山东省德州市中考数学试题解析

合集下载

2020年山东省德州市中考数学试卷和答案解析

2020年山东省德州市中考数学试卷和答案解析

2020年山东省德州市中考数学试卷和答案解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.(4分)|﹣2020|的结果是()A.B.2020C.﹣D.﹣2020解析:根据绝对值的性质直接解答即可.参考答案:解:|﹣2020|=2020;故选:B.点拨:此题考查了绝对值,掌握绝对值的性质是解题的关键,是一道基础题.2.(4分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:A、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B、是中心对称图形但不是轴对称图形.故此选项符合题意;C、既是轴对称图形,又是中心对称图形.故此选项不合题意;D、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B.点拨:此题主要中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(4分)下列运算正确的是()A.6a﹣5a=1B.a2•a3=a5C.(﹣2a)2=﹣4a2D.a6÷a2=a3解析:利用整式的四则运算法则分别计算,可得出答案.参考答案:解:6a﹣5a=a,因此选项A不符合题意;a2•a3=a5,因此选项B符合题意;(﹣2a)2=4a2,因此选项C不符合题意;a6÷a2=a6﹣2=a4,因此选项D不符合题意;故选:B.点拨:考查整式的意义和运算,掌握运算法则是正确计算的前提.4.(4分)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图解析:根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.参考答案:解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.点拨:本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.(4分)为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:一周做饭45678次数人数7612105那么一周内该班学生的平均做饭次数为()A.4B.5C.6D.7解析:利用加权平均数的计算方法进行计算即可.参考答案:解:==6(次),故选:C.点拨:本题考查加权平均数的意义和计算方法,理解加权平均数的意义是正确解答的前提.6.(4分)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米解析:根据多边形的外角和即可求出答案.参考答案:解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64(米).故选:C.点拨:本题主要考查了利用多边形的外角和定理求多边形的边数.任何一个多边形的外角和都是360°.7.(4分)函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.解析:根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.参考答案:解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:D.点拨:本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.(4分)下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.4解析:根据平行四边形的判定、菱形的判定、正方形和矩形的判定判断即可.参考答案:解:①一组对边平行且这组对边相等的四边形是平行四边形,原命题是假命题;②对角线互相垂直且平分的四边形是菱形,是真命题;③一个角为90°且一组邻边相等的平行四边形是正方形,原命题是假命题;④对角线相等的平行四边形是矩形,是真命题;故选:B.点拨:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.(4分)若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2解析:分别求出每个不等式的解集,根据不等式组的解集为x≤2可得关于a的不等式,解之可得.参考答案:解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(4分)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.24﹣4πB.12+4πC.24+8πD.24+4π解析:设正六边形的中心为O,连接OA,OB首先求出弓形AmB 的面积,再根据S阴=6•(S半圆﹣S弓形AmB)求解即可.参考答案:解:设正六边形的中心为O,连接OA,OB.由题意,OA=OB=AB=4,∴S 弓形AmB=S扇形OAB﹣S△AOB=﹣×42=π﹣4,∴S 阴=6•(S半圆﹣S弓形AmB)=6•(•π•22﹣π+4)=24﹣4π,故选:A.点拨:本题考查正多边形和圆,扇形的面积,弓形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.(4分)二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小解析:根据二次函数的图象和性质分别对各个选项进行判断即可.参考答案:解:∵抛物线的对称轴为直线x=1,a<0,∴点(﹣1,0)关于直线x=1的对称点为(3,0),则抛物线与x轴的另一个交点坐标为(3,0),点(﹣2,y1)与(4,y1)是对称点,∵当x>1时,函数y随x增大而减小,故A选项不符合题意;把点(﹣1,0),(3,0)代入y=ax2+bx+c得:a﹣b+c=0①,9a+3b+c =0②,①×3+②得:12a+4c=0,∴3a+c=0,故B选项不符合题意;当y=﹣2时,y=ax2+bx+c=﹣2,由图象得:纵坐标为﹣2的点有2个,∴方程ax2+bx+c=﹣2有两个不相等的实数根,故C选项不符合题意;∵二次函数图象的对称轴为x=1,a<0,∴当x≤1时,y随x的增大而增大;当x≥1时,y随x的增大而减小;故D选项符合题意;故选:D.点拨:本题考查了二次函数的图象与性质、二次函数图象上点的坐标特征等知识;熟练掌握二次函数的图象和性质是解题的关键.12.(4分)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202解析:观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.参考答案:解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.点拨:考查了规律型:图形的变化类,观察图形,发现后一个图案比前一个图案多2(n+3)枚棋子是解题的关键.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.(4分)﹣=.解析:先将二次根式化为最简,然后合并同类二次根式即可得出答案.参考答案:解:原式=3﹣=2.故答案为:2.点拨:此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.14.(4分)若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是120度.解析:根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.参考答案:解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为:120.点拨:此题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.(4分)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为y=.解析:直接利用位似图形的性质得出A′坐标,进而求出函数解析式.参考答案:解:∵点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′,∴A′坐标为:(﹣4,2)或(4,﹣2),∵A'恰在某一反比例函数图象上,∴该反比例函数解析式为:y=.故答案为:y=.点拨:此题主要考查了位似变换以及待定系数法求反比例函数解析式,正确得出对应点坐标是解题关键.16.(4分)菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的周长为20.解析:解方程得出x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,即可得出菱形ABCD的周长.参考答案:解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣9x+20=0,因式分解得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,∴菱形ABCD的周长=4AB=20.故答案为:20.点拨:本题考查了菱形的性质、一元二次方程的解法、三角形的三边关系;熟练掌握菱形的性质,由三角形的三边关系得出AB是解决问题的关键.17.(4分)如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.解析:直接利用轴对称图形的性质结合概率求法得出答案.参考答案:解:如图所示:当分别将1,2位置涂黑,构成的黑色部分图形是轴对称图形,故新构成的黑色部分图形是轴对称图形的概率是:=.故答案为:.点拨:此题主要考查了利用轴对称设计图案以及几何概率,正确掌握轴对称图形的性质是解题关键.18.(4分)如图,在矩形ABCD中,AB=+2,AD=.把AD 沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E 顺时针旋转α,得到△A'ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F的长度是﹣2;②弧D'D″的长度是π;③△A′AF≌△A′EG;④△AA′F∽△EGF.上述结论中,所有正确的序号是①②④.解析:由折叠的性质可得∠D=∠AD'E=90°=∠DAD',AD=AD',可证四边形ADED'是正方形,可得AD=AD'=D'E=DE=,AE =AD=,∠EAD'=∠AED'=45°,由勾股定理可求EF的长,由旋转的性质可得AE=A'E=,∠D'ED''=α,∠EA'D''=∠EAD'=45°,可求A'F=﹣2,可判断①;由锐角三角函数可求∠FED'=30°,由弧长公式可求弧D'D″的长度,可判断②;由等腰三角形的性质可求∠EAA'=∠EA'A=52.5°,∠A'AF=7.5°,可判断③;由“HL”可证Rt△ED'G≌Rt△ED''G,可得∴∠D'GE=∠D''GE=52.5°,可证△AFA'∽△EFG,可判断④,即可求解.参考答案:解:∵把AD沿AE折叠,使点D恰好落在AB边上的D′处,∴∠D=∠AD'E=90°=∠DAD',AD=AD',∴四边形ADED'是矩形,又∵AD=AD'=,∴四边形ADED'是正方形,∴AD=AD'=D'E=DE=,AE=AD=,∠EAD'=∠AED'=45°,∴D'B=AB﹣AD'=2,∵点F是BD'中点,∴D'F=1,∴EF===2,∵将△AED′绕点E顺时针旋转α,∴AE=A'E=,∠D'ED''=α,∠EA'D''=∠EAD'=45°,∴A'F=﹣2,故①正确;∵tan∠FED'===,∴∠FED'=30°∴α=30°+45°=75°,∴弧D'D″的长度==π,故②正确;∵AE=A'E,∠AEA'=75°,∴∠EAA'=∠EA'A=52.5°,∴∠A'AF=7.5°,∵∠AA'F≠∠EA'G,∠AA'E≠∠EA'G,∠AFA'=120°≠∠EA'G,∴△AA'F与△A'GE不全等,故③错误;∵D'E=D''E,EG=EG,∴Rt△ED'G≌Rt△ED''G(HL),∴∠D'GE=∠D''GE,∵∠AGD''=∠A'AG+∠AA'G=105°,∴∠D'GE=52.5°=∠AA'F,又∵∠AFA'=∠EFG,∴△AFA'∽△EFG,故④正确,故答案为:①②④.点拨:本题是四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,锐角三角函数,弧长公式,等腰三角形的性质,旋转的性质,相似三角形的判定和性质等知识,灵活运用这些性质进行推理证明是本题的关键.三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)先化简:(),然后选择一个合适的x 值代入求值.解析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.参考答案:解:===,把x=1代入.点拨:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为36%;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.解析:(1)用“89.5~99.5”的人数除以它们所占的百分比可得到调查的总人数;59.5~69.5”这一范围的人数占总参赛人数的百分比,即可得出答案;(2)求出“69.5~74.5”这一范围的人数为15﹣8=7(人),“79.5~84.5”这一范围的人数为18﹣8=10(人);补全图2频数直方图即可:(3)求出成绩由高到低前40%的参赛选手人数为50×40%=20(人),由88>84.5,即可得出结论;(4)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.参考答案:解:(1)本次比赛参赛选手共有:(8+4)÷24%=50(人),“59.5~69.5”这一范围的人数占总参赛人数的百分比为×100%=10%,∴79.5~89.5”这一范围的人数占总参赛人数的百分比为100%﹣24%﹣10%﹣30%=36%;故答案为:50,36%;(2)∵“69.5~79.5”这一范围的人数为50×30%=15(人),∴“69.5~74.5”这一范围的人数为15﹣8=7(人),∵“79.5~89.5”这一范围的人数为50×36%=18(人),∴“79.5~84.5”这一范围的人数为18﹣8=10(人);补全图2频数直方图:(3)能获奖.理由如下:∵本次比赛参赛选手50人,∴成绩由高到低前40%的参赛选手人数为50×40%=20(人),又∵88>84.5,∴能获奖;(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.点拨:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(10分)如图,无人机在离地面60米的C处,观测楼房顶部B 的俯角为30°,观测楼房底部A的俯角为60°,求楼房的高度.解析:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD =60°,解直角三角形即可得到结论.参考答案:解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°==,∴AD==20,∴BE=AD=20,在Rt△BCE中,tan∠CBE=tan30°==,∴CE=20=20,∴ED=CD﹣CE=60﹣20=40,∴AB=ED=40(米),答:楼房的高度为40米.点拨:此题考查了解直角三角形的应用﹣仰角俯角问题,用到的知识点是俯角的定义、特殊角的三角函数值,关键是作出辅助线,构造直角三角形.22.(12分)如图,点C在以AB为直径的⊙O上,点D是半圆AB 的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.解析:(1)连接OD,根据圆周角定理得到∠AOD=AOB=90°,根据平行线的性质得到∠ODH=90°,于是得到结论;(2)连接CD,根据圆周角定理得到∠ADB=∠ACB=90°,推出△ABD是等腰直角三角形,得到AB=10,解直角三角形得到AC==8,求得∠CAD=∠DBH,根据平行线的性质得到∠BDH =∠OBD=45°,根据相似三角形的性质即可得到结论.参考答案:(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.点拨:本题考查了切线的判定和性质,圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(12分)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?解析:(1)设超市B型画笔单价为a元,则A型画笔单价为(a﹣2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.参考答案:解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a﹣2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.点拨:本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.24.(12分)问题探究:小红遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,AD 是中线,求AD的取值范围.她的做法是:延长AD到E,使DE =AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED≌△CAD的判定定理是:SAS;(2)AD的取值范围是1<AD<5;方法运用:(3)如图2,AD是△ABC的中线,在AD上取一点F,连结BF 并延长交AC于点E,使AE=EF,求证:BF=AC.(4)如图3,在矩形ABCD中,=,在BD上取一点F,以BF为斜边作Rt△BEF,且=,点G是DF的中点,连接EG,CG,求证:EG=CG.解析:(1)由“SAS”可证△BED≌△CAD;(2)由全等三角形的性质可得AC=BE=4,由三角形的三边关系可求解;(3)延长AD至H,使AD=DH,连接BH,由“SAS”可证△BHD ≌△CAD,可得AC=BH,∠CAD=∠H,由等腰三角形的性质可得∠H=∠BFH,可得BF=BH=AC;(4)延长CG至N,使NG=CG,连接EN,CE,NF,由“SAS”可证△NGF≌△CGD,可得CD=NF,∠CDB=∠NFG,通过证明△BEC ∽△FEN,可得∠BEC=∠FEN,可得∠BEF=∠NEC=90°,由直角三角形的性质可得结论.参考答案:解:(1)∵AD是中线,∴BD=CD,又∵∠ADC=∠BDE,AD=DE,∴△BED≌△CAD(SAS),故答案为:SAS;(2)∵△BED≌△CAD,∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴2<2AD<10,∴1<AD<5,故答案为:1<AD<5;(3)如图2,延长AD至H,使AD=DH,连接BH,∵AD是△ABC的中线,∴BD=CD,又∵∠ADC=∠BDH,AD=DH,∴△ADC≌△HDB(SAS),∴AC=BH,∠CAD=∠H,∵AE=EF,∴∠EAF=∠AFE,∴∠H=∠BFH,∴BF=BH,∴AC=BF;(4)如图3,延长CG至N,使NG=CG,连接EN,CE,NF,∵点G是DF的中点,∴DG=GF,又∵∠NGF=∠DGC,CG=NG,∴△NGF≌△CGD(SAS),∴CD=NF,∠CDB=∠NFG,∵=,=,∴tan∠ADB=,tan∠EBF=,∴∠ADB=∠EBF,∵AD∥BC,∴∠ADB=∠DBC,∴∠EBF=∠DBC,∴∠EBC=2∠DBC,∵∠EBF+∠EFB=90°,∠DBC+∠BDC=90°,∴∠EFB=∠BDC=∠NFG,∠EBF+∠EFB+∠DBC+∠BDC=180°,∴2∠DBC+∠EFB+∠NFG=180°,又∵∠NFG+∠BFE+∠EFN=180°,∴∠EFN=2∠DBC,∴∠EBC=∠EFN,∵=,且CD=NF,∴∴△BEC∽△FEN,∴∠BEC=∠FEN,∴∠BEF=∠NEC=90°,又∵CG=NG,∴EG =NC,∴EG=GC.点拨:本题是四边形综合题,考查了全等三角形的判定和性质,矩形的性质,锐角三角函数,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.25.(14分)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.探究:(1)线段PA与PM的数量关系为PA=PM,其理由为:线段垂直平分线上的点与这条线段两个端点的距离相等.(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:M的坐标…(﹣2,0)(0,0)(2,0)(4,0)…P的坐标…(﹣2,﹣2)(0,﹣1)(2,﹣2)(4,﹣5)…猜想:(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是抛物线.验证:(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.应用:(5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标y D的取值范围.解析:(1)由题意可得GH是AM的垂直平分线,由线段垂直平分线的性质可求解;(2)由(1)可知:PA=PM,利用两点距离公式可求点P坐标;(3)依照题意,画出图象;(4)由两点距离公式可得﹣y=,可求y关于x的函数解析式;(5)由两点距离公式可求BC=OB=OC,可证△BOC是等边三角形,可得∠BOC=60°,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,可得∠BEC=30°,则当点D在点E下方时,∠BDC<30°,求出点E的纵坐标即可求解.参考答案:解:(1)∵分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,∴GH是AM的垂直平分线,∵点P是GH上一点,∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;(2)当点M(﹣2,0)时,设点P(﹣2,a),(a<0)∵PA=PM,∴﹣a=,∴a=﹣2,∴点P(﹣2,﹣2),当点M(4,0)时,设点P(4,b),(b<0)∵PA=PM,∴﹣b=,∴b=﹣5,∴点P(4,﹣5),故答案为:(﹣2,﹣2),(4,﹣5);(3)依照题意,画出图象,猜想曲线L的形状为抛物线,故答案为:抛物线;(4)∵PA=PM,点P的坐标是(x,y),(y<0),∴﹣y=,∴y=﹣x2﹣1;(5)∵点B(﹣1,),C(1,),∴BC=2,OB==2,OC==2,∴BC=OB=OC,∴△BOC是等边三角形,∴∠BOC=60°,如图3,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,∴∠BEC=30°,设点E(m,n),∵点E在抛物线上,∴n=﹣m2﹣1,∵OE=OB=2,∴=2,∴n 1=2﹣2,n2=2+2(舍去),如图3,可知当点D在点E下方时,∠BDC<30°,∴点D的纵坐标y D的取值范围为y D<2﹣2.点拨:本题是二次函数综合题,考查了二次函数的性质,圆的有关知识,两点距离公式等知识,利用数形结合思想解决问题是本题的关键.。

2023年山东省德州市中考数学试卷含答案解析

2023年山东省德州市中考数学试卷含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−14的绝对值是( )A. −14B. 14C. −4D. 42.下列选项中,直线L是四边形的对称轴的是( )A. B. C. D.3.一组数据5,6,8,8,8,1,4,若去掉一个数据,则下列统计量一定不发生变化的是( )A. 平均数B. 众数C. 中位数D. 方差4.如图所示几何体的俯视图为( )A. B. C. D.5.计算3+3+⋯+3m个3+4×4×⋯×4n个4的结果是( )A. 3m+n4B. m3+4nC. 3m+4nD. 3m+4n6.压力F、压强p、受力面积S之间的关系为:F=pS,当压力F一定时,另外两个变量的函数图象可能是( )A. B. C. D.7.如图,△ABC绕点A逆时针旋转一定角度后得到△ADE,点D在BC上,∠EDC=40°,则∠B的度数为( )A. 70°B. 60°C. 50°D. 40°8.已知直线y=3x+a与直线y=−2x+b交于点P,若点P的横坐标为−5,则关于x的不等式3x+a<−2x+b的解集为( )A. x<−5B. x<3C. x>−2D. x>−59.如图,在∠AOB中,以点O为圆心,5为半径作弧,分别交射线OA,OB于点C,D,再分别以C,D为圆心,CO的长为半径作弧,两弧在∠AOB内部交于点E,作射线OE,若OE=8,则C,D两点之间的距离为( )A. 5B. 6C. 5√ 2D. 810.某次列车平均提速v千米/小时,用相同的时间,列车提速前行驶s千米,相同的时间,提速后比提速前多行驶50千米,根据以上信息,下列说法正确的是( )A. 若设提速后这次列车的平均速度为x千米/小时,则可列方程为sx =s+50x−vB. 若设提速后这次列车的平均速度为x千米/小时,则可列方程为sx−v =s+50xC. 若设提速前这次列车的平均速度为y千米/小时,则可列方程为sy+v =s+50yD. 若设提速前这次列车的平均速度为y千米/小时,则可列方程为sy =50y+v11.如图,A,B,C,D是⊙O上的点,AB=AD,AC与BD交于点E,AE=3,EC=5,BD=4√ 5,⊙O的半径为( )A. 6B. 5√ 52C. 5D. 2√ 612.如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数y=ax+bx−3的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式( )A. y=−15xB. y=−92xC. y=−4xD. y=−3x二、填空题:本题共6小题,每小题4分,共24分。

山东省德州市2024年中考数学真题试题含解析

山东省德州市2024年中考数学真题试题含解析

2024年山东省德州市中考数学试卷一、选择题(本大题共12小题,共48.0分) 1. -12的倒数是( )A. −2B. 12C. 2D. 12. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.3. 据国家统计局统计,我国2024年国民生产总值(GDP )为900300亿元.用科学记数法表示900300亿是( ) A. 9.003×1012 B. 90.03×1012 C. 0.9003×1014 D. 9.003×1013 4. 下列运算正确的是( )A. (−2a )2=−4a 2B. (a +a )2=a 2+a 2C. (a 5)2=a 7D. (−a +2)(−a −2)=a 2−45. 若函数y =aa 与y =ax 2+bx +c 的图象如图所示,则函数y =kx +b 的大致图象为( )A. B.C. D.6. 不等式组{5a +2>3(a −1)12a −1≤7−32a 的全部非负整数解的和是( )A. 10B. 7C. 6D. 0 7. 下列命题是真命题的是( )A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于C. 对边平行且一组对角相等的四边形是平行四边形D. 两条直线被第三条直线所截,内错角相等8. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A. {a −a =4.5a −12a =1B. {a −a =4.5a −12a =1C. {a −a =4.512a −a =1D. {a −a =4.512a −a =19. 如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )A. 130∘B. 140∘C. 150∘D. 160∘10. 甲、乙是两个不透亮的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个嬉戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程ax 2+bx +1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( ) A. 23B. 59C. 49D. 1311. 在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),肯定能使a 2−a 1a 2−a 1<0成立的是( )A. a =3a −1(a <0)B. a =−a 2+2a −1(a >0)C. a =−√3a(a >0)D. a =a 2−4a −1(a <0)12. 如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接CM .有如下结论:①DE =AF ;②AN =√24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,全部正确结论的序号是( ) A. ①② B. ①③ C. ①②③ D. ②③④二、填空题(本大题共6小题,共24.0分) 13. |x -3|=3-x ,则x 的取值范围是______. 14. 方程6(a +1)(a −1)-3a −1=1的解为______.15. 如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,假如梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为______米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)16. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.17. 如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,aa ⏜=aa ⏜,CE =1,AB =6,则弦AF 的长度为______. 18. 如图,点A 1、A 3、A 5…在反比例函数y =aa (x >0)的图象上,点A 2、A 4、A 6……在反比例函数y =−aa (x >0)的图象上,∠OA 1A 2=∠A 1A 2A 3=∠A 2A 3A 4=…=∠α=60°,且OA 1=2,则A n (n 为正整数)的纵坐标为______.(用含n 的式子表示)三、计算题(本大题共1小题,共10.0分)19. 习近平总书记说:“读书可以让人保持思想活力,让人得到才智启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面对社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同. (1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳实力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.四、解答题(本大题共6小题,共68.0分) 20. 先化简,再求值:(2a -1a )÷(a 2+a 2aa-5aa )•(a 2a +2a a +2),其中√a +1+(n -3)2=0.21.《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康状况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成果进行分析.成果如下:七年级80 74 83 63 90 91 74 61 82 62 八年级74 61 83 91 60 85 46 84 74 82 (1)依据上述数据,补充完成下列表格.整理数据:优秀良好及格不及格七年级 2 3 5 0八年级 1 4 ______ 1分析数据:年级平均数众数中位数七年级76 74 77八年级______ 74 ______(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康状况更好,并说明理由.22.如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3.(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)依据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.23.下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30 25 0.1B50 50 0.1C100 不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为______;若选择方式B最省钱,则月通话时间x的取值范围为______;若选择方式C最省钱,则月通话时间x的取值范围为______;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.24.(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请干脆写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转肯定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有改变吗?假如有改变,干脆写出改变后的结果(不必写计算过程);若无改变,请说明理由.mx-4与x轴交于A(x1,0),B(x2,25.如图,抛物线y=mx2-52.0)两点,与y轴交于点C,且x2-x1=112(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥9时,均有y1≤y2,求a的取值范围;2(3)抛物线上一点D(1,-5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.答案和解析1.【答案】A【解析】解:-的到数是-2,故选:A.依据倒数的定义求解即可.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.依据轴对称图形的概念先求出图形中轴对称图形,再依据中心对称图形的概念得出其中不是中心对称的图形.题考查了中心对称图形与轴对称图形的概念,轴对称图形:假如一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,假如把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.3.【答案】D【解析】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.依据积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.此题考查整式的运算,驾驭各运算法则是关键,还要留意符号的处理.5.【答案】C【解析】解:依据反比例函数的图象位于二、四象限知k<0,依据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.首先依据二次函数及反比例函数的图象确定k、b的符号,然后依据一次函数的性质确定答案即可.本题考查了函数的图象的学问,解题的关键是了解三种函数的图象的性质,难度不大.6.【答案】A【解析】解:,解不等式①得:x>-2.5,解不等式②得:x≤4,∴不等式组的解集为:-2.5<x≤4,∴不等式组的全部非负整数解是:0,1,2,3,4,∴不等式组的全部非负整数解的和是0+1+2+3+4=10,故选:A.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,精确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7.【答案】C【解析】解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;故选:C.A、依据全等三角形的判定方法,推断即可.B、依据垂径定理的推理对B进行推断;C、依据平行四边形的判定进行推断;D、依据平行线的判定进行推断.本题考查了命题与定理:推断一件事情的语句,叫做命题.很多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证明的,这样的真命题叫做定理.8.【答案】B【解析】解:设绳长x尺,长木为y尺,依题意得,故选:B.本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.9.【答案】B【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.依据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,娴熟驾驭圆内接四边形的性质是解本题的关键.10.【答案】C【解析】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选:C.首先依据题意画出树状图,然后由树状图求得全部等可能的结果,利用一元二次方程根的判别式,即可判定各种状况下根的状况,然后利用概率公式求解即可求得乙获胜的概率本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事务;解题时要留意此题是放回试验还是不放回试验.11.【答案】D【解析】解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.依据各函数的增减性依次进行推断即可.本题主要考查了一次函数、反比例函数和二次函数的图象和性质,须要结合图象去一一分析,有点难度.12.【答案】C【解析】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.①正确.证明△ADF≌△DCE(ASA),即可推断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC的面积=△ABC的面积=12m,由此即可推断.本题考查正方形的性质,全等三角形的判定和性质,相像三角形的判定和性质等学问,解题的关键是娴熟驾驭基本学问,学会利用参数解决问题,属于中考选择题中的压轴题.13.【答案】x≤3【解析】解:3-x≥0,∴x≤3;故答案为x≤3;依据肯定值的意义,肯定值表示距离,所以3-x≥0,即可求解;本题考查肯定值的意义;理解肯定值的意义是解题的关键.14.【答案】x=-4【解析】解:-=1,=1,=1,=1,x+1=-3,x=-4,经检验x=-4是原方程的根;故答案为x=-4;依据分式方程的解法,先将式子通分化简为=1,最终验证根的状况,进而求解;本题考查分式方程的解法;娴熟驾驭分式方程的解法,勿遗漏验根环节是解题的关键.15.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.干脆利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.16.【答案】0.7【解析】解;依据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7依据题意列出代数式解答即可.此题考查解一元一次不等式,关键是依据题意列出代数式解答.17.【答案】485【解析】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.连接OA、OB,OB交AF于G,如图,利用垂径定理得到AE=BE=3,设⊙O的半径为r,则OE=r-1,OA=r,依据勾股定理得到32+(r-1)2=r2,解得r=5,再利用垂径定理得到OB⊥AF,AG=FG,则AG2+OG2=52,AG2+(5-OG)2=62,然后解方程组求出AG,从而得到AF的长.本题考查了圆周角、弧、弦的关系:在同圆或等圆中,假如两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.18.【答案】(-1)n+1√3(√a−√a−1)【解析】解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=-,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,-),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1-(舍),x2=1+,∴EF====2(-1)=2-2,A2D2===,即A2的纵坐标为-;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2-2+=x,解得:x1=(舍),x2=+;∴GF===2(-)=2-2,A3D3===(-),即A3的纵坐标为(-);…∴A n(n为正整数)的纵坐标为:(-1)n+1();故答案为:(-1)n+1();先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF是等边三角形,作高线A2D2,设A2(x,-),依据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发觉点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(-1)n+1来解决这个问题.本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.19.【答案】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x-7=0∴(2x-1)(2x+7)=0,∴x=0.5=50%或x=-3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×278=432<500 答:校图书馆能接纳第四个月的进馆人次. 【解析】 (1)先分别表示出其次个月和第三个月的进馆人次,再依据第一个月的进馆人次加其次和第三个月的进馆人次等于608,列方程求解; (2)依据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与500比较大小即可.本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.20.【答案】解:(2a -1a )÷(a 2+a 2aa -5a a )•(a 2a +2a a +2) =2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −a aa •aa (a +2a )(a −2a )•(a +2a )22aa=-a +2a 2aa .∵√a +1+(n -3)2=0.∴m +1=0,n -3=0,∴m =-1,n =3.∴-a +2a 2aa =-−1+2×32×(−1)×3=56.∴原式的值为56.【解析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m 和n 的值,最终代回化简后的分式即可.本题是分式化简求值题,须要娴熟驾驭通分和因式分解及分式乘除法运算.21.【答案】74 78【解析】解:(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)依据以上数据可得:七年级学生的体质健康状况更好.(1)依据平均数和中位数的概念解答即可;(2)依据样本估计总体解答即可;(3)依据数据调查信息解答即可.本题考查了众数、中位数以及平均数的运用,驾驭众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.22.【答案】解:(1)如图,(2)已知:如图,∠BPD =120°,点A 、C 分别在射线PB 、PD 上,∠PAC =30°,AC =2√3,过A 、C 分别作PB 、PD 的垂线,它们相交于O ,以OA 为半径作⊙O ,OA ⊥PB ,求证:PB 、PC 为⊙O 的切线;证明:∵∠BPD =120°,PAC =30°,∴∠PCA =30°,∴PA =PC ,连接OP ,∵OA ⊥PA ,PC ⊥OC ,∴∠PAO =∠PCO =90°,∵OP =OP ,∴Rt △PAO ≌Rt △PCO (HL )∴OA =OC ,∴PB 、PC 为⊙O 的切线;(3)∵∠OAP =∠OCP =90°-30°=60°,∴△OAC 为等边三角形, ∴OA =AC =2√3,∠AOC =60°,∵OP 平分∠APC ,∴∠APO =60°,∴AP =√33×2√3=2,∴劣弧AC 与线段PA 、PC 围成的封闭图形的面积=S 四边形APCO -S 扇形AOC =2×12×2√3×2-60⋅a ⋅(2√3)2360=4√3-2π. 【解析】(1)过A 、C 分别作PB 、PD 的垂线,它们相交于O ,然后以OA 为半径作⊙O 即可;(2)写出已知、求证,然后进行证明;连接OP ,先证明Rt △PAO ≌Rt △PCO ,然后依据切线的判定方法推断PB 、PC 为⊙O 的切线;(3)先证明△OAC 为等边三角形得到OA=AC=2,∠AOC=60°,再计算出AP=2,然后依据扇形的面积公式,利用劣弧AC 与线段PA 、PC 围成的封闭图形的面积进行计算. 本题考查了作图-困难作图:困难作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟识基本几何图形的性质,结合几何图形的基本性质把困难作图拆解成基本作图,逐步操作.也考查了圆周角定理和扇形面积公式.23.【答案】0≤x ≤853 853≤x ≤1753 x >1753【解析】解:(1)∵0.1元/min=6元/h ,∴由题意可得,y 1=, y 2=,y 3=100(x≥0);(2)作出函数图象如图:结合图象可得:若选择方式A最省钱,则月通话时间x的取值范围为:0≤x≤,若选择方式B最省钱,则月通话时间x的取值范围为:≤x≤,若选择方式C最省钱,则月通话时间x的取值范围为:x>.故答案为:0≤x≤,≤x≤,x>.(3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,∴结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=80分别代入y2=,可得6x-250=80,解得:x=55,∴小王该月的通话时间为55小时.(1)依据题意可以分别写出y1、y2、y3关于x的函数关系式,并写出相应的自变量的取值范围;(2)依据题意作出图象,结合图象即可作答;(3)结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=81代入y2关于x的函数关系式,解方程即可得出小王该月的通话时间.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题须要的条件.24.【答案】解:(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN也为菱形,∴GC ⊥MN ,∠NGO =∠AGE =30°, ∴aa aa =cos30°=√32,∵GC =2OG ,∴aa aa =1√3,∵HGND 为平行四边形,∴HD =GN ,∴HD :GC :EB =1:√3:1.(2)如图2,连接AG ,AC ,∵△ADC 和△AHG 都是等腰三角形,∴AD :AC =AH :AG =1:√3,∠DAC =∠HAG =30°,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√3,∵∠DAB =∠HAE =60°,∴∠DAH =∠BAE ,在△DAH 和△BAE 中, {aa =aa∠aaa =∠aaaaa =aa∴△DAH ≌△BAE (SAS )∴HD =EB ,∴HD :GC :EB =1:√3:1.(3)有改变.如图3,连接AG ,AC ,∵AD :AB =AH :AE =1:2,∠ADC =∠AHG =90°,∴△ADC ∽△AHG ,∴AD :AC =AH :AG =1:√5,∵∠DAC =∠HAG ,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√5,∵∠DAB =∠HAE =90°,∴∠DAH =∠BAE ,∵DA :AB =HA :AE =1:2,∴△ADH ∽△ABE ,∴DH :BE =AD :AB =1:2,∴HD :GC :EB =1:√5:2【解析】(1)连接AG ,由菱形AEGH 的顶点E 、H 在菱形ABCD 的边上,且∠BAD=60°,易得A ,G ,C 共线,延长HG 交BC 于点M ,延长EG 交DC 于点N ,连接MN ,交GC 于点O ,则GMCN 也为菱形,利用菱形对角线相互垂直,结合三角函数可得结论;(2)连接AG ,AC ,由△ADC 和△AHG 都是等腰三角形,易证△DAH ∽△CAG 与△DAH ≌△BAE ,利用相像三角形的性质及菱形的性质可得结论;(3)连接AG ,AC ,易证△ADC ∽△AHG 和△ADH ∽△ABE ,利用相像三角形的性质可得结论.本题是菱形与相像三角形,全等三角形,三角函数等学问点的综合运用,难度较大.25.【答案】解:(1)函数的对称轴为:x =-a 2a =54=a 1+a 22,而且x 2-x 1=112, 将上述两式联立并解得:x 1=-32,x 2=4,则函数的表达式为:y =a (x +32)(x -4)=a (x 2-4x +32x -6),即:-6a =-4,解得:a =23, 故抛物线的表达式为:y =23x 2-53x -4;(2)当x 2=94时,y 2=2,①当a ≤a +2≤54时(即:a ≤-34), y 1≤y 2,则23a 2-53a -4≤2,解得:-2≤a ≤-92,而a ≤-34,故:-2≤a ≤−34;②当54≤a ≤a +2(即a ≥54)时,则23(a +2)2-53(a +2)-4≤2,同理可得:-34≤a ≤54,故a 的取值范围为:-2≤a ≤54;(3)∵当∠BDC =∠MCE ,△MDC 为等腰三角形,故取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点, 点H (12,-92), 将点C 、D 坐标代入一次函数表达式:y =mx +n 并解得:直线CD 的表达式为:y =-x -4,同理可得:直线BD 的表达式为:y =53x -203…①,直线DC ⊥MH ,则直线MH 表达式中的k 值为1,同理可得直线HM 的表达式为:y =x -5…②,联立①②并解得:x =52,故点M (52,-52).【解析】(1)函数的对称轴为:x=-==,而且x 2-x 1=,将上述两式联立并解得:x 1=-,x 2=4,即可求解;(2)分a≤a+2≤、≤a≤a+2两种状况,分别求解即可; (3)取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等,其中(2),要留意分类求解,避开遗漏.。

德州市中考数学试卷及答案解析()

德州市中考数学试卷及答案解析()

山东省德州市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项选出来。

每个小题选对得3分,选错、不选或选出的答案超过一个均记零分。

满分36分,。

)1. |-|的结果是()A. -B.C.-2D.2【答案】B考点:绝对值2.某几何体的三视图如图所示,则此几何体是()A. 圆锥B.圆柱C.长方体D.四棱柱第2题图【答案】B考点:三视图3. 德州市农村中小学校舍标准化工程开工学校项目356个,开工面积56.2万平方米,开工面积量创历年最高,56.2万平方米用科学记数法表示正确的是()A.5.62×104m2B. 56.2×104m2C. 5.62×105m2D. 0.562×106m2【答案】C考点:科学记数法4.下列运算正确的是()A. B. b3·b2=b6 C.4a-9a=-5 D.(ab2)3=a3b6【答案】D考点:科学记数法5.一组数1,1,2,x,5,y,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8B.9C.13D.15【答案】A考点:探求规律6.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【答案】C考点:旋转7.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是()A.a<1B. a≤4C.a≤1D.a≥1【答案】C考点:一元二次方根的判别式8.下列命题中,真命题的个数是()①若-1<x< -, 则-2<<-1;②若-1≤x≤2,则1≤x2≤4;③凸多边形的外角和为360°;④三角形中,若∠A+∠B=90°,则sinA=cosB.A. 4B. 3C. 2D.1【答案】B考点:解不等式;多边形的内角和;锐角三角函数间的关系.9.如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°第9题图【答案】A考点:圆的周长;扇形的弧长10.经过某十字路口的汽车,可能直行,也可能左转或者右转。

2020年山东省德州市中考数学试卷解析版

2020年山东省德州市中考数学试卷解析版

2020年山东省德州市中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.计算|-2020|的结果是()A. -2020B. 2020C. -D.2.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.下列运算正确的是()A. 6a-5a=1B. a2•a3=a5C. (-2a)2=-4a2D. a6÷a2=a34.如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A. 主视图B. 主视图和左视图C. 主视图和俯视图D. 左视图和俯视图5.为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,一周做饭次45678数人数7612105A. 4B. 5C. 6D. 76.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A. 80米B. 96米C. 64米D. 48米7.函数y=和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A. B.C. D.8.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A. 1B. 2C. 3D. 49.若关于x的不等式组的解集是x<2,则a的取值范围是()A. a≥2B. a<-2C. a>2D. a≤210.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A. 24-4πB. 12+4πC. 24+8πD. 24+4π11.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A. 若(-2,y1),(5,y2)是图象上的两点,则y1>y2B. 3a+c=0C. 方程ax2+bx+c=-2有两个不相等的实数根D. 当x≥0时,y随x的增大而减小12.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A. 148B. 152C. 174D. 202二、填空题(本大题共6小题,共24.0分)13.-=______.14.若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是______度.15.在平面直角坐标系中,点A的坐标是(-2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为______.16.菱形的一条对角线长为8,其边长是方程x2-9x+20=0的一个根,则该菱形的周长为______.17.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是______.18.如图,在矩形ABCD中,AB=+2,AD=.把AD沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E顺时针旋转α,得到△A'ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F的长度是-2;②弧D'D″的长度是π;③△A′AF≌△A′EG;④△AA′F∽△EGF.上述结论中,所有正确的序号是______.三、解答题(本大题共7小题,共78.0分)19.先化简:(),然后选择一个合适的x值代入求值.20.某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有______人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为______;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.21.如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A的俯角为60°,求楼房的高度.22.如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.23.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B 型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?24.问题探究:小红遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使DE=AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED≌△CAD的判定定理是:______;(2)AD的取值范围是______;方法运用:(3)如图2,AD是△ABC的中线,在AD上取一点F,连结BF并延长交AC于点E,使AE=EF,求证:BF=AC.(4)如图3,在矩形ABCD中,=,在BD上取一点F,以BF为斜边作Rt△BEF,且=,点G是DF的中点,连接EG,CG,求证:EG=CG.25.如图1,在平面直角坐标系中,点A的坐标是(0,-2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.探究:(1)线段PA与PM的数量关系为______,其理由为:______.(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:M的坐标…(-2,0)(0,0)(2,0)(4,0)…P的坐标…______ (0,-1)(2,-2)______ …(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是______.验证:(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x 的函数解析式.应用:(5)如图3,点B(-1,),C(1,),点D为曲线L上任意一点,且∠BDC <30°,求点D的纵坐标y D的取值范围.答案和解析1.【答案】B【解析】解:|-2020|=2020;故选:B.根据绝对值的性质直接解答即可.此题考查了绝对值,掌握绝对值的性质是解题的关键,是一道基础题.2.【答案】B【解析】解:A、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B、是中心对称图形但不是轴对称图形.故此选项符合题意;C、既是轴对称图形,又是中心对称图形.故此选项不合题意;D、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】B【解析】解:6a-5a=a,因此选项A不符合题意;a2•a3=a5,因此选项B符合题意;(-2a)2=4a2,因此选项C不符合题意;a6÷a2=a6-2=a4,因此选项D不符合题意;故选:B.利用整式的四则运算法则分别计算,可得出答案.考查整式的意义和运算,掌握运算法则是正确计算的前提.4.【答案】D【解析】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.【答案】C【解析】解:==6(次),故选:C.利用加权平均数的计算方法进行计算即可.本题考查加权平均数的意义和计算方法,理解加权平均数的意义是正确解答的前提.6.【答案】C【解析】解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64(米).故选:C.根据多边形的外角和即可求出答案.本题主要考查了利用多边形的外角和定理求多边形的边数.任何一个多边形的外角和都是360°.7.【答案】D【解析】解:在函数y=和y=-kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=-kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=-kx+2的图象在第一、二、三象限,故选项C错误,故选:D.根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.【答案】B【解析】解:①一组对边平行且这组对边相等的四边形是平行四边形,原命题是假命题;②对角线互相垂直且平分的四边形是菱形,是真命题;③一个角为90°且一组邻边相等的平行四边形是正方形,原命题是假命题;④对角线相等的平行四边形是矩形,是真命题;故选:B.根据平行四边形的判定、菱形的判定、正方形和矩形的判定判断即可.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.【答案】A【解析】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.分别求出每个不等式的解集,根据不等式组的解集为x≤2可得关于a的不等式,解之可得.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】A【解析】解:设正六边形的中心为O,连接OA,OB.由题意,OA=OB=AB=4,∴S弓形AmB=S扇形OAB-S△AOB=-×42=π-4,∴S阴=6•(S半圆-S弓形AmB)=6•(•π•22-π+4)=24-4π,故选:A.设正六边形的中心为O,连接OA,OB首先求出弓形AmB的面积,再根据S阴=6•(S半圆-S弓形AmB)求解即可.本题考查正多边形和圆,扇形的面积,弓形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.【答案】D【解析】解:∵抛物线的对称轴为直线x=1,a<0,∴点(-1,0)关于直线x=1的对称点为(3,0),则抛物线与x轴的另一个交点坐标为(3,0),点(-2,y1)与(4,y1)是对称点,∵当x>1时,函数y随x增大而减小,故A选项不符合题意;把点(-1,0),(3,0)代入y=ax2+bx+c得:a-b+c=0①,9a+3b+c=0②,①×3+②得:12a+4c=0,∴3a+c=0,故B选项不符合题意;当y=-2时,y=ax2+bx+c=-2,由图象得:纵坐标为-2的点有2个,∴方程ax2+bx+c=-2有两个不相等的实数根,故C选项不符合题意;∵二次函数图象的对称轴为x=1,a<0,∴当x≤1时,y随x的增大而增大;当x≥1时,y随x的增大而减小;故D选项符合题意;故选:D.根据二次函数的图象和性质分别对各个选项进行判断即可.本题考查了二次函数的图象与性质、二次函数图象上点的坐标特征等知识;熟练掌握二次函数的图象和性质是解题的关键.12.【答案】C【解析】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n-1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.考查了规律型:图形的变化类,观察图形,发现后一个图案比前一个图案多2(n+3)枚棋子是解题的关键.13.【答案】【解析】解:原式=3-=2.故答案为:2.先将二次根式化为最简,然后合并同类二次根式即可得出答案.此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.14.【答案】120【解析】解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为:120.根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.此题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.【答案】y=【解析】解:∵点A的坐标是(-2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′,∴A′坐标为:(-4,2)或(4,-2),∵A'恰在某一反比例函数图象上,∴该反比例函数解析式为:y=.故答案为:y=.直接利用位似图形的性质得出A′坐标,进而求出函数解析式.此题主要考查了位似变换以及待定系数法求反比例函数解析式,正确得出对应点坐标是解题关键.16.【答案】20【解析】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2-9x+20=0,因式分解得:(x-4)(x-5)=0,解得:x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,∴菱形ABCD的周长=4AB=20.故答案为:20.解方程得出x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,即可得出菱形ABCD的周长.本题考查了菱形的性质、一元二次方程的解法、三角形的三边关系;熟练掌握菱形的性质,由三角形的三边关系得出AB是解决问题的关键.17.【答案】【解析】解:如图所示:当分别将1,2位置涂黑,构成的黑色部分图形是轴对称图形,故新构成的黑色部分图形是轴对称图形的概率是:=.故答案为:.直接利用轴对称图形的性质结合概率求法得出答案.此题主要考查了利用轴对称设计图案以及几何概率,正确掌握轴对称图形的性质是解题关键.18.【答案】①②④【解析】解:∵把AD沿AE折叠,使点D恰好落在AB边上的D′处,∴∠D=∠AD'E=90°=∠DAD',AD=AD',∴四边形ADED'是矩形,又∵AD=AD'=,∴四边形ADED'是正方形,∴AD=AD'=D'E=DE=,AE=AD=,∠EAD'=∠AED'=45°,∴D'B=AB-AD'=2,∵点F是BD'中点,∴D'F=1,∴EF===2,∵将△AED′绕点E顺时针旋转α,∴AE=A'E=,∠D'ED''=α,∠EA'D''=∠EAD'=45°,∴A'F=-2,故①正确;∵tan∠FED'===,∴∠FED'=30°∴α=30°+45°=75°,∴弧D'D″的长度==π,故②正确;∵AE=A'E,∠AEA'=75°,∴∠EAA'=∠EA'A=52.5°,∴∠A'AF=7.5°,∵∠AA'F≠∠EA'G,∠AA'E≠∠EA'G,∠AFA'=120°≠∠EA'G,∴△AA'F与△A'GE不全等,故③错误;∵D'E=D''E,EG=EG,∴Rt△ED'G≌Rt△ED''G(HL),∴∠D'GE=∠D''GE,∵∠AGD''=∠A'AG+∠AA'G=105°,∴∠D'GE=52.5°=∠AA'F,又∵∠AFA'=∠EFG,∴△AFA'∽△EFG,故④正确,故答案为:①②④.由折叠的性质可得∠D=∠AD'E=90°=∠DAD',AD=AD',可证四边形ADED'是正方形,可得AD=AD'=D'E=DE=,AE=AD=,∠EAD'=∠AED'=45°,由勾股定理可求EF的长,由旋转的性质可得AE=A'E=,∠D'ED''=α,∠EA'D''=∠EAD'=45°,可求A'F=-2,可判断①;由锐角三角函数可求∠FED'=30°,由弧长公式可求弧D'D″的长度,可判断②;由等腰三角形的性质可求∠EAA'=∠EA'A=52.5°,∠A'AF=7.5°,可判断③;由“HL”可证Rt△ED'G≌Rt△ED''G,可得∴∠D'GE=∠D''GE=52.5°,可证△AFA'∽△EFG,可判断④,即可求解.本题是四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,锐角三角函数,弧长公式,等腰三角形的在,旋转的性质,相似三角形的判定和性质等知识,灵活运用这些性质进行推理证明是本题的关键.19.【答案】解:===,把x=1代入.【解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.【答案】50 36%【解析】解:(1)本次比赛参赛选手共有:(8+4)÷24%=50(人),“59.5~69.5”这一范围的人数占总参赛人数的百分比为×100%=10%,∴79.5~89.5”这一范围的人数占总参赛人数的百分比为100%-24%-10%-30%=36%;故答案为:50,36%;(2)∵“69.5~79.5”这一范围的人数为50×30%=15(人),∴“69.5~74.5”这一范围的人数为15-8=7(人),∵“79.5~89.5”这一范围的人数为50×36%=18(人),∴“79.5~84.5”这一范围的人数为18-8=10(人);补全图2频数直方图:(3)能获奖.理由如下:∵本次比赛参赛选手50人,∴成绩由高到低前40%的参赛选手人数为50×40%=20(人),又∵88>84.5,∴能获奖;(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.(1)用“89.5~99.5”的人数除以它们所占的百分比可得到调查的总人数;59.5~69.5”这一范围的人数占总参赛人数的百分比,即可得出答案;(2)求出“69.5~74.5”这一范围的人数为15-8=7(人),“79.5~84.5”这一范围的人数为18-8=10(人);补全图2频数直方图即可:(3)求出成绩由高到低前40%的参赛选手人数为50×40%=20(人),由88>84.5,即可得出结论;(4)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【答案】解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°==,∴AD==20,∴BE=AD=20,在Rt△BCE中,tan∠CBE=tan30°==,∴CE=20=20,∴ED=CD-CE=60-20=40,∴AB=ED=40(米),答:楼房的高度为40米.【解析】过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,解直角三角形即可得到结论.此题考查了解直角三角形的应用-仰角俯角问题,用到的知识点是俯角的定义、特殊角的三角函数值,关键是作出辅助线,构造直角三角形.22.【答案】(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.【解析】(1)连接OD,根据圆周角定理得到∠AOD=AOB=90°,根据平行线的性质得到∠ODH=90°,于是得到结论;(2)连接CD,根据圆周角定理得到∠ADB=∠ACB=90°,推出△ABD是等腰直角三角形,得到AB=10,解直角三角形得到AC==8,求得∠CAD=∠DBH,根据平行线的性质得到∠BDH=∠OBD=45°,根据相似三角形的性质即可得到结论.本题考查了切线的判定和性质,圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.24.【答案】SAS1<AD<5【解析】解:(1)∵AD是中线,∴BD=CD,又∵∠ADC=∠BDE,AD=DE,∴△BED≌△CAD(SAS),故答案为:SAS;(2)∵△BED≌△CAD,∴AC=BE=4,在△ABE中,AB-BE<AE<AB+BE,∴2<2AD<10,∴1<AD<5,故答案为:1<AD<5;(3)如图2,延长AD至H,使AD=DH,连接BH,∵AD是△ABC的中线,∴BD=CD,又∵∠ADC=∠BDH,AD=DH,∴△ADC≌△HDB(SAS),∴AC=BH,∠CAD=∠H,∵AE=EF,∴∠EAF=∠AFE,∴∠H=∠BFH,∴BF=BH,∴AC=BF;(4)如图3,延长CG至N,使NG=CG,连接EN,CE,NF,∵点G是DF的中点,∴DG=GF,又∵∠NGF=∠DGC,CG=NG,∴△NGF≌△CGD(SAS),∴CD=NF,∠CDB=∠NFG,∵=,=,∴tan∠ADB=,tan∠EBF=,∴∠ADB=∠EBF,∵AD∥BC,∴∠ADB=∠DBC,∴∠EBF=∠DBC,∴∠EBC=2∠DBC,∵∠EBF+∠EFB=90°,∠DBC+∠BDC=90°,∴∠EFB=∠BDC=∠NFG,∠EBF+∠EFB+∠DBC+∠BDC=180°,∴2∠DBC+∠EFB+∠NFG=180°,又∵∠NFG+∠BFE+∠EFN=180°,∴∠EFN=2∠DBC,∴∠EBC=∠EFN,∵=,且CD=NF,∴∴△BEC∽△FEN,∴∠BEC=∠FEN,∴∠BEF=∠NEC=90°,又∵CG=NG,∴EG=NC,∴EG=GC.(1)由“SAS”可证△BED≌△CAD;(2)由全等三角形的性质可得AC=BE=4,由三角形的三边关系可求解;(3)延长AD至H,使AD=DH,连接BH,由“SAS”可证△BHD≌△CAD,可得AC=BH,∠CAD=∠H,由等腰三角形的性质可得∠H=∠BFH,可得BF=BH=AC;(4)延长CG至N,使NG=CG,连接EN,CE,NF,由“SAS”可证△NGF≌△CGD,可得CD=NF,∠CDB=∠NFG,通过证明△BEC∽△FEN,可得∠BEC=∠FEN,可得∠BEF=∠NEC=90°,由直角三角形的性质可得结论.本题是四边形综合题,考查了全等三角形的判定和性质,矩形的性质,锐角三角函数,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.25.【答案】PA=PM线段垂直平分线上的点与这条线段两个端点的距离相等(-2,-2)(4,-5)抛物线【解析】解:(1)∵分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,∴GH是AM的垂直平分线,∵点P是GH上一点,∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;(2)当点M(-2,0)时,设点P(-2,a),(a<0)∵PA=PM,∴-a=,∴a=-2,∴点P(-2,-2),当点M(4,0)时,设点P(4,b),(b<0)∵PA=PM,∴-b=,∴b=-5,∴点P(4,-5),故答案为:(-2,-2),(4,-5);(3)依照题意,画出图象,猜想曲线L的形状为抛物线,故答案为:抛物线;(4)∵PA=PM,点P的坐标是(x,y),(y<0),∴-y=,∴y=-x2-1;(5)∵点B(-1,),C(1,),∴BC=2,OB==2,OC==2,∴BC=OB=OC,∴△BOC是等边三角形,∴∠BOC=60°,如图3,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,∴∠BEC=30°,设点E(m,n),∵点E在抛物线上,∴n=-m2-1,∵OE=OB=2,∴=2,∴n1=2-2,n2=2+2(舍去),如图3,可知当点D在点E下方时,∠BDC<30°,∴点D的纵坐标y D的取值范围为y D<2-2.(1)由题意可得GH是AM的垂直平分线,由线段垂直平分线的性质可求解;(2)由(1)可知:PA=PM,利用两点距离公式可求点P坐标;(3)依照题意,画出图象;(4)由两点距离公式可得-y=,可求y关于x的函数解析式;(5)由两点距离公式可求BC=OB=OC,可证△BOC是等边三角形,可得∠BOC=60°,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,可得∠BEC=30°,则当点D在点E下方时,∠BDC<30°,求出点E的纵坐标即可求解.本题是二次函数综合题,考查了二次函数的性质,圆的有关知识,两点距离公式等知识,利用数形结合思想解决问题是本题的关键.。

德州市2023年中考数学试卷

德州市2023年中考数学试卷

德州市2023年中考数学试卷德州市2023年中考数学试卷是对全市初中毕业生数学学科学习成果的一次全面检验。

试卷结构严谨,题型分布合理,难度适中,有利于选拔优秀的学生。

下面,我们将对试卷进行简要解析,并提供一些备考建议。

一、试卷结构德州市2023年中考数学试卷共分为选择题、填空题、解答题三大板块。

其中,选择题占总分值的20%,填空题占总分值的25%,解答题占总分值的55%。

试题内容涵盖了初中数学的全部知识点,包括数与代数、几何与图形、统计与概率、解题方法与技巧等。

二、试题解析1.选择题:部分选择题考查了基础知识的掌握,例如整式的加减、一元一次方程的解法等。

解题时要注意审题,运用排除法、代入法等技巧。

2.填空题:填空题要求考生对基础知识有扎实的掌握,例如解三角形、解一元二次方程等。

解题时要仔细审题,注意数据和符号的准确性。

3.解答题:解答题涉及的知识点较为广泛,包括代数、几何、统计等。

解题时要先分析题目,理清思路,再运用相应的解题方法。

如遇到复杂题目,可先从简单情况入手,逐步推导。

三、备考建议1.扎实掌握基础知识:中考数学试题以基础知识为主,考生要重视基础知识的学习,强化训练。

2.提高解题能力:解答题占总分值的一半,考生要重点培养解题能力,掌握各类题型的解题方法和技巧。

3.注重题型训练:模拟真实考试环境,多做题型训练,提高应试能力。

4.分析总结:每次做题后都要认真分析总结,找出自己的不足,针对性地进行改进。

5.合理安排时间:合理安排学习时间,保证每个学科的均衡发展。

四、结语德州市2023年中考数学试卷的解析和备考建议希望能为广大考生提供帮助。

面对中考挑战,我们要保持信心,扎实备考,相信自己一定能取得优异的成绩。

山东省德州市中考数学试题及标准答案解析

山东省德州市中考数学试题及标准答案解析

德州市二○一二年初中学业考试一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. 下列运算正确的是( )(A)42= (B )()23-=9- (C )328-= (D )020=2.不一定在三角形内部的线段是( )(A )三角形的角平分线 (B )三角形的中线 (C )三角形的高 (D )三角形的中位线 3.如果两圆的半径分别为6和4,圆心距为10,那么这两圆的位置关系是( ) (A )内含 (B )内切 (C )相交 (D )外切4.由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是( )5.已知24,328.a b a b +=⎧⎨+=⎩则a b +等于( )(A )3 (B )83(C )2 (D )16.下图给定的是纸盒的外表面,下面能由它折叠而成的是( )7.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如下图形,其中AB BE ⊥,EF BE ⊥,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ) (A )1组(B )2组(C )3组(D )4组8.如图,两个反比例函数1y x =和2y x=-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形P AB 的面积为( )(A )(B )(C )(D )AB CDEFxyAP BD C O1l 2l(A )(C )(D )(B )第4题图(A )3 (B )4 (C )92(D )5 二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.-1, 0, 0.2,71, 3 中正数一共有 个. 10.化简:6363a a ÷= . 11.512- 12.(填“>”、 “<”或“=”) 12.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.13.在四边形ABCD 中,AB =CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)14.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如下不完整的统计图.其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是_______元.15.若关于x 的方程22(2)0ax a x a +++=有实数解,那么实数a 的取值范围是_____________.16.如图,在一单位为1的方格纸上,△123A A A ,△345A A A ,△567A A A ,……,都是斜边在x 轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△123A A A 的顶点坐标分别为1A (2,0),2A (1,-1),3A (0,0),则依图中所示规律,2012A 的坐标为 .三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 17. (本题满分6分)已知:31x =+,31y =-,求22222x xy y x y -+-的值.A 8A 7A 6A 4A 2A 1A 5A 3xyO人数捐款金额10518. (本题满分8分)解方程:111122=++-x x .19.(本题满分8分)有公路1l 同侧、2l 异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路1l ,2l 的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)20. (本题满分10分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.2l1AB21. (本题满分10分)如图,点A ,E 是半圆周上的三等分点,直径BC =2,AD BC ,垂足为D ,连接BE 交AD 于F ,过A 作AG ∥BE 交BC 于G .(1)判断直线AG 与⊙O的位置关系,并说明理由. (2)求线段AF 的长.22. (本题满分10分)现从A ,B 向甲、乙两地运送蔬菜,A ,B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.(1)设A 地到甲地运送蔬菜x 吨,请完成下表:A BCED FGO(2)设总运费为W 元,请写出W 与x 的函数关系式. (3)怎样调运蔬菜才能使运费最少?23. (本题满分12分)如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论;(3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.A B CDEFG H PABCDEFGH P(备用图)德州市二○一二年初中学业考试数学试题参考解答及评分意见一、选择题:(本大题共8小题,每小题3分,共24分)二、填空题:(本大题共8小题,每小题4分,共32分)9.3; 10.32a ;11 .>;12.π;13.不唯一,可以是:AB //CD 或AD =BC ,∠B +∠C=180º, ∠A +∠D =180º等; 14.20; 15.1a ≥-; 16.(2,1006). 三、解答题:(本大题共7小题, 共64分) 17.(本小题满分6分)解:原式 =2()()()x y x y x y --+ ……(2分)=x y x y-+ .当1x =,1y =时,原式3== 18.(本题满分8分)解:方程两边同乘x 2-1整理得 022=--x x 解得 .2,121=-=x x经检验:2121=-=x x 是增根,是原方程的根. 所以原方程的根是.2=x 19.(本题满分8分)解:根据题意知道,点C 应满足两个条件,一是在线段AB 在两条公路夹角的平分线上,所以点C 应是它们的交点. ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是所求的位置.注:本题学生能正确得出一个点的位置得6分,得出两个点的位置得8分. 20.(本题满分10分)解:(1)树状图如下:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432. ……(5分) (2)这个游戏不公平.理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,所以,甲胜的概率为81243=, 而乙胜的概率为162243=,这个游戏不公平.21.(本题满分10分) 解:(1)AG 与⊙O 相切.证明:连接OA ,∵点A ,E 是半圆周上的三等分点,∴»BA=»AE =»EC ∴点A 是»BE 的中点,∴OA ⊥BE . 又∵AG ∥BE ,∴OA ⊥AG .∴AG 与⊙O 相切. (2)∵点A ,E 是半圆周上的三等分点, ∴∠AOB =∠AOE =∠EOC =60°.又O A =OB , ∴△ABO 为正三角形.又AD ⊥OB ,OB =1,∴BD =OD =12, AD=2.又∠EBC =12EOC ∠=30,在Rt △FBD 中, FD =BD ⋅tan ∠EBC = BD ⋅ tan30°∴AF =AD -DF=2-6=3.22.(本题满分10分)解:(1)…………(3分)2 4 43 1 3 2 3 14 4 3 2 3 1 3 1 4 4 2 3 2 1 2 1 3 32 42 1 2A BC EDF GO(2)由题意,得5030146015451W x x x x =+-+-+-()()()整理得,51275W x =+. (3)∵A ,B 到两地运送的蔬菜为非负数,∴0,140,150,10.x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ 解不等式组,得114x ≤≤在51275W x =+中,W 随x 增大而增大,∴当x 最小为1时,W 有最小值 1280元. 23.(本题满分12分)解:(1)∵PE=BE ,∴∠EBP=∠EPB .又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .又∵AD ∥BC , ∴∠APB=∠PBC .∴∠APB=∠BPH .(2)△PHD 的周长不变,为定值 8. 证明:过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP , ∴△ABP ≌△QBP .∴AP=QP , AB=BQ .又∵ AB=BC ,∴BC = BQ . 又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .∴CH=QH . ∴△PHD 的周长为:PD+DH+PH =AP+PD+DH+HC =AD+CD =8. (3)过F 作FM ⊥AB ,垂足为M ,则FM BC AB ==.又EF 为折痕,∴EF ⊥BP .∴90EFM MEF ABP BEF ∠+∠=∠+∠=︒, ∴EFM ABP ∠=∠.又∵∠A=∠EMF=90°,∴△EFM ≌△BP A .∴EM AP ==x .∴在Rt △APE 中,222(4)BE x BE -+=.解得,228x BE =+.∴228x CF BE EM x =-=+-. 又四边形PEFG 与四边形BEFC 全等,∴211()(4)4224x S BE CF BC x =+=+-⨯.即:21282S x x =-+. 配方得,21(2)62S x =-+,∴当x =2时,S 有最小值6.ABC DEFG HPQABCDE F G HPM ABC DEFGH P谢谢使用。

2023年山东省德州市中考数学试题卷(附答案详解)

2023年山东省德州市中考数学试题卷(附答案详解)

2023年山东省德州市中考数学试题卷(附答案详解)第一部分:选择题(共50题,每题2分,共计100分)1.下列四个数中,最小的是() A. 33 B. -1 C. 0 D. 1002.已知直角三角形的斜边长度为5,其中一个直角的边长为3,则另一个直角的边长为() A. 1 B. 2 C. 3 D. 43.在一副扑克牌中,黑桃和红桃是什么颜色的() A. 黑色 B. 红色 C. 黑和红相间 D. 其他颜色…50.若f(x) = 2x - 3,且f(a) = 7,则a的值为() A. -2B. 2C. 5D. 10第二部分:填空题(共20题,每题2分,共计40分)1.若x=3,则y=()2.若f(x) = 3x + 4,则f(2) = ()3.根据比例关系,已知1:3=5:15,则3的值为()…20.已知线段AB与线段CD平行,若AB的长度为8cm,CD的长度为12cm,则线段AB与线段CD的比为()第三部分:解答题(共5题,每题10分,共计50分)1.计算下列各式的值:( a = 3, b = 5)– a + b– a - b– a * b2.现有一个长方形,它的长是6cm,宽是4cm,请计算它的面积和周长。

3.已知直角三角形的斜边长度为5cm,另一个直角的边长为3cm,请计算另一个直角的边长。

4.小明每年都向他的存款中存入1000元,他的存款按年同比增长5%。

请问第n年后,他的存款总额是多少?5.某市今年的人口为600万,以每年1%的速度增长。

请问经过n年后,该市的人口会达到多少?答案详解:第一部分:1.答案:B. -1 解析:-1是四个数中最小的。

2.答案:4 解析:根据勾股定理,直角三角形的斜边平方等于两直角边长度平方之和。

所以,另一个直角的边长为4。

3.答案:红色解析:扑克牌中黑桃和红桃分别为黑色和红色。

…50.答案:6 解析:根据题意,可以得到以下等式:2a - 3 = 7,解方程得到a = 5.第二部分:1.答案:42.答案:103.答案:9…20.答案:2:3第三部分:– a + b = 3 + 5 = 8– a - b = 3 - 5 = -2– a * b = 3 * 5 = 15–面积 = 长 * 宽 = 6cm * 4cm = 24cm²–周长 = 2 * (长 + 宽) = 2 * (6cm + 4cm) = 20cm1.根据勾股定理,另一个直角的边长为4cm。

2022年山东省德州市中考数学试题(解析版)

2022年山东省德州市中考数学试题(解析版)

一、选择题:本大题共12个小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对得3分,选错、不选或选出的答案超过一个均记零分 1.〔2022·德州〕2的相反数是〔 〕 A .12-B .12 C .﹣2 D .2【答案】C . 【解析】试题分析:2的相反数是﹣2,应选C . 考点:相反数.2.〔2022·德州〕以下运算错误的选项是〔 〕A .a +2a =3aB .236()a a = C .235a a a ⋅= D .632a a a ÷=【答案】D .考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.3.〔2022·德州〕2022年第一季度,我市“蓝天白云、繁星闪烁〞天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的选项是〔 〕 A .408×104 B .4.08×104 C .4.08×105 D .4.08×106 【答案】D . 【解析】试题分析:408万用科学记数法表示正确的选项是4.08×106.应选D . 考点:科学记数法—表示较大的数.4.〔2022·德州〕图中三视图对应的正三棱柱是〔 〕A .B .C .D .【答案】A . 【解析】试题分析:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A 选项正确.应选A .考点:由三视图判断几何体.5.〔2022·德州〕以下说法正确的选项是〔 〕 A .为了审核书稿中的错别字,选择抽样调查 B .为了了解春节联欢晚会的收视率,选择全面调查 C .“射击运发动射击一次,命中靶心〞是随机事件D.“经过由交通信号灯的路口,遇到红灯〞是必然事件【答案】C.考点:随机事件;全面调查与抽样调查.6.〔2022·德州〕如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,那么∠BAD的度数为〔〕A.65°B.60°C.55°D.45°【答案】A.考点:线段垂直平分线的性质.7.〔2022·德州〕化简2222a b ab bab ab a----等于〔〕A.baB.abC.﹣baD.﹣ab【答案】B.【解析】试题分析:原式=22()()a b b a bab a a b--+-=22a b bab a-+=222a b bab ab-+=2aab=ab,应选B.考点:分式的加减法.8.〔2022·德州〕某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图〔如图〕,那么参加社团活动时间的中位数所在的范围是〔〕A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定【答案】B.【解析】试题分析:100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8〔小时〕.应选B.考点:中位数;频数〔率〕分布直方图;数形结合.9.〔2022·德州〕对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换〞,以下变换中不一定是等距变换的是〔〕A.平移B.旋转C.轴对称D.位似【答案】D.考点:位似变换.10.〔2022·德州〕以下函数中,满足y 的值随x 的值增大而增大的是〔 〕 A .y =﹣2x B .y =3x ﹣1 C .1y x= D .2y x = 【答案】B . 【解析】试题分析:A .在y =﹣2x 中,k =﹣2<0,∴y 的值随x 的值增大而减小; B .在y =3x ﹣1中,k =3>0,∴y 的值随x 的值增大而增大; C .在1y x=中,k =1>0,∴y 的值随x 的值增大而减小; D .二次函数2y x =,当x <0时,y 的值随x 的值增大而减小; 当x >0时,y 的值随x 的值增大而增大. 应选B .考点:反比例函数的性质;一次函数的性质;正比例函数的性质;二次函数的性质.11.〔2022·德州〕 九章算术 是我国古代内容极为丰富的数学名著,书中有以下问题“今有勾八步,股十五步,问勾中容圆径几何〞其意思是:“今有直角三角形,勾〔短直角边〕长为8步,股〔长直角边〕长为15步,问该直角三角形能容纳的圆形〔内切圆〕直径是多少〞〔 〕A .3步B .5步C .6步D .8步 【答案】C .12.〔2022·德州〕在矩形ABCD 中,AD =2AB =4,E 是AD 的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB ,BC 〔或它们的延长线〕于点M ,N ,设∠AEM =α〔0°<α<90°〕,给出以下四个结论:①AM =CN ;②∠AME =∠BNE ;③BN ﹣AM =2;④S △EMN =22cos α. 上述结论中正确的个数是〔 〕 A .1 B .2 C .3 D .4 【答案】C . 【解析】试题分析:①如图,在矩形ABCD 中,AD =2AB ,E 是AD 的中点,作EF ⊥BC 于点F ,那么有AB =AE =EF =FC ,∵∠AEM +∠DEN =90°,∠FEN +∠DEN =90°,∴∠AEM =∠FEN ,在Rt △AME 和Rt △FNE 中,∵∠AEM =∠FEN ,AE =EF ,∠MAE =∠NFE ,∴Rt △AME ≌Rt △FNE ,∴AM =FN ,∴MB =CN .∵AM 不一定等于CN ,∴AM 不一定等于CN ,∴①错误,②由①有Rt △AME ≌Rt △FNE ,∴∠AME =∠BNE ,∴22cos α=2〔1+2tan α〕 ∴S △EMN =S 四边形ABNE ﹣S △AME ﹣S △MBN=12〔AE +BN 〕×AB ﹣12AE ×AM ﹣12BN ×BM =12〔AE +BC ﹣CN 〕×2﹣12AE ×AM ﹣12〔BC ﹣CN 〕×CN =12〔AE +BC ﹣CF +FN 〕×2﹣12AE ×AM ﹣12〔BC ﹣2+AM 〕〔2﹣AM 〕=AE +AM ﹣12AE ×AM +122AM =AE +AEtan α﹣122AE tan α+122AE 2tan α=2+2tan α﹣2tan α+22tan α =2〔1+2tan α〕 =22cos α,∴④正确.应选C .考点:全等三角形的判定与性质;旋转的性质.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每题填对得4分13.〔202233.【解析】试题分析:原式=3333⨯⨯=3.故答案为:3.考点:分母有理化.14.〔2022·德州〕正六边形的每个外角是度.【答案】60.【解析】试题分析:正六边形的一个外角度数是:360÷6=60°.故答案为:60.考点:多边形内角与外角.【答案】134.考点:根与系数的关系.16.〔2022·德州〕如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,那么图中阴影局部的面积是.【答案】326π-.【解析】试题分析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=12,在RT△AOC中,∵OA=1,OC=12,∴cos∠AOC=OCOA=12,AC=22OA OC-=32,∴∠AOC=60°,AB=2AC=3,考点:扇形面积的计算;翻折变换〔折叠问题〕.17.〔2022·德州〕如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点〔1,0〕作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l 2于点A 4,…依次进行下去,那么点A 2022的坐标为. 【答案】〔21008,21009〕. 【解析】试题分析:观察,发现规律:A 1〔1,2〕,A 2〔﹣2,2〕,A 3〔﹣2,﹣4〕,A 4〔4,﹣4〕,A 5〔4,8〕,…,∴A 2n +1〔(2)n-,2(2)n⨯-〕〔n 为自然数〕.∵2022=1008×2+1,∴A 2022的坐标为〔〔﹣2〕1008,2〔﹣2〕1008〕=〔21008,21009〕.故答案为:〔21008,21009〕. 考点:一次函数图象上点的坐标特征;规律型;一次函数的应用.三、解答题:本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤18.〔2022·德州〕解不等式组:523(1)25123x x x x +≥-⎧⎪+⎨->-⎪⎩.【答案】5425x -≤<. 考点:解一元一次不等式组.19.〔2022·德州〕在甲、乙两名同学中选拔一人参加“中华好诗词〞大赛,在相同的测试条件下,两人5次测试成绩〔单位:分〕如下: 甲:79,86,82,85,83 乙:88,79,90,81,72. 答复以下问题:〔1〕甲成绩的平均数是,乙成绩的平均数是;〔2〕经计算知2S 甲=6,2S 乙=42.你认为选拔谁参加比赛更适宜,说明理由;〔3〕如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率. 【答案】〔1〕83,82;〔2〕甲;〔3〕1225. 〔3〕列表如下:由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,∴抽到的两个人的成绩都大于80分的概率为12 25.考点:列表法与树状图法;算术平均数;方差.20.〔2022·德州〕2022年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭到达A点时,从位于地面R处雷达站测得AR的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°〔1〕求发射台与雷达站之间的距离LR;〔2〕求这枚火箭从A到B的平均速度是多少〔结果精确到0.01〕〔参考数据:son42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02〕【答案】〔1〕4.44km;〔2〕0.51km/s.【解析】试题分析:〔1〕根据题意直接利用锐角三角函数关系得出LR=AR•cos∠ARL求出答案即可;答:这枚火箭从A到B的平均速度大约是0.51km/s.考点:勾股定理的应用.〔1〕观察表中数据,x,y满足什么函数关系请求出这个函数关系式;〔2〕假设商场方案每天的销售利润为3000元,那么其单价应定为多少元【答案】〔1〕y是x的反比例函数,6000yx=;〔2〕240.【解析】试题分析:〔1〕由表中数据得出xy=6000,即可得出结果;〔2〕由题意得出方程,解方程即可,注意检验.试题解析:〔1〕由表中数据得:xy=6000,∴6000yx=,∴y是x的反比例函数,故所求函数关系式为6000yx=;〔2〕由题意得:〔x﹣120〕y=3000,把6000yx=代入得:〔x﹣120〕•6000x=3000,解得:x=240;经检验,x=240是原方程的根;答:假设商场方案每天的销售利润为3000元,那么其单价应定为240元.考点:一次函数的应用.22.〔2022·德州〕如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.〔1〕判断直线l与⊙O的位置关系,并说明理由;〔2〕假设∠ABC的平分线BF交AD于点F,求证:B E=EF;〔3〕在〔2〕的条件下,假设DE=4,DF=3,求AF的长.【答案】〔1〕直线l与⊙O相切;〔2〕证明见解析;〔3〕214.试题解析:〔1〕直线l与⊙O相切.理由:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE CE=,∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l,∴直线l与⊙O相切.〔2〕∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB,∴BE=EF.〔3〕由〔2〕得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB,∴DE BEBE AE=,即477AE=,解得;AE=494,∴AF=AE﹣EF=494﹣7=214.考点:圆的综合题.23.〔2022·德州〕我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.〔1〕如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;〔2〕如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;〔3〕假设改变〔2〕中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.〔不必证明〕【答案】〔1〕证明见解析;〔2〕四边形EFGH是菱形;〔3〕四边形EFGH是正方形.∠COD=∠CPD =90°,再根据平行线的性质即可证明. 试题解析:〔1〕证明:如图1中,连接BD . ∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD ,∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.证明:如图2中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD ,在△APC 和△BPD 中,∵AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形. 〔3〕四边形EFGH 是正方形.考点:平行四边形的判定与性质;中点四边形.24.〔2022·德州〕,m ,n 是一元二次方程2+430x x +=的两个实数根,且|m |<|n |,抛物线2y x bx c =++的图象经过点A 〔m ,0〕,B 〔0,n 〕,如下列图. 〔1〕求这个抛物线的解析式;〔2〕设〔1〕中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,试求出点C ,D 的坐标,并判断△BCD 的形状; 〔3〕点P 是直线BC 上的一个动点〔点P 不与点B 和点C 重合〕,过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P 2P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】〔1〕223y x x =--;〔2〕△BCD 是直角三角形;〔3〕S =2213(03)2213 (03)22t t t t t t t ⎧-+<<⎪⎪⎨⎪-<>⎪⎩或.【解析】试题分析:〔1〕先解一元二次方程,然后用待定系数法求出抛物线解析式;〔2〕先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论; 〔3〕先求出QF =1,再分两种情况,当点P 在点M 上方和下方,分别计算即可.试题解析:解〔1〕∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,∴QF =1.①当点P 在点M 上方时,即0<t <3时,PM =t ﹣3﹣〔223t t --〕=23t t -+,∴S =12PM ×QF =21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t >3时,考点:二次函数综合题;分类讨论.。

山东德州数学中考卷解析

山东德州数学中考卷解析

专业课原理概述部分一、选择题(每题1分,共5分)1. 在实数范围内,下列各数中,最小的数是()A. 3B. 0C. 1D. 22. 下列函数中,既是奇函数又是偶函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = 13. 下列图形中,对称轴最多的是()A. 等腰三角形B. 矩形C. 正方形D. 半圆4. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. 6C. 9D. 815. 下列命题中,真命题的是()A. 任何两个奇数之和都是偶数B. 任何两个偶数之和都是偶数C. 任何两个整数之和都是整数D. 任何两个质数之和都是质数二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 如果两个角的和为180°,那么这两个角互为补角。

()3. 一元二次方程的解一定是实数。

()4. 对角线互相垂直的四边形一定是矩形。

()5. 任意两个等边三角形都可以完全重合。

()三、填空题(每题1分,共5分)1. 下列数列中,第10项是50的等差数列的公差是_______。

2. 若平行线的斜率为2,则其倾斜角是_______度。

3. 在直角三角形中,若一个锐角是30°,则另一个锐角的度数是_______。

4. 已知一组数据为2, 4, 6, 8, 10,则这组数据的众数是_______。

5. 函数y = 2x + 1的图像是一条_______。

四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。

2. 解释什么是无理数。

3. 请写出勾股定理的内容。

4. 简述概率的基本性质。

5. 解释什么是反比例函数。

五、应用题(每题2分,共10分)1. 计算等差数列2, 5, 8, 11, 的前10项和。

2. 解方程:2x 3 = 7。

3. 在直角坐标系中,求点A(2, 3)到原点的距离。

4. 已知三角形两边分别为6cm和8cm,夹角为60°,求第三边的长度。

山东省德州市中考数学试卷解析

山东省德州市中考数学试卷解析

山东省德州市中考数学试卷一解读版一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来•每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1、(2011?德州)下列计算正确的是()12A、( - 8)- 8=0B、(-」)X ( - 2)=1C、- (- 1)=1D、—2|=- 2考点:零指数幕;绝对值;有理数的减法;有理数的乘法。

专题:计算题。

分析:利用有理数的减法、有理数的乘法法则和a0=1 (a工)、负数的绝对值等于它的相反数计算即可.解答:解:A、(- 8)- 8= - 16,此选项错误;12B、(-」)X ( - 2)=1,此选项正确;C、 - (- 1)0= - 1,此选项错误;D、|- 2|=2,此选项错误.故选B .点评:本题考查了有理数的减法、有理数的乘法法则、零指数幕、绝对值的计算•解题的关键是熟练掌握各种运算法则.2、(2011?德州)一个几何体的主视图、左视图、俯视图完全相同,它一定是()A、圆柱B、圆锥C、球体D、长方体考点:简单几何体的三视图。

专题:应用题。

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、球体的主视图、左视图、俯视图都是圆形;故本选项正确;D、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;故选C.点评:本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.3、(2011?德州)温家宝总理强调,十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求•把36 000 000用科学记数法表示应是()7 6A、3.6 X0B、3.6 106 8C、36 >10D、0.36 10 考点:科学记数法一表示较大的数。

2024届山东省德州市德城区重点中学中考数学模试卷含解析

2024届山东省德州市德城区重点中学中考数学模试卷含解析

2024届山东省德州市德城区重点中学中考数学模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体2.下列二次根式中,是最简二次根式的是( ) A .48B .22x y +C .15D .0.33.下列调查中,最适合采用全面调查(普查)方式的是( ) A .对重庆市初中学生每天阅读时间的调查 B .对端午节期间市场上粽子质量情况的调查 C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查 4.下列图形中,是正方体表面展开图的是( )A .B .C .D .5.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( ) A .31DE BC = B .DE 1BC 4= C .31AE AC = D .AE 1AC 4= 6.如图,已知AE 垂直于ABC ∠的平分线于点D ,交BC 于点E , 13CE BC =,若ABC ∆的面积为1,则CDE ∆的面积是( )A .14B .16C .18D .1107.已知一组数据2、x 、8、1、1、2的众数是2,那么这组数据的中位数是( ) A .3.1; B .4; C .2; D .6.1.8.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④9.已知a m =2,a n =3,则a 3m+2n 的值是( ) A .24B .36C .72D .610.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是( ) A .3.4×10-9mB .0.34×10-9mC .3.4×10-10mD .3.4×10-11m二、填空题(共7小题,每小题3分,满分21分) 11.已知反比例函数21k y x+=的图像经过点(2,1)-,那么k 的值是__. 12.如图放置的正方形ABCD ,正方形11DCC D ,正方形1122D C C D ,…都是边长为3的正方形,点A 在y 轴上,点12,,,B C C C ,…,都在直线33y x =上,则D 的坐标是__________,n D 的坐标是______.13.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.14.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=kx(k≠0)的图象恰好经过A′,B,则k的值为_____.15.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.16.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P是切点,AB123OP6=,=则劣弧AB 的长为.(结果保留 )17.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.三、解答题(共7小题,满分69分)18.(10分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.19.(5分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.20.(8分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.21.(10分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.22.(10分)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 23.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m 设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式;若菜园面积为384m 2,求x 的值;求菜园的最大面积.24.(14分)有这样一个问题:探究函数y =316x ﹣2x 的图象与性质. 小东根据学习函数的经验,对函数y =316x ﹣2x 的图象与性质进行了探究. 下面是小东的探究过程,请补充完整: (1)函数y =316x ﹣2x 的自变量x 的取值范围是_______; (2)如表是y 与x 的几组对应值 x …﹣4﹣3.5 ﹣3﹣2﹣11233.54…y …﹣83﹣74832 831160 ﹣116 ﹣83 m74883…则m 的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)观察图象,写出该函数的两条性质________.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】根据三视图的形状可判断几何体的形状.【题目详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.2、B【解题分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【题目详解】AB是最简二次根式,符合题意;C,不符合题意;D故选B.【题目点拨】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、D【解题分析】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.4、C【解题分析】利用正方体及其表面展开图的特点解题.【题目详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【题目点拨】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.5、D【解题分析】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.6、B【解题分析】先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积. 【题目详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵1CE BC3,ΔABC的面积为1,∴S△AEC=13S△ABC=13,又∵AD=ED,∴S△CDE=12S△AEC=16,故选B.【题目点拨】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.7、A【解题分析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.8、C【解题分析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.41.9,故选C考点:实数与数轴的关系9、C【解题分析】试题解析:∵a m =2,a n =3, ∴a 3m+2n =a 3m •a 2n =(a m )3•(a n )2 =23×32 =8×9 =1. 故选C. 10、C 【解题分析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将1.11111111134用科学记数法表示103.410-⨯,故选C . 考点:科学记数法二、填空题(共7小题,每小题3分,满分21分) 11、32k =-【解题分析】将点的坐标代入,可以得到-1=212k +,然后解方程,便可以得到k 的值. 【题目详解】 ∵反比例函数y =21k x+的图象经过点(2,-1), ∴-1=212k + ∴k =− 32;故答案为k =−3 2. 【题目点拨】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答12、322⎛⎫+ ⎪ ⎪⎝⎭33222n ⎛⎫++ ⎪ ⎪⎝⎭【解题分析】先求出OA 的长度,然后利用含30°的直角三角形的性质得到点D 的坐标,探索规律,从而得到n D 的坐标即可.【题目详解】 分别过点12,,D D D 作y 轴的垂线交y 轴于点12,,E E E ,∵点B 在3y x =上 设3()B m tan 33AOB m∴∠== ∴60AOB ∠=︒3AB = 32sin 6032ABOA ∴===︒90AOB OAB ∠+∠=︒30OAB ∴∠=︒90,90EAD OAB EAD EDA ∠+∠=︒∠+∠=︒ 30EDA OAB ∴∠=∠=︒同理,1122,n n AD E AD E AD E 都是含30°的直角三角形∵332ED AD ==,132AE AD ==322OE OA AE ∴=+=+∴33(,2)22D + 同理,点n D 的横坐标为333(1)3(1)222n n n x E D AD n n ===+=+ 纵坐标为11322(1)32(1)222n n AO AE AD n n +=+=++=++ 故点n D 的坐标为3333,22222n n ⎛⎫+++ ⎪ ⎪⎝⎭故答案为:33,222⎛⎫+ ⎪ ⎪⎝⎭;3333,22222n n ⎛⎫+++ ⎪ ⎪⎝⎭.【题目点拨】本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.13、513【解题分析】如图,有5种不同取法;故概率为 5 13. 1443【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,3,∴A′(12m,32m),∵反比例函数kyx(k≠0)的图象恰好经过点A′,B,∴12m•32m=m,∴m=433,∴k=433故答案为43 315、-1【解题分析】试题分析:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B点坐标为(t,1),则E点坐标(t-2,2),∵点B、E在反比例函数y=的图象上,∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k的几何意义.16、8π.【解题分析】试题分析:因为AB为切线,P为切点,22,636,12,260,60OP AB AP BP OP OB OP PB OP AB OB OP POB POA ︒︒∴⊥∴===∴=+=⊥=∴∠=∠= 劣弧AB 所对圆心角考点: 勾股定理;垂径定理;弧长公式.17、y=x+12【解题分析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.【题目详解】∵直线 y=x 沿y 轴向上平移1个单位长度,∴所得直线的函数关系式为:y=x+1.∴A (0,1),B (1,0),∴AB=12,过点 O 作 OF ⊥AB 于点 F ,则12AB•OF=12OA•OB , ∴OF=222OA OB AB ⋅== 2故答案为y=x+1,2【题目点拨】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k 不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.三、解答题(共7小题,满分69分)+;(2)102.18、(1)5652【解题分析】试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=3x,DH=x.531.∵CH―DH=CD3―x=10,∴x=)∵∠ADH=45°,∴AD2=5652.(2)如图,过B作BM⊥AD于M.∵∠1=75°,∠ADB=45°,∴∠DAB=30°.设MB=m,∴AB=2m,AM3,DM=m.∵AD=AM+DM,∴56523+m.∴m=52AB=2m=102.19、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解题分析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.20、(1)125°;(2)125°;(3)∠BOC=90°+12 n°.【解题分析】如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+12∠A,然后根据此结论分别解决(1)、(2)、(3).【题目详解】如图,∵BO、CO是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+12∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+12×70°=125°;(2)∠BOC=90°+12∠A=125°;(3)∠BOC=90°+12 n°.【题目点拨】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.21、解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=.【解题分析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.22、原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 【解题分析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可. 试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 考点:分式的化简求值;一元二次方程的解.23、(1)见详解;(2)x=18;(3) 416 m 2.【解题分析】(1)根据“垂直于墙的长度=2-÷总费用平行于墙的总费用垂直于可得函数解析式; (2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x 的函数解析式,配方成顶点式后利用二次函数的性质求解可得.【题目详解】(1)根据题意知,y =100002002150x -⨯=-23x +1003; (2)根据题意,得(-23x +1003)x =384, 解得x =18或x =32.∵墙的长度为24 m ,∴x =18.(3)设菜园的面积是S ,则S =(-23x +1003)x =-23x 2+1003x =-23 (x -25)2+12503. ∵-23<0,∴当x <25时,S 随x 的增大而增大. ∵x≤24,∴当x =24时,S 取得最大值,最大值为416.答:菜园的最大面积为416 m 2.【题目点拨】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.24、(1)任意实数;(2)32 ;(3)见解析;(4)①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【解题分析】(1)没有限定要求,所以x 为任意实数,(2)把x =3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【题目详解】解:(1)函数y =316x ﹣2x 的自变量x 的取值范围是任意实数; 故答案为任意实数; (2)把x =3代入y =316x ﹣2x 得,y =﹣32; 故答案为﹣32; (3)如图所示;(4)根据图象得,①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.故答案为①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【题目点拨】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.。

2021年山东省德州市中考数学试卷(解析版)

2021年山东省德州市中考数学试卷(解析版)

初中学业水平考试数学试题参考解答及评分意见一、选择题:(本大题共12小题,每小题4分,共48分)二、填空题:(本大题共6小题,每小题4分,共24分)13.14.120;15.8y x -=;16.20;17.1618.①①①. 三、解答题:(本大题共7小题,共78分)19.解:原式2124244x x x x x x x -+-⎛⎫⎛⎫=-÷⎪ ⎪--+⎝⎭⎝⎭2(1)(2)(2)4(2)(2)(2)x x x x xx x x x x ⎡⎤-+--=-÷⎢⎥---⎣⎦2224(2)(2)4x x x x x x x--+-=⋅--24(2)(2)4x x x x x--=⋅-- 2x x-=求值:略 20.解:(1)50 36%;(2)如图(3)能获奖.理由:因为本次参赛选手共50人,所以前40%的人数为5040%20⨯=(人) 由频数直方图可得84.5~99.5这一范围人数恰好88420++=人, 又8884.5>,所以能获奖.(4)设前四名获奖者分别为男1,男2,女1,女2,由题意可列树状图为:由树状图可知共有12种等可能的结果,恰好选中一男一女为主持人的结果有8种,所以P (一男一女为主持人)82123==. 答:恰好选中一男一女为主持人的概率为23. 21.解:过点B 作BE CD ⊥交CD 于点E , 由题意知,30CBE ∠=︒,60CAD ∠=︒.在Rt ACD ∆中,tan tan 60CDCAD AD∠=︒==①AD ==①BE AD ==在Rt BCE ∆中,tan tan 303CE CBE BE ∠=︒==①203CE == ①602040ED CD CE =-=-= ①40AB ED ==(米) 答;这栋楼高为40米22.证明:(1)连接OD ①AB 是O 的直径,D 是半圆AB 的中点 ①1902AOD AOB ∠=∠=︒ ①//DH AB①90ODH ∠=︒ ①OD DH ⊥ ①DH 是O 的切线(2)连接CD ①AB 是O 的直径①90ADB ∠=︒,90ACB ∠=︒ 又D 是半圆AB 的中点①AD DB = ①AD DB =①ABD ∆是等腰直角三角形 ①10AB =①10sin 10sin 45102AD ABD =∠=︒=⨯=①10AB =,6BC =①在Rt ABC ∆中8AC == ①四边形ACBD 是圆内接四边形 ①180CAD CBD ∠+∠=︒ ①180DBH CBD ∠+∠=︒ ①CAD DBH ∠=∠由(1)知90AOD ∠=︒,45OBD ∠=︒ ①45ACD ∠=︒ ①//DH AB①45BDH OBD ∠=∠=︒ ①ACD BDH ∠=∠ ①ACD BDH ∆∆∽①AC ADBD BH =BH= 解得254BH =22.解:(1)设超市B 型画笔单价a 元,则A 型画笔单价为(2)a -元,由题意列方程得,601002a a=- 解得5a =经检验,5a =是原方程的解 答:超市B 型画笔单价为5元 (2)由题意知,当小刚购买的B 型画笔支数20x ≤时,费用为0.95 4.5y x x =⨯=当小刚购买的B 型画笔支数20x >时,费用为200.95(20)0.85410y x x =⨯⨯+-⨯⨯=+所以 4.5,120410,20x x y x x ≤≤⎧=⎨+>⎩其中x 是正整数(3)当4.5270x =时,解得60x =,因为6020>,故不符合题意,舍去. 当410270x +=时,65x =,符合题意 答:小刚能购买65支B 型画笔. 24.解:(1)SAS (2)15AD <<(3)证明:延长AD 至点A ',使A D AD '= ①AD 是ABC ∆的中线①BD CD =在ADC ∆和A DB '∆中AD A D ADC A DB CD BD '=⎧⎪'∠=∠⎨⎪=⎩①ADC A DB '∆∆≌①CAD A '∠=∠,AC A B '=又①AE EF = ①CAD AFE ∠=∠①A AFE '∠=∠又①AFE BFD ∠=∠ ①BFD A '∠=∠①BF A B '=,又①A B AC '= ①BF AC =(4)证明:延长CG 至点H 使HG CG =,连接HF 、CE 、HE ①G 为FD 的中点 ①FG DG =在HGF ∆和CGD ∆中HG CG HGF CGD FG DG =⎧⎪∠=∠⎨⎪=⎩①HGF CGD ∆∆≌①HF CD =,HFG CDG ∠=∠ 在Rt BEF ∆中,①12EF BE =①1tan 2EBF ∠= 又矩形ABCD 中,12AB BC = ①12AB AD =①1tan 2ADB ∠=, ①EBF ADB ∠=∠ 又//AD BC ①ADB DBC ∠=∠①EBF ADB DBC ∠=∠=∠ 又EFD ∠为BEF ∆的外角 ①EFD EBF BEF ∠=∠+∠ 即90EFH HFD EBF ∠+∠=∠+︒ ①90ADB BDC ∠+∠=︒①EFH HFD EBF ADB BDC ∠+∠=∠+∠+∠ ①2EFH EBF ∠=∠即EFH EBC ∠=∠ 在EFH ∆和EBC ∆中12EF BE =,12HF BC = ①EF HFBE BC= 又EBC EFH ∠=∠ ①EFH EBC ∆∆∽①FEH BEC ∠=∠①HEC CEF BEF CEF ∠+∠=∠+∠ ①90HEC BEF ∠=∠=︒ ①CEH ∆是直角三角形 ①G 为CH 的中点 ①12EG CH =即EG CG =.25.解:(1)PA PM = 线段垂直平分线上的点与这条线段两个端点的距离相等(2)(3)草图见图2;形状:抛物线(4)如图1,过点P 作PE y ⊥轴于点E ,||PA PM y ==,|2|AE OE OA y =-=+,||PE x =在Rt PAE ∆中,222PA AE PE =+ 即222|||||2|y x y =++化简,得2114y x =-- 所以y 关于x 的函数解析式为2114y x =--.(5)连接OB ,OC ,易得2OB OC ==,又2BC = ①OBC ∆为等边三角形,①60BOC ∠=︒当30BDC ∠=︒时,在BDC ∆的外接圆上,弧BC 所对的圆心角为60° 其圆心在BC 的垂直平分线y 轴上, ①BDC ∆的外接圆圆心为坐标原点O , 设(,)D a b ,则2OD =,即2222a b += ① 又点D 在该抛物线上①2114b a =-- ①由①①联立解得:12b =-22b =+数形结合可得,当30BDC ∠<︒时,点D 的纵坐标D y 的取值范围为02y <-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省德州市二○一一年初中学业考试第Ⅰ卷(选择题 共24分)一、选择题: 1.下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 2.一个几何体的主视图、左视图、俯视图完全相同,它一定是 (A)圆柱(B )圆锥(C )球体 (D )长方体3.温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是(A )3.6×107 (B)3.6×106 (C )36×106 (D ) 0.36×108 4.如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于 (A )55° (B ) 60° (C )65° (D ) 70°5.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 (A )甲运动员得分的极差大于乙运动员得分的极差 (B )甲运动员得分的的中位数大于乙运动员得分的的中位数 (C )甲运动员的得分平均数大于乙运动员的得分平均数 (D )甲运动员的成绩比乙运动员的成绩稳定6.已知函数))((b x a x y --=(其中a b>)的图象如图所示,则函数b axy +=的图象可能正确的是7.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为1a ,2a ,3a ,4a ,则下列关系中正确的是l 1l 2123第6题图(A )4a >2a >1a (B )4a >3a >2a (C )1a >2a >3a (D )2a >3a >4a8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +第Ⅱ卷(非选择题 共96分)二、填空题:本大题共8小题,共32分,.9.点P (1,2)关于原点的对称点P ′的坐标为___________.10.如图,D ,E ,F 分别为△ABC 三边的中点,则图中平行四边形的个数为___________. 11.母线长为2,底面圆的半径为1的圆锥的侧面积为___________.12.当x =时,2211x x x---=_____________.13.下列命题中,其逆.命题成立的是_____.(填序号) ①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等; ③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.14.若1x ,2x 是方程210x x +-=的两个根,则2212x x +=__________.15.在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是_____________. 16.长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为_____________.三、解答题:本大题共7小题,共64分.17. (本题满分6分) 解不等式组,并把解集在数轴上表示出来 3(2)412 1.3-x x x x -≤-⎧⎪+⎨>-⎪⎩,图1图2图3……第一次操作第二次操作 A BCDEF第10题图18. (本题满分8分)2011年5月9日至14日,德州市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A 、B 、C 、D 表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题: (1) m = ,n = ,x = ,y = ; (2)在扇形图中,C 等级所对应的圆心角是 度;(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?19.(本题满分8分)如图 AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证AD =AE ;(2) 连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.20. (本题满分10分)某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B ,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A ,B 之间的距离为4米,tan 1.6α=,tan 1.2β=,试求建筑物CD 的高度.21. (本题满分10分) 为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对ACDBEF β α G部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.22. (本题满分10分) ●观察计算当5a =,3b =时, 2a b+__________. 当4a =,4b =时, 2a b+__________.●探究证明如图所示,ABC ∆为圆O 的内接三角形,AB 为直径,过C 作CD AB ⊥于D ,设A D a =,BD =b . (1)分别用,a b 表示线段OC ,CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a ,b 的式子表示). ●归纳结论根据上面的观察计算、探究证明,你能得出2a b+____________. ●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.23. (本题满分12分) 在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x xy =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由. (2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时: ①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.AP2y =K O图1AB数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分. 一、9.(-1,-2); 10.3;11.2π;12.2;13.① ④;14.3; 15.12 ; 16.35或34. 三、解答题:(本大题共7小题, 共64分) 17.(本小题满分7分)解:3(2)412 1.3-x x x x -≤-⎧⎪+⎨>-⎪⎩,解不等式①,得 x ≥1 ----------2分解不等式②,得 x <4. 所以,不等式组的解集为:1≤x <4 ---------------------------4分在数轴上表示为:--------------------------6分 18.(本题满分8分) 解:(1)20, 8, 0.4, 0.16 -----------------------------4分 (2)57.6 ----------------------------6分 (3)由上表可知达到优秀和良好的共有19+20=39人,39500=39050⨯人. -----------------------------8分 19.(本题满分8分)(1)证明:在△ACD 与△ABE 中,∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 3分∴ AD=AE . ……………………4分(2) 互相垂直 ……………………5分 在Rt △ADO 与△AEO 中,∵OA=OA ,AD=AE ,∴ △ADO ≌△AEO .……………………………………6分 ∴ ∠DAO =∠EAO .即OA 是∠BAC 的平分线. ………………………………………7分 又∵AB =AC ,∴ OA ⊥BC . ………………………………………8分 20.(本题满分10分)解:设建筑物CD 与EF 的延长线交于点G ,DG =x 米. …………1分AB ECD O① ②在Rt △DGF 中,tan DG GF α=,即tan xGF α=. …………2分 在Rt △DGE 中,tan DG GE β=,即tan xGEβ=. …………3分 ∴tan xGF α=,tan x GE β=.∴tan x EF β=tan xα-. ………5分 ∴4 1.2 1.6x x=-. ………6分 解方程得:x =19.2. ………8分 ∴ 19.2 1.220.4CD DG GC =+=+=.答:建筑物高为20.4米. ………10分 21.(本题满分10分) 解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需(x +25)天.………………………………1分 根据题意得:3030125x x +=+. ………………………………3分 方程两边同乘以x (x +25),得 30(x +25)+30x = x (x +25),即 x 2-35x -750=0. 解之,得x 1=50,x 2=-15. ………………………………5分 经检验,x 1=50,x 2=-15都是原方程的解.但x 2=-15不符合题意,应舍去. ………………………………6分 ∴ 当x =50时,x +25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.…7分 (2)此问题只要设计出符合条件的一种方案即可. 方案一:由甲工程队单独完成.………………………………8分 所需费用为:2500×50=125000(元).………………………………10分 方案二:甲乙两队合作完成. 所需费用为:(2500+2000)×30=135000(元).……………………10分 其它方案略. 22.(本题满分10分)●观察计算:2a b +2a b +…………………2分●探究证明:(1)2AB AD BD OC =+= , ∴2a bOC +=…………………3分 AB 为⊙O 直径, ∴90ACB ∠=︒.90A ACD ∠+∠=︒ ,90ACD BCD ∠+∠=︒,∴∠A =∠BCD .∴△ACD ∽△CBD . …………………4分ACDBEF β αG AB∴AD CDCD BD =. 即2CDBD ab =,∴CD =…………………5分(2)当a b =时,OC CD=, 2a b+a b ≠时,OC CD >, 2a b+6分●结论归纳: 2a b+≥ ………………7分●实践应用设长方形一边长为x 米,则另一边长为1x米,设镜框周长为l 米,则 12()l x x=+ ≥4= . ……………9分当1x x=,即1x =(米)时,镜框周长最小.此时四边形为正方形时,周长最小为4 米 (10)23.(本题满分12分)解:(1)∵⊙P 分别与两坐标轴相切,∴ P A ⊥OA ,PK ⊥OK . ∴∠P AO =∠OKP =90°. 又∵∠AOK =90°, ∴ ∠P AO =∠OKP =∠AOK =90°. ∴四边形OKP A 是矩形. 又∵OA =OK ,∴四边形OKP A 是正方形.……………………2分 (2)①连接PB ,设点P 的横坐标为x ,则其纵坐标为x32. 过点P 作PG ⊥BC 于G . ∵四边形ABCP 为菱形, ∴BC =P A =PB =PC .∴△PBC 为等边三角形.在Rt △PBG 中,∠PBG =60°,PB =P A =x , PG =x32. sin ∠PBG =PBPG,即2x x =.解之得:x =±2(负值舍去).∴ PG P A =B C=2.……………………4分易知四边形OGP A 是矩形,P A =OG =2,BG =CG =1, ∴OB =OG -BG =1,OC =OG +GC =3.∴ A (0,B (1,0) C (3,0).……………………6分 设二次函数解析式为:y =ax 2+bx +c .A P2y =K O O AP 2y =B C图2GM据题意得:0930a b c a b c c ⎧++=⎪++=⎨⎪=⎩ 解之得:a=3, b=3-, c∴二次函数关系式为:2y x =-+9分②解法一:设直线BP 的解析式为:y =ux +v ,据题意得:2u v u v +=⎧⎪⎨+=⎪⎩ 解之得:uv=-∴直线BP的解析式为:y =-.过点A 作直线AM ∥PB ,则可得直线AM的解析式为:y =+解方程组:2y y x x ⎧=+⎪⎨=+⎪⎩得:110x y =⎧⎪⎨=⎪⎩;227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+.∴0=t .∴t =- ∴直线CM的解析式为:y =-解方程组:2y y x x ⎧=-⎪⎨=+⎪⎩得:1130x y =⎧⎨=⎩ ;224x y =⎧⎪⎨=⎪⎩. 综上可知,满足条件的M 的坐标有四个,分别为:(0,(3,0),(4,(7,.…………………12分 解法二:∵12PAB PBC PABC S S S ∆∆==, ∴A (0,C (3,0)显然满足条件.延长AP 交抛物线于点M ,由抛物线与圆的轴对称性可知,PM =P A .又∵AM ∥BC , ∴12PBM PBA PABC S S S ∆∆== . ∴点M又点M 的横坐标为AM =P A +PM =2+2=4. ∴点M (4)符合要求.点(7,综上可知,满足条件的M 的坐标有四个,分别为:(0,(3,0),(4,(7,.…………………12分 解法三:延长AP 交抛物线于点M ,由抛物线与圆的轴对称性可知,PM =P A . 又∵AM ∥BC , ∴12PBM PBA PABC S S S ∆∆== .∴点M.2x x =. 解得:10x =(舍),24x =.∴点M 的坐标为(4.点(7,综上可知,满足条件的M 的坐标有四个:(0,(3,0),(4,(7,.。

相关文档
最新文档