2015年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)(定稿)
2015年全国高中数学联赛江苏赛区复赛参考答案与评分细则PDF版(一试)(定稿)
1 解:根据 an(nan-an+1)=(n+1)a2 n+1,写出 a2,a3,a4,可归纳出 an=n. 也可以变形为(an+1+an)[(n+1)an+1-nan)]=0, 1 由 an+1+an≠0,得(n+1)an+1=nan=…=a1=1,所以 an= . n 4.设以 F1(-1,0)、F2(1,0) 为焦点的椭圆的离心率为 e,以 F1 为顶点、F2 为焦点的抛物 |PF1| 线与椭圆的一个交点是 P.若 =e,则 e 的值为 |PF2| .
解:设四棱锥的底面边长为 a,则球心到底面的距离为 1 1- a2 2 = a 1+ 2 2a 2
由
,解得:a2=4 2-4,即四棱锥的底面面积为 4 2-4. 1 2 1- a 2 .
8.已知△ABC 的外心为 O,内心为 I,∠B=45° .若 OI∥BC,则 cosC 的值是 解:设△ABC 的外接圆半径 和内切圆半径分别为 R 和 r. 记 BC 的中点为 M,D 是由 I 向 BC 所作垂线的垂足. 由 OI∥BC,知 OM=ID=r.由∠BOC=2∠A,BC=BD+DC=2BM, A cos 2 r r 2sinA 得 + =2rtanA,即 = . B C B C cosA tan tan sin sin 2 2 2 2
2015 年全国高中数学联赛江苏赛区 复赛参考答案与评分细则 一
一、填空题(本题满分 64 分,每小题 8 分) 1.随机抛掷 3 颗大小、质地相同的正方体骰子.在 3 颗骰子所示数字中最小值是 3 的概率 是 .
试
4 3 解:所有骰子所示点数至少是 3 的概率为( )3,所有骰子中所示点数至少是 4 的概率为( )3. 6 6 4 3 37 所以 3 颗骰子所示数字中最小值恰为 3 的概率是( )3-( )3= . 6 6 216 2.关于 x 的方程 x2―2ax+a2―4a=0 有模为 3 的虚数根,则实数 a 的值是 .
2015年全国高中数学联赛江苏省预赛
2015年全国高中数学联赛江苏省预赛一、 填空题:本大题共10小题,每小题7分,共70分,请将答案填在答题卡的相应位置.1.已知点(4,1)P 在函数()log ()(0)a f x x b b =->的图象上,则ab 的最大值是2.函数())4f x x π=-在4324x π=处的值是 3.若不等式|1|3ax +≤的解集是{|21}x x -≤≤,则实数a 的值是4.第一支口袋里有3个白球,7个红球,15个黄球,第二只口袋里有10个白球,6个红球,9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆22221(0)x y a b a b+=>>与椭圆22221x y b c+=有相同的离心率e ,则e 的值是 6.如图,在长方体1111ABCD A BC D -中,对角线1B D 与平面11A BC 交于E 点,记四棱锥E ABCD -的体积为1V ,长方体1111ABCD A BC D -的体积为2V ,则12V V 的值是 7.若集合{31,65}A x y =与集合{5,403}B xy =(其中,)x y R ∈仅有一个公共元素,则集合A B 中所有元素之积的值是8.设向量(cos ,sin ),(sin ,cos )a b αααα==- ,向量127,,,x x x 中有3个为向量a ,其余为向量b ,向量127,,,y y y 中有2个为向量a ,其余为向量b ,则71i i i x y =⋅∑ 的可能取值中最小的是9.在33⨯的幻方中填数,使每行,每列及两条对角线上的三个数字之和都相等,如图,三个方格中的数字分别是1,2,2015,则幻方中其余6个数之和为10.在平面直角坐标系xOy 中,设D 是满足0,0,[][]19x y x y x y ≥≥+++≤的点(,)x y 形成的区域,(其中[]x 表示不超过x 的最大整数)则区域D 中整数点(指横,纵坐标均为整数的点)的个数为二、 本大题共4小题,共80分,解答应写出文字说明,证明过程或演算步骤.11(本小题满分14分)在等比数列{}n a 中,22,a q =是该数列的公比,记n S 为数列{}n a 的前n 项和,n T 为数列2{}n a 的前n项和,若22n n S T =,求公比q 的值.12(本小题满分14分)如图,在ABC ∆中,AB AC >,点,D E 分别在边,AB AC 上,且的外角平分线与ADE ∆的外接圆交于 ,A P 两点,求证:,,,A P B C 四点共圆.13(本小题满分14分)如图,在平面直角坐标系xOy 中,圆1O ,圆2O 都与直线:l y kx =及x 轴正半轴相切,若两圆的半径之积为2,两圆的一个交点为(2,2)P ,求直线l 的方程.14(本小题满分14分)将正十一边形的k个顶点染红色,其余顶点染蓝色.k 时,求顶点均为蓝色的等腰三角形的个数;(Ⅰ)当2(Ⅱ)k取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由.。
2015年全国高中数学联赛江苏赛区初赛参考答案与评分细则 (1)
=2‰ ,求 g的 值 岛 刀
解:若
若
,
g=1,则 ‰=%=2,蜣 =4,则 岛ヵ =4刀 ,马 =4刀 ,s9″ ≠2‰
g=-1,则
‰
.
=2×
(—
1)刀
,蜣
=4,则
岛 刀=0,‰
=4刀 ,岛
刀≠
2‰
.
・ … … … … …… …… … … … ¨ 5分
若 g≠ ±1,则 ‰=勿
刀2,
柙 峤狎 艹 岬
11=55个
.
・ … …… … … …… … 5分
.
=2时 ,设 其 中 /″ ,/刀 染成 红色 ,其 余染成蓝色 当斤
以
'励
为顶角顶 点的等腰 三 角形有 5个 ,以
'仞
为底角顶 点的等腰 三 角形有 10个 ;同
,/刀 为顶 点的等腰 三 角形有 3个 ,这 些等腰三角形 的顶点不 同色 ,且 共有 6+10) 时以彳 泖
⒈
3.
)⒍ 滋 +狞 ⒋ 且 夕 由题意知 ,b酞 4均 =⒈ 即 夕
L份
解
解 :有 两类情况 :同 为 自球 的概率是 ,同 为红球 的概率是 磊矮埕←亻头 岩 搌 臁 醮 ・
解
解
: :
⒐ 从而 扔 ≤ 叩
=⒋
=3=2时 ,汕 的最大值是 4. 当曰
⒉ 函数 炯
=币 顿
⒉
F篑 均 在
处 的值是
一 ⒉ =辔 =岢 =2犷¢ =雨 ⒍ 以 灭 繁 碍 畀所 爹 宀 谔=钅 =畏 ℃
若不等式 |锚 +1}≤ 3的 解集为 姒 |-2≤ y≤ 1),则 实数 ε的值是
.
2015全国高中数学联赛加试试题及答案(A卷)
n
i =1
n 个集 k
合(这里 X 表示有限集合 X 的元素个数) . 证明:不妨设 | A1 |= k .设在 A1 , A2 , , An 中与 A1 不相交的集合有 s 个,重新 记为 B1 , B2 , , Bs ,设包含 A1 的集合有 t 个,重新记为 C1 , C2 , , Ct .由已知条件,
A
三、 (本题满分 50 分) 如图,ABC 内接于圆 O ,P 为 上一点,点 K 在线段 AP 上,使得 BK 平分 ∠ABC .过 BC
K、P、C 三点的圆 Ω 与边 AC 交于点 D ,连接 BD 交圆 Ω
F K B E P
奥 林
设 A1 = {a1 , a2 , , ak } .在 A1 , A2 , , An 中除去 B1 , B2 , , Bs , C1 , C2 , , Ct 后,在剩
这里 S (m) 表示正整数 m 在二进制表示下的数码之和. 由 于 2 ( k −1) n +1 不 整 除
①
(kn)! (kn)! 等 价 于 ν2 ≤ (k − 1)n , 即 n! n!
kn −ν 2 ((kn)!) ≥ n −ν 2 (n !) , 进而由①知,本题等价于求所有正整数 k ,使得 S (kn) ≥ S (n) 对任意正整数 n 成立. 我们证明,所有符合条件的 k 为 2a (a = 0, 1, 2,) . 一方面,由于 S (2a n) = S (n) 对任意正整数 n 成立,故 k = 2a 符合条件.
2015 年全国高中数学联合竞赛加试(A 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请严格按照本评分标准的评分档次给分. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 10 分为一个档次,不要增加其他中间档次. 一、 ( 本 题 满 分 40 分 ) 设 a1 , a2 , , an (n ≥ 2) 是 实 数 , 证 明 : 可 以 选 取
2015年全国高中数学联赛试题及答案解析
r2
n
1 r2
n
,这里 r 2 3 .
y2 x2 PQ 2 1(a b 0) 与抛物线 x 2 2 py ( p 0) 有一个共同的焦点 F , 2 a b 为它们的一条公切线, P 、 Q 为切点,证明: PF QF .
10. (本小题满分 20 分) 设椭圆
2
令 m max ci ,证明: (
2i 2 n
m c2 c3 c2 n 2 a a an b1 b2 bn ) ( 1 2 )( ). 2n n n
四、 (本小题满分 50 分) n 个棋手参加象棋比赛,每两个棋手比赛一局.规定胜者得 1 分,负者得 0 分,平局各得 0.5 分.如果 赛后发现任何 m 个棋手中都有一个棋手胜了其余 m-1 个棋手, 也有一个棋手输给了其余 m-1 个棋手, 就称 此赛况具有性质 P(m) .对给定的 m(m≥4) ,求 n 的最小值 f(m) ,使得对具有性质 P(m)的任何赛况, 都有所有 n 名棋手的得分各不相同.
2.若函数 f x log a ax x
2
3.已知 0
2
,且 tan 3tan ,则 u 的最大值为________.
解:因为 0 所以 tan
2
, tan 3tan ,所以 0
5. 已知点 P (1, 2, 5) 是空间直角坐标系 O xyz 内一定点,过 P 作一平面与三坐标轴的正半轴分别交于 A, B, C 三点,则所有这样的四面体 OABC 的体积的最小值为 . x y z 解:设此平面的方程为 1 , a, b, c 0 分别是该平面在 x, y, z 轴上的截距,又点 P 在平面 ABC 内, a b c 3 1 2 5 1 10 1 1 2 5 1 1 2 5 1 2 5 ,即 ,得 VOABC abc 45 .当 , 故 1 ,由于 1 3 a b c a b c 27 abc a b c 3 a b c 6 即 (a, b, c) (3, 6,15) 时, VOABC 的最小值为 45.
2015年全国高中数学联赛试题答案
…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2
2015年全国高中数学联赛江苏赛区初赛参考答案与评分细则(定稿)
2015年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 . 解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c 2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是 .(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为 .解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0. ……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x . ……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2, ①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得 3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得 x 1+x 2=12[ k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。
2015年全国高中数学联赛试卷解析汇报
标为
3 (
,
3 )
.由对称性知,
S
8S CPG
13 84
24 .
22
22
7.设 为正实数,若存在实数 a,b( a b 2 ) ,使得 sin a sin b 2 ,则 的取
值范围为
.
答案: w
95 [,)
13 [,
.) 解 : s in a s in b 2 知 , s in a s in b 1 , 而
文档大全
实用标准文案
8.对四位数 abcd ( 1 a 9,0 b, c, d 9 ) ,若 a b, b c, c d, 则称 abcd 为 P 类数;
若 a b, b c, c d ,则称 abcd 为 Q 类数,用 N(P) 和 N(Q)分别表示 P 类数与 Q 类数的个
数,则 N(P)-N(Q) 的值为
不同的实根矛盾) . 10 分
点 F2 ( l , 0 )到直线 l: y
|k m| d
1 k2
1 |2k
1 k2
kx m 的距离为
1
1
|
(2
2k
1
21 k
1 2k
2
)
.
文档大全
实用标准文案
注意到 | k |
2
d 1 (t t2
2 ,令 t
2 3 ) 1 (t 22
1
2
1 ,则 t
k
3) . t
(1, 3) ,上式可改写为
9.(本题满分 16 分)若实数 a ,b,c 满足 2a 4b 2c ,4a 2b 4c ,求 c 的最小值. 解:将 2a, 2b ,2c 分别记为 x, y, z,则 x, y, z 0 .
2015年全国高中数学联赛江苏赛区复赛试卷及答案
2015年全国高中数学联赛江苏赛区复赛试卷一 试一、填空题(每题8分,满分64分) 1、随机抛掷3颗大小、质地相同的正方体骰子,在3颗骰子所示数字中最小值是3的概率是 。
2、关于x 的方程04222=-+-a a ax x 有模为3的虚数根,则实数a 的值是 。
3、已知正项数列{}n a 的首项为1,且对一切正整数n 都有121)1()(+++=-n n n n a n a na a ,则数列的通项公式n a = 。
4、设以)0,1(),0,1(21F F -为焦点的椭圆的离心率为e ,以1F 为顶点,2F 为焦点的抛物线与椭圆 的一个交点为P 。
若e PF PF =21,则e 的值为 。
5、设实数b a ,满足8,0≤≤b a ,且2216a b +=,则a b -的最大值与最小值之和是 。
6、函数()R x x x x f ∈+=2sin cos 2)(的值域是 。
7、正四棱锥P —ABCD 外接于一个半径为1的球面,若球心到四棱锥各个面的距离相等,则此四棱 锥的底面面积为 。
8、已知△ABC 的外心为O ,内心为I ,∠B=45°.若O I ∥BC ,则C cos 的值是 。
二、解答题(本题16分)设等比数列k a a a ,,,21 和k b b b ,,,21 ,记k n b a c n n n ,,2,1, =-=。
⑴写出一组321,,a a a 和321,,b b b ,使得321,,c c c 是公差不为0的等差数列; ⑵当4≥k 时,求证:{}n c 不可能为公差不为0的等差数列。
三、解答题(本题满分20分)在平面直角坐标系xoy 中,已知椭圆11827:22=+y x C 的右焦点为F ,过点F 的直线l 与椭圆C 交于A,B 两点。
试问在x 轴上是否存在定点P ,使得当直线l 绕点F 旋转时,都有PB PA ⋅为定值。
四、解答题(本题满分20分)设多项式c bx ax x x f +++=23)(,其中c b a ,,是实数。
2015年全国高中数学联赛一试二试试题及详细解析
一、填空题(本大题共8小题,每小题8分,共64分)1.设,a b 为不相等的实数,若二次函数2()f x x ax b =++满足()()f a f b =,则(2)f 的值是 .【答案】4【解析】由已知条件及二次函数图象的轴对称性,可得22a b a+=-,即20a b +=,所以 (2)424f a b =++=2.若实数θ满足cos tan θθ=,则41cos sin θθ+的值为 . 【答案】2【解析】由条件知,2cos sin αα=,反复利用此结论,并注意到22cos sin 1αα+=,得2242221cos sin cos sin (1sin )(1cos )2sin cos 2sin sin αααααααααα++=+=++-=+-= 3.已知复数数列{}n z 满足111,1(1,2,)n n z z z ni n +==++=,其中i 为虚数单位, n z 表示n z 的共轭复数,则2015z 的值是 .【答案】2015+1007i【解析】由已知得,对一切正整数n,有211(1)1(1)2n n n n z z n i z ni n i z i ++=+++=++++=++ 于是201511007(2)20151007z z i i =++=+ z 学科xx 网k4.在矩形ABCD 中,2,1AB AD ==,边DC 上(包括点,)D C 的动点P 与CB 延长线上(包括点)B 的动点Q 满足||||DP BQ =,则向量PA 与向量PQ 的数量积PA PQ ⋅的最小值为 .【答案】3422133(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥当t=12时,min 3()4PA PQ ⋅= 5.在正方体中随机取三条棱,它们两两异面的概率为 . 【答案】255【解析】设正方体为ABCD-EF GH ,它共有12条棱,从中任意选出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数,由于正方体的棱共确定3个互不平行的方向(即AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能,当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH.由上可知,3条棱两两异面的取法数为4×2=8,故所求的概率为8222055=. z 学科xx 网k 6.在平面直角坐标系xOy 中,点集{(,)|(|||3|6)(|3|||6)0}K x y x y x y =+-+-≤所对应的平面区域的面 积为 . 【答案】247.设ω为正实数,若存在,(2)a b a b ππ≤<≤,使得sin sin 2a b ωω+=,则实数ω的取值范围是 【答案】9513[,][,)424w ∈+∞ 【解析】由sin sin 2wa wb +=知sin sin 1wa wb ==,而[,][,2],wa wb w w ππ⊆故题目条件等价于:存在整数()k l k l <,,使得222.22w k l w ππππππ≤+<+≤ ⑴当4w ≥时,区间[,2]w w ππ的长度不小于4π,故必存在k,l 满足(1)式. 当04w <<时,注意到[,2]0,8w w πππ⊆(),故仅需考虑如下几种情况: 5)2,22i w w ππππ≤<≤(此时15,24w w ≤≥且无解;59)2,22ii w w ππππ≤<≤(此时有95;42w ≤≤913()222iii w w ππππ≤<≤,此时有13913,4424w w ≤≤≤<得.综合)()(),i ii iii (、、并注意到4w ≥亦满足条件,可知9513[,][,)424w ∈+∞. z 学科xx 网k8.对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若,,a b b c c d <><,则称abcd 为Q 类数,用()N P 与()N Q 分别表示P 类数与Q 类数的个数,则()()N P N Q -的值为【答案】285下面计算0||:A 对任一四位数00,abc A b ∈可取0,19⋅⋅⋅,,,对其中每个b , 由9b a <≤及9b c <≤知,a 和c 分别有9-b 种取法,从而992200191019||=(9)285.6b k b k ==⨯⨯-===∑∑A 因此()()285.N P N Q -=二、解答题(本大题共3个小题,共56分.解答应写出文字说明、证明过程或演算步骤.) 9. (本题满分16分)若实数,,a b c 满足242,424a b c a b c +=+=,求c 的最小值. 【解析】将2,2,2a b c 分别记为,,x y z ,则,,0x y z >由条件知,222,,x y z x y z +=+=故 2222224()2z y x z y z y z y -==-=-+ 因此,结合均值不等式可得,4223321111113(2)3222444y y y y y y y y y +=++≥⋅⋅⋅=z= 当212=y y ,即312y =时,z 的最小值为3324.此时相应的x 值为3124,符合要求. 由于2,z c=log 故c 的最小值为32235log (2)log 3.43=- 10.(本题满分20分)设1234,,,a a a a 是四个有理数,使得{|14}i j a a i j ≤<≤,31{24,2,,,1,3}28=---- 求1234a a a a +++的值.2231412113{,}{,24}{2,},82a a a a a a =--=-- z 学科xx 网k 结合1,a Q ∈只可能11.4a =±由此易知,123411,4,642a a a ==-==-,a 或者123411,4,642a a a =-==-=,a . 经检验知这两组解均满足问题的条件,故12349.4a a a ++=±+a11.(本题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2212x y +=的左,右焦点,设不经过焦点1F 的直线l 与椭圆C 交于两个不同的点,A B ,焦点2F 到直线l 的距离为d .如果直线11,,AF l BF 的斜率成等差数列,求d 的取值范围.22222=4)4(21)(22)8(21)0km k m k m ∆-+-=+->(, 即2221.(2)k m +>由直线11AF l BF 、、的斜率121211y yk x x ++、、依次成等差数列知, 12112212+2,,11y yk y kx m y kx m x x ==+=+++又,所以122112)(1))(1)2(1)(1).kx m x kx m x k x x +++++=++(( 化简并整理得,12)(2)0m k x x -++=(假如m=k ,则直线L 的方程为y=kx+k,即l 经过点11,0F (-),不符合条件.因此必有122=0x x ++,故由方程(1)及韦达定理知,z 学科xx 网k12241()2,.(3)212km x x m k k k=-+==++即 由22212321=2k m k k +>+()、()知,(),化简得221,4k k >这等价于2||2k > 反之当m,k 满足(3)及2||2k >l 必不经过点1F (否则将导致,m k =与(3)矛盾),21313()().(4)222t t t t⋅+=⋅+d= z 学科xx 网k考虑到函数13()()2f t t t=⋅+在[1,3]上单调递减,故由(4)得,(3)(1),f d f <<即(3,2)d ∈.一.(本题满分40分)设12,,,(2)n a a a n ≥是实数,证明:可以连取12,,,{1,1}n εεε∈-使得222111()()(1)()nnni i i i i i i a a n a ε===+≤+∑∑∑【证明】我们证明:[]2222111[]12()()(1)()(1)nnnni i j i n i i i j a a a n a ====++-≤+∑∑∑∑1,,[],1;[]1,,,122i i n ni i n εε=⋅⋅⋅==+⋅⋅⋅=-即对取对取符合要求,[].)x x (这里,表示实数的整数部分1事实上,()的左边为[][]222211[]1[]122(+)+()nn nni j i j nn i i j j a a a a ===+=+-∑∑∑∑[]2221[]12=2(+2)nni j n i j a a ==+∑∑)([]2221[]122[]([]))(22n ni j n i j n n a a ==+≤∑∑)+2(n-(柯西不等式)[]2221[]12++=2[](+]))([]])2222n ni j ni j n n a a n ==+-=∑∑n 1n 1)2([(利用[ z 学科xx 网k[]2221[]12()([]n ni j n i j n a a x x ==+≤≤∑∑)+(n+1)(利用)[]221n+1(1.ni i a =≤∑()),所以()得证,从而本题得证 二、(本题满分40分)设12{,,,}n S A A A =,其中12,,,n A A A 是n 个互不相同的有限集合(2)n ≥,满足对任意,i j A A S ∈,均有ij A A S ∈,若1min ||2i i nk A ≤≤=≥,证明:存在1n i i x A =∈,使得x 属于12,,,n A A A 中的至少nk个集合(这里||X 表示有限集合X 的元素个数)1121212={,}.,,k n s A A A A A A A B B B ⋅⋅⋅⋅⋅⋅⋅⋅⋅设,,在,,中除去,,,12,t C C C n s t ⋅⋅⋅--,,后,在剩下的个集合中,设包含 i k),n-s-t i a x ≤≤的集合有个(1由于剩下的个集合中1i A a 每个集合与的交非空,即包含某个,从而12+.k x x x n s t +⋅⋅⋅+≥--111max ,,i i kn s tx x x n s t k≤≤--=≥--不妨设则由上式知即在剩下的个集合中,1112(1,,),,i t n s tA C i t C C C k--⊆=⋅⋅⋅⋅⋅⋅包含a 的集合至少有个,又由于故,,都 11,a a 包含因此包含的集合个数至少为(1)+(2)n s t n s k t n s t t k k k k ---+--+=≥≥利用()nt s k≥≥利用 三、(本题满分50分)如图,ABC ∆内接于圆,O P 为BC 上一点,点K 在线段AP 上,使得BK 平分ABC ∠,过,,K P C 三点的圆Ω与边AC 交于点D ,连结BD 交圆Ω于点E ,连结PE 并延长与边AB 交于点F ,证明:2ABC FCB ∠=∠四、(本题满分50分)求具有下述性质的所有正整数k :对任意正整数(1)1,2k n n -+不整除()!!kn n . 【解析】对正整数m,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)(),(1)v m m s m =- z 学科xx 网k().s m m 这里表示正整数在二进制表示下的数码之和1)12)!)!2()(1),!!k n kn kn v k n n n -+≤-(((由于不整除等价于即22(()!)(!),1kn v kn n v n -≥-进而由()知,本题等价于 ≥求所有正整数k,使得s(kn)s(n)对任意正整数n 成立.(0,1,2,).a a =⋅⋅⋅我们证明,所有符号条件的k 为2(2)()a S n S n n =一方面,由于对任意正整数成立,故2.a k =符合条件 22,0,1.a k k q a q =⋅≥另一方面,若不是的方幂,设是大于的奇数 )().)=2)(),a n S kn S n S kn S qn S qn <=下面构造一个正整数,使得(因为(( ,)().mq m S m S q<因此问题等价于我们选取的一个倍数使得( z 学科xx 网k212102,u u u u q q --<<由于故正整数的二进制表示中的最高次幂小于,由此2121(01),22t tu u lu ju i j i j t q qαα++--≤<≤-⋅⋅易知,对任意整数,数与的二进制表示中没有相同的项.210,20,1,,1)1tu lu t l t qαα+->⋅=⋅⋅⋅-又因为故(的二进制表示中均不包含,故(0,1,2,).a a =⋅⋅⋅综合上述的两个方面可知,所求的k 为2 z 学科xx 网k。
2015年全国高中数学联合竞赛加试解答(B卷)
A
I
D C
O
E
F
三、 (本题满分 50 分) 证明: 存在无穷多个正整数组 (a, b, c) (a, b, c > 2015) ,
c ab + 1 的特殊情况,此时 c | ab + 1 成立. 证明:考虑=பைடு நூலகம்
由 a | bc − 1 知, a | b(ab + 1) − 1 ,故
A
圆.过点 C 作 BD 的平行线,与 AD 的延长线交于点 E . 2 求证: CD = BD ⋅ CE . 证明:连接 BI , CI .设 I , B, C , D 四点在圆 O 上,延长 DE 交圆 O 于 F ,连接 FB, FC . 180° − ∠BDC = ∠BFC . 因为 BD∥CE , 所以 ∠DCE = 又 由于 ∠CDE = ∠CDF = ∠CBF , 所以 BFC ∽ DCE ,从而 DC BF . = CE FC
n m 中任取 m 2
下面来求坏排列的个数. 设 P 是坏排列全体,Q 是在 1, 2, , 项组成的单调递增数列的全体. 对于 P 中的任意一个排列 a1 , a2 , , am ,定义
a1 1 a2 2 a m , , , m f (a1 , a2 , , am ) . 2 2 2
因 为 ak ≤ n, k ≤ m , 故 由 条 件 ( 1 ) 可 知 , 所 有 的
ak + k 均属于集合 2
n + m ak + k 1, 2, , .再由条件(2)可知, (k = 1, 2, , m) 单调递增.故如 2 2
2015全国高中数学联赛江苏预赛试题及答案
2015年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 . 解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c 2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c 2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是 .(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为 .解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n )1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0. ……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t 2=11-14=43,直线l :y =43x . ……………………………… 20分14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2, ①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得 3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得 x 1+x 2=12[ k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。
2015年全国高中数学联赛试题及答案详解(A卷)
.
答案: 2015 1007i .
解:由已知得,对一切正整数 n ,有
zn2 zn1 1n 1i zn 1 ni 1n 1i zn 2 i , 于是 z2015 z1 10072 i 2015 1007i .
4. 在矩形 ABCD 中, AB 2, AD 1 ,边 DC 上(包含点 D 、 C )的动点 P 与 CB 延 长线上(包含点 B )的动点 Q 满足 DP BQ ,则向量 PA 与向量 PQ 的数量积 PA PQ 的
K1 、 K2 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积 S .
由于直线 CD 的方程为 x 3y 6 ,直线 GH 的方程为 3x y 6 ,故它们的交点 P 的
坐标为
3 2
,
3 2
.由对称性知,
S
8SCPG
8
1 4 2
3 2
解:由条件知,点 F1 、 F2 的坐标分别为 (1, 0) 和 (1, 0) .
设直线 l 的方程为 y kx m ,点 A 、 B 的坐标分别为 (x1, y1) 和 (x2, y2 ) ,则 x1, x2 满 足方程 x2 (kx m)2 1,即
2
(2k 2 1)x2 4kmx (2m2 2) 0 .
应于图中的 OCD 及其内部.由对称性知, K1 对应的 区域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 (x, y) 3x y 6 0 ,则 K2 对
应的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知, K 所对应的平面区域是被
2015年全国高中数学联赛试卷解析汇报
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
2015年全国高中数学联赛试卷解析汇报汇报
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q 满足条件BQ DP =,则PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t P Q t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2s in s in =+b a ωω知,1s in s in ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
2015年全国高中数学联赛江苏赛区初赛试卷(含答案)
2015年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是 . 解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b)24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是 .解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是 . 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是 .解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x2a2+y2b2=1(a >b >0)与椭圆x2b2+y2c2=1有相同的离心率e ,则e 的值是 .解:若c >b ,则c2a2=c2-b2c2,得a =b ,矛盾,因此c <b ,且有c2a2=b2-c2b2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V1V2的值是 .(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V1V2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则错误!x i y i 的可能取值中最小的为 . 解:因为a ·a =b ·b =1,a ·b =0,所以错误!x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为 . 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为 . 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q2×(1-q 2n )1-q 2. ……………………………… 15分由S 2n =2T n ,则4q(1+q)=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0. ……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m)2+(2-mt)2=(mt)2,(2-n)2+(2-nt)2=(nt)2,即⎩⎨⎧m2-(4+4t)m +8=0,n2-(4+4t)n +8=0,……………… 8分所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x . ……………………………… 20分14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k(k -1)2条,两端点染蓝色的有(11-k)(10-k)2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k(k -1)2, ①3x 2+x 4=3×(11-k)(10-k)2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得 3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得 x 1+x 2=12[ k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。
2015年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)(定稿)
2015 年全国高中数学联赛江苏赛区复赛参考答案与评分标准加 试一、(本题满分 40 分)如图,E 、F 分别是△ABC ,△ACD 的内心,AC 平分∠BAD ,AC 2=AB ·AD ,延长 EC 交 △CDF 的外接圆于点 K ,延长 FC 交△BCE 的外接圆于点 R .若 RK ∥EF ,求证:点 A 是△BCD 的外心.RK 证明:如图,连接 ER ,FK .因为∠BAC =∠CAD ,AC 2=AB ·AD , 所以△ABC ∽△ADC ,∠ABC =∠ACD .又∠EBC =1∠ABC ,∠ACF 1ACD ,2 所以∠EBC =∠ACF .=2∠ 由∠EBC =∠ERC 得,∠ERC =∠ACF ,所以 ER ∥AC . K同理 FK ∥AC ,于是 ER ∥FK . ………………………… 20 又因为 RK ∥EF ,所以四边形 EFKR 为平行四边形,从而 ER =FK . 因为 ER ∥AC ,所以∠REC =∠ECA =∠ECB . 又因为∠EBC =∠ERC ,EC =EC , 所以△BEC ≌△ECR ,从而 BC =ER . 同理,CD =FK ,所以 BC =CD .AC AD CD由AB =AC =BC =1,得△ABC ≌△ADC ,于是 AB =AC =AD ,即 A 为△BCD 外接圆的外心. ..................................... 40 分≤ n +23( 3 )33求所有的正整数 n ,使得对于任意正实数 a 、b 、c 满足 a +b +c =1,有 abc (a n +b n +c n ) 1. 3解:(1)当 n ≥3 时,取 a 2 b =c 1=3, =6, 则 abc (a n +b n +c n ) 1 (2n -1 11 1 > .所以 n ≥3 不满足题意. 3n +3 +2n +2n3n +2………………………… 10 分(2) 当 n =1 时,abc (a +b +c )=abc ≤ a +b +c 3≤ 1,所以n =1 时,满足题意.………………………… 20 分(3) 当 n =2 时,原不等式也成立.令 x =ab +bc +ca ,则 a 2+b 2+c 2=1-2x , 由(ab +bc +ca )2≥3abc (a +b +c ),得3abc ≤x 2. 于是,abc (a 2+b 2+c 2)≤1x 2(1-2x ). 因此 0<x 1 1 2 -2x ) 1x +x +1-2x 3 1<2,从而3x (1 ≤3×( 3) =34. 即 abc (a 2+b 2+c 2) 1 2 -2x ) 1 ………………………… 40 分 ≤3x (1 ≤34.= )设n 为正整数,求满足以下条件的三元正整数组〈a,b,c〉的个数:(1)ab=n;(2)1≤c≤b;(3)a、b、c 的最大公约数为1.解:用(a,b,c)表示a、b、c 的最大公约数.令S n={〈a,b,c〉| a、b、c 为正整数,ab=n,1≤c≤b,(a,b,c)=1},记S n中元素的个数为f(n) (n∈N*).显然f(1)=1.①如果n=pα,其中p 为素数,α≥1.设〈a,b,c〉∈S n,若b=1,则a=pα,c=1;若b=p t,1≤t≤α-1,则a=pα-t,(c,p)=1,1≤c≤b;若b=pα,则a=1,1≤c≤b.因此,f(pα)=1 α-1t+pα=pα-1+pα.(这里φ(x)为Euler 函数).+∑φ(p )t=1……………………………… 20 分②下证:如果m,n 为互素的正整数,那么f(mn)=f(m)·f(n).首先,对每个〈a,b,c〉∈S mn.由于ab=mn.令b1=(b,n),b2=(b,m),那么(b1,b2)=1,再令a1=(a,n),a2=(a,m),那么(a1,a2)=1,而且a1b1=n,a2b2=m.因为1=(a,b,c)=(a1a2,b1b2,c)=((a1a2,b1b2),c)=((a1,a2)·(b1,b2),c).那么(a1,b1,c)=1,(a2,b2,c)=1,令c i≡c(mod b i),1≤c i≤b i,i=1,2.那么(a1,b1,c1)=1,(a2,b2,c2)=1,因此,〈a1,b1,c1〉∈S n,〈a2,b2,c2〉∈S m.……………………………… 30 分其次,若〈a1,b1,c1〉∈S n,〈a2,b2,c2〉∈S m.令a=a1a2,b=b1b2.由于(m,n)=1,从而(b1,b2)=1.⎧c≡c1 (mod b1)由中国剩余定理,存在唯一的整数c,1≤c≤b,满足⎨.⎩c≡c2 (mod b2)……………………………… 40 分显然(a1,b1,c)=(a1,b1,c1)=1,(a2,b2,c)=(a2,b2,c2)=1,从而(a,b,c)=((a,b),c)=((a1,b1)(a2,b2),c)=(a1,b1,c) (a2,b2,c)=1.因此,〈a,b,c〉∈S mn.所以,f(mn)=f(m)·f(n).利用①②可知,f(n)=nΠ(1+1 ). .................................. 50 分p|np设 a 、b 、c 、d 、e 为正实数,且 a 2+b 2+c 2+d 2+e 2=2.若 5 个正三角形的面积分别为 a 2, b 2,c 2,d 2,e 2.求证:这五个三角形中存在四个能覆盖面积为 1 的正三角形 ABC . 证明:不妨设 a ≥b ≥c ≥d ≥e >0.若 a ≥1,则面积为 a 2 的三角形可覆盖△ABC . ..................... 10 分若 a <1,则必有 b +c >1,这是因为当 c 1 b ≥c ,则 b +c >1;当 c 1>2时,由于 又 a <1,则 b 2=2-a 2-c 2-d 2-e 2>1-3c 2≥(1-c )2,≤2时,所以 b +c >1,从而 a +c >1,a +b >1. .......................... 20 分用面积为 a 2,b 2,c 2 的三个三角形覆盖的△ABC ,使得每个三角形都分别有一个顶点与△ABC 的一个顶点重合,且有两条边在△ABC 的两条边上.于是,这三个三角形两两相交.若这三个三角形能覆盖△ABC ,则结论成立.否则有(a +b -1)+(b +c -1)+(c +a -1)<1,得 2-a -b -c >0.……………………………… 30 分令中间不能被 a 2,b 2,c 2 的三个三角形所覆盖的正三角形面积为 f 2, 则 f 2=1-(a 2+b 2+c 2)+(a +b -1)2+(b +c -1)2+(c +a -1)2=(2-a -b -c )2,得 f =2-a -b -c . .............................................. 40 分下证:d ≥f .若 d 1 1 1>2,由 a ≥b ≥c ≥d ≥2,则 f =2-a -b -c <2,从而 d >f .若 d 1 2 2 2 2 2 2≤2,由 a 、b 、c <1,有 d ≥2d ≥d +e =2-a -b -c >2-a -b -c =f . 所以,面积为 d 2 的正三角形可以覆盖△ABC 不能被面积 a 2,b 2,c 2 覆盖的部分.……………………………… 50 分。
2015年全国高中数学联赛试卷解析汇报
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q 满足条件BQ DP =,则PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t P Q t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2s in s in =+b a ωω知,1s in s in ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015 年全国高中数学联赛江苏赛区
复赛参考答案与评分标准
加 试
一、(本题满分 40 分)
如图,E 、F 分别是△ABC ,△ACD 的内心,AC 平分∠BAD ,AC 2=AB ·AD ,延长 EC 交 △CDF 的外接圆于点 K ,延长 FC 交△BCE 的外接圆于点 R .若 RK ∥EF ,求证:点 A 是△BCD 的外心.
R
K 证明:如图,连接 ER ,FK .
因为∠BAC =∠CAD ,AC 2=AB ·AD , 所以△ABC ∽△ADC ,∠ABC =∠ACD .
又∠EBC =1∠ABC ,∠ACF 1
ACD ,
2 所以∠EBC =∠ACF .
=2∠ 由∠EBC =∠ERC 得,∠ERC =∠ACF ,
所以 ER ∥AC . K
同理 FK ∥AC ,
于是 ER ∥FK . ………………………… 20 又因为 RK ∥EF ,
所以四边形 EFKR 为平行四边形,从而 ER =FK . 因为 ER ∥AC ,所以∠REC =∠ECA =∠ECB . 又因为∠EBC =∠ERC ,EC =EC , 所以△BEC ≌△ECR ,从而 BC =ER . 同理,CD =FK ,所以 BC =CD .
AC AD CD
由AB =AC =BC =1,得△ABC ≌△ADC ,于是 AB =AC =AD ,
即 A 为△BCD 外接圆的外心. ..................................... 40 分
≤ n +2
3
( 3 )
33
求所有的正整数 n ,使得对于任意正实数 a 、b 、c 满足 a +b +c =1,有 abc (a n +b n +c n ) 1
. 3
解:(1)当 n ≥3 时,取 a 2 b =c 1
=3, =6, 则 abc (a n +b n +c n ) 1 (2n -1 1
1 1 > .所以 n ≥3 不满足题意. 3n +3 +2n +2
n
3n +2
………………………… 10 分
(2) 当 n =1 时,
abc (a +b +c )=abc ≤ a +b +c 3≤ 1
,所以
n =1 时,满足题意.
………………………… 20 分
(3) 当 n =2 时,原不等式也成立.
令 x =ab +bc +ca ,则 a 2+b 2+c 2=1-2x , 由(ab +bc +ca )2≥3abc (a +b +c ),得
3abc ≤x 2. 于是,abc (a 2+b 2+c 2)≤1x 2(1-2x ). 因此 0<x 1 1 2 -2x ) 1
x +x +1-2x 3 1
<2,从而3x (1 ≤3×( 3
) =34. 即 abc (a 2+b 2+c 2) 1 2 -2x ) 1 ………………………… 40 分 ≤3x (1 ≤34.
= )
设n 为正整数,求满足以下条件的三元正整数组〈a,b,c〉的个数:(1)ab=n;(2)1≤c≤b;(3)a、b、c 的最大公约数为1.
解:用(a,b,c)表示a、b、c 的最大公约数.
令S n={〈a,b,c〉| a、b、c 为正整数,ab=n,1≤c≤b,(a,b,c)=1},
记S n中元素的个数为f(n) (n∈N*).显然f(1)=1.
①如果n=pα,其中p 为素数,α≥1.设〈a,b,c〉∈S n,
若b=1,则a=pα,c=1;
若b=p t,1≤t≤α-1,则a=pα-t,(c,p)=1,1≤c≤b;若b=pα,则a=1,1≤c≤b.因此,f(pα)=1 α-1t+pα=pα-1+pα.(这里φ(x)为Euler 函数).
+∑φ(p )
t=1
……………………………… 20 分
②下证:如果m,n 为互素的正整数,那么f(mn)=
f(m)·f(n).首先,对每个〈a,b,c〉∈S mn.由于ab=mn.
令b1=(b,n),b2=(b,m),那么(b1,b2)=1,
再令a1=(a,n),a2=(a,m),那么(a1,a2)=1,而且a1b1=n,a2b2=m.
因为1=(a,b,c)=(a1a2,b1b2,c)=((a1a2,b1b2),c)=((a1,a2)·(b1,b2),
c).那么(a1,b1,c)=1,(a2,b2,c)=1,令c i≡c(mod b i),1≤c i≤b i,i=1,
2.
那么(a1,b1,c1)=1,(a2,b2,c2)=1,因此,〈a1,b1,c1〉∈S n,〈a2,b2,c2〉∈S m.
……………………………… 30 分其次,若〈a1,b1,c1〉∈S n,〈a2,b2,c2〉∈S m.
令a=a1a2,b=b1b2.由于(m,n)=1,从而(b1,b2)=1.
⎧c≡c1 (mod b1)
由中国剩余定理,存在唯一的整数c,1≤c≤b,满足⎨.
⎩c≡c2 (mod b2)
……………………………… 40 分显然(a1,b1,c)=(a1,b1,c1)=1,(a2,b2,c)=(a2,b2,c2)=1,
从而(a,b,c)=((a,b),c)=((a1,b1)(a2,b2),c)=(a1,b1,c) (a2,b2,c)=
1.因此,〈a,b,c〉∈S mn.
所以,f(mn)=f(m)·f(n).
利用①②可知,f(n)=nΠ(1+1 ). .................................. 50 分
p|n
p
设 a 、b 、c 、d 、e 为正实数,且 a 2+b 2+c 2+d 2+e 2=2.若 5 个正三角形的面积分别为 a 2, b 2,c 2,d 2,e 2.求证:这五个三角形中存在四个能覆盖面积为 1 的正三角形 ABC . 证明:不妨设 a ≥b ≥c ≥d ≥e >0.
若 a ≥1,则面积为 a 2 的三角形可覆盖△ABC . ..................... 10 分
若 a <1,则必有 b +c >1,这是因为当 c 1 b ≥c ,则 b +c >1;当 c 1
>2时,由于 又 a <1,则 b 2=2-a 2-c 2-d 2-e 2>1-3c 2≥(1-c )2,
≤2时,
所以 b +c >1,从而 a +c >1,a +b >1. .......................... 20 分
用面积为 a 2,b 2,c 2 的三个三角形覆盖的△ABC ,使得每个三角形都分别有一个顶点与△ABC 的一个顶点重合,且有两条边在△ABC 的两条边上.于是,这三个三角形两两相交.
若这三个三角形能覆盖△ABC ,则结论成立.否则有
(a +b -1)+(b +c -1)+(c +a -1)<1,得 2-a -b -c >0.
……………………………… 30 分
令中间不能被 a 2,b 2,c 2 的三个三角形所覆盖的正三角形面积为 f 2, 则 f 2=1-(a 2+b 2+c 2)+(a +b -1)2+(b +c -1)2+(c +a -1)2
=(2-a -b -c )2,
得 f =2-a -b -c . .............................................. 40 分
下证:d ≥f .
若 d 1 1 1
>2,由 a ≥b ≥c ≥d ≥2,则 f =2-a -b -c <2,从而 d >f .
若 d 1 2 2 2 2 2 2
≤2,由 a 、b 、c <1,有 d ≥2d ≥d +e =2-a -b -c >2-a -b -c =f . 所以,面积为 d 2 的正三角形可以覆盖△ABC 不能被面积 a 2,b 2,c 2 覆盖的部分.
……………………………… 50 分。