时,抛物线y=x2+t与直线y=2x+1有交点,则t的取值范围是()A.﹣2≤t<14B.﹣14<t≤2C.1<t≤2D.t≤2二、填空题。

初中数学湖南省衡阳市中考模拟数学考试卷及答案解析(word版)

初中数学湖南省衡阳市中考模拟数学考试卷及答案解析(word版)

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣4的相反数是()A.﹣B.C.﹣4 D.4试题2:如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>1试题3:如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70° B.80° C.90° D.100°试题4:下列几何体中,哪一个几何体的三视图完全相同()A.评卷人得分球体 B.圆柱体 C.四棱锥 D.圆锥试题5:下列各式中,计算正确的是()A.3x+5y=8xy B.x3•x5=x8C.x6÷x3=x2D.(﹣x3)3=x6试题6:为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()A.0.36×107B.3.6×106C.3.6×107D.36×105试题7:要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数 B.中位数 C.众数 D.方差试题8:正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13试题9:随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥4试题11:下列命题是假命题的是()A.经过两点有且只有一条直线B.三角形的中位线平行且等于第三边的一半C.平行四边形的对角线相等D.圆的切线垂直于经过切点的半径试题12:如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P 点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.试题13:因式分解:a2+ab= .计算:﹣= .试题15:点P(x﹣2,x+3)在第一象限,则x的取值范围是.试题16:.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.试题17:若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为.试题18:如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.试题19:先化简,再求值:(a+b)(a﹣b)+(a+b)2,其中a=﹣1,b=.试题20:为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为;(2)请将图②补充完整;(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)试题21:如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.试题22:在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.试题23:为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/台)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.试题24:在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?试题25:在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.试题26:如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y 轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN 是等腰三角形?若存在,求t的值;若不存在请说明理由.试题1答案:D【考点】相反数.【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣4的相反数是:4.故选:D.试题2答案:B【考点】分式有意义的条件.【分析】直接利用分式有意义的条件得出x的值.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:B.试题3答案:C【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选C.试题4答案:A【考点】简单几何体的三视图.【分析】根据各个几何体的三视图的图形易求解.【解答】解:A、球体的三视图都是圆,故此选项正确;B、圆柱的主视图和俯视图都是矩形,但左视图是一个圆形,故此选项错误;C、四棱柱的主视图和左视图是一个三角形,俯视图是一个四边形,故此选项错误;D、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故此选项错误.故选:A.试题5答案:B【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘除法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、3x+5y,无法计算,故此选项错误;B、x3•x5=x8,故此选项正确;C、x6÷x3=x3,故此选项错误;D、(﹣x3)3=﹣x9,故此选项错误;故选:B.试题6答案:B【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3600000=3.6×106,故选:B.试题7答案:D【考点】统计量的选择.【分析】根据方差的意义:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.标准差是方差的平方根,也能反映数据的波动性;故要判断他的数学成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:D试题8答案:C【考点】多边形内角与外角.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.试题9答案:A【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.试题10答案:B【考点】根的判别式.【分析】根据判别式的意义得到△=42﹣4k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42﹣4k=0,解得:k=4,故选:B.试题11答案:C【考点】命题与定理.【分析】根据直线公理、三角形中位线定理、切线性质定理即可判断A、B、D正确.【解答】解:A、经过两点有且只有一条直线,正确.B、三角形的中位线平行且等于第三边的一半,正确.C、平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.D、圆的切线垂直于经过切点的半径,正确.故选C.试题12答案:A【考点】动点问题的函数图象.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sin α•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.试题13答案:a(a+b).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2+ab=a(a+b).故答案为:a(a+b).试题14答案:1 .【考点】分式的加减法.【分析】由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.【解答】解:原式==1.故答案为:1.试题15答案:x>2 .【考点】点的坐标.【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.试题16答案:5:4 .【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出相似比,再根据相似三角形周长的比等于相似比求解.【解答】解:∵△ABC与△DEF相似且面积之比为25:16,∴△ABC与△DEF的相似比为5:4;∴△ABC与△DEF的周长之比为5:4.故答案为:5:4.试题17答案:16 .【考点】圆锥的计算.【分析】设该圆锥的母线长为l,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到8π=,然后解方程即可.【解答】解:设该圆锥的母线长为l,根据题意得8π=,解得l=16,即该圆锥的母线长为16.故答案为16.试题18答案:10 .【考点】点、线、面、体.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得x1=﹣11(不合题意舍去),x2=10.答:n的值为10.故答案为:10.试题19答案:【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式、完全平方公式展开后再合并同类项即可化简,将a、b的值代入求值即可.【解答】解:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=﹣1,b=时,原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.试题20答案:【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可以求得选择曲目代号为A的学生占抽样总数的百分比;(2)根据条形统计图和扇形统计图可以求得选择C的人数,从而可以将图②补充完整;(3)根据条形统计图和扇形统计图可以估计全校选择此必唱歌曲的人数.【解答】解:(1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:×100%=20%.故答案为:20%;(2)由题意可得,选择C的人数有:30÷﹣36﹣30﹣44=70(人),故补全的图②如下图所示,(3)由题意可得,全校选择此必唱歌曲共有:1530×=595(人),即全校共有595名学生选择此必唱歌曲.试题21答案:【考点】全等三角形的判定与性质.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.试题22答案:【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:=.试题23答案:【考点】一次函数的应用.【分析】(1)根据题意表示出甲仓库和乙仓库分别运往A、B两港口的物资数,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简;最后根据不等式组得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=80时,y最小,并求出最小值,写出运输方案.【解答】解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.试题24答案:【考点】解直角三角形的应用-方向角问题.【分析】(1)求出OC,由题意r≥OC,由此即可解决问题.(2)作AM⊥BC于M,求出AM即可解决问题.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,先列出方程求出x,再求出BN、AN利用不等式解决问题.【解答】解:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.试题25答案:【考点】圆的综合题.【分析】(1)由A、B、C三点坐标可知∠CBO=60°,又因为点D是△ABC的内心,所以BD平分∠CBO,然后利用锐角三角函数即可求出OD的长度;(2)根据题意可知,DF为半径,且∠DFE=90°,过点F作FG⊥y轴于点G,求得FG和OG的长度,即可求出点F的坐标,然后将E和F的坐标代入一次函数解析式中,即可求出直线EF的解析式;(3)⊙P上存在一点到△ABC三个顶点的距离相等,该点是△ABC的外接圆圆心,即为点D,所以DP=2,又因为点P在直线EF上,所以这样的点P共有2个,且由勾股定理可知PF=3.【解答】解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).试题26答案:【考点】二次函数综合题.【分析】(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.【解答】解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+==,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。

宁夏初三初中数学中考模拟带答案解析

宁夏初三初中数学中考模拟带答案解析

宁夏初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.-6的相反数是()A.B.-6C.6D.-2.如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°3.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x24.三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A.11B.15C.11或15D.不能确定5.为了解学校九年级学生某次知识问卷的得分情况,小红随机调查了50名九年级同学,结果如表:A.75,75 B.75,80 C.80,75 D.80,856.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A.150πcm2B.200πcm2C.300πcm2D.400πcm27.园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,设每人每小时的绿化面积x平方米.则所列分式方程正确的是()A.B.C.D.8.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()9.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?二、填空题1.因式分解:x2y-4y= .2.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为.3.若x,y满足方程组,则代数式4x2-4xy+y2的值为.4.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.5.若直线y=ax-b经过第一、二、四象限,则点P(a,b)在第象限内.6.将抛物线y=x2-2x+3先向右平移2个单位长度,再向上平移1个单位长度,得到的新的抛物线的解析式为.7.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为.8.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,动点M、N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,MN,设移动时间为t(单位:秒,0<t<2.5).(1)当时间为t秒时,点P到BC的距离为 cm.(2)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(3)是否存在某一时刻t ,使四边形APNC 的面积S 有最小值?若存在,求S 的最小值;若不存在,请说明理由.三、解答题1.解方程:.2.先化简,再求值:,其中x=3tan30°+1.3.如图,在边长为1个单位长度的小正方形网格中.(1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1. (2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.4.小明随机调查了若干市民租用公共自行车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A 组的扇形圆心角的度数,并补全条形统计图.(3)如果骑自行车的平均速度为12km/h ,请估算,在租用公共自行车的市民中,骑车路程不超过6km 的人数所占的百分比.5.有四张背面相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形(如图).小华将这四张牌背面朝上洗匀后随机摸出一张,再从剩下的牌中随机的摸出另一张.(1)请用树状图(或列表法)表示两次摸牌所有可能的结果; (2)求摸出两张牌的牌面图形都是中心对称图形的纸牌的概率.6.如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之间的距离.7.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.8.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.宁夏初三初中数学中考模拟答案及解析一、选择题1.-6的相反数是()A.B.-6C.6D.-【答案】C.【解析】试题解析:-6的相反数是6.故选C.【考点】相反数.2.如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为()A .50°B .60°C .70°D .80°【答案】C.【解析】试题解析:∵△BCD 中,∠1=50°,∠2=60°, ∴∠4=180°-∠1-∠2=180°-50°-60°=70°, ∴∠5=∠4=70°, ∵a ∥b ,∴∠3=∠5=70°.故选C .【考点】平行线的性质.3.下列计算正确的是( )A .x 2+x 3=x 5B .x 2•x 3=x6C .(x 2)3=x5D .x 5÷x 3=x2【答案】D .【解析】试题解析:A 、x 2与x 3不是同类项,不能合并,故此选项错误; B 、x 2•x 3=x 2+3=x 5,故此选项错误; C 、(x 2)3=x 6,故此选项错误; D 、x 5÷x 3=x 2,故此选项正确; 故选D .【考点】1.同底数幂的除法,2.合并同类项,3.同底数幂的乘法,4.幂的乘方.4.三角形的两边分别2和6,第三边是方程x 2-10x+21=0的解,则三角形周长为( ) A .11 B .15 C .11或15D .不能确定【答案】B .【解析】试题解析:方程x 2-10x+21=0,变形得:(x-3)(x-7)=0, 解得:x 1=3,x 2=7,若x=3,三角形三边为2,3,6,不合题意,舍去, 则三角形的周长为2+6+7=15. 故选B .【考点】解一元二次方程-因式分解法.5.为了解学校九年级学生某次知识问卷的得分情况,小红随机调查了50名九年级同学,结果如表:A .75,75B .75,80C .80,75D .80,85 【答案】C .【解析】试题解析:∵总人数为50人, ∴中位数为第25和26人的得分的平均值, ∴中位数为(75+75)÷2=75,∵得分为80分的人数为16人,最多,∴众数为80,故选C.【考点】1.众数;2.中位数.6.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A.150πcm2B.200πcm2C.300πcm2D.400πcm2【答案】A.【解析】试题解析:根据图示,可得商品的外包装盒是底面直径是10cm,高是15cm的圆柱,则这个包装盒的侧面积为:10π×15=150π(cm2);故选A.【考点】由三视图判断几何体.7.园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,设每人每小时的绿化面积x平方米.则所列分式方程正确的是()A.B.C.D.【答案】A.【解析】试题解析:设每人每小时的绿化面积x平方米,由题意得:,故选A.【考点】由实际问题抽象出分式方程.8.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()【答案】C.【解析】试题解析:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当x=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选C.【考点】1.一次函数的图象;2.二次函数的图象.9.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?【答案】(1)一次函数解析式为y=x+1;反比例解析式为y=;(2).【解析】(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)直接求出BN,CN的长,进而求出BC的长,即可求出△ABC的面积.试题解析:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)∵N(3,0),∴点B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,即CN=,BC=4-=,A到BC的距离为:2,=××2=.则S△ABC【考点】一次函数与反比例函数的交点问题.二、填空题1.因式分解:x2y-4y= .【答案】y(x-2)(x+2).【解析】试题解析:x2y-4y=y(x2-4)=y(x-2)(x+2).【考点】提取公因式法与公式法的综合运用.2.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为.【答案】-1.2×10-8【解析】试题解析:将-0.000000012用科学记数法表示为:-1.2×10-8.【考点】科学记数法---表示较小的数.3.若x,y满足方程组,则代数式4x2-4xy+y2的值为.【答案】25.【解析】试题解析:方程组中,①+②,得:2x-y=5,∴4x2-4xy+y2=(2x-y)2=52=25.【考点】1.方程组的解;2.代数式的求值4.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.【答案】60.【解析】试题解析:∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC=,∴∠BAC=60°.【考点】垂径定理.5.若直线y=ax-b经过第一、二、四象限,则点P(a,b)在第象限内.【答案】三.【解析】试题解析:若直线y=ax-b经过第一、二、四象限,则-b>0,a<0,则点P(a,b)的坐标符号为(-,-),故点P(a,b)在第三象限内.【考点】一次函数的图象.6.将抛物线y=x2-2x+3先向右平移2个单位长度,再向上平移1个单位长度,得到的新的抛物线的解析式为.【答案】y=(x-3)2+3.【解析】试题解析:y=x2-2x+3=(x-1)2+2,则将抛物线y=x2-2x+3先向右平移2个单位长度,再向上平移1个单位长度,得到的新的抛物线的解析式为:y=(x-3)2+3.【考点】二次函数的图象与几何变换.7.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为.【答案】6.【解析】试题解析:∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.【考点】线段垂直平分线.8.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,动点M、N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,MN,设移动时间为t(单位:秒,0<t<2.5).(1)当时间为t秒时,点P到BC的距离为 cm.(2)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(3)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.【答案】(1);(2).(3) 当t=时,四边形APNC 的面积S 有最小值,其最小值是.【解析】(1)先根据勾股定理求出AB 的长,过点P 作PH ⊥BC 于点H ,构造平行线PH ∥AC ,由平行线分线段成比例求得以t 表示的PH 的值;(2)分类讨论:△AMP ∽△ABC 和△APM ∽△ABC 两种情况.利用相似三角形的对应边成比例来求t 的值; (3)根据“S=S △ABC -S △BPH ”列出S 与t 的关系式S=(t-)2+(0<t <2.5),则由二次函数最值的求法即可得到S 的最小值.试题解析:(1)∵在Rt △ABC 中,∠C=90°,AC=4cm ,BC=3cm , ∴AB=5cm ,过P 作PH ⊥BC 于H ,则∠PHB=∠C=90°,∵∠B=∠B ,∴△BPH ∽△BAC , ∴ ∴,解得:PH=(cm ),(2)以A ,P ,M 为顶点的三角形与△ABC 相似,分两种情况: ①当△AMP ∽△ABC 时,,即,解得t=;②当△APM ∽△ABC 时,,即,解得t=0(不合题意,舍去); 综上所述,当t=秒时,以A 、P 、M 为顶点的三角形与△ABC 相似;(3)存在某一时刻t ,使四边形APNC 的面积S 有最小值.理由如下: 假设存在某一时刻t ,使四边形APNC 的面积S 有最小值. 如图,∵由(1)知:PH=,∴S=S △ABC -S △BPN , =×3×4-×(3-t )t , =(t-)2+(0<t <2.5).∵>0,∴S 有最小值. 当t=时,S 最小值=.答:当t=时,四边形APNC 的面积S 有最小值,其最小值是.【考点】相似形综合题.三、解答题1.解方程:.【答案】无解.【解析】首先方程的两边同乘以最简公分母(x-2),把分式方程转化为整式方程,再求解即可,最后要把求得的x 的值代入到最简公分母进行检验. 试题解析:方程两边同乘(x-2), 得:x-2+2x=4, 解得:x=2,检验:当x=2时,x-2=0,x=2不是原方程的解; 因此,原方程无解. 【考点】解分式方程.2.先化简,再求值:,其中x=3tan30°+1.【答案】.【解析】先算括号里面的,再算除法,最后求出x 的值代入进行计算即可. 试题解析:原式==,∵x=3tan30°+1=3×+1=+1, ∴原式=.【考点】分式的化简求值.3.如图,在边长为1个单位长度的小正方形网格中.(1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1. (2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)将△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1,如图所示; (2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,如图所示. 试题解析:(1)根据题意画出图形,△A 1B 1C 1为所求三角形;(2)根据题意画出图形,△A 2B 2C 2为所求三角形.【考点】1.作图-位似变换,2. 作图-平移变换4.小明随机调查了若干市民租用公共自行车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.(3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.【答案】(1)50人;(2)108°,(3)92%.【解析】(1)根据B类人数是19,所占的百分比是38%,据此即可求得调查的总人数;(2)利用360°乘以对应的百分比即可求解;(3)求得路程是6km时所用的时间,根据百分比的意义可求得路程不超过6km的人数所占的百分比.试题解析:(1)调查的总人数是:19÷38%=50(人);(2)A组所占圆心角的度数是:360×=108°,C组的人数是:50-15-19-4=12.;(3)路程是6km时所用的时间是:6÷12=0.5(小时)=30(分钟),则骑车路程不超过6km的人数所占的百分比是:×100%=92%.【考点】1.条形统计图;2.扇形统计图.5.有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小华将这四张牌背面朝上洗匀后随机摸出一张,再从剩下的牌中随机的摸出另一张.(1)请用树状图(或列表法)表示两次摸牌所有可能的结果;(2)求摸出两张牌的牌面图形都是中心对称图形的纸牌的概率.【答案】(1)答案见解析;(2).【解析】(1)利用树形图法即可表示出所有的结果;(2)共有12个可能的结果,四个图形中是中心对称图形的是:B、D,摸出两张牌的牌面图形都是中心对称图形的纸牌的结果有2个,即可得求出概率.试题解析:(1)用树形图法表示两次摸牌所有可能的结果,如图所示:(2)共有12个可能的结果,四个图形中是中心对称图形的是:B、D,摸出两张牌的牌面图形都是中心对称图形的纸牌的结果有2个,∴摸出两张牌的牌面图形都是中心对称图形的纸牌的概率=.【考点】树状图法求概率.6.如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之间的距离.【答案】(1)证明见解析;(2).【解析】(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案;(2)先求出BD的长,求出菱形的面积,即可求出答案.试题解析:(1)∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)过A作AM⊥BC于M,则AM的长是AE,BF之间的距离,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,∴在Rt△AOB中,由勾股定理得:BO=4,∴BD=2BO=8,∴菱形ABCD的面积为×AC×BD=×6×8=24,∵四边形ABCD是菱形,∴BC=AB=5,∴5×AM=24,∴AM=,即AE,BF之间的距离是.【考点】1.菱形的判定和性质,2.平行四边形的判定,3.平行线的性质,4.等腰三角形的判定7.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案】(1)证明见解析;(2)4π-8.【解析】(1)连接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代换得∠ODB=∠ACB,利用平行线的判定得OD∥AC,由切线的性质得DF⊥OD,得出结论;(2)连接OE,利用(1)的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.试题解析:(1)连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE =4π,S△AOE="8",∴S阴影=4π-8.【考点】1.切线的性质,2.扇形的面积计算.8.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,商品名称甲乙(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.【答案】(1)购进甲种商品105件,乙种商品95件.(2)y=-60x+28000(0≤x≤200).该商场获得的最大利润为22000元.(3)商场应购进甲种商品120件,乙种商品80件获利最大.【解析】(1)甲种商品购进x件,乙种商品购进了200-x件,由总价=甲的单价×购进甲种商品的数量+乙的单价×购进乙种商品的数量,可得出关于x的一元一次方程,解出方程即可得出结论;(2)①根据利润=甲商品的单件利润×数量+乙商品的单件利润×数量,即可得出y关于x的函数解析式;②根据总价=甲的单价×购进甲种商品的数量+乙的单价×购进乙种商品的数量,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据y关于x函数的单调性即可解决最值问题;(3)根据利润=甲商品的单件利润×数量+乙商品的单件利润×数量,可得出y关于x的函数解析式,分x的系数大于0、小于0以及等于0三种情况考虑即可得出结论.试题解析:(1)甲种商品购进x件,乙种商品购进了200-x件,由已知得:80x+100(200-x)=17900,解得:x=105,200-x=200-105=95(件).答:购进甲种商品105件,乙种商品95件.(2)①由已知可得:y=(160-80)x+(240-100)(200-x)=-60x+28000(0≤x≤200).②由已知得:80x+100(200-x)≤18000,解得:x≥100,∵y=-60x+28000,在x取值范围内单调递减,∴当x=100时,y有最大值,最大值为-60×100+28000=22000.故该商场获得的最大利润为22000元.(3)y=(160-80+a)x+(240-100)(200-x),即y=(a-60)x+28000,其中100≤x≤120.①当50<a<60时,a-60<0,y随x的增大而减小,∴当x=100时,y有最大值,即商场应购进甲、乙两种商品各100件,获利最大.②当a=60时,a-60=0,y=28000,即商场应购进甲种商品的数量满足100≤x≤120的整数件时,获利都一样.③当60<x<70时,a-60>0,y岁x的增大而增大,∴当x=120时,y有最大值,即商场应购进甲种商品120件,乙种商品80件获利最大.【考点】1.一次函数的应用;2.一元一次不等式的应用;3.一元一次方程的应用.。

中考仿真模拟测试《数学试题》含答案解析

中考仿真模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。

中考数学综合模拟测试题(附答案解析)

中考数学综合模拟测试题(附答案解析)
18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,Pn.若点P1的坐标为(2,0),则点P2 017的坐标为____________.
三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,

2023年吉林省长春市新解放学校初中部中考数学模拟试卷及答案解析

2023年吉林省长春市新解放学校初中部中考数学模拟试卷及答案解析
18.(8 分)图①、图②、图③均是 5×5 的正方形网格,每个小正方形的边长均为 1,点 A、B 均在格点上,用无刻度的直尺在给定的网格中按要求画图.
(1)在图①中作△ABC,使 tan∠A=1.
(2)在图②中作△ABD,使

(3)在图⑧中作△ABE,使 tan∠A=2.
试卷第 3页,总 5 页
19.(8 分)如图,在矩形 ABCD 中,AB=3,BC=10,点 E 在 BC 边上,DF⊥AE,垂足为
请根据图象解答下列问题:
(1)轿车的速度是
千米/小时.
(2)求轿车出发后,轿车离甲地距离 y(千米)与时间 x
(小时)之间的函数关系式.
(3)在整个过程中(0≤x≤5),当轿车与货车之间的距
为 30 千米时,直接写出 x 的值.
试卷第 4页,总 5页
22.(8 分)在菱形 ABCD 中,
,∠ABC=60°,点 E 是对角线 BD 上的一动点,
连接 BD,若∠P=40°,则∠ADB 的度数是( )
A.65°
B.60°
C.55°
试卷第 1页,总 5 页
D.50°
7.(3 分)如图,在△ABC 中,AB<AC,将△ABC 以点 A 为中心逆时针旋转得到△ADE, 点 D 在 BC 边上,DE 交 AC 于点 F.下列结论:①△AFE∽△DFC;②DA 平分∠BDE; ③∠CDF=∠BAD,其中正确结论的个数是( )
C.x>3
D.x>7
5.(3 分)小华将一张纸对折后做成的纸飞机如图 1,纸飞机机尾的横截是一个轴对称图形,
其示意图如图 2,若 CD=CE=5,∠DCE=40°,则 DE 的长为( )
A.5sin20°
B.10sin20°

中考数学模拟题《几何综合》专项测试题(附带参考答案)

中考数学模拟题《几何综合》专项测试题(附带参考答案)

中考数学模拟题《几何综合》专项测试题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。

动态几何问题经常在各地以中考试卷解答压轴题出现也常会出现在选择题最后一题的位置考察知识面较广综合性强可以提升学生的空间想象能力和综合分析问题的能力但同时难度也很大令无数初中学子闻风丧胆考场上更是丢盔弃甲解题思路1 熟练掌握平面几何知识﹕要想解决好有关几何综合题首先就是要熟练掌握关于平面几何的所有知识尤其是要重点把握三角形特殊四边形圆及函数三角函数相关知识.几何综合题重点考查的是关于三角形特殊四边形(平行四边形矩形菱形正方形)圆等相关知识2 掌握分析问题的基本方法﹕分析法综合法“两头堵”法﹕1)分析法是我们最常用的解决问题的方法也就是从问题出发执果索因去寻找解决问题所需要的条件依次向前推直至已知条件例如我们要证明某两个三角形全等先看看要证明全等需要哪些条件哪些条件已知了还缺少哪些条件然后再思考要证缺少的条件又需要哪些条件依次向前推直到所有的条件都已知为止即可综合法﹕即从已知条件出发经过推理得出结论适合比较简单的问题3)“两头堵”法﹕当我们用分析法分析到某个地方不知道如何向下分析时可以从已知条件出发看看能得到什么结论把分析法与综合法结合起来运用是我们解决综合题最常用的办策略3 注意运用数学思想方法﹕对于几何综合题的解决我们还要注意运用数学思想方法这样会大大帮助我们解决问题或者简化我们解决问题的过程加快我们解决问题的速度毕竟考场上时间是非常宝贵的.常用数学思想方法﹕转化类比归纳等等模拟预测1 (2024·江西九江·二模)如图 在矩形()ABDC AB AC >的对称轴l 上找点P 使得PAB PCD 、均为直角三角形 则符合条件的点P 的个数是( )A .1B .3C .4D .52 (2024·江西吉安·模拟预测)如图 在平面直角坐标系中 边长为23ABC 的顶点A B ,分别在y 轴的正半轴 x 轴的负半轴上滑动 连接OC 则OC 的最小值为( )A .2B .3C .33D .333 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = 点E 在矩形的边上 则当BEC 的一个内角度数为60︒时 符合条件的点E 的个数共有( )A .4个B .5个C .6个D .7个4 (2023·江西·中考真题)如图 在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为 .5 (2024·江西吉安·二模)如图 在矩形ABCD 中 6,10,AB AD E ==为CD 的中点 点P 在AE 下方矩形的边上.当APE 为直角三角形 且P 为直角顶点时 BP 的长为 .6 (2024·江西九江·二模)如图 在平面直角坐标系中 已知矩形OABC 的顶点()20,0A ()0,8C D 为OA 的中点 点P 为矩形OABC 边上任意一点 将ODP 沿DP 折叠得EDP △ 若点E 在矩形OABC 的边上 则点E 的坐标为 .7 (2024·江西·模拟预测)如图 ABC 中 AB AC = 30A ∠=︒ 射线CP 从射线CA 开始绕点C 逆时针旋转α角()075α︒<<︒ 与射线AB 相交于点D 将ACD 沿射线CP 翻折至A CD '△处 射线CA '与射线AB 相交于点E .若A DE '是等腰三角形 则α∠的度数为 .8 (2024·江西赣州·二模)在Rt ABC △中 已知90C ∠=︒ 10AB = 3cos 5B = 点M 在边AB 上 点N 在边BC 上 且AM BN = 连接MN 当BMN 为等腰三角形时 AM = .9 (2024·江西吉安·模拟预测)如图 在矩形ABCD 中 6,10AB AD == E 为BC 边上一点 3BE = 点P 沿着边按B A D →→的路线运动.在运动过程中 若PAE △中有一个角为45︒ 则PE 的长为 .10 (2024·江西吉安·三模)如图 在ABC 中 AB AC = 30B ∠=︒ 9BC = D 为AC上一点 2AD DC = P 为边BC 上的动点 当APD △为直角三角形时 BP 的长为 .11 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = E 为CD 的中点 连接BE 点P 在矩形的边上 且在BE 的上方 则当BEP △是以BE 为斜边的直角三角形时 BP 的长为 .12 (2024·江西九江·二模)如图 在等腰ABC 中 2AB AC == 30B ∠=︒ D 是线段BC 上一动点 沿直线AD 将ADB 折叠得到ADE 连接EC .当DEC 是以DE 为直角边的直角三角形时 则BD 的长为 .13 (2024·江西·模拟预测)如图 在菱形ABCD 中 对角线AC BD 相交于点O 23AB = 60ABC ∠=︒ E 为BC 的中点 F 为线段OD 上一动点 当AEF △为等腰三角形时 DF 的长为 .14 (2024·江西上饶·一模)如图 在三角形纸片ABC 中 90,60,6C B BC ∠=︒∠=︒= 将三角形纸片折叠 使点B 的对应点B '落在AC 上 折痕与,BC AB 分别相交于点E F 当AFB '为等腰三角形时 BE 的长为 .15 (2024·江西抚州·一模)课本再现(1)如图1 CD 与BE 相交于点,A ABC 是等腰直角三角形 90C ∠=︒ 若DE BC ∥ 求证:ADE 是等腰直角三角形.类比探究(2)①如图2 AB 是等腰直角ACB △的斜边 G 为边AB 的中点 E 是BA 的延长线上一动点 过点E 分别作AC 与BC 的垂线 垂足分别为,D F 顺次连接,,DG GF FD 得到DGF △ 求证:DGF △是等腰直角三角形.②如图3 当点E 在边AB 上 且①中其他条件不变时 DGF △是等腰直角三角形是否成立?_______(填“是”或“否”).拓展应用(3)如图4 在四边形ABCD 中 ,90,BC CD BCD BAD AC =∠=∠=︒平分BAD ∠ 当1,22AD AC == 求线段BC 的长.16 (2023·江西·中考真题)课本再现思考我们知道菱形的对角线互相垂直.反过来对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理小明同学画出了图形(如图1)并写出了“已知”和“求证”请你完成证明过程.已知:在ABCD中对角线BD AC⊥垂足为O.求证:ABCD是菱形.(2)知识应用:如图2在ABCD中对角线AC和BD相交于点O586AD AC BD===,,.①求证:ABCD是菱形②延长BC至点E连接OE交CD于点F若12E ACD∠=∠求OFEF的值.17 (2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处 并绕点O 逆时针旋转 探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1 若将三角板的顶点P 放在点O 处 在旋转过程中 当OF 与OB 重合时 重叠部分的面积为__________ 当OF 与BC 垂直时 重叠部分的面积为__________ 一般地 若正方形面积为S 在旋转过程中 重叠部分的面积1S 与S 的关系为__________(2)类比探究:若将三角板的顶点F 放在点O 处 在旋转过程中 ,OE OP 分别与正方形的边相交于点M N .①如图2 当BM CN =时 试判断重叠部分OMN 的形状 并说明理由②如图3 当CM CN =时 求重叠部分四边形OMCN 的面积(结果保留根号)(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处 该锐角记为GOH ∠(设GOH α∠=) 将GOH ∠绕点O 逆时针旋转 在旋转过程中 GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S 请直接写出2S 的最小值与最大值(分别用含α的式子表示)(参考数据:6262sin15tan1523-+︒=︒=︒=18 (2024·江西吉安·二模)如图 在ABC 和ADE 中 (),AB AC AD AE AD AB ==< 且BAC DAE ∠=∠.连接CE BD .(1)求证:BD CE =.(2)在图2中 点B D E 在同一直线上 且点D 在AC 上 若,AB a BC b == 求AD CD的值(用含a b 的代数式表示).19 (2024·江西九江·二模)初步探究(1)如图1 在四边形ABCD 中 ,AC BD 相交于点O AC BD ⊥ 且ABD CBD S S = 则OA 与OC 的数量关系为 .迁移探究(2)如图2 在四边形ABCD 中 ,AC BD 相交于点O ABD CBD SS = (1)中OA 与OC 的数量关系还成立吗?如果成立 请说明理由.拓展探究(3)如图3 在四边形ABCD 中 ,AC BD 相交于点O 180,ABD CBD BAD BCD S S ∠∠+=︒=△△ 且 33OB OD == 求AC 的长.20 (2024·江西九江·二模)课本再现如图1 四边形ABCD 是菱形 30ACD ∠=︒ 6BD =.(1)求,AB AC 的长.应用拓展(2)如图2 E 为AB 上一动点 连接DE 将DE 绕点D 逆时针旋转120︒ 得到DF 连接EF .①直接写出点D 到EF 距离的最小值②如图3 连接,OF CF 若OCF △的面积为6 求BE 的长.21 (2024·江西赣州·三模)某数学小组在一次数学探究活动过程中经历了如下过程:AB=P为对角线AC上的一个动点以P为直角顶问题提出:如图正方形ABCD中8△.点向右作等腰直角DPM(1)操作发现:DM的最小值为_______ 最大值为_______(2)数学思考:求证:点M在射线BC上=时求CM的长.(3)拓展应用:当CP CM22 (2024·江西赣州·二模)【课本再现】 思考我们知道 角的平分线上的点到角的两边的距离相等 反过来 角的内部到角的两边的距离相等的点在角的平分线上吗?可以发现并证明角的平分线的性质定理的逆定理角的内部到角的两边的距离相等的点在角的平分线上.【定理证明】(1)为证明此逆定理 某同学画出了图形 并写好“已知”和“求证” 请你完成证明过程.已知:如图1 在ABC ∠的内部 过射线BP 上的点P 作PD BA ⊥ PE BC ⊥ 垂足分别为D E 且PD PE =.求证:BP 平分ABC ∠.【知识应用】(2)如图2 在ABC 中 过内部一点P 作PD BC ⊥ PE AB ⊥ PF AC ⊥ 垂足分别为D E F 且PD PE PF == 120A ∠=︒ 连接PB PC .①求BPC ∠的度数②若6PB=23PC=求BC的长.23 (2024·江西吉安·模拟预测)一块材料的形状是锐角三角形ABC下面分别对这块材料进行课题探究:课本再现:(1)在图1中若边120mmBC=高80mmAD=把它加工成正方形零件使正方形的一边在BC上其余两个顶点分别在AB AC上这个正方形零件的边长是多少?类比探究(2)如图2 若这块锐角三角形ABC材料可以加工成3个相同大小的正方形零件请你探究高AD与边BC的数量关系并说明理由.拓展延伸(3)①如图3 若这块锐角三角形ABC材料可以加工成图中所示的4个相同大小的正方形零件则ADBC的值为_______(直接写出结果)②如图4 若这块锐角三角形ABC材料可以加工成图中所示的()3n m≥相同大小的正方形零件求ADBC的值.24 (2024·江西吉安·三模)课本再现 矩形的定义 有一个角是直角的平行四边形是矩形.定义应用(1)如图1 已知:在四边形ABCD 中 90A B C ∠=∠=∠=︒用矩形的定义求证:四边形ABCD 是矩形.(2)如图2 在四边形ABCD 中 90A B ∠=∠=︒ E 是AB 的中点 连接DE CE 且DE CE = 求证:四边形ABCD 是矩形.拓展延伸(3)如图3 将矩形ABCD 沿DE 折叠 使点A 落在BC 边上的点F 处 若图中的四个三角形都相似 求AB BC的值.25 (2024·江西吉安·一模)课本再现在学习了平行四边形的概念后进一步得到平行四边形的性质:平行四边形的对角线互相平分.=(1)如图1 在平行四边形ABCD中对角线AC与BD交于点O 求证:OA OC =.OB OD知识应用=延长AC到E 使得(2)在ABC中点P为BC的中点.延长AB到D 使得BD AC∠=︒请你探究线段BE与线段AP之间的BACCE AB=连接DE.如图2 连接BE若60数量关系.写出你的结论并加以证明.26 (2024·江西九江·二模)问题提出在综合与实践课上 某数学研究小组提出了这样一个问题:如图1 在边长为4的正方形ABCD 的中心作直角EOF ∠ EOF ∠的两边分别与正方形ABCD 的边BC CD 交于点E F (点E 与点B C 不重合) 将EOF ∠绕点O 旋转.在旋转过程中 四边形OECF 的面积会发生变化吗?爱思考的浩浩和小航分别探究出了如下两种解题思路.浩浩:如图a 充分利用正方形对角线垂直 相等且互相平分等性质 证明了OEC OFD ≌ 则OEC OFD S S = OEC OCF OFD OCF OCD OECF S S S S S S =+=+=四边形.这样 就实现了四边形OECF 的面积向OCD 面积的转化.小航:如图b 考虑到正方形对角线的特征 过点O 分别作OG BC ⊥于点G OH CD ⊥于点H 证明OGE OHF ≌△△ 从而将四边形OECF 的面积转化成了小正方形OGCH 的面积.(1)通过浩浩和小航的思路点拨﹐我们可以得到OECF S =四边形__________ CE CF +=__________.类比探究(2)①如图⒉ 在矩形ABCD 中 3AB = 6AD = O 是边AD 的中点 90EOF ∠=︒ 点E 在AB 上 点F 在BC 上 则EB BF +=__________.②如图3 将问题中的正方形ABCD 改为菱形ABCD 且45ABC ∠=︒ 当45EOF ∠=︒时 其他条件不变 四边形OECF 的面积还是一个定值吗?若是 请求出四边形OECF 的面积 若不是 请说明理由.拓展延伸(3)如图4 在四边形ABCD 中 7AB = 2DC = 60BAD ∠=︒ 120BCD ∠=︒ CA 是BCD ∠的平分线 求四边形ABCD 的面积.27 (2024·江西九江·模拟预测)【课本再现】(1)如图1 四边形ABCD 是一个正方形 E 是BC 延长线上一点 且AC EC = 则DAE ∠的度数为 .【变式探究】(2)如图2 将(1)中的ABE 沿AE 折叠 得到AB E ' 延长CD 交B E '于点F 若2AB = 求B F '的长.【延伸拓展】(3)如图3 当(2)中的点E 在射线BC 上运动时 连接B B ' B B '与AE 交于点P .探究:当EC 的长为多少时 D P 两点间的距离最短?请求出最短距离.28 (2024·江西上饶·一模)课本再现:(1)如图1 ,D E 分别是等边三角形的两边,AB AC 上的点 且AD CE =.求证:CD BE =.下面是小涵同学的证明过程:证明:ABC 是等边三角形,60AC BC A ACB ∴=∠=∠=︒.AD CE =()SAS ADC CEB ∴≌CD BE ∴=.小涵同学认为此题还可以得到另一个结论:BFD ∠的度数是______迁移应用:(2)如图2 将图1中的CD 延长至点G 使FG FB = 连接,AG BG .利用(1)中的结论完成下面的问题.①求证:AG BE ∥②若25CF BF = 试探究AD 与BD 之间的数量关系.参考答案考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。

初中数学中考模拟试卷及答案 (123)

初中数学中考模拟试卷及答案 (123)

宁夏回族自治区2017年初中学业水平暨高中阶段招生考试数学试题第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式计算正确的是A .43a a -=B .423a a a +=C .()236a a -=D .326a a a ⋅=2.在平面直角坐标系中,点()3,2-关于原点对称的点是A .()3,2-B .()3,2--C .()3,2-D .()3,23.学校国旗护卫队成员的身高分布如下表:则学校国旗护卫队成员的身高的众数和中位数分别是A .160和160B .160和160.5C .160和161D .161和1614.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是A .第一天B .第二天 C.第三天 D .第四天5.关于x 的一元二次方程()21320a x x -+-=有实数根,则a 的取值范围是 A .18a >- B .18a ≥- C.18a >-且1a ≠ D .18a ≥-且1a ≠6.已知点()1,1A -,()1,1B ,()C 2,4在同一个函数图像上,这个函数图像可能是A .B . C. D .7.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是A .()2222a b a ab b -=-+ B .()2a a b a ab -=-C.()222a b a b -=- D .()()22a b a b a b -=+- 8.圆锥的底面半径3r =,高4h =,则圆锥的侧面积是A .12πB .15π C.24π D .30π第Ⅱ卷(共96分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.分解因式228a -= .10.实数a 在数轴上的位置如图,则3a -= .11.如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .12.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为 元.13.如图,将平行四边形CD AB 沿对角线D B 折叠,使点A 落在点'A 处.若1250∠=∠=,则'∠A 为 .14.在C ∆AB 中,6AB =,点D 是AB 的中点,过点D 作D //C E B ,交C A 于点E ,点M 在D E 上,且1D 3ME =M .当AM ⊥BM 时,则C B 的长为 .15.如图,点A ,B ,C 均在66⨯的正方形网格格点上,过A ,B ,C 三点的外接圆除经过A ,B ,C 三点外还能经过的格点数为 .16.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 .三、解答题 (本大题共6小题,共36分.解答应写出文字说明、证明过程或演算步骤.)17. 解不等式组:()3652543123x x x x +≥-⎧⎪⎨---<⎪⎩ 18. 解方程:34133x x x +-=-+ 19. 校园广播主持人培训班开展比赛活动,分为A 、B 、C 、D 四个等级,对应的成绩分别是9分、8分、7分、6分,根据下图不完整的统计图解答下列问题:(1)补全下面两个统计图(不写过程);(2)求该班学生比赛的平均成绩;(3)现准备从等级A 的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?20. 在平面直角坐标系中,C ∆AB 三个顶点的坐标分别为()2,3A ,()1,1B ,()C 5,1.(1)把C ∆AB 平移后,其中点A 移到点()14,5A ,画出平移后得到的111C ∆A B ;(2)把111C ∆A B 绕点1A 按逆时针方向旋转90,画出旋转后的222C ∆A B .21. 在C ∆AB 中,M 是C A 边上的一点,连接BM .将C ∆AB 沿C A 翻折,使点B 落在点D 处,当D //M AB 时,求证:四边形D ABM 是菱形.22.某商店分两次购进A 、B 两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A 、B 两种商品每件的进价分别是多少元?(2)商场决定A 商品以每件30元出售,B 商品以每件100元出售.为满足市场需求,需购进A 、B 两种商品共1000件,且A 商品的数量不少于B 种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.四、解答题 (本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)23.将一副三角板Rt D ∆AB 与Rt C ∆A B (其中D 90∠AB =,D 60∠=,C 90∠A B =,C 45∠AB =)如图摆放,Rt D ∆AB 中D ∠所对直角边与Rt C ∆A B 斜边恰好重合.以AB 为直径的圆经过点C ,且与D A 交于点E ,分别连接EB ,C E .(1)求证:C E 平分∠AEB ;(2)求C CS S ∆A E ∆BE 的值.24.直线y kx b =+与反比例函数6y x=(0x >)的图像分别交于点(),3m A 和点()6,n B ,与坐标轴分别交于点C 和点D .(1)求直线AB 的解析式;(2)若点P 是x 轴上一动点,当C D ∆O 与D ∆A P 相似时,求点P 的坐标.25.为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x 表示每户每月用水量(单位:3m ),y 表示每户每月应交水费(单位:元),求y 与x 的函数关系式;(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?26.在边长为2的等边三角形C AB 中,P 是C B 边上任意一点,过点P 分别作PM ⊥AB ,C PN ⊥A ,M 、N 分别为垂足.(1)求证:不论点P 在C B 边的何处时都有PM +PN 的长恰好等于三角形C AB 一边上的高;(2)当BP 的长为何值时,四边形AMPN 的面积最大,并求出最大值.新课标第一网系列资料 2017年长沙市初中毕业学业水平考试数学试卷一、选择题:1.下列实数中,为有理数的是( )A .3B .πC .32D .12.下列计算正确的是( )A .532=+B .222a a a =+C .xy x y x +=+)1(D .632)(mn mn =3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯B .71026.8⨯C .6106.82⨯D .81026.8⨯4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形B .之直角三角形C .钝角三角形D .等腰直角三角形6.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D .“367人中有2人同月同日生”为必然事件7.某几何体的三视图如图所示,因此几何体是( )A .长方形B .圆柱C .球D .正三棱柱8.抛物线4)3(22+-=x y 的顶点坐标是( )A .)4,3(B .)4,3(-C .)4,3(-D .)4,2(9.如图,已知直线b a //,直线c 分别与b a ,相交,01101=∠,则2∠的度数为( )A .060B .070C .080D .011010.如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 2011.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里12.如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化二、填空题13.分解因式:=++2422a a .14.方程组⎩⎨⎧=-=+331y x y x 的解是 . 15.如图,AB 为⊙O 的直径,弦AB CD ⊥于点E ,已知1,6==EB CD ,则⊙O 的半径为 .16.如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)18.如图,点M 是函数x y 3=与xk y =的图象在第一象限内的交点,4=OM ,则k 的值为 .三、解答题19.计算:100)31(30sin 2)2017(|3|-+--+-π 20.解不等式组⎩⎨⎧+>---≥)1(31592x x x x ,并把它的解集在数轴上表示出来.21.为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题:(1)表中=a ;=b ;(2)请计算扇形统计图中B 组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东060方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东030方向上.(1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CE CD =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的面积.24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件B A ,型商品的进价分别为多少元?(2)若该欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,设购进A 型商品m 件,求该客商销售这批商品的利润v 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献资金后获得的最大收益.25.若三个非零实数z y x ,,满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数z y x ,,构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由.(2)若),1(),,1(),,(321y t M y t N y t M +-三点均在函数xk (k 为常数,0≠k )的图象上,且这三点的纵坐标321,,y y y 构成“和谐三数组”,求实数t 的值;(3)若直线)0(22≠+=bc c bx y 与x 轴交于点)0,(1x A ,与抛物线)0(332≠++=a c bx ax y 交于),(),,(3322y x C y x B 两点.①若OAC ∆为等腰直角三角形,求m 的值;②若对任意0>m ,E C ,两点总关于原点对称,求点D 的坐标(用含m 的式子表示);(3)当点D 运动到某一位置时,恰好使得OAD ODB ∠=∠,且点D 为线段AE 的中点,此时对于该抛物线上任意一点),(00y x P 总有503123461020---≥+y my n 成立,求实数n 的最小值.新课标第一网系列资料新课标第一网不用注册,免费下载!遵义市2017年初中毕业生学业(升学)统一考试数学试题卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.-3的相反数是( )A .-3B .3C .13D .13- 2.2017年遵义市固定资产总投资计划为2580亿元,将250亿用科学计数法表示为( )A .112.5810⨯B .122.5810⨯C .132.5810⨯D .142.5810⨯3.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )A .B .C .D .4.下列运算正确的是( )A .55523a a a -=B .236a a a ⋅= C.752a a a ÷= D .2353()ab a b = 5.我市某连续7天的最高气温为:28︒,27︒,30︒,33︒,30︒,30︒,32︒.这组数据的平均数和众数分别是( )A .28︒,30︒B .30︒,28︒ C.31︒,30︒ D .30︒,30︒6.把一块等腰直角三角尺和直角如图放置.如果130∠=︒,则2∠的度数为( )A .45︒B .30︒ C.20︒ D .15︒7.不等式6438x x -≥-的非负整数....解为( ) A .2个 B .3个 C.4个 D .5个8.已知圆锥的底面面积为9π 2cm ,母线长为6cm ,则圆锥的侧面积是( )A .18π 2cmB .27π 2cm C.18 2cm D .27 2cm9.关于x 的一元二次方程230x x m ++=有两个不相等的实数根,则m 的取值范围为( )A .94m ≤B .94m < C.49m ≤ D .49m < 10.如图,ABC ∆的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则AFG ∆的面积是( )A .4.5B .5 C.5.5 D .611.如图,抛物线2y ax bx c =++经过点(1,0)-,对称轴l 如图所示.则下列结论:①0abc >;②0a b c -+=;③20a c +<;④0a b +<,其中所有正确的结论是( )A .①③B .②③ C.②④ D .②③④12.如图,ABC ∆中,E 是BC 中点,AD 是BAC ∠的平分线,//EF AD 交AC 于F .若11AB =,15AC =,则FC 的长为( )A .11B .12 C.13 D .14二、填空题(本大题共6小题,每小题4分,满分24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.) 13.82+= .14.一个正多边形的一个外角为30︒,则它的内角和为 .15.按一定规律排列的一列数依次为:28111417,1,,,,,3791113,按此规律,这列数中的第100个数是 .16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如图每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB 是⊙O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与⊙O 交于C 、D 两点.若45CMA ∠=︒,则弦CD 的长为 .18.如图,点E 、F 在函数2y x=的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且:1:3B E B F =,则EOF ∆的面积是 .三、解答题(本大题共9小题,共90分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答应写出必要的文字说明、证明过程或演算步骤.)19. 计算:02017|23|(4)12(1)π--+--+-.20. 化简分式:222233()4424x x x x x x x ---÷-+--,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21. 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白棕2个,豆沙粽1个,肉粽一个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 .(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白棕子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB 和引桥BC 两部分组成(如图所示).建造前工程师用以下方式做了测量;无人机在A 处正上方97 m 处的P 点,测得B 处的俯角为30︒(超出C 处被小山体阻挡无法观测).无人机飞行到B 处正上方的D 处时能看到C 处俯角为8036''︒.(1)求主桥AB 的长度.(2)若两观察点P 、D 的连线与水平方向的夹角为30︒,求引桥BC 的长.(长度均精确到1 m ,参考数据:3 1.73≈,sin8036''0.987︒≈,cos8036''0.163︒≈,tan 8036'' 6.06︒≈.)23.贵州省是我国首个大数据综合实验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市.我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有 人.(2)关注城市医疗信息的有 人.并补全条形统计图.(3)扇形统计图中,D 部分的圆心角是 度.(4)说一条你从统计图中获取的信息.24.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,60APB ∠=︒.连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(1)求证:四边形ACBP 是菱形.(2)若⊙O 半径为1,求菱形ACBP 的面积.25.为厉行节能减排.倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登录我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放.共投放A 、B 两型自行车各50辆.投放成本共计7500元,其中B 型车的成本单价比A 型车高10元.A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”;乙街区每1000人投放8240a a+辆“小黄车”.按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆.如果两个街区共有15万人,试求a 的值.26.边长为22的正方形ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90︒到BQ .连接QP ,QP 与BC 交于点E .QP 延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =.(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并求出当x 为何值时,38CE BC =. (3)猜想PF 与EQ 的数量关系,并证明你的结论.27.如图,抛物线2y ax bx a b =+--(0a <,a 、b 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点.直线AB 的函数关系式为81693y x =+.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点(,0)M m 是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当m 为何值时,BDE ∆恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当BDE ∆恰好是以DE 为底边等腰三角形时,动点M 相应位置记为点'M ,将'OM 绕原点O 顺时针旋转得到ON (旋转角在0︒到90︒之间).i.探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持不变.若存在,试求出P 点坐标;若不存在,请说明理由.ii :试求出此旋转过程中,3()4NA NB +的最小值.新课标第一网系列资料 2017年长沙市初中毕业学业水平考试数学试卷一、选择题:1.下列实数中,为有理数的是( )A .3B .πC .32D .12.下列计算正确的是( )A .532=+B .222a a a =+C .xy x y x +=+)1(D .632)(mn mn =3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯B .71026.8⨯C .6106.82⨯D .81026.8⨯4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形B .之直角三角形C .钝角三角形D .等腰直角三角形6.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D .“367人中有2人同月同日生”为必然事件7.某几何体的三视图如图所示,因此几何体是( )A .长方形B .圆柱C .球D .正三棱柱8.抛物线4)3(22+-=x y 的顶点坐标是( )A .)4,3(B .)4,3(-C .)4,3(-D .)4,2(9.如图,已知直线b a //,直线c 分别与b a ,相交,01101=∠,则2∠的度数为( )A .060B .070C .080D .011010.如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 2011.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里12.如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( )A .22B .21C .215- D .随H 点位置的变化而变化二、填空题13.分解因式:=++2422a a .14.方程组⎩⎨⎧=-=+331y x y x 的解是 .15.如图,AB 为⊙O 的直径,弦AB CD ⊥于点E ,已知1,6==EB CD ,则⊙O 的半径为 .16.如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)18.如图,点M 是函数x y 3=与x k y =的图象在第一象限内的交点,4=OM ,则k 的值为 .三、解答题19.计算:100)31(30sin 2)2017(|3|-+--+-π 20.解不等式组⎩⎨⎧+>---≥)1(31592x x x x ,并把它的解集在数轴上表示出来.21.为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题:(1)表中=a ;=b ;(2)请计算扇形统计图中B 组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东060方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东030方向上.(1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CE CD =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的面积.24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件B A ,型商品的进价分别为多少元?(2)若该欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,设购进A 型商品m 件,求该客商销售这批商品的利润v 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献资金后获得的最大收益.25.若三个非零实数z y x ,,满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数z y x ,,构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由.(2)若),1(),,1(),,(321y t M y t N y t M +-三点均在函数xk (k 为常数,0≠k )的图象上,且这三点的纵坐标321,,y y y 构成“和谐三数组”,求实数t 的值;(3)若直线)0(22≠+=bc c bx y 与x 轴交于点)0,(1x A ,与抛物线)0(332≠++=a c bx ax y 交于),(),,(3322y x C y x B 两点.①若OAC ∆为等腰直角三角形,求m 的值;②若对任意0>m ,E C ,两点总关于原点对称,求点D 的坐标(用含m 的式子表示);(3)当点D 运动到某一位置时,恰好使得OAD ODB ∠=∠,且点D 为线段AE 的中点,此时对于该抛物线上任意一点),(00y x P 总有503123461020---≥+y my n 成立,求实数n 的最小值.新课标第一网系列资料新课标第一网不用注册,免费下载!。

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟带答案解析

江西初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、解答题1.(8’)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).2.操作:如图1,正方形ABCD中,AB=a,点E是CD边上一个动点,在AD上截取AG=DE,连接EG,过正方形的中线O作OF⊥EG交AD边于F,连接OE、OG、EF、AC.探究:在点E的运动过程中:(1)猜想线段OE与OG的数量关系?并证明你的结论;(2)∠EOF的度数会发生变化吗?若不会,求出其度数,若会,请说明理由.应用:(3)当a=6时,试求出△DEF的周长,并写出DE的取值范围;(4)当a的值不确定时:①若时,试求的值;②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;并将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S的值,并说明理由.3.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.(1)求A,B两种商品每件多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?4.(1)计算:(2)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.5.先化简,再求值:,其中6.我县大力扶持和发展养鸡事业,A,B,C三家养鸡场之间的位置关系如图1所示,已知B养鸡场在A养鸡场的正东方向50公里处,C养鸡场在A养鸡场的正北方向50公里处,A养鸡场有1万只鸡,B养鸡场的养殖量是这三角养殖场的总养殖量的50%,C养鸡场养了三种鸡,王芳同学将各养鸡场的养殖量绘制成如图2所示的不完整的条形统计图,将C养鸡场各种鸡的养殖量绘制成如图3所示的扇形统计图.(1)补全图2中的条形统计图;(2)求乌骨鸡的数量及三黄鸡所对的扇形的圆心角的度数;(3)政府部门决定在B,C的中点建设一座货运中转中心E,以解决三角养鸡场的鸡蛋输送问题,已知A,B,C 三家养鸡场的每只鸡的年平均产蛋量为1箱,当运送一箱鸡蛋每公里的费用都为0.5元时,求从A,B,C三个养鸡场运输鸡蛋到货运中转中心E一年的总费用为多少元?(提示:=1.4)7.在图1、图2中,⊙O经过了正方形网格中的格点A、B、C、D,现请你仅用无刻度的直尺分别在图1、图2中画出一个满足下列条件的∠P:(1)顶点P在⊙O上且不能与点A、B、C、D重合;(2)∠P在图1、图2中的正切值分别为1、.8.如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG 表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)9.如图,已知一次函数与反比例函数交于A(1,﹣3),B(a,﹣1)两点.(1)求一次函数的解析式;(2)根据反比例函数的图象,当y>6时,求出x的取值范围;(3)若一次函数与反比例函数有一个交点,求c的值.10.如图,在中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若且,求⊙O的半径与线段AE的长.11.如图,已知抛物线y=-x2+bx+6与x轴交于点A(﹣6,0)和点B,与y轴交于点C.(1)求该抛物线的解析式;(2)写出顶点的坐标,并求AB的长;(3)若点A,O,C均在⊙D上,请写出点D的坐标,连接BC,并判断直线BC与⊙D的位置关系.二、填空题1.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有个涂有阴影的小正方形(用含有n的代数式表示).2.如图,矩形ABCD中,AD=4,AB=2,以点A为圆心,AD为半径画弧交BC于点E,所得的扇形的弧长为.3.分解因式:=_____________.4.若分式有意义,则的取值范围是。

中考数学冲刺模拟测试卷(附答案解析)

中考数学冲刺模拟测试卷(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟一、选择题(本题共10小题,每小题3分,共30分)1.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)| B.﹣(﹣3﹣2) C.﹣(﹣|﹣3﹣2|) D.﹣2﹣|﹣4|2.如图是由若干个完全相同的正方体搭成的几何体,取走选项序号对应的正方体,其中三视图不会发生变化的是()A.①B.②C.③D.④3.选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A.B.C.D.6.如图,若⊙O是正方形ABCD与正六边形AEFCGH的外接圆,则正方形ABCD与正六边形AEFCGH的周长之比为()A.2:3 B.:1 C.:D.1:7.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况8.在数轴上,表示不小于﹣2且小于2之间的整数的点有()A.3个B.4个C.5个D.无数个9.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h =20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.若线段AB的端点为(﹣1,3),(1,3),线段CD与线段AB关于x轴轴对称,则线段CD上任意一点的坐标可表示为.13.“石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是.14.如图,在△ABC中,点O是△ABC的内心,∠A=48°,∠BOC=°.15.如图,正方形BEFG的顶点E在正方形ABCD的边AD上,CD、EF交于点H,AD=16,连接EC,FC,则△CEF 的面积的最小值为.三、解答题(本题共10小题,共100分)16.如图,某花园的护栏是用一些半圆形造型的钢条围成的,半圆的直径为80厘米,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0),设半圆形条钢的总个数为x个(x为正整数),护栏总长度为y厘米.(1)当a=60时,用含x的代数式表示护栏总长度y(结果要求化简);(2)用含a、x的代数式表示护栏的总长度y(结果要求化简),并求a=50,x=41时,护栏长度y的值.17.5月1日,“东疆好少年”平台公布了世界读书日暨“阅读吧,少年”第一轮网络答题进入决赛的学生名单,全市初中组有235名同学入围.某中学有300名七、八年级同学积极参与了此次活动,该校老师随机调查收集了50名学生的参赛成绩,整理得到了如下的数据分析表:分数段人数分数段人数55≤x<65 23人85≤x<95 5人65≤x<75 12人95≤x<100 3人75≤x<85 7人/ /其中分数段在65≤x<75组的成绩如下:65 65 70 7070 65 70 6565 65 70 70(1)被抽取的这50名同学成绩的中位数为65;(2)已知50名学生中男生均分为68.2分,女生均分为71.8分,你能求出这50名学生的平均分吗?若能,请求出平均分,若不能,请说明理由;(3)本次进入决赛的成绩为70分以上(包括70分),请你估计该校有多少名学生进入决赛?(4)已知该校八(1)班有三名学生(一名男生,两名女生)取得90分以上,现准备从这三名学生中选两名学生进行班级阅读分享,求恰好选到一名男生与一名女生的概率.18.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.19.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.20.新冠病毒潜伏期较长,能通过多种渠道传播,所以在生活中就要做好最基本的防护:在公共区域和陌生人保持距离,勤洗手,出门戴口罩,某区中小学陆续复学后,为了提高同学们的防疫意识,决定组织防疫知识竞赛活动,评出一、二、三等奖各若干名,并分别发给洗手液、温度计和口罩作为奖品.(1)如果温度计的单价比口罩的单价多1元,购买洗手液1瓶和口罩5个共需22元;购买2瓶洗手液比购买6支温度计多花6元,求洗手液、温度计和口罩的单价各是多少元?(2)已知本次竞赛活动获得三等奖的人数是获得二等奖人数的2倍,且获得一等奖的人数不超过获奖总人数的五分之一,如果购买这三种奖品的总费用为308元,求本次竞赛活动获得一、二、三等奖各有多少人.21.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】22.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.23.如图,在△ABC中,AC=BC,CD平分∠ACB交AB于点D,BF平分∠ABC交CD于点F,AB=6,过B、F 两点的⊙O交BA于点G,交BC于点E,EB恰为⊙O的直径.(1)判断CD和⊙O的位置关系并说明理由;(2)若cos∠A=,求⊙O的半径.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)二次函数的顶点M与A重合时,函数的图象是否过点Q(a,a﹣1),并说明理由;(3)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的解析式.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.参考答案满分150分,答题时间120分钟四、选择题(本题共10小题,每小题3分,共30分)1.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)| B.﹣(﹣3﹣2) C.﹣(﹣|﹣3﹣2|) D.﹣2﹣|﹣4|【解答】解:A.|﹣2﹣(﹣1)|=|﹣1|=1,不符合题意;B.﹣(﹣3﹣2)=﹣(﹣5)=5,不符合题意;C.﹣(﹣|﹣3﹣2|)=﹣(﹣5)=5,不符合题意;D.﹣2﹣|﹣4|=﹣2﹣4=﹣6,符合题意.故选:D.2.如图是由若干个完全相同的正方体搭成的几何体,取走选项序号对应的正方体,其中三视图不会发生变化的是()A.①B.②C.③D.④【解答】解:A、取走①,主视图会发生变化,故本选项不合题意;B、取走②,俯视图会发生变化,故本选项不合题意;C、取走③,主视图和俯视图都会发生变化,故本选项不合题意;D、取走④,三视图不会发生变化,故本选项符合题意;故选:D.3.选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式【解答】解:原式=(3y﹣2x)(3y+2x)=(3y)2﹣(2x)2=9y2﹣4x2,∴运用平方差公式最好,故选:B.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A.B.C.D.【解答】解:因为每次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率==.故选:C.6.如图,若⊙O是正方形ABCD与正六边形AEFCGH的外接圆,则正方形ABCD与正六边形AEFCGH的周长之比为()A.2:3 B.:1 C.:D.1:【解答】解:连接OA、OB.OE,如图所示:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,∴内接正方形和内接正六边形的边长之比为R:R=:1,∴正方形ABCD与正六边形AEFCGH的周长之比=内接正方形和内接正六边形的边长之比=4:6=2:3,故选:A.7.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况【解答】解:实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是50名学生的身高情况.故选:C.8.在数轴上,表示不小于﹣2且小于2之间的整数的点有()A.3个B.4个C.5个D.无数个【解答】解:在数轴上,表示不小于﹣2且小于2之间的整数有:﹣2、﹣1、0、1,共4个.故选:B.9.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°【解答】解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°﹣∠DOE﹣∠BDO﹣∠BEO=35°;故选:D.10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h =20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③【解答】解:由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得:a=﹣,∴h=﹣(t﹣3)2+40.①∵顶点为(3,40),∴小球抛出3秒时达到最高点,故①正确;②小球从抛出到落地经过的路程应为该小球从上升到落下的长度,故为40×2=80m,故②正确;③令h=20,则20=﹣(t﹣3)2+40,解得t=3±,故③错误;④令t=2,则h=﹣(2﹣3)2+40=m,故④错误.综上,正确的有①②.故选:A.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.若线段AB的端点为(﹣1,3),(1,3),线段CD与线段AB关于x轴轴对称,则线段CD上任意一点的坐标可表示为(x,﹣3)(﹣1≤x≤1).【解答】解:∵线段CD与线段AB关于x轴轴对称,∴线段CD上任意一点的坐标可表示为(x,﹣3)(﹣1≤x≤1),故答案为:(x,﹣3)(﹣1≤x≤1).13.“石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是.【解答】解:用列表法表示所有可能出现的结果有:共有9种情况,其中乙获胜的有3中,P乙获胜==.故答案为:.14.如图,在△ABC中,点O是△ABC的内心,∠A=48°,∠BOC=114°.【解答】解:∵O是△ABC的内心,∴OB,OC分别平分∠ABC,∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣48°)=66°,∴∠BOC=180°﹣66°=114°.故答案为:114.15.如图,正方形BEFG的顶点E在正方形ABCD的边AD上,CD、EF交于点H,AD=16,连接EC,FC,则△CEF 的面积的最小值为96.【解答】解:过F作FG⊥DC于点G,FM⊥AD,交AD的延长线于M,连接CF,∵S△CEF=S△CHF+S△CHE=CH•EM,∵△EMF≌△BAE,∴EM=AB=16,∴S△CEF=8CH,∵△EDH∽△BAE,∴,设AE为x,则DH=(﹣x2+16x)=﹣(x﹣8)2+4≤4,∴DH≤4,∴CH≥12,CH最小值是12,∴△CEF面积的最小值是96.故答案为:96.六、解答题(本题共10小题,共100分)16.如图,某花园的护栏是用一些半圆形造型的钢条围成的,半圆的直径为80厘米,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0),设半圆形条钢的总个数为x个(x为正整数),护栏总长度为y厘米.(1)当a=60时,用含x的代数式表示护栏总长度y(结果要求化简);(2)用含a、x的代数式表示护栏的总长度y(结果要求化简),并求a=50,x=41时,护栏长度y的值.【解答】解:(1)y=80+a(x﹣1),当a=60时,y=80+60(x﹣1)=60x+20.(2)y=80+a(x﹣1),当a=50,x=41时,y=80+50(41﹣1)=2080.17.5月1日,“东疆好少年”平台公布了世界读书日暨“阅读吧,少年”第一轮网络答题进入决赛的学生名单,全市初中组有235名同学入围.某中学有300名七、八年级同学积极参与了此次活动,该校老师随机调查收集了50名学生的参赛成绩,整理得到了如下的数据分析表:分数段人数分数段人数55≤x<65 23人85≤x<95 5人65≤x<75 12人95≤x<100 3人75≤x<85 7人/ /其中分数段在65≤x<75组的成绩如下:65 65 70 7070 65 70 6565 65 70 70(1)被抽取的这50名同学成绩的中位数为65;(2)已知50名学生中男生均分为68.2分,女生均分为71.8分,你能求出这50名学生的平均分吗?若能,请求出平均分,若不能,请说明理由;(3)本次进入决赛的成绩为70分以上(包括70分),请你估计该校有多少名学生进入决赛?(4)已知该校八(1)班有三名学生(一名男生,两名女生)取得90分以上,现准备从这三名学生中选两名学生进行班级阅读分享,求恰好选到一名男生与一名女生的概率.【解答】解:(1)把50名同学的成绩从小到大排列后处在第25、26位的两个数的平均数为=65;故答案为:65;(2)不能求出这50名学生的平均分,理由如下:因为男生女生人数不知道,相当于权重不一样.并不是男生女生各占一半;所以不能求出这50名学生的平均分;(3)因为50名同学进入决赛的人数有:6+7+5+3=21,所以300×=126(名).答:估计该校有126名学生进入决赛;(4)根据题意画出树状图:根据树状图可知:所有等可能的结果有6种,恰好选到一名男生与一名女生的有4种,所以恰好选到一名男生与一名女生的概率为:=.18.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.【解答】解:(1)在▱ABCD中,AB=DC=2,∠C=60°,DF⊥BC,∴∠BAD=∠C=60°,∠CDF=30°,∴CF=1,DF=CF=,∵DF=AD.∴AD=DF=,∵AE平分∠BAD,∴∠DAE=∠BAE=30°,∵AB∥CD,∴∠BAE=∠AED=30°,∴AD=DE=,∴EC=DC﹣DE=2﹣.(2)延长FD至M,使DM=FC,在△ADM和△DFC中,,∴△ADM≌△DFC(SAS),∴∠DAM=∠FDC,AM=DC,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAE=∠AED,∵∠BAE=∠DAE,∴∠DAE=∠AED,∴∠DAE+∠DAM=∠AED+∠FDC,即∠MAG=∠MGA,∴AM=MG,∴DC=DG+FC.19.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.【解答】解:树状图如下图所示,由树状图知共有12种等可能结果,其中恰好选到“1男1女”的有6种结果,所以恰好选到“1男1女”的概率是=.20.新冠病毒潜伏期较长,能通过多种渠道传播,所以在生活中就要做好最基本的防护:在公共区域和陌生人保持距离,勤洗手,出门戴口罩,某区中小学陆续复学后,为了提高同学们的防疫意识,决定组织防疫知识竞赛活动,评出一、二、三等奖各若干名,并分别发给洗手液、温度计和口罩作为奖品.(1)如果温度计的单价比口罩的单价多1元,购买洗手液1瓶和口罩5个共需22元;购买2瓶洗手液比购买6支温度计多花6元,求洗手液、温度计和口罩的单价各是多少元?(2)已知本次竞赛活动获得三等奖的人数是获得二等奖人数的2倍,且获得一等奖的人数不超过获奖总人数的五分之一,如果购买这三种奖品的总费用为308元,求本次竞赛活动获得一、二、三等奖各有多少人.【解答】解:(1)设洗手液的单价是x元,口罩的单价是y元,则温度计的单价是(y+1)元,依题意得:,解得:,∴y+1=3.答:洗手液的单价是12元,口罩的单价是2元,温度计的单价是3元.(2)设获得一等奖的有m人,二等奖的有n人,则三等奖的有2n人,依题意得:12m+3n+2×2n=308,∴n==44﹣m.∵获得一等奖的人数不超过获奖总人数的五分之一,∴m≤,即4m≤3n.又∵m,n均为正整数,∴m为7的倍数,∴或.答:获得一等奖的有7人,二等奖的有32人,三等奖的有64人或获得一等奖的有14人,二等奖的有20人,三等奖的有40人.21.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】【解答】解:如图,过点N作EF∥AC交AB于点E,交CD于点F,则AE=CF=MN=1.6,EF=AC=35,EN=AM,NF=MC,∠BEN=∠DFN=90°.∴DF=CD﹣CF=16.6﹣1.6=15.在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15.∴EN=EF﹣NF=35﹣15=20.在Rt△BEN中,∵,∴BE=EN⋅tan∠BNE=20×tan55°≈20×1.43=28.6.∴AB=BE+AE=28.6+1.6=30.2≈30(米).答:居民楼AB的高度约为30 米.22.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,故答案为1;(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.23.如图,在△ABC中,AC=BC,CD平分∠ACB交AB于点D,BF平分∠ABC交CD于点F,AB=6,过B、F 两点的⊙O交BA于点G,交BC于点E,EB恰为⊙O的直径.(1)判断CD和⊙O的位置关系并说明理由;(2)若cos∠A=,求⊙O的半径.【解答】解:(1)CD与⊙O相切,理由如下:连接OF,∵AC=BC,CD平分∠ACB,∴AD=BD=3,CD⊥AB,∴∠BDC=90°,∵OF=OB,∴∠OFB=∠OBF,∵BF平分∠ABC,∴∠CBF=∠FBD,∴∠OFB=∠FBD,∴OF∥DB,∴∠CFO=∠BDC=90°,∴CD与⊙O相切;(2)∵AC=BC,∴∠A=∠ABC,∴cos∠ABC=cos∠A=在Rt△BDC中,cos∠ABC==,∴BC=9,∵OF∥DB,∴△CFO∽△CDB,设⊙O的半径是r,则=,∴r=,即⊙O的半径是.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)二次函数的顶点M与A重合时,函数的图象是否过点Q(a,a﹣1),并说明理由;(3)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的解析式.【解答】解:(1)设OA所在直线的函数解析式为y=kx,∵A(2,4),∴2k=4,解得k=2,∴OA所在直线的函数解析式为y=2x;(2)不过点Q,理由:当二次函数的顶点M与A重合时,则顶点M的坐标为(2,4),∴抛物线的解析式为y=(x﹣2)2+4=x2﹣4x+8,设当x=a时,y=x2﹣4x+8=a2﹣4a+8=a﹣1,即a2﹣5a+9=0,∵△=25﹣36<0,故方程无解,则函数的图象不过点Q(a,a﹣1);(3)∵顶点M的横坐标为m,且在OA上移动,∴y=2m(0≤m≤2),∴M(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m,∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2),∴PB=m2﹣2m+4=(m﹣1)2+3(0≤m≤2),∴当m=1时,PB最短,当PB最短时,抛物线的解析式为y=(x﹣1)2+2.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=15°(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=20°(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:∠EDC=∠BAD(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC =2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=∠BAD。

厦门市中考数学模拟试卷分类汇编有理数解答题(及答案)

厦门市中考数学模拟试卷分类汇编有理数解答题(及答案)

厦门市中考数学模拟试卷分类汇编有理数解答题(及答案)一、解答题1.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.(1)数轴上点C表示的数是________;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.4.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.5.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:6.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.7.阅读材料:求的值.解:设将等式两边同时乘以2,得将下式减去上式,得即请你仿照此法计算:(1)(2)8.数轴上两个质点A.B所对应的数为−8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒。

数学中考仿真模拟试题word版含答案

数学中考仿真模拟试题word版含答案

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分120分,考试时间100分钟.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣52.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=34.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣85.下列图形中,不是正方体表面展开图的是()A .B .C .D .6.如图,在Rt △A B C 中,∠C =90°,A B =4,A C =3,则sin B =( )A .35B .45C .34D .√747.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =238.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0B .k <0,B >0C .k >0,B <0D .k >0,B >09.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是( )A .100°B .105°C .110°D .120°10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103二、填空题(每小题3分,共18分)在实数范围内有意义,则x的取值范围是.11.若式子√x−112.因式分解:y3﹣4y2+4y=.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.15.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.18.(4分)已知:如图,Rt△A B C 中,∠C =90°,M是A B 的中点,A N=1A B ,A N∥C M.2求证:MN=A C .19.(6分)先化简(1﹣xx−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(x≥30),一周的销售量为y 件.(1)直接写出y 与x 的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E (要求:尺规作图,保留作图痕迹,不写作法,要下结论); (2)在A D 边上截取A F =A B ,连接EF ,若A B =3,∠B =60°,求四边形A B EF 的面积.23.(10分)如图,直线y=x+B 与双曲线y=k(x>0)的交点为A (1,A ),与x轴的交点为B (﹣1,0),点C 为双曲x(x>0)上的一点.线y=kx(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.24.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 为AB上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 恰好是CD中点,求证:C E2=B E•B A ;是否为定值,如(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A BMN 果是,请求出这个值,如果不是,请说明理由.25.(12分)在平面直角坐标系中,点A 是抛物线y=﹣1x2+mx+2m+2与y轴的交点,点B 在该抛物线上,该抛2物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G.设点B 的横坐标为2m﹣1.(1)当m=1时,①当函数y的值随x的增大而增大时,自变量x的取值范围为.②求图象G最高点的坐标.(2)当m<0时,若图象G与x轴只有一个交点,求m的取值范围.(3)设图象G最高点与最低点的纵坐标之差为h,求h与m之间对应的函数关系式.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣5【答案】C【解答】解:与15为倒数的数为:5.故选:C .2.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .【答案】A【解答】解:A 、既是中心对称图形,又是轴对称图形,故本选项符合题意;B 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;C 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;D 、是中心对称图形,不是轴对称图形,故本选项不合题意.故选:A .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=3【答案】B【解答】解:A 、√2+√3,无法计算,故此选项错误;B 、√4×2=2√2,故此选项正确;C 、√6+2,无法计算,故此选项错误;D 、3√2﹣√2=2√2,故此选项错误;故选:B .4.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣8【答案】B【解答】解:0.000000125=1.25×10﹣7,故选:B .5.下列图形中,不是正方体表面展开图的是()A .B .C .D .【答案】C【解答】解:根据正方体的展开图的11种情况可得,C 选项中的图形不是它的展开图.故选:C .6.如图,在Rt△A B C 中,∠C =90°,A B =4,A C =3,则sin B =()A .35B .45C .34D .√74【答案】C【解答】解:∵在Rt △A B C 中,∠C =90°,A B =4,A C =3, ∴sin B =,故选:C .7.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =23【答案】C【解答】解:图2所示的算筹图我们可以表述为:{3x +2y =19x +4y =23.故选:C .8.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0 B .k <0,B >0C .k >0,B <0D .k >0,B >0【答案】D【解答】解:此题可通过观察图象求解,如图所示,(1)y =﹣x 只有向上平移时,图象才会经过第一象限,即B >0;(2)y =kx ﹣4(k ≠0),①k <0时,图象不经过第一象限,不合题意,②k >0时,图象经过第一象限,和y =﹣x +B 的交点在第一象限,符合题意.故选:D .9.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是()A .100°B .105°C .110°D .120°【答案】B【解答】解:过O 分别作OE ⊥A B 于E ,OF ⊥B C 于F ,连接OB ,则A E =B E =12A B =√22,B F =C F =12B C =√32,OB =1∴C os ∠OB E =OE OB =√32,C os ∠OB F =√32,∴∠OB E =45°,∠OB F =30°,∴∠A B C =∠OB E +∠OB F =75°,∵四边形A B C D 内接于⊙O ,∴∠A D C +∠A B C =180°,∴∠A D C =180°﹣75°=105°,故选:B .10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103【答案】B【解答】解:∵A +B =2,C ﹣3A =4,∴B =2﹣A ,C =3A +4,∵B ,C 都是非负数,∴{2−A ≥0①3A +4≥0②,解不等式①得,A ≤2,解不等式②得,A ≥﹣43,∴﹣43≤A ≤2,又∵A 是非负数,∴0≤A ≤2,S=A 2+B +C =A 2+(2﹣A )+3A +4, =A 2+2A +6,∴对称轴为直线A =﹣22×1=﹣1, ∴A =0时,最小值n=6,A =2时,最大值m=22+2×2+6=14, ∴m﹣n=14﹣6=8.故选:B .二、填空题(每小题3分,共18分)11.若式子在实数范围内有意义,则x的取值范围是.√x−1【答案】x>1【解答】解:根据题意得:x﹣1>0,解得:x>1,故答案为:x>1.12.因式分解:y3﹣4y2+4y=.【答案】y(y﹣2)2【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2.故答案为:y(y﹣2)2.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.【答案】56【解答】解:∵A B ∥C D ,∴∠A B E+∠B EC =180°,∵∠A B E=146°,∴∠B EC =180°﹣146°=34°,∵FE⊥C D ,∴∠C EF=90°,∴∠FEB =∠C EF﹣∠B EC =90°﹣34°=56°.故答案为:56.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.【答案】A ≥﹣43【解答】解:∵关于x的一元二次方程x2+4x﹣3A =0有实数根,∴△≥0,即42﹣4×(﹣3A )≥0,.解得A ≥﹣43故答案为:A ≥﹣4.315.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.【答案】20【解答】解:根据题意得6=0.3,m解得:m=20,经检验:m=20是分式方程的解,故答案为:20.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.【答案】①②③④【解答】解:在正方形A B C D 中,C D =B C ,∠B C D =90°,∴∠B C N +∠D C N =90°,又∵C N ⊥D M ,∴∠C D M +∠D C N =90°,∴∠B C N =∠C D M ,又∵∠C B N =∠D C M =90°,∴△C NB ≌△D MC (A SA ),故①正确;∵△C NB ≌△D MC ,∴C M =B N ,又∵∠OC M =∠OB N =45°,OC =OB ,∴△OC M ≌△OB N (SA S ),∴OM =ON ,∠C OM =∠B ON ,∴∠D OC +∠C OM =∠C OB +∠B PN ,即∠D OM =∠C ON ,又∵D O =C O ,∴△C ON ≌△D OM (SA S ),故②正确;∵∠B ON +∠B OM =∠C OM +∠B OM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△A OD 是等腰直角三角形,∴△OMN ∽△OA D ,故③正确;∵A B =B C ,C M =B N ,∴B M =A N ,又∵Rt △B MN 中,B M 2+B N 2=MN 2,∴A N 2+C M 2=MN 2,故④正确;∵△OC M ≌△OB N ,∴四边形B MON 的面积=△B OC 的面积=1,即四边形B MON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设B N =x =C M ,则B M =2﹣x ,∴△MNB 的面积=12x (2﹣x )=﹣12x 2+x ,∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1﹣12=12,故⑤错误,故答案为①②③④.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.【解答】解:原式=1+4﹣2×14=1+4﹣12 =92.18.(4分)已知:如图,Rt △A B C 中,∠C =90°,M 是A B 的中点,A N =12A B ,A N ∥C M . 求证:MN =A C .【解答】证明:在Rt △A B C 中,∠C =90°,∵M 是A B 的中点,∴C M =12A B , ∵A N =12A B ,∴C M =A N ,∵A N ∥C M ,∴四边形A C MN 是平行四边形.∴MN =A C .19.(6分)先化简(1﹣x x−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.【解答】解:原式=x−1−x x−1·(x+1)(x−1)(x−2)2 =−1x−1·(x+1)(x−1)(x−2)2 =﹣x+1(x−2)2,∵x ﹣1≤2,且x≠1,2,∴x ≤3,把x =3代入上式得,原式=﹣x+1(x−2)2=3+112=-4.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?【解答】解:(1)在这次评价中,共抽查的学生有:224÷40%=560(名).故答案为:560;(2)选择“讲解题目”的人数为:560-84-168-224=84(人),讲解题目组所在扇形的圆心角的大小是:360°×84560=54°.故答案为:54°;(3)168560×12000=3600(人),答:在试卷讲评课中,“独立思考”的学生约有3600人.21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y 件.(1)直接写出y与x的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?【解答】(1)依题意得:y=500-10(x-30)=-10x+800(x≥30).(2)依题意得:(x-20)(-10x+800)=8000,整理得:x2-100x+2400=0,解得:x1=40,x2=60.当x=40时,20(-10x+800)=8000(元),8000>5000,不合题意,舍去;当x=60时,20(-10x+800)=4000(元),4000<5000,符合题意.答:销售单价应定为60元.22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E(要求:尺规作图,保留作图痕迹,不写作法,要下结论);(2)在A D 边上截取A F=A B ,连接EF,若A B =3,∠B =60°,求四边形A B EF的面积.【解答】解:(1)如图,A E即为所求;(2)在平行四边形A B C D 中,A D ∥B C ,∴∠D A E=∠A EB ,由(1)知:A E平分∠B A D ,∴∠D A E=∠B A E,∴∠A EB =∠B A E,∴A B =EB ,∵A B =A F,∴A F =B E ,∴A F ∥B E ,∴四边形A B EF 是平行四边形,∵A B =A F ,∴▱A B EF 是菱形,作A H ⊥B E 于点H ,∵A B =B E =3,∠B =60°,∴A H =3√32, ∴四边形A B EF 的面积为:B E ×A H =3×3√32=9√32.23.(10分)如图,直线y =x +B 与双曲线y =k x (x >0)的交点为A (1,A ),与x 轴的交点为B (﹣1,0),点C 为双曲线y =k x (x >0)上的一点.(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.【解答】解:(1)∵直线A B 过点B (﹣1,0),∴﹣1+B =0,解得:B =1,∴直线A B 的表达式为y =x +1.∵点A (1,A )在直线A B 上,∴A =1+1=2,∴点A 的坐标为(1,2).又∵双曲线y =k x (x >0)过点A (1,2),∴k =1×2=2,∴反比例函数的表达式为y =2x (x >0). (2)在图1中,过点C 作C D ⊥x 轴于点D ,过点O 作OE ⊥A B 于点E ,设直线A B 与y 轴交于点M . ∵直线A B 的表达式为y =x +1,OC ∥A B ,∴直线OC 的表达式为y =x .联立两函数表达式成方程组,{y =x y =2x,解得:{x =√2y =√2或{x =−√2y =−√2(不合题意,舍去), ∴点C 的坐标为(√2,√2),∴OD =C D =√2,∴OC =√OD 2+C D 2=2.当x =0时,y =0+1=1,∴点M 的坐标为(0,1),∴OM =OB =1,∴△B OM 为等腰直角三角形,∴OE =12B M =12√OB 2+OM 2=√22, ∴S △A OC =12OC •OE =12×2×√22=√22.(3)在图1中,过点A 作A F ⊥x 轴于点F ,则B F =1﹣(﹣1)=2,A F =2,∴A B =√B F 2+A F 2=2√2,∴A E =A B ﹣B E =2√2﹣√22=3√22, ∴tA n ∠OA E =OE A E =13.∵OB =OM ,∠B OM =90°,∴∠A B O =45°.在图2中,过点C 作C N ⊥x 轴于点N .∵∠A ON =∠A B O +∠B A O ,∠A OC =∠A B O =45°,∠A ON =∠A OC +∠C ON ,∴∠C ON =∠B A O ,∴tA n ∠C ON =13.设点C 的坐标为(m,1m),3∵点C 在反比例函数y=2(x>0)的图象上,x∴m×1m=2,3∴m=√6或m=﹣√6(舍去),).∴点C 的坐标为(√6,√6324.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 中点,求证:C E2=B E•B A ;(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A B是否为定值,如MN 果是,请求出这个值,如果不是,请说明理由.【解答】解:(1)∵=,∴∠C A B =∠C D B =40°,∵∠A B C +∠A C B +∠C A B =180°,∠A B C =∠A C B =α,∴α=12×(180°−40°)=70°;(2)证明:∵点B 的中点,∴=,∴∠D C B =∠A ,∵∠A B C =∠C B E,∴△B C E∽△B A C ,∴B CB A =B EB C,∴B C 2=B E•B A ,∵∠A C B =∠A C D +∠B C D ,∠B EC =∠A C D +∠A ,∠B C D =∠A ,∴∠A B C =∠A C B =∠B EC ,∴C B =C E,∴C E2=B E•B A ;(3)是定值.∵将C D 分别沿B C 、A C 翻折得到C M、C N,∴∠D C N=2∠D C A ,∠D C M=2∠D C B ,C N=C D =C M=2r,∴∠MC N=2∠A C B =2α,过点C 作C Q⊥MN于点Q,则MN=2NQ,∠NC Q=12∠MC N=α,∠C QN=90°,连接A O并延长交⊙O于点P,连接B P,则∠A B P=90°,,∴∠P=∠A C B =∠NC Q=α,∵A P=C N,∠A B P=90°=∠NQC ,∴△A B P ≌△NQC (A A S ),∴A B =NQ =12MN ,∴A B MN =12,A B MN 为定值.25.(12分)在平面直角坐标系中,点A 是抛物线y =﹣12x 2+mx +2m +2与y 轴的交点,点B 在该抛物线上,该抛物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G .设点B 的横坐标为2m ﹣1.(1)当m =1时,①当函数y 的值随x 的增大而增大时,自变量x 的取值范围为 .②求图象G 最高点的坐标.(2)当m <0时,若图象G 与x 轴只有一个交点,求m 的取值范围.(3)设图象G 最高点与最低点的纵坐标之差为h ,求h 与m 之间对应的函数关系式.【解答】解:(1)①当m =1时,抛物线的表达式为y =﹣12x 2+x +2, ∵-12<0,故抛物线开口向下,当函数y 的值随x 的增大而增大时,则图象在对称轴的左侧,即x ≤1,故答案为x ≤1;②函数的对称轴为x =1,当x =1时,y =﹣12x 2+x +2=92, 即点G 的坐标为(1,92);(2)当x =2m ﹣1时,y =﹣12x 2+mx +2m +2=3m +32,则点B 的坐标为(2m ﹣1,3m +32), 同理,点A 的坐标为(0,2m +2),∵m <0,则y B ﹣y A =3m +32﹣2m ﹣2=m ﹣12<0,即点A 在点B 的上方,故当y A >0且y B ≤0时,符合题意,即2m +2>0且3m +32≤0, 解得﹣1<m ≤﹣12;(3)设抛物线的顶点为H ,则点H (m ,12m 2+2m +2),由抛物线的表达式知,点A 、B 的坐标分别为(0,2m +2)、(2m ﹣1,3m +32), ①当m ≤0时,由(2)知,y B <y A ,而y H ﹣y A =12m 2+2m +2﹣2m ﹣2≥0,故图象G 的H 点和B 点分别是最高和最低点,则h =y H ﹣y B =12m 2+2m +2﹣3m ﹣32=12m 2﹣m +12;②当0<m ≤12时,此时点A 、B 分别是G 的最高和最低点,则h =y A ﹣y B =(2m +2)﹣(3m +32)=﹣m +12;③当12<m ≤1时,此时点B 、A 分别是G 的最高和最低点,则h =y B ﹣y A =m ﹣12;④当m >1时,此时点H 、A 分别是G 的最高和最低点,则h =y H ﹣y A =12m 2;∴h ={12m 2−m +12(m ≤0)−m +12(0<m ≤12)m −12(12<m ≤1)12m 2(m >1)。

2024年湖北省潜江市、天门市、仙桃市中考模拟数学试题

2024年湖北省潜江市、天门市、仙桃市中考模拟数学试题

2024年九年级四月教学调研考试数学试题(本卷共6页,满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号。

2.选择题的答案选出后,必须使用2B 铅笔把答题卡上对应的答案标号涂黑如需改动,先用橡皮擦干净后,再选涂其他答案标号。

非选择题答案必须使用黑色墨水签字笔填写在答题卡对应的区域内,写在试卷上无效。

3.考试结束后,请将本试卷和答题卡一并上交。

一、选择题(本大题共10个小题,每小题3分,满分30分)1.2024−的绝对值是( ) A .2024B .2024−C .12024D .12024−2.右图是一个立体图形的三视图,该立体图形是( )A .正方体B .长方体C .六棱柱D .六棱锥3.三峡电站总装机容量约22500000千瓦,是世界上装机容量最大的水电站.数22500000用科学记数法表示为( ) A .80.22510×B .72.2510×C .82.2510×D .722.510×4.如图,直线a b ,ABC △的顶点C 在直线b 上,直线a 交AB 于点E ,交AC 于点F ,若1150∠=°,48ABC ∠=°,则2∠的度数是( )A .18°B .20°C .28°D .30°5.某校举行“交通安全”知识竞赛,甲、乙两班的参加人数均为40人,平均分均为91分(满分100分),甲班中位数87,乙班中位数91,甲班方差4.9,乙班方差3.2,规定成绩大于或等于90分为优异.下列说法正确的是( )A .甲班的成绩比乙班的成绩稳定B .甲班的优异成绩与乙班一样多C .乙班的成绩比甲班的成绩稳定D .小亮得90分将排在乙班的前20名6.已知关于x 的一元二次方程2220x kx k k −++=的两个实数根分别为1x ,2x ,且22124x x +=,则k 的值是( ) A .1−或2−B .1−或2C .2D .1−7.阅读以下作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC OD =;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在AOB ∠内交于点M ;③作射线OM ,连接CM ,DM ,如图所示.根据以上作图,一定可以推得的结论是( )A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM =D .23∠=∠且OD DM = 8.如图,将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,则小水杯水面的高度h (cm )与注水时间t (min )的函数图象大致为( )A .B .C .D .9.如图,扇形的圆心角为120°,点C 在圆弧上,30ABC ∠=°,2OA =,阴影部分的面积为( )A .23π+B .23πC .23π−D .23π 10.已知抛物线2y ax bx c ++(a ,b ,c 是常数,0a ≠)经过点()1,1−−,()0,1,当2x =−时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++−=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( ) A .0个B .1个C .2个D .3个二、填空题(本大题共5个小题,每小题3分,满分15分)11.化简()232y xy −的结果是__________.12.不等式组()21511327321x x x x −+ −≤−<+的解集是__________. 13.如图,点A ,B ,C ,D 都在O 上,65B ∠=°,32C ∠=°,100BOC ∠=°,则OAD ∠=__________度.14.一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球后(不放回),再随机摸出一个小球,两次取出的小球标号都是偶数的概率为__________.15.如图,在Rt ACB △中,90ACB ∠=°,AC BC =,D 是AB 上的一个动点(不与点A ,B 重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接DE ,DE 与AC 相交于点F ,连接AE .下列结论:①ACE BCD ≌△△;②若25BCD ∠=°,则65AED ∠=°;③22DE CF CA =⋅;④若AB =2AD BD =,则53AF =.其中所有正确结论的序号是__________.三、解答题(本大题共9个题,满分75分)16.(满分6分)计算:(0123−−; 17.(满分6分)如图,B 是AD 的中点,BC DE ,BC DE =.求证:C E ∠=∠.18.(满分6分)某校兴趣小组通过调查,形成了如表调查报告(不完整). 调查目的 1.了解本校初中生最喜爱的球类运动项目.2.给学校提出更合理地配置体育运动器材和场地的建议. 调查方式 随机抽样调查调查对象部分初中生调查内容调查你最喜爱的一个球类运动项目(必选) A.篮球 B.乒乓球 C.足球 D.排球 E.羽毛球调查结果建议……结合调查信息,回答下列问题: (1)本次调查共抽查了多少名学生?(2)估计该校900 (3)假如你是小组成员,请向该校提一条合理建议. 19.(满分8分)某数学小组要测量学校路灯P M N 一一的顶部到地面的距离PE ,他们借助皮尺、测角仪进行测量,测量结果如下:测量项目测量数据从A 处测得路灯顶部P 的仰角α 58α=°从D 处测得路灯顶部P 的仰角β31β=° 测角仪到地面的距离 1.6AB DC ==m两次测量时测角仪之间的水平距离2BC =m计算路灯顶部到地面的距离PE 约为多少米?(结果精确到0.1米.参考数据:cos310.86°≈,tan 310.60°≈,cos580.53°≈,tan 58 1.60°≈)20.(满分8分)在直角坐标系中,已知120k k ≠,设函数11k y x=与函数()2225y k x =−+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4−. (1)求函数11k y x=与函数()2225y k x =−+的表达式; (2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.21.(满分8分)如图,等腰ABC △内接于O ,AB AC =,点E 是 AC 上的点(不与点A ,C 重合),连接BE 并延长至点G ,连接AE 并延长至点F ,BE 与AC 交于点D .(1)求证:GEF CEF ∠=∠; (2)若O 的半径为5,6BC =,点D 是AC 的中点,求BD 的长.22.(满分10分)如图1,公园草坪的地面O 处有一根直立水管,喷水口可上下移动,喷出的抛物线形水线也随之上下平移,图2是其示意图.开始喷水后,若喷水口在O 处,水线落地点为A ,4OA =m ;若喷水口上升1.5m 到P 处,水线落地点为B ,6OB =m.(1)求水线最高点与点B 之间的水平距离; (2)当喷水口在P 处时, ①求水线的最大高度;②身高1.5m 的小红要从水线下某点经过,为了不被水喷到,该点与O 的水平距离应满足什么条件?请说明理由.23.(满分11分)综合与实践:【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,GD DF ⊥,AG DG ⊥,AG CF =,求证:四边形ABCD 为正方形;【实践探究】(2)小宇受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,AH CE ⊥于点H ,GD DF ⊥交AH 于点G ,请探究线段FH ,AH ,CF 之间的数量关系并说明理由;【拓展迁移】(3)小阳深入研究小宇提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD 中,E 是边AB 上一点,AH CE ⊥于点H ,点M 在CH 上,且AH HM =,连接AM ,BH ,请探究线段BH 与CM 的数量关系并说明理由.24.(满分12分)如图,二次函数2y ax bx c ++的图象与x 轴交于A ,B 两点,且自变量x 的部分取值与对应函数值y 如下表:x… 1−0 1 2 3 4 … y…3− 4− 3−5…(1)求二次函数2y ax bx c ++的表达式;(2)若将线段AB 向下平移,得到的线段与二次函数2y ax bx c ++的图象交于P ,Q 两点(P 在Q 左边),R 为二次函数2y ax bx c ++的图象上的一点,当点Q 的横坐标为m ,点R 的横坐标为m +求tan RPQ ∠的值;(3)若将线段AB 先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数()21yax bx c t=++的图象只有一个公共点,其中t 为常数,请直接写出t 的取值范围.2024年九年级四月调考 数学参考答案及评分说明说明:本评分说明一般只给出一种解法,对其他解法,只要推理严谨,运算合理,结果正确,均给满分;对部分正确的,参照此评分说明,酌情给分. 一、选择题(每小题3分,共30分)1—5 ACBAC 6—10 DABBD二、填空题(每小题3分,共15分)11.2312x y ; 12.11x −≤<; 13.43; 14.16; 15. ①②③. 三、解答题(共75分)16.解:原式=1313122+−+− …………………4分=23−. …………………6分17.证明:B 是AD 的中点,AB BD ∴=. ……………………………………………………1分 BC DE ,∴∠ABC =∠D . ……………………………………………………2分 在ABC △和BDE △中,=∠=∠=DE BC D ABC BD AB , ()ABC BDE SAS ∴≌△△………………………5分C E ∴∠=∠.分18.解:(1)3030%100÷=(名), 答:本次调查共抽查了100名学生. ………………………………2分(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5×=(名), ∴被抽查的100人中最喜爱篮球的人数为:100301015540−−−−=(名), 40900360100×=(名)答:估计该校900名初中生中最喜爱篮球项目的人数为360名.………4分(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等. 6分 19.解:如图,延长DA ,交PE 于点F ,则DF PE ⊥,2ADBC ==, 1.6AB CD EF ===, 设AF x =m ,()2DF AF AD x ∴=+=+. 2分在Rt PFA △中,58PAF ∠=°, tan 58 1.6PF AF x ∴=⋅°≈, 3分 在Rt PDF △中,31PDF ∠=°,1.6tan 310.62PF xDF x ∴°==≈+, 4分 1.2x ∴=. 5分 经检验: 1.2x =是原方程的根, 6分1.6 1.92PF x ∴==. 7分1.92 1.6 3.5PE PF EF ∴=+=+≈.∴路灯顶部到地面的距离PE 约为3.5米. 8分20.(1)解: 点A 的横坐标是2,∴将2x =代入()22255y k x =−+=. ()2,5A ∴.∴将()2,5A 代入11k y x=得:110k =. 110y x∴=. 2分点B 的纵坐标是4−,∴将4y =−代入110y x =,得52x =−.5,42B∴−−.∴将5,42B −− 代入()2225y k x =−+得:254252k −=−−+.解得:22k =.()222521y x x ∴−++. 4分(2)证明:如图所示, 由题意可得:5,52C−,()2,4D −. 5分 设CD 所在直线的表达式为y kx b =+,55224k b k b −+=∴ +=−.解得:2k b =−= .CD ∴所在直线的表达式为2y x =−. 7分∴当0x =时,0y =.∴直线CD 经过原点. 8分21.(1)证明:∵点A B C E ,,,均在O 上, ∴四边形ABCE 为圆内接四边形.180ABC AEC ∴∠∠=°+. 1分 又180CEF AEC ∠∠=° +, ABC CEF ∴∠=∠. 2分又AB AC = ,ABC ACB ∴∠=∠. 3分又AEB ACB ∠=∠ ,AEB GEF ∠=∠, GEF CEF ∴∠=∠. 4分(2)解:作AH BC ⊥于H ,又AB AC = ,AH ∴为BC 的垂直平分线. 过点D 作DM BC ⊥于点M ,连接OB .AH 为BC 的垂直平分线,∴点O 在AH 上.132BH HC BC ∴===.4OH ∴==. 5分549AH OA OH ∴=+=+=. AH BC ⊥ ,DM BC ⊥,DM AH ∴ .又AD CD =.12DM CM CD AH CH CA ∴===. 1322MH HC ∴==,1922DM AH ==. 6分 39322BM BH MH ∴=+=+=. 7分BD ∴=. 8分22.解:(1)如图,以OP 所在直线为y 轴,OB 所在直线为x 轴,O 为原点,建立平面直角坐标系.1分 4OA = m ,∴抛物线的对称轴是直线2x =. 2分又6OB =m ,∴水线最高点与点B 之间的水平距离为:624−=(m ). 3分 (2)①由题意,结合(1),又因为抛物线形水线也随之上下平移,∴可设过点P 的抛物线为()22y a x h =−+. 4分又()0,1.5P ,()6,0B , 4 1.5160a h a h += ∴ +=18a ∴=−,2h =. 5分 ∴所求解析式为()21228y x =−−+. ∴水线的最大高度为2m. 6分②令 1.5y =,()211.5228x ∴=−−+. 7分 0x ∴=或4. 8分为了不被水喷到,04x ∴<<. 10分23.解:(1)证明: 四边形ABCD 是矩形,90ADC∴∠=°. GD DF ⊥ ,90FDG ∴∠=°.ADG CDF ∴∠=∠. 1分又AG CF = ,90G DFC ∠=∠=°, ()ADG CDF AAS ∴≌△△. 2分AD CD ∴=.∴四边形ABCD 是正方形; 3分(2)FHAH CF =+. 4分 理由:DF CE ⊥ 于点F ,AH CE ⊥于点H ,GD DF ⊥交AH 于点G ,∴四边形HFDG 是矩形. 5分90G DFC ∴∠=∠=°.四边形ABCD 是正方形,AD CD ∴=,90ADC ∠=°. ADG CDF ∴∠=∠.()ADG CDF AAS ∴≌△△. 6分AG CF ∴=,DG DF =.∴矩形HFDG 是正方形.FH HG AH AG AH CF ∴==+=+; 7分(3)连接AC ,如图, 8分四边形ABCD 是正方形,45BAC∴∠=°, AH CE ⊥ ,AH HM =,AHM ∴△是等腰直角三角形.45HAM ∴∠=°.HAB MAC ∴∠=∠. 9分AH AB AM AC == AHB AMC ∴△△∽. 10分BH AH CM AM ∴==.即BH =. 11分 24.解:(1) 二次函数2y ax bx c ++的图象经过()1,0A −,()3,0B ,()0,3−三个点,09303a b c a b c c −+= ∴++==− ,123a b c = ∴=− =−∴二次函数的表达式为:223y x x =−−. 2分(2)过R 作RT PQ ⊥,垂足为T , 3分点Q 的横坐标为m ,点R的横坐标为m +,QT ∴. 二次函数223y x x =−−的对称轴为直线1x =,∴点P ,Q 关于直线1x =对称.Q 到1x =的距离是1m −,()2122PQ m m ∴−−.22PT m ∴=−分((223R y m m =+−+− ,223T Q y y m m ==−−,2R T RT y y ∴=−=−. 5分∴在Rt RPT △中,tan RT RPQ PT ∠=. 6分(3)t 的取值范围是:43t =−或10t −<<或503t <≤. 12分 附答案如下:线段AB 先向上平移3个单位长度,再向右平移1个单位长度,得到的线段设为A B ′′,则()0,3A ′,()4,3B ′, 二次函数()2123y x x t =−−与x 轴交于()1,0A −,()3,0B 两点,对称轴为直线1x =,二次函数()2123y x x t =−−与二次函数()223y x x =−−只是开口大小和方向发生了变化,并且1t 越大,开口越小.若线段A B ′′与二次函数()2123y x x t=−−的图象只有一个交点,分以下三种情况: ①当0t >时,开口向上,如图,线段A B ′′与二次函数()2123y x x t=−−的图象只有一个交点,当抛物线经过()4,3B ′时开口最大,1t 最小,t 最大,把()4,3代入()2123y x x t =−−得53t =,503t ∴<≤.②当0t <时,开口向下,如图,线段A B ′′与二次函数()2123y x x t=−−的图象只有一个交点()1,3,代入()2123y x x t=−−得43t =−.③当0t <时,开口向下,如图,线段A B ′′与二次函数()2123y x x t =−−的图象只有一个交点,当抛物线经过()0,3A ′时开口最大,1t最小,t 最小,把()0,3代入()123y x x t 2=−−得1t =−, 10t ∴−<<. 综上,t 的取值范围是:43t =−或10t −<<或503t <≤.。

湖南初三初中数学中考模拟带答案解析

湖南初三初中数学中考模拟带答案解析

湖南初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各数中,最小的是().A.0B.1C.-1D.-2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为().A.4.456×107人B.4.456×106人C.4456×104人D.4.456×103人3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().4.下列运算正确的是().A.a+b=ab B.a2·a3=a5C.a2+2ab-b2=(a-b)2D.3a-2a=15.下列各数中是无理数的是()A.B.C.D.6.把点A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是().A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)7.不等式8-2x>0的解集在数轴上表示正确的是().8.已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是( ).A.-2B.-1C.0D.29.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A.1B.2C.-2D.-110..如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC11.下列函数中自变量x的取值范围是x>1的是().A.B.C.D.12.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12︰00开始到12︰30止,y与t之间的函数图象是().二、填空题1.计算:-2-1=__________.2.因式分解:x3-x=______________.3.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=__________度.4.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,∠DAB =30°,有以下四个结论:①AF⊥BC ②△ADG≌△ACF③O为BC的中点④AG︰DE=,其中正确结论的序号是 .三、解答题1.先化简,再求值:,其中2.解方程组:3.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.4.如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.5.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm. 最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.6.如图,已知⊙O的半径为2,弦BC的长为,点A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:,,.)7.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是,其余是线段),O是AF的中点,桶口直径AF =34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.(参考数据:≈17.72,tan73.6°≈3.40,sin75.4°≈0.97.)8.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整.(3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)9.如图所示,抛物线m :y =ax 2+b (a <0,b >0)与x 轴于点A 、B (点A 在点B 的左侧),与y 轴交于点C .将抛物线m 绕点B 旋转180°,得到新的抛物线n ,它的顶点为C 1,与x 轴的另一个交点为A 1.(1)当a =-1,b =1时,求抛物线n 的解析式;(2)四边形AC 1A 1C 是什么特殊四边形,请写出结果并说明理由; (3)若四边形AC 1A 1C 为矩形,请求出a ,b 应满足的关系式.10.某数学兴趣小组开展了一次活动,过程如下: 设∠BAC =(0°<<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB ,AC 上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A 1A 2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1.①=_________度;②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…) 求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示). 活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. 数学思考:(3)若已经摆放了3根小棒,1=_________,2=________,3=________;(用含的式子表示)(4)若只能摆放4根小棒,求的范围.湖南初三初中数学中考模拟答案及解析一、选择题1.下列各数中,最小的是( ). A .0 B .1C .-1D .-【答案】D【解析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较,故选D2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( ).A .4.456×107人B .4.456×106人C .4456×104人D .4.456×103人【答案】A【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.将4456万用科学记数法表示为4456万=4.456×107. 故选:A .3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).【答案】C【解析】从上面看,看到两个圆形, 故选:C .4.下列运算正确的是( ).A .a +b =abB . a 2·a 3=a 5C .a 2+2ab -b 2=(a -b )2D .3a -2a =1【答案】B【解析】A.不是同类项,不能相加减,故此项错误; B. a 2·a 3=a 2+3=a 5,故此项正确;C.a2+2ab-b2不符合完全平方公式,故错误;D.3a-2a="a," 故此项错误;故选B5.下列各数中是无理数的是()A.B.C.D.【答案】C【解析】无理数就是无限不循环小数A、∵ =20,∴是有理数,故本选项错误;B、∵ =2,∴是有理数,故本选项错误;C、∵ = ,∴是无理数,故本选项正确;D、∵ =0.2,∴是有理数,故本选项错误.故选C.6.把点A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是().A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)【答案】B【解析】∵A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.7.不等式8-2x>0的解集在数轴上表示正确的是().【答案】C【解析】不等式移项,得-2x>-8,系数化1,得x<4;∵不包括4时,应用圈表示,不能用实心的原点表示4这一点答案;故选C.8.已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是( ).A.-2B.-1C.0D.2【答案】D【解析】∵一次函数y=x+b的图象经过第一、二、三象限,∴b>0,四个选项中只有2符合条件.故选D.9.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A.1B.2C.-2D.-1【答案】C【解析】∵x=1是方程x2+bx-2=0的一个根,∴x1x2="c/a" =-2,∴1×x2=-2,则方程的另一个根是:-2,故选C.10..如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【答案】D【解析】∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.故选D.11.下列函数中自变量x的取值范围是x>1的是().A.B.C.D.【答案】A【解析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,逐一检验A、二次根式和分式有意义,x-1>0,解得x>1,符合题意;B、二次根式有意义,x-1≥0,解得x≥1,不符合题意;C、二次根式和分式有意义,x≥0且-1≠0,解得x≥0且x≠1,不符合题意;D、二次根式和分式有意义1-x>0,解得x<1,不符合题意.故选A.12.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12︰00开始到12︰30止,y与t之间的函数图象是().【答案】A【解析】它们的度数每分钟相差5.5°,差别从0开始,所以是正比例函数,30分钟差了30 5.5°=165°因为是实际问题,只取正值,所以只要第一象限,故选A二、填空题1.计算:-2-1=__________.【答案】【解析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算∴-1-2=-1+(-2)=-3.2.因式分解:x3-x=______________.【答案】【解析】x3-x=x(x2-1)=3.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=__________度.【答案】90【解析】∵点P是的△ABC的内心,∴PB平分∠ABC,PA平分∠BAC,PC平分∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴∠PBC+∠PCA+∠PAB=90°,4.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,∠DAB =30°,有以下四个结论:①AF⊥BC ②△ADG≌△ACF③O为BC的中点④AG︰DE=,其中正确结论的序号是 .【答案】①②③④【解析】∵两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.∴∠CAF=30°,∴∠GAF=60°,∴∠AFB=90°,①AF丄BC正确;∵AD=AC,∠DAG=∠CAF,∠D=∠C=60°,即可得②△ADG≌△ACF正确;∵△ADG≌△ACF,∴AG=AF,∵AO=AO,∠AGO=∠AFO=90°,∴△AGO≌△AFO,∴∠OAF=30°,∴∠OAC=60°,∴AO=CO=AC,BO=CO=AO,即可得③正确;假设DG=x,∵∠DAG=30°,∴AG=x,∴GE=3x,故可得AG:DE=:4,即④正确;综上可得①②③④均正确,共4个三、解答题1.先化简,再求值:,其中【答案】【解析】解:原式=.当时,原式=2.解方程组:【答案】【解析】解:①-②,得,∴.把代入①得.∴3.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.【答案】(1)(2)【解析】解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=. ………………4分方法二列表格如下:甲所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=. ………………4分(2)P(恰好选中乙同学)=. ………………6分(1)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案;(2)由已确定甲打第一场,再从其余四位同学中随机选取一位,利用概率公式即可求得答案.4.如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.【答案】(1)(2)【解析】解:(1)∵,∴∴.在菱形中,, ∴, ∴. ………………3分(2)∵∥, ,∴.设经过点C的反比例函数解析式为.把代入中,得:,∴,∴. …………6分(1)利用勾股定理求出AB的长,根据菱形的性质求得D点坐标(2)求得C点坐标,即可求得反比例函数解析式5.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm. 最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.【答案】(1)2.8cm, 2.6cm, 2.4cm, 2.2cm. (2)【解析】解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. ………………2分(2)依题意得,,………………5分∴,∴. ………………6分答:相邻两圆的间距为cm.(1)通过总长21cm,右侧边缘1.5cm,左侧边缘1.5cm,大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm,即可求得其余四个圆的直径(2)相邻两圆的间距d均相等即可求得6.如图,已知⊙O的半径为2,弦BC的长为,点A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:,,.)【答案】(1)(2)【解析】解:(1)解法一连接OB,OC,过O作OE⊥BC于点E.∵OE⊥BC,BC=,∴. ………………1分在Rt△OBE中,OB=2,∵,∴, ∴,∴. ………………4分解法二连接BO并延长,交⊙O于点D,连接CD.∵BD是直径,∴BD=4,.在Rt△DBC中,,∴,∴.………………4分(2) 解法一因为△ABC的边BC的长不变,所以当BC边上的高最大时,△ABC的面积最大,此时点A落在优弧BC的中点处. ………………5分过O作OE⊥BC于E,延长EO交⊙O于点A,则A为优弧BC的中点.连接AB,AC,则AB=AC,.在Rt△ABE中,∵,∴,∴S=.△ABC答:△ABC面积的最大值是. ………………7分解法二因为△ABC的边BC的长不变,所以当BC边上的高最大时,△ABC的面积最大,此时点A落在优弧BC的中点处. ………………5分过O作OE⊥BC于E,延长EO交⊙O于点A,则A为优弧BC的中点.连接AB,AC,则AB=AC.∵, ∴△ABC是等边三角形.在Rt△ABE中,∵,∴,∴S=.△ABC答:△ABC面积的最大值是. ………………7分(1) 连接OB,OC,过O作OE⊥BC于点E.利用三角函数求得,再利用圆周角的定理求得∠BAC的度数(2)因为△ABC的边BC的长不变,所以当BC边上的高最大时,△ABC的面积最大,此时点A落在优弧BC的中点处,过O作OE⊥BC于E,延长EO交⊙O于点A,则A为优弧BC的中点.连接AB,AC,则AB=AC,利用三角函数求得AE的长,从而求得△ABC面积的最大值7.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是,其余是线段),O是AF的中点,桶口直径AF =34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.(参考数据:≈17.72,tan73.6°≈3.40,sin75.4°≈0.97.)【答案】合格,理由见解析【解析】解法一连接OB,过点O作OG⊥BC于点G. ………………1分在Rt△ABO中,AB=5,AO=17,∴ tan∠ABO=,∴∠ABO=73.6°,………………3分∴∠GBO=∠ABC-∠ABO=149°-73.6°=75.4°. ………………4分又∵,………………5分∴在Rt△OBG中,. ……………7分∴水桶提手合格. ……………8分解法二:连接OB,过点O作OG⊥BC于点G. ……………1分在Rt△ABO中,AB=5,AO=17,∴ tan∠ABO=,∴∠ABO=73.6°. ………………3分要使OG≥OA,只需∠OBC≥∠ABO,∵∠OBC=∠ABC-∠ABO=149°-73.6°=75.4°>73.6°,……7分∴水桶提手合格. ………………8分分析题意把题目数据条件放在图中,为了把AB、OA放在直角三角形中研究,同时需要找到圆心O到BC之间的距离,所以过点O作OG⊥BC于点G,在两个直角三角形中分别使用三角函数来求解即可。

初中数学 新疆中考模拟数学考试题考试卷及答案

初中数学 新疆中考模拟数学考试题考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下表是四个城市今年二月份某一天的平均气温:城市吐鲁番乌鲁木齐喀什阿勒泰气温(℃)﹣8 ﹣16 ﹣5 ﹣25其中平均气温最低的城市是()A.阿勒泰B.喀什C.吐鲁番D.乌鲁木齐试题2:如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.试题3:下列各式计算正确的是()A.a2+2a3=3a5B.(a2)3=a5C.a6÷a2=a3D.a•a2=a3评卷人得分试题4:四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=OD B.AD∥BC,AB∥DC C.AB=DC,AD=BC D.AB∥DC,AD=BC试题5:在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.B.C.D.试题6:对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1 C.顶点坐标是(1,2)D.与x轴有两个交点试题7:某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A.216 B.252 C.288 D.324试题8:“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C.D.试题9:如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A.B.2C.D.2试题10:不等式组的解集是试题11:若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).试题12:如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是°.试题13:如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC= .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)试题14:如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.试题15:规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=试题16:计算:(﹣1)3++(﹣1)0﹣.试题17:解分式方程:+=_________试题18:如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?试题19:如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?试题20:如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.试题21:如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.试题22:如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距420 千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?试题23:如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O 匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.试题1答案:A试题2答案:C试题3答案:D试题4答案:D试题5答案:C试题6答案:CB试题8答案:B试题9答案:A解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.试题10答案:﹣5<x<﹣2 .试题11答案:>试题12答案:30试题13答案:24解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC===5,∵DE垂直平分AC,垂足为O,∴OA=AC=,∠AOD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AOD∽△CBA,∴=,即=,解得AD=.试题15答案:2 .试题16答案:解:原式=﹣1+2+1﹣=.试题17答案:1.试题18答案:解:(1)这些车的平均速度是:(40×2+50×3+60×4+70×5+80×1)÷15=60(千米/时);(2)70千米/时出现的次数最多,则这些车的车速的众数70千米/时;(3)共有15个,最中间的数是第8个数,则中位数是60千米/时.解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米试题20答案:解:(1)由作图知:PQ为线段AC的垂直平分线,∴AE=CE,AD=CD,∵CF∥AB∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,,∴△AED≌△CFD;(2)∵△AED≌△CFD,∴AE=CF,∵EF为线段AC的垂直平分线,∴EC=EA,FC=FA,∴EC=EA=FC=FA,∴四边形AECF为菱形.试题21答案:(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵A B为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=4,∴⊙O的半径为4.试题22答案:解:(1)填空:A,B两地相距420千米;(2)由图可知货车的速度为60÷2=30千米/小时,货车到达A地一共需要2+360÷30=14小时,设y2=kx+b,代入点(2,0)、(14,360)得,解得,所以y2=30x﹣60;(3)设y1=mx+n,代入点(6,0)、(0,360)得解得,所以y1=﹣60x+360由y1=y2得30x﹣60=﹣60x+360解得x=答:客、货两车经过小时相遇.试题23答案:解:(1)令y=0,则﹣x+8=0,解得x=6,x=0时,y=y=8,∴OA=6,OB=8,∴点A(6,0),B(0,8);(2)在Rt△AOB中,由勾股定理得,AB===10,∵点P的速度是每秒2个单位,点Q的速度是每秒1个单位,∴AP=2t,AQ=AB﹣BQ=10﹣t,∴点Q到AP的距离为AQ•sin∠OAB=(10﹣t)×=(10﹣t),∴△AQP的面积S=×2t×(10﹣t)=﹣(t2﹣10t)=﹣(t﹣5)2+20,∵﹣<0,0<t≤3,∴当t=3时,△AQP的面积最大,S最大=﹣(3﹣5)2+20=;(3)若∠APQ=90°,则cos∠OAB=,∴=,解得t=,若∠AQP=90°,则cos∠OAB=,∴=,解得t=,∵0<t≤3,∴t的值为,此时,OP=6﹣2×=,PQ=AP•tan∠OAB=(2×)×=,∴点Q的坐标为(,),综上所述,t=秒时,以点A,P,Q为顶点的三角形与△ABO相似,此时点Q的坐标为(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟题 、选择题(本大题有 7题,每小题3分,共21分•每小题有四个选 项,其中有且只有 一个选项正确)

1下面几个数中,属于正数的是( )

A • 3 B • C. - . 2 D • 0 2

C • y =、、2x -1 A • D =60〃 B • A =120〃 C • C D =180〃 D • C A=180* &在四川抗震救灾中,某抢险地段需实行爆破•操作人员点燃导火线后,要在炸药爆炸前 跑到400米以外的安全区域•已知导火线的燃烧速度是 1.2厘米/秒,操作人员跑步的速度是 5米/秒•为了保证操作人员的安全,导火线的长度要超过( ) A • 66厘米 B • 76厘米 C • 86厘米 D • 96厘米

型号 22 22.5 23 23.5 24 24.5 25

数量(双) 3 5

10 15 8 3 2

3 •某鞋店试销一种新款女鞋,销售情况如下表所示:

鞋店经理最关心的是,哪种型号的鞋销量最大. 对他来说,下列统计量中最重要的是 ( )

A •平均数 B.众数 C .中位数 D •方差 4.已知方程 |x| =2,那么方程的解是( A • X =2 B • X »2 C • x-i =2, x^-2 5、如图(3) 的度数是( A、25o ,已知AB是半圆 ) O的直径, / BAC=32o, D是弧AC的中点,那么/ DAC 29o C、30o D、32° 6 •下列函数中, 自变量 x的取值范围是x 2的函数是( 2•由四个相同的小正方体堆成的物体如图所示, 它的俯视图是(

7•在平行四边形 ABCD中,• B =60",那么下列各式中, 不能

成立的是( 二、填空题(每小题 3分,共24分) 9.2008年北京奥运圣火在厦门的传递路线长是 17400米,用科学记数法表示为 _________ 米. 10. __________________________________________ —组数据:3,5,9,12,6的极差是 .

11. 计算: 丁3 :: J2 = ______ .

16.如图,点G是厶ABC的重心,CG的延长线交 AB于D,GA = 5cm,GC =4cm, GB二3cm,将△ ADG绕点D旋转180得到△ BDE,则DE二

面积= ___________ cm2. 三、解答题(每题 8分,共16分)

17.已知 a = —, b = -J—,求 vab 也-1

四、解答题(每题 10分,共20分) 19.四张大小、质地均相同的卡片上分别标有 1,2,3,4.现将标有数字的一面朝下扣在 桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的 3张中随机取第二张. (1) 用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况; (2) 求取得的两张卡片上的数字之积为奇数的概率. 20. 如图,为了测量电线杆的高度 AB,在离电线杆25米的D处,用高1.20米的测角仪CD测

12.不等式组 * 4的解集是 x-^0 集是

13.如图,在矩形空地上铺 4块扇形草地.若扇形的半径均为 r米,

圆心角均为90,则铺上的草地共有 平方米.

14. 若L O的半径为5厘米,圆心O到弦AB的距离为3厘米,则 弦长AB为 _______ 15. 如图,在四边形

(第14题)

AD = BC, • PEF _厘米. ABCD中,P是对角线BD的中点,

E, F分别是AB, CD

的中点,

=18,则.PFE的度数是

cm,△ ABC 的 的值。 18•先化简,再求值 ",其中-2.

(第 16 题) (

第 17

题) 得电线杆顶端 A的仰角〉=22:,求电线杆AB的高.(精确到0.1米) 参考数据: sin22: =0.3746 , cos22 =0.9272 , tan22% =0.4040 , cot22 =2.4751.

■ pF ■ M1 ■ ■■ M1 ■ ■ ■■ r

五、解答题(每题 10分,共20分) D ---------------------------- B

(第20题)

21•某商店购进一种商品,单价 30元•试销中发现这种商品每天的销售量 p (件)与每件 的销售价x (元)满足关系:p=100-2x .若商店每天销售这种商品要获得 200元的利润, 那么每件商品的售价应定为多少元?每天要售出这种商品多少件?

22. (本题满分10分) 已知一次函数与反比例函数的图象交于点 P(-2,,)和Q(1, m). (1) 求反比例函数的关系式; (2) 求Q点的坐标; (3)在同一直角坐标系中画出这两个函数图象的示意图, 并观察图象回答:当x为何值时, 一次函数的值大于反比例函数的值?

六、解答题(每题 10分,共20分) 23.已知:如图,△ ABC中,AB二AC,以AB为直径的L O交BC于点P , PD — AC 于点D . (1)求证:PD是L O的切线; (2)若.CAB =120 , AB =2,求 BC 的值.

2 24•已知:抛物线 y =x •(b-1)x・C经过点P(-1, - 2b).

(1 )求b c的值; (2)若b =3,求这条抛物线的顶点坐标;

(3 )若b 3,过点P作直线PA _ y轴,交y轴于点 A,交抛物线于另一点 BP=2PA,求这条抛物线所对应的二次函数关系式•(提示:请画示意图思考)

七、解答题(本题 12分) 25已知:如图所示的一张矩形纸片 ABCD ( AD AB),将纸片折叠一次,使点 重合,再展开,折痕 EF交AD边于E ,交BC边于F,分别连结 AF和CE • (1) 求证:四边形 AFCE是菱形;

(2) 若AE =10cm , △ ABF的面积为24cm2,求△ ABF的周长;

(3) 在线段AC上是否存在一点 P,使得2AE2二ACUAP ? 若存在,请说明点 P的位置,并予以证明;若不存在,请说明理由.

八、解答题(本题 14分) 26如图,在直角梯形 OABD中,DB // OA , OAB =90,点0为坐标原点,点 A在x

轴的正半轴上,对角线 OB, AD相交于点M • OA = 2, AB=2、、3 , BM:MO=1:2 •

B,且

B (第 23 题)

(第 25 题) (1 )求OB和OM的值;

(2)求直线OD所对应的函数关系式;

(3)已知点P在线段OB上(P不与点O, B重合),经过点A和点P的直线交梯形 OABD 的边于点E( E异于点A),设OP 4,梯形OABD被夹在.OAE内的部分的面积为 S , 求S关于t的函数关系式.

中考数学模拟题 数学试题参考答案及评分标准

16. 2, 18 17:答案:没有 x -1 当x =2时,原式=1 . 19.解:(1

第二次 234

18.解:原式 (x 1)(x -1) X2

1. A 2. C 4. C 5. B 6. B 7. 4 9. 1.74 10 10. 9 11. .6 12. —2 :: x 3 13. n2

14. 8 15.18

第一次 1 2 3

1 3 4 1 2 4 6 20.解:在 Rt △ ACE 中, .AE =CE tan_:i =DB tan :

=25 tan 22 心 10.10

AB 二 AE BE 二 AE CD =10.10 1.20 〜11.3 (米)

答:电线杆的高度约为 11.3米.

21•解:根据题意得:(x-30)(100 -2x) =200

整理得:x2 -80x 1600 =0

2

.(x -40) =0, x = 40 (元)

k 22•解:(1 )设反比例函数关系式为 y二一, x

反比例函数图象经过点 P(-2,1). k = -2. 反比例函数关第式 y - -2. x

2 (2) ;■点 Q(1, m)在 y 上, x

.m = -2 .

Q(1 - 2).

(3 )示意图. 当x ::: -2或0 ::: x 1时,一次函数的值大于反比例函数的值.

23. ( 1)证明::"AB 二 AC , .C "B .

又 OP =OB , OPB = B C = OPB.

.OP // AD

(2) P (积为奇数) ■ p =100 -2x =20 (件)答:每件商品的售价应定为

(第 20 题)

40元,每天要销售这种商品 20 件. Q 2 1

O 1 -2 -

- 1

-24

x

相关文档
最新文档