2008-2011福建高考数学(理科)填空题解析

合集下载

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

aaaabbbbOOOO(A) (B) (C)(D)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果函数a bx ax y ++=2的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区 域(不包含边界)为( )2.抛物线2ax y =的准线方程是y=2,则a 的值为 ( )A .81B .-81 C .8D .-8 3.已知==-∈x x x 2tan ,54cos ),0,2(则π( )A .247 B .-247 C .724 D .-7244.设函数,1)(.0,,0,12)(021>⎪⎩⎪⎨⎧>≤-=-x f x x x x f x 若则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪ (0,+∞)D .(-∞,-1)∪(1,+∞) 5.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足),,0[),||||(+∞∈++=λλAC AC AB AB OA OP 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 6.函数),1(,11ln +∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xxB .),0(,11+∞∈-+=x e e y xxC .)0,(,11-∞∈+-=x e e y x x D .)0,(,11-∞∈-+=x e e y x x7.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为 ( )A .33aB .43aC .63aD .123a8.设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))(,(00x f x P 处切线的倾斜角的取值范 围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )A .[a1,0] B .]21,0[aC .|]2|,0[abD .|]21|,0[ab -9.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|=( )A .1B .43C .21D .8310.已知双曲线中心在原点且一个焦点为F (7,0)直线y=x -1与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( )A .14322=-yxB .13422=-yxC .12522=-yxD .15222=-yx11.已知长方形四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 0沿与AB夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).设P 4的坐标为(x 4,0).若1< x 4<2,则tan θ的取值范围是 ( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( )A .3πB .4πC . 33πD .6π第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,把答案填在题中横线上. 13.92)21(xx -展开式中x 9的系数是14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 , , 辆15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种 且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种.(以数字作答)16.对于四面体ABCD ,给出下列四个命题 ①若AB=AC ,BD=CD ,则BC ⊥AD. ②若AB=CD ,AC=BD ,则BC ⊥AD.③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD. ④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD.其中真命题的序号是 .(写出所有真命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001)18.(本小题满分12分)已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 上R 上的偶函数,其图象关于点)0,43(πM 对称,且在区间]2,0[π上是单调函数,求ϕ和ω的值.19.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的垂心G . (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离.D E KBC1A 1B 1AFC G20.(本小题满分12分)已知常数0>a ,向量).0,1(),,0(==i a c 经过原点O 以i c λ+为方向向量的直线与经过定点A (0,a )以c i λ2-为方向向量的直线相交于点P ,其中.R ∈λ试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.21.(本小题满分12分) 已知n a ,0>为正整数.(Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意22.(本小题满分14分)设,0>a 如图,已知直线ax y l =:及曲线C :2x y =,C 上的点Q 1的横坐标为1a(a a <<10).从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点1+n P ,再从点1+n P 作直线平行于y 轴,交曲线C 于点Q n+1.Q n (n=1,2,3,…)的横坐标构成数列{}.n a (Ⅰ)试求n n a a 与1+的关系,并求{}n a 的通项公式;(Ⅱ)当21,11≤=a a 时,证明∑=++<-nk k k k a a a 121321)(;(Ⅲ)当a =1时,证明∑-++<-nk k k k a a a 121.31)(Oc ylxQ 1Q 2Q 3 1a 2a 3a r 2 r 12003年普通高等学校招生全国统一考试数 学 试 题(江苏卷)答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.C 2.B 3.D 4.D 5.B 6.B 7.C 8.B 9.C 10.D 11.C 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.221-14.6,30,10 15.120 16.①④三、解答题17.本小题要主考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分. 解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C.(Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P 因为事件A ,B ,C 相互独立,恰有一件不合格的概率为 176.095.095.010.005.095.090.02)()()()()()()()()()()()(=⨯⨯+⨯⨯⨯=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P 答:恰有一件不合格的概率为0.176. 解法一:至少有两件不合格的概率为)()()()(C B A P C B A P C B A P C B A P ⋅⋅+⋅⋅+⋅⋅+⋅⋅012.005.010.095.005.010.0205.090.022=⨯+⨯⨯⨯+⨯=解法二:三件产品都合格的概率为812.095.090.0)()()()(2=⨯=⋅⋅=⋅⋅C P B P A P C B A P由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1=+-=+⋅⋅-C B A P 答:至少有两件不合的概率为0.012.(18)在小题主要考查三角函数的图象和单调性、奇偶性等基本知识,以及分析问题和推理计算能力,满12分分解:由),()(,)(x f x f x f =-得是偶函数.0cos ,0,sin cos sin cos ),sin()sin(=>=-+=+-ϕωωϕωϕϕωϕω所以得且都成立对任意所以即x xx x x.232,;]2,0[)2sin()(,310,0;]2,0[)22sin()(,2,1;]2,0[)232sin()(,32,0.,2,1,0),12(32,,3,2,1,243,0,043cos ,43cos )243sin()43(,43cos)243sin()43(,0),43()43(,)(.2,0==+==≥+===+====+=∴=+=>=∴=+=∴=+==+-=-=≤≤ωωππωωππωππωωππωπωωπωππωππωππωπππππϕπϕ或综合得所以上不是单调函数在时当上是减函数在时当上是减函数在时当得又得取得对称的图象关于点由所以解得依题设x x f k x x f k x x f k k k k k f f x x f x f M x f19.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力. 满分12分.解法一:(Ⅰ)解:连结BG ,则BG 是BE 在面ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2.3,1,31.,,,,,,112211所成的角是与平面于是中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EBEG EBG EB B A AB CD FC EG ED FD EF FD FD FG EFEFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)连结A 1D ,有E AA D AED A V V 11--=,,,F AB EF EF ED AB ED =⋂⊥⊥又AB A ED 1平面⊥∴, 设A 1到平面AED 的距离为h ,则ED S h S AB A AED ⋅=⋅∆∆1.2621,24121111=⋅==⋅==∆∆∆ED AE S AB A A S S AED AB A AE A 又.362.36226221的距离为到平面即AED A h =⨯=∴解法二:(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平ABD 所成的角. 如图所示建立坐标系,坐标原点为O ,设CA=2a , 则A(2a ,0,0),B(0,2a ,0),D(0,0,1).37arccos.372131323/14||||cos ).31,34,32(),2,2,2(.1.03232).1,2,0(),32,3,3().31,32,32(),1,,(),2,0,2(1111121所成角是与平面解得ABD B A BG BA BG BA BG A BG BA a a BD GE a BD a a CE a a G a a E a A =⋅=⋅=∠∴-=-=∴==+-=⋅∴-==∴(Ⅱ)由(Ⅰ)有A(2,0,0)A 1(2,0,2),E(1,1,1),D(0,0,1).,,0)0,1,1()2,0,0(,0)0,1,1()1,1,1(11AED ED E AA ED ED AA ED AE 平面又平面⊂⊥∴=--⋅=⋅=--⋅-=⋅(Ⅰ)当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (Ⅱ)当220<<a 时,方程①表示椭圆,焦点)2,2121()2,2121(22a a F a a E ---和(Ⅲ)当,22时>a 方程①也表示椭圆,焦点))21(21,0())21(21,0(22---+a a F a a E 和为合乎题意的两个定点.(21)本小题主要考查导数、不等式证明等知识,考查综合运用所数学知识解决问题的能力,满分12分.证明:(Ⅰ)因为nk kn nC a x 0)(=∑=-kkn x a --)(,所以1)(--=-='∑k kn nk k nxa kCy nk n 0=∑=.)()(1111------=-n k kn k n a x n xa C(Ⅱ)对函数nnn a x x x f )()(--=求导数:nnnnnnn n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nxx f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1nn n n n a n n n a n n n n f --+>-+-++=+'+).()1())()(1(1n f n a n n n n n n n'+=--+>-即对任意).()1()1(,1n f n n f a n n n '+>+'≥+22.本小题主要考查二次函数、数列、不等式等基础知识,综合运用数学知识分析问题和解决问题的能力,满分14分. (Ⅰ)解:∵).1,1(),,1(),,(422122121n n n n n n n n n a a a aQ a a aP a a Q ⋅⋅++-∴,121n n a aa ⋅=+ ∴2222122221)1()1(11-+--=⋅=⋅=n n n n a aa a a a aa ==⋅=-++-+3222222122321)1()1()1(n n a aa a a=1111221211221221)()1()1(---+-==-+++n n n n n a a a a a a a , ∴.)(121-=n aa a a n(Ⅱ)证明:由a =1知,21n n a a =+ ∵,211≤a ∴.161,4132≤≤a a∵当.161,132≤≤≥+a a k k 时∴∑∑=++=++<-=-≤-nk n k knk k k ka a a aa a a1111121.321)(161)(161)( (Ⅲ)证明:由(Ⅰ)知,当a =1时,,121-=n a a n因此∑∑∑=++-==++-≤-=-+-nk i i i i nk k k k a a a aaaa a a nk kk 1221111121212121121)()()(11∑-=-⋅-<-=1213131211312111)1()1(ni i aa a a aa a =.31121151<++aa a。

【历年高考经典】2008年理科数学试题及答案-福建卷

【历年高考经典】2008年理科数学试题及答案-福建卷

绝密 ★ 启用前2008年普通高等学校招生全国统一考试(福建理科)数 学(理工农医类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A.16625B.96625C. 192625D.256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为A.3B.552 C.5D.5(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足 x-y+1≤0,则yx 的取值范围是 x>0A. (0,1)B. (0,1)C. (1,+∞)D. [1, +∞](9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y = -f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c , 若(a 2+c 2-b 2)tan B ,则角B 的值为A. 6π B.3π C.6π或56πD.3π或23π(11)双曲线12222=-b y a x (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ), y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ (θ为参数)没有公共点,则实数m 的取值范围是 .(15)若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 .(16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b , ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b Q =+∈也是数域.有下列命题:①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. (18)(本小题满分12分)如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱P A =PD ,底面ABCD为直角梯形,其中BC ∥AD , AB ⊥AD , AD =2AB =2BC =2, O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 求出AQQD的值;若不存在,请说明理由. (19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n , S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1, a )内的极值. (20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

硕士研究生入学考试的数学试题以考察数学基本概念、基本方法和基本原理为主,并在这个基础上加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象力和综合所学知识解决实际问题能力的考察。

具体遵循下列四原则:1.科学性与公平性原则作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免对于广大考生来说过于专业和抽象难懂的内容。

2.覆盖全面的原则考研数学试题的内容要求涵盖所有考纲要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。

3.控制难易度的原则考研数学试题要求以中等偏上的题为主,考试及格率控制在30%-40%。

4.控制题量的原则:考研数学试题的题量控制在20--23道之间(一般6道填空题,8道选择题,9道解答题),保证考生基本能答完试题并有时间检查。

硕士研究生入学考试的数学试题从知识内容来说有覆盖面较大的特点,从题型与难度来说有以下特点:1.填空题(现在一份试卷中有6个填空题、共占24分)填空题实际上相当于一些简单的计算题,用于考察“三基”及数学性质,主要是为扩大试卷的覆盖面而设计的,一般以中等偏下难度的试题为主。

2.选择题(现在一份试卷中有8个选择题、共占32分)选择题大致可分为三类:计算性的,概念性的与推理性的。

主要是考查考生对数学概念、数学性质的理解,并能进行简单的推理、判定和比较。

3.证明题以数学一为例,整张试卷中,一般有两道证明题:高等数学与线性代数各一题。

高等数学证明题的范围大致有:极限存在性、不等式,零点的存在性、定积分的不等式、级数敛、散性的论证。

线性代数有矩阵可逆与否的讨论、向量组线性无关与相关的论证、线性方程组无解、唯一解、无穷多解的论证,矩阵可否对角化的论证,矩阵正定的论证,关于秩的大小并用它来论证有关问题等等,可以说线代的证明题的范围比较广。

至于概率统计证明题通常集中于随机变量的不相关和独立性,估计的无偏性等。

此类题难度一般中等偏上,无过难的题。

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科)2690

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科)2690

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科) 测试题 2019.91,函数的图象按向量 平移后,得到函数的图象,则m 的值可以为A. B. C.- D.-2,在△ABC 中,角ABC 的对边分别为a 、b 、c,若,则角B 的值为A. B. C.或 D. 或3,双曲线(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B. C.(3,+)D.4,已知函数的导函数的图象如下图,那么图象可能是5,已知向量m=(sinA,cosA),n=,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数的值域.6,如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱PA=PD,底面ABCD 为直角梯形,其中BC ∥AD,AB ⊥AD,AD=2AB=2BC=2,O 为AD 中点.()cos ()f x x x R =∈(,0)m '()y f x =-2πππ2π222(a +c -b 6π3π6π56π3π22221x y a b -=(]1,3∞[)3,+∞(),()y f x y g x ==(),()y f x y g x ==1)-()cos 24cos sin ()f x x A x x R =+∈(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD?若存在,求出 的值;若不存在,请说明理由.7,已知函数.(Ⅰ)设是正数组成的数列,前n 项和为,其中.若点(n ∈N*)在函数的图象上,求证:点也在的图象上;(Ⅱ)求函数在区间内的极值.8,某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。

2011年高考福建省数学试卷-理科(含详细答案)

2011年高考福建省数学试卷-理科(含详细答案)

2011年普通高等学校招生全国统一考试(福建卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则( ). A .i S ∈ B .2i S ∈ C . 3i S ∈ D .2iS ∈ 【解】2i 1S =-∈.故选B .2.若a ∈R ,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件【解】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A .3.若tan 3α=,则2sin 2cos αα的值等于( ). A .2 B .3 C .4 D .6【解】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D . 4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ).A .14 B .13 C .12 D .23【解】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 5.()1e2xx dx +⎰等于( ). A .1 B .e 1- C .e D .e 1+ 【解】()()11200e2e e 1e 0e xx x dx x+=+=+--=⎰.故选C .6.()512x +的展开式中,2x 的系数等于( ).A .80B .40C .20D .10DCBEA【解】15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2P F F F P F =,则曲线Γ的离心率等于( ). A .12或32 B .23或2 C .12或2 D .23或32【解】因为1122::4:3:2PF FF PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩所以12c e a ==.若Γ为双曲线,则12122422,23,PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩所以32c e a ==.故选A .8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域2,1,2x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[]1,0-B .[]0,1C .[]0,2D .[]1,2- 【解】设()()1,1,z OA OM x y x y =⋅=-⋅=-+. 作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C . 9.对于函数()sin f x a x bx c =++(其中,,a b ∈R ,c ∈Z ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ).A .4和6B .3和1C .2和4D .1和2【解】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数. 故选D .10.已知函数()e x f x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:①ΔABC 一定是钝角三角形 ②ΔABC 可能是直角三角形 ③ΔABC 可能是等腰三角形 ④ΔABC 不可能是等腰三角形 其中,正确的判断是( ).A .①,③B .①,④C .②,③D .②,④【解】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b eee+++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ② 如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作B F C P ⊥交CP 于F .因为()()22A C A C D f x f x y y y ++==,2ACB x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确;所以结论①,④正确.故选B.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.运行如图所示的程序,输出的结果是_______.【解】3.123a =+=.所以输出的结果是3. 12.三棱锥P ABC -中,PA ABC ⊥底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______.【解2Δ112333ABC V S PA =⋅=⨯=.13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.【解】35. 所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 14.如图,ΔABC 中,2AB AC ==,BC =点D 在BC 边上,45ADC ∠=︒,则AD 的长度等于______.【解解法1.由余弦定理222cos 22AC BC AB C AC BC +-===⋅⋅, 所以30C =︒.再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD = 解法2.作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC的中点,因为BC =EC.BCAED BCA于是1AE =,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD = 15.设V 是全体平面向量构成的集合,若映射:f V →R 满足:对任意向量()11,a x y V =∈,()22,b x y V =∈,以及任意λ∈R ,均有()()()()()11f a b f a f b +-=+-λλλλ则称映射f 具有性质P .先给出如下映射:① ()()11:,,,f V f m x y m x y V→=-=∈R ;② ()()222:,,,f V f m x y m x y V →=+=∈R ; ③ ()()33:,1,,f V f m x y m x y V →=++=∈R .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号).【解】①,③.设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立, 所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①,③.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若函数()sin(2)(0,0)f x A x A =+><<ϕϕπ在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解】(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =. 又因为函数()f x 在6x π=处取得最大值,则sin 216⎛⎫⨯+= ⎪⎝⎭πϕ,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin 26f x x ⎛⎫=+⎪⎝⎭π. 17.(本小题满分13分)已知直线:l y x m =+,m ∈R .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【解】(Ⅰ)解法1.由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则r MP ===,所以,所求的圆的方程为()2228x y -+=. 解法2.设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:lyx m '=--.设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-.所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =.所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。

2008年高考福建卷(理科数学)

2008年高考福建卷(理科数学)

2008年普通高等学校招生全国统一考试理科数学(福建卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为A .1B .2C .1或2D .1-2.设集合{0}1xA x x =<-,{03}B x x =<<,那么“m A ∈”是“m B ∈”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.设{}n a 是公比为正数的等比数列,若17a =,516a =,则数列{}n a 前7项的和为A .63B .64C .127D .128 4.函数3()sin 1f x x x =++(x R ∈),若()2f a =,则()f a -的值为A .3B .0C .1-D .2-5.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A .16625B .96625C .192625D .2566256.在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D 所成角的正弦值为A .3 B .5 C .5 D .57.某班级要从4名男生2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A .14B .24C .28D .488.若实数x 、y 满足100x y x -+≤⎧⎨>⎩,则y x 的取值范围是A .(0,1)B .(0,1]C .(1,)+∞D .[1,)+∞ 9.函数()cos f x x =(x R ∈)的图象按向量(,0)v m =平移后,得到函数()y f x '=-的图象,则m 的值可以为A .2πB .πC .π-D .2π-10.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .若222()tan a c b B +-=,则角B 的值为A .6πB .3πC .6π或56πD .3π或23π11.双曲线22221x y a b-=(0a >,0b >)的两个焦点为1F ,2F ,若P 为其上一点,且122PF PF =,则双曲线离心率的取值范围为A .(1,3)B .(1,3]C .(3,)+∞D .[3,)+∞ 12.已知函数()y f x =,()y g x =的导函数的图象如下图,那么()y f x =,()y g x =的图象可能是二、填空题:本大题共4小题,每小题4分,共16分.13.若55432543210(2)x a x a x a x a x a x a -=+++++,则12345a a a a a ++++= .(用数字作答)14.若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数)没有公共点,则实数m的取值范围是 .15.若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 .)))16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有a b +、a b -,ab 、aP b∈(除数0b ≠),则称P 是一个数域.例如有理数集Q是数域;数集{,}F a b Q =+∈也是数域.有下列命题:①整数集是数域; ②若有理数集Q M ⊆,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知向量(sin ,cos )m A A =,(3,1)n =-,1m n ⋅=,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin f x x A x =+(x R ∈)的值域. 18.(本小题满分12分)如图,在四棱锥P ABCD -中,则面PAD ⊥底面ABCD ,侧棱PA PD ==面ABCD 为直角梯形,其中BC ∥AD ,AB AD ⊥,222AD AB BC ===,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q,使得它到平面PCD 的距离为2?若存在,求出AQQD的值;若不存在,请说明理由.19.(本小题满分12分)已知函数321()23f x x x =+-.(Ⅰ)设{}n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(,2)n n n a a a ++-ABDO P(n N *∈)在函数()y f x '=的图象上,求证:点(,)n n S 也在()y f x '=的图象上; (Ⅱ)求函数()f x 在区间(1,)a a -内的极值. 20.(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ. 21.(本小题满分12分)如图、椭圆22221x y a b+=(0a b >>)的一个焦点是(1,0)F ,O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.22.(本小题满分14分) 已知函数()ln(1)f x x x =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)记()f x 在区间[0,]π(n N *∈)上的最小值为n b ,令ln(1)n n a n b =+-; (Ⅲ)如果对一切n<恒成立,求实数c 的取值范围;(Ⅳ)求证:13132112242421n na a a a a a a a a a a a -+++<L L L.。

2011年福建高考理科数学试卷及答案解析(Word)

2011年福建高考理科数学试卷及答案解析(Word)

2011年普通高等学校招生全国统一考试【福建卷】(理科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(每小题5分,共60分)【2011⋅福建理,1】1.i 是虚数单位,若集合=S {1,0,1}-,则( ). A .i S ∈ B .2i S ∈ C .3i S ∈ D .2S i∈ 【答案】B .【解析】2i 1S =-∈.故选B .【2011⋅福建理,2】2.若a R ∈,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件 【答案】A .【解析】 当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A . 【2011⋅福建理,3】3.若tan 3α=,则2sin 2cos aα的值等于( ). A .2 B .3 C .4 D .6 【答案】D . 【解析】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D .【2011⋅福建理,4】4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于( ). A .14 B .13 C .12 D .23【答案】C . 【解析】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 【2011⋅福建理,5】5.1⎰()2xe x dx +等于( ).A .1B .1e -C .eD .1e + 【答案】C . 【解析】()()11200210xxex dx e xe e e +=+=+--=⎰.故选C .【2011⋅福建理,6】6.()312x + 的展开式中,2x 的系数等于( ). A .80 B .40 C .20 D .10 【答案】B .【解析】 15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .【2011⋅福建理,7】7.设圆锥曲线Γ的两个焦点分别为1F ,2F ,若曲线Γ上存在点P 满足1PF :12F F :2PF 4:3:2=,则曲线Γ的离心率等于( ).A .1322或B .223或C .122或 D .2332或 【答案】A .【解析】 因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=. 若Γ为椭圆,则1212242623PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩ , 所以12c e a ==.若Γ为双曲线,则1212242223PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩ , 所以32c e a ==.故选A .【2011⋅福建理,8】8.已知O 是坐标原点,点(1,1)A -若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[-1.0]B .[0.1]C .[0.2]D .[-1.2] 【答案】C .【解析】 设()()1,1,z OA OM x y x y =⋅=-⋅=-+. 作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C . 解析二:【2011⋅福建理,9】9.对于函数()sin f x a x bx c =++(其中,,a b R ∈,c Z ∈),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ). A .4和6 B ..3和1 C .2和4 D .1和2 【答案】D .【解析】 ()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数.故选D .【2011⋅福建理,10】10.已知函数()x f x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是 ( ).A .①③B .①④C .②③D .②④ 【答案】B .【解析】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b eee+++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立, 于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ②如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作BF C P ⊥交CP 于F . 因为()()22A C A C D f x f x y y y ++==,2ACB x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确; 所以结论①,④正确.故选B.第Ⅱ卷(非选择题 共90分)二、填空题:(每小题4分,共16分)【2011⋅福建理,11】11.运行如图所示的程序,输出的结果是 .【答案】 3.【解析】 123a =+=.所以输出的结果是3.【2011⋅福建理,12】12.三棱锥P ABC -中,PA ⊥底面ABC ,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于 .【解析】2Δ112333ABC V S PA =⋅=⨯=D BCA【2011⋅福建理,13】13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于 . 【答案】35. 【解析】所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 【2011⋅福建理,14】14.如图,ABC ∆中,2AB AC ==,BC =D 在BC 边上,ADC ∠=45,则AD 的长度等于 .【解析】解法1:由余弦定理222cos 2AC BC AB C AC BC +-===⋅⋅所以30C =︒. 再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD 解法2:作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC 的中点,因为BC =EC =.于是1AE ==,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD =.【2011⋅福建理,15】15.设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量1122(,),(,),a x y V b x y V =∈=∈以及任意R λ∈,均有((1))()(1)(),f a b f a f b λλλλ=-=+-则称映射f 具有性质P .先给出如下映射:① 1:f V R → ()1f m x y =- (),m x y V =∈;② 2:f V R → ()2f m x y =+ (),m x y V =∈; ③ 3:f V R → ()31f m x y =++ (),m x y V =∈.其中,具有性质P 的映射的序号为 .(写出所有具有性质P 的映射的序号) 【答案】①③.【解析】设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立, 所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①、③.三、解答题:(本大题共6小题,共80分)【2011⋅福建理,16】16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和S 3=133. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解析】本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想.(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.又因为函数()f x 在6x π=处取得最大值,则sin(2)16πϕ⨯+=,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin(2)6f x x π=+.【2011⋅福建理,17】17.(本小题满分13分)已知直线:l y x m =+,m R ∈.(Ⅰ) 若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (Ⅱ) 若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由. 【解析】本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想. (Ⅰ)解法1:由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则r MP ===,所以,所求的圆的方程为()2228x y -+=. 解法2:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--. 设直线l '与抛物线214y x =相切的切点为()00,x y ,由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-. 所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =. 所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.【2011⋅福建理,18】18.(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ) 求a 的值;(Ⅱ) 若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.【解析】本小题主要考查函数、导数等基础知识,考查运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归与转化思想. (Ⅰ)因为5x =时,11y =,由函数式210(6)3ay x x =+-- 得 11102a=+,所以2a =. (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<. 每日销售该商品所获得的利润为()()()222310(6)2103(6)3f x x x x x x ⎡⎤=-+-=+--⎢⎥-⎣⎦,()36x <<.()()()()()()21062363064f x x x x x x ⎡⎤'=-+--=--⎣⎦.于是,当x 变化时,()f x ',()f x 的变化情况如下表:x ()3,44()4,6()f x '+-()f x单调递增极大值42单调递减由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点. 所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【2011⋅福建理,19】19.(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,……,8,其中5X ≥为标准A ,3X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准.(Ⅰ) 已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数字期望16EX =,求,a b 的值;(Ⅱ) 为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望. (Ⅲ) 在(Ⅰ)、(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学; (2)“性价比”大的产品更具可购买性.【解析】本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想.(Ⅰ)因为16EX =,所以50.46780a b ⨯+++⨯=,即67 3.2a b +=,又0.40.11a b +++=,所以0.5a b +=, 解方程组67 3.2,0.5a b a b +=⎧⎨+=⎩解得0.3a =,0.2b =.(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 4 5 6 7 8 f0.30.20.20.10.10.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:2X3 4 5 6 7 8 P0.30.20.20.10.10.1所以230.340.250.260.170.180.1 4.8EX =⨯+⨯+⨯+⨯+⨯+⨯=. (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=, 甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>. 所以,乙厂的产品更具可购买性.【2011⋅福建理,20】20.(本小题满分14分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,四边形ABCD 中,AB AD ⊥,4AB AD +=,CD CDA ∠=45.(Ⅰ) 求证:平面PAB ⊥平面PAD ;=.(Ⅱ) 设AB AP()i若直线PB与平面PCD所成的角为︒30,求线段AB的长;()ii在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.【解析】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.【解析二】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.(Ⅰ)因为PA ABCD ⊥底面,AB ABCD ⊂底面,所以PA AB ⊥.又AB AD ⊥,PA AD A =∩,所以P AB AD ⊥面平,又P AB AB ⊂面平,P PAB AD ⊥面平面平.(Ⅱ)以A 为坐标原点,建立如图乙的空间直角坐 标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ⊥.在Rt ΔCDE中,sin 4512DE CD =︒==. 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =-,()0,4,PD t t =--,(i )设平面PCD 的法向量为(),,n x y z =,由n CD ⊥,n PD ⊥得0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩()0,40,x y t y tz -+=⎧⎨--=⎩取x t =,则y t =,4z t =-.(),,4n t t t =-, 又(),0,PB t t =-,由直线PB 与平面PCD 所成的角为︒30,得21cos 602n PB n PBt ⋅︒===⋅.解得45t =或4t =(因为40,4AD t t =-><,故舍去) 所以45AB =. (ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,设()0,,0G m ,()04m t ≤≤-. 则()1,3,0GC t m =--,()0,4,0GD t m =--,()0,,GP m t =-,则由GC GD =得()()22134t m t m +--=--,即3t m =-,①由GP GD =得()2224t m m t --=+, ②从①,②消去t ,并化简得2340m m -+= ③ 方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.解法2:假设线段AD 上存在一个点G ,使得点G 到 点,,,P B C D 的距离都相等,由GC GD =得45GCD GDC ∠=∠=︒, 从而90CGD ∠=︒,则CG GD ⊥,设AB λ=,则由4AB AD +=,得4AD λ=-,3AG AD GD λ=-=-.在Rt ΔABG 中,1GB ===>与1GB GD ==矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.【2011⋅福建理,21】21.(本小题满分14分)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换设矩阵 00a M b ⎛⎫= ⎪⎝⎭(其中0a >,0b >).(I )若2a =,3b =,求矩阵M 的逆矩阵1M -;(II )若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线C ':2214x y +=,求,a b 的值.【解析】本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)设矩阵M 的逆矩阵11122x y Mx y -⎛⎫= ⎪⎝⎭,则11001MM -⎛⎫= ⎪⎝⎭, 因为2003M ⎛⎫=⎪⎝⎭,所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以121x =,120y =,230x =,231y =,即112x =,10y =,20x =.213y =, 所以1102103M -⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭. (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y '''.则00a x x b y y '⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭,即,ax x by y'=⎧⎨'=⎩, 又点(),P x y '''在曲线22:14x C y '+=上,所以2214x y ''+=, 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =, 又因为0,0a b >>,则2,1a b ==.(2)(本小题满分7分)选修4-4:坐标系与参数方程在直接坐标系xOy 中,直线l 的方程为40x y -+=,曲线C的参数方程为sin x ay a⎧=⎪⎨=⎪⎩.(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π,判断点P 与直线l 的位置关系;(II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解析】本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)点P 的极坐标为(4,)2π,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,因为0440-+=,所以点P 在直线l 上.(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q的坐标可设为,sin )Q αα. 点Q 到直线l 的距离为2cos()4)6d παπα++===++.所以当cos()16πα+=-时,d(3)(本小题满分7分)选修4-5:不等式选讲 设不等式211x -<的解集为M . (I )求集合M ;(II )若,a b M ∈,试比较1ab +与a b +的大小.【解析】本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)由|21|1x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(Ⅱ)因为,a b M ∈,则01a <<,01b <<,(1)()(1)(1)0ab a b a b +-+=-->,所以1ab a b +>+.。

2011年高考福建省数学试卷-理科(含详细答案)

2011年高考福建省数学试卷-理科(含详细答案)

2011年普通高等学校招生全国统一考试(福建卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则( ).A .i S ∈B .2i S ∈C . 3i S ∈D .2iS ∈ 【解】2i 1S =-∈.故选B .2.若a ∈R ,则2a =是()()120a a --=的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件 C .既不充分又不必要条件【解】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A . 3.若tan 3α=,则2sin 2cos αα的值等于( ). A .2 B .3 C .4 D .6【解】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D . 4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ).A .14B .13C .12D .23 【解】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 5.()10e 2x x dx +⎰等于( ).A .1B .e 1-C .eD .e 1+【解】()()112000e 2e e 1e 0e x x x dx x +=+=+--=⎰.故选C . 6.()512x +的展开式中,2x 的系数等于( ).A .80B .40C .20D .10D C BE A【解】15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2PF F F PF =,则曲线Γ的离心率等于( ). A .12或32 B .23或2 C .12或2 D .23或32【解】因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩所以12c e a ==. 若Γ为双曲线,则12122422,23,PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩所以32c e a ==.故选A . 8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域2,1,2x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[]1,0-B .[]0,1C .[]0,2D .[]1,2-【解】设()()1,1,z OA OM x y x y =⋅=-⋅=-+.作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C .9.对于函数()sin f x a x bx c =++(其中,,a b ∈R ,c ∈Z ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能是( ).A .4和6B .3和1C .2和4D .1和2【解】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数.故选D .10.已知函数()e x f x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:①ΔABC 一定是钝角三角形②ΔABC 可能是直角三角形③ΔABC 可能是等腰三角形④ΔABC 不可能是等腰三角形其中,正确的判断是( ).A .①,③B .①,④C .②,③D .②,④【解】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=-- 22a b a be e e ++=-2220a ba b a b e e e +++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭, ()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ① 设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<.由()f x 是R 上的增函数,则A B C y y y <<, ②如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作B FC P ⊥交CP 于F . 因为()()22A C A CD f x f x y y y ++==,2AC B x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部, 因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确;所以结论①,④正确.故选B.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.运行如图所示的程序,输出的结果是_______.【解】3.123a =+=.所以输出的结果是3.12.三棱锥P ABC -中,PA ABC ⊥底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______.【解2Δ1123334ABC V S PA =⋅=⨯⨯= 13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.【解】35. 所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 14.如图,ΔABC 中,2AB AC ==,BC =点D 在BC边上,45ADC ∠=︒,则AD 的长度等于______.【解.解法1.由余弦定理222cos 22AC BC AB C AC BC +-===⋅⋅, 所以30C =︒.再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD = 解法2.作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC的中点,因为BC =,则EC =.D B C AE D B CA于是1AE ==,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD =15.设V 是全体平面向量构成的集合,若映射:f V →R 满足:对任意向量()11,a x y V =∈,()22,b x y V =∈,以及任意λ∈R ,均有()()()()()11f a b f a f b +-=+-λλλλ则称映射f 具有性质P .先给出如下映射:① ()()11:,,,f V f m x y m x y V→=-=∈R ; ② ()()222:,,,f V f m x y m x y V →=+=∈R ;③ ()()33:,1,,f V f m x y m x y V →=++=∈R .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号).【解】①,③.设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ. 对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ, ()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②, ()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ ()()()22221122121121x y x y x x =++-+-+-λλλλλλ, ()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立,所以②不是具有性质P 的映射;对于③, ()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ, ()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①,③.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若函数()sin(2)(0,0)f x A x A =+><<ϕϕπ在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解】(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =. 所以11211333n n n n a a q ---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.又因为函数()f x 在6x π=处取得最大值, 则sin 216⎛⎫⨯+= ⎪⎝⎭πϕ,因为0<<ϕπ,所以6=πϕ. 函数()f x 的解析式为()3sin 26f x x ⎛⎫=+ ⎪⎝⎭π. 17.(本小题满分13分)已知直线:l y x m =+,m ∈R .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【解】(Ⅰ)解法1.由题意,点P 的坐标为()0,m .因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=, 则r MP === 所以,所求的圆的方程为()2228x y -+=.解法2.设圆的方程为()2222x y r -+=, 因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩ 所以,所求的圆的方程为()2228x y -+=. (Ⅱ)解法1.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=,2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:ly xm '=--.设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-. 所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =. 所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3a y x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。

2008年普通高等学校招生全国统一考试理科数学试题及答案-福建卷

2008年普通高等学校招生全国统一考试理科数学试题及答案-福建卷

绝密 ★ 启用前2008年普通高等学校招生全国统一考试(福建理科)数 学(理工农医类)第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A.16625B.96625C. 192625D.256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为A.B.552 C.D.(7)某班级要从4名男生.2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x .y 满足 x-y+1≤0,则yx的取值范围是 x>0A. (0,1)B. (0,1)C. (1,+∞)D. [1, +∞](9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y = -f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角A.B.C 的对边分别为a.b.c , 若(a 2+c 2-b 2)tan B ,则角B 的值为 A. 6π B.3π C.6π或56πD.3π或23π(11)双曲线12222=-b y a x (a >0,b >0)的两个焦点为F 1.F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ), y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ (θ为参数)没有公共点,则实数m 的取值范围是 .(15)若三棱锥的三个侧面两两垂直,则其外接球的表面积是 .(16)设P 是一个数集,且至少含有两个数,若对任意a .b ∈P ,都有a +b .a -b , ab .ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b Q =+∈也是数域.有下列命题:①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. (18)(本小题满分12分)如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱P A =PD 底面ABCD为直角梯形,其中BC ∥AD , AB ⊥AD , AD =2AB =2BC =2, O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 求出AQQD的值;若不存在,请说明理由. (19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n , S n )也在y =f ′(x )的图象上; (Ⅱ)求函数f (x )在区间(a -1, a )内的极值. (20)(本小题满分12分)某项考试按科目A .科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

(1)人只有在劳动中,才能创造价值。
(2)在劳动中创造的财富越多,他为社会和人民的贡献越大,自身价值就越大,证明价值。
(3)在社会主义社会,劳动是创造人类美好生活,促进人的自由全面发展的重要手段。
(4)努力奉献的人是幸福的。积极投身于为人民服务的实践,是实现人生价值的必由之路,也是拥有幸福生活的根本途径。
2、求真务实,正确认识和把握国情,是建设中国特色社会主义事业必须解决的首要问题。
3、一切从实际出发、实事求是与解放思想、与时俱进是统一的。面对21世纪更加激烈的国际竞争,面对日新月异的科技发展和社会变化,我们必须坚持一切从实际出发、实事求是,不断解放思想,开拓创新,与时俱进。
考点3、4、知道规律是可以认识和利用的;理解人们在尊重客观的基础上,能够发挥主观能动性,自觉地把握客观规律
2、对人生道路的选择具有重要的导向作用。
(1)为什么价值观对人生道路的选择具有导向作用?
人的一切行为都是在思想意识的支配下发生的……
(2)正确价值观对人生的意义:是人生的重要向导,是我们能否拥有美好生活的航标。寻找正确的价值观就是寻找人生的真谛。
(3)现阶段,我们倡导的是社会主义的集体主义价值观。
考点2、理解整体与部分的关系
1、唯物辩证法认为,整体和部分在事物发展过程中的地位、作用和功能各不相同。整体居于主导地位,统率着部分,整体具有部分所不具备的功能;部分在事物的存在和发展过程中处于被支配的地位,部分服从和服务于整体。联系:(1)、整体与部分不可分割,整体离不开部分,部分也离不开整体;(2)、二者相互影响,部分的功能及其变化会影响整体的功能,关键部分的功能及其变化甚至对整体的功能起决定作用;整体的功能状态及其变化也会影响到部分。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

2008年普通高等学校招生全国统一考试(福建卷)数学(理科)考试说明:本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

(1)答题前,考生先将自己的姓名、准考证号码填写清楚。

(2)请按照题号顺序在各题目的答题区内作答,在草稿纸和试卷上答题视为无效。

(3)保持卡面清洁,不得折叠、不要弄皱,不准使用涂改液和刮纸刀等用具。

第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数121,2z i z bi =+=+,若12z z 为纯虚数,则实数b = A .2- B .2 C .1- D . 12. 设,a b 都是非零向量,若函数()()()f x x x =+- a b a b (x ∈R )是偶函数,则必有 A .⊥a bB .a ∥bC .||||=a bD .||||≠a b3. 3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 4.设函数()f x ={}{}(),()A x y f x B y y f x ====则右图中阴影部分表示的集合为A .[0,3]B .(0,3)C .(5,0][3,4)-D .[5,0)(3,4]- 5. 把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个 单位,那么所得图象的一条对称轴方程为 A .2π-=x B .4π-=x C .8π=x D .4π=x6. 已知,a b 为两条不同的直线,,αβ为两个不同的平面,且a α⊥,b β⊥,则下列命题中的假命题是A .若a ∥b ,则α∥βB .若αβ⊥,则a b ⊥C .若,a b 相交,则,αβ相交D .若,αβ相交,则,a b 相交7.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”. 现任意找两人玩这个游戏,则他们“心有灵犀”的概率为A .19B .29 C .718 D .498.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=A .0B .100-C .100D .10200第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9.某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师 人.10.圆柱形容器的内壁底半径是10cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm ,则这个铁球的表面积为 2cm .11.右图所示的算法流程图中,若3a =,则输出的T 值为 ;若输出的120T =,则a 的值为 *()a ∈N .12.已知()f x 是R 上的奇函数,2)1(=f ,且对任意x ∈R 都有(6)()(3)f x f x f +=+成立,则(3)f = ; =)2009(f .(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)(坐标系与参数方程选做题)若直线340x y m ++=与曲线 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是____________.14.(不等式选讲选做题)设关于x 的不等式1x x a +-<(a ∈R ). 若2a =,则不等式的解集为 ;若不等式的解集为∅,则a 的取值范围是 . 15.(几何证明选讲选做题)如图,圆M 与圆N 交于A B 、两点,以A 为切点作两圆的切线分别交圆M 和圆N 于C D 、两点, 延长DB 交圆M 于点E ,延长CB 交圆N 于点F ,已知5BC =,10BD =,则AB =;CFDE= .三、解答题:本大题共6小题,共80分. 解答应写出详细文字说明,证明过程或演算步骤. 16.(本小题满分12分)设向量(sin ,cos )x x =a,(sin )x x =b ,x ∈R ,函数()(2)f x =+a ab . (1) 求函数()f x 的最大值与单调递增区间;(2) 求使不等式()2f x '≥成立的x 的取值集合.17.(本小题满分12分)某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版(1) 从这50名教师中随机选出2名,求2人所使用版本相同的概率;(2) 若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机 变量ξ的分布列和数学期望.18.(本小题满分14分)四棱锥P ABCD -中,PA ⊥底面ABCD ,且12PA AB AD CD ===,//AB CD , 90ADC ∠=︒.(1) 在侧棱PC 上是否存在一点Q ,使//BQ 平面PAD ?证明你的结论;(2) 求证:平面PBC ⊥平面PCD ;(3) 求平面PAD 与平面PBC 所成锐二面角的余弦值.19.(本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4,公差为2的等差 数列.(1) 求证:数列{}n a 是等比数列; (2) 若()n n n b a f a =⋅,当k ={}n b 的前n 项和n S ;(3) 若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由.20.(本小题满分14分)如图,设F 是椭圆22221,(0)x y a b a b+=>>的左焦点,直线l 为对应的准线,直线l 与x轴交于P 点,A PB CDQMN 为椭圆的长轴,已知8MN =,且||2||PM MF =.(1) 求椭圆的标准方程;(2) 求证:对于任意的割线PAB ,恒有AFM BFN ∠=∠; (3) 求三角形△ABF 面积的最大值.21.(本小题满分14分)设函数()ln f x x x =(0)x >.(1) 求函数()f x 的最小值;(2) 设2()()F x ax f x '=+()a ∈R ,讨论函数()F x 的单调性;(3) 斜率为k 的直线与曲线()y f x '=交于11(,)A x y 、22(,)B x y 12()x x <两点,求证:121x x k<<.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

2008年福建省高考数学试卷(理科)

2008年福建省高考数学试卷(理科)

2008年福建省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)若复数(a2﹣3a+2)+(a﹣1)i是纯虚数,则实数a的值为()A.1 B.2 C.1或2 D.﹣12.(5分)设集合A={x|<0},B={x|0<x<3},那么“m∈A”是“m∈B”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)设{a n}是公比为正数的等比数列,若a1=1,a5=16,则数列{a n}的前7项的和为()A.63 B.64 C.127 D.1284.(5分)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣25.(5分)某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.6.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为()A.B.C.D.7.(5分)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.14 B.24 C.28 D.488.(5分)若实数x、y满足则的取值范围是()A.(0,2) B.(0,2) C.(2,+∞)D.[,+∞)9.(5分)函数f(x)=cosx(x∈R)的图象按向量(m,0)平移后,得到函数y=﹣f′(x)的图象,则m的值可以为()A.B.πC.﹣πD.﹣10.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.C.或D.或11.(5分)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3) B.(1,3]C.(3,+∞)D.[3,+∞]12.(5分)已知函数y=f′(x),y=g′(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()A.B. C.D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)若(x﹣2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=.(用数字作答)14.(4分)若直线3x+4y+m=0与曲线(θ为参数)没有公共点,则实数m的取值范围是.15.(4分)若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是.16.(4分)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a ﹣b,ab、∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集也是数域.有下列命题:①整数集是数域;②若有理数集Q⊆M,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是.(把你认为正确的命题的序号填填上)三、解答题(共6小题,满分74分)17.(12分)已知向量,,且•.(Ⅰ)求tanA的值;(Ⅱ)求函数的值域.18.(12分)如图,在四棱锥P﹣ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.19.(12分)已知函数.(Ⅰ)设{a n}是正数组成的数列,前n项和为S n,其中a1=3.若点(a n,a n+12﹣2a n+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,S n)也在y=f′(x)的图象上;(Ⅱ)求函数f(x)在区间(a﹣1,a)内的极值.20.(12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.21.(12分)如图,椭圆=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有|OA|2+|OB|2<|AB|2,求a的取值范围.22.(14分)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n(i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.。

2011年福建高考理科数学试卷及答案解析(Word)

2011年福建高考理科数学试卷及答案解析(Word)

2011年普通高等学校招生全国统一考试【福建卷】(理科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(每小题5分,共60分)【2011⋅福建理,1】1.i 是虚数单位,若集合=S {1,0,1}-,则( ). A .i S ∈ B .2i S ∈ C .3i S ∈ D .2S i∈ 【答案】B .【解析】2i 1S =-∈.故选B .【2011⋅福建理,2】2.若a R ∈,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件 【答案】A .【解析】 当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A . 【2011⋅福建理,3】3.若tan 3α=,则2sin 2cos aα的值等于( ). A .2 B .3 C .4 D .6 【答案】D . 【解析】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D .【2011⋅福建理,4】4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于( ).A .14 B .13 C .12 D .23【答案】C . 【解析】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C .【2011⋅福建理,5】5.1⎰()2xe x dx +等于( ).A .1B .1e -C .eD .1e + 【答案】C . 【解析】()()11200210xxex dx e xe e e +=+=+--=⎰.故选C .【2011⋅福建理,6】6.()312x + 的展开式中,2x 的系数等于( ). A .80 B .40 C .20 D .10 【答案】B .【解析】 15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .【2011⋅福建理,7】7.设圆锥曲线Γ的两个焦点分别为1F ,2F ,若曲线Γ上存在点P 满足1PF :12F F :2PF 4:3:2=,则曲线Γ的离心率等于( ).A .1322或B .223或C .122或D .2332或 【答案】A .【解析】 因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=. 若Γ为椭圆,则1212242623PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩ , 所以12c e a ==.若Γ为双曲线,则1212242223PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩ , 所以32c e a ==.故选A .【2011⋅福建理,8】8.已知O 是坐标原点,点(1,1)A -若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅u u u r u u u u r的取值范围是( ).A .[-1.0]B .[0.1]C .[0.2]D .[-1.2] 【答案】C .【解析】 设()()1,1,z OA OM x y x y =⋅=-⋅=-+u u u r u u u u r.作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅u u u r u u u u r的取值范围是[]0,2.故选C .解析二:【2011⋅福建理,9】9.对于函数()sin f x a x bx c =++(其中,,a b R ∈,c Z ∈),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ). A .4和6 B ..3和1 C .2和4 D .1和2 【答案】D .【解析】 ()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,(1,1)(1,2)21BAOy C则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数.故选D .【2011⋅福建理,10】10.已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是 ( ).A .①③B .①④C .②③D .②④ 【答案】B .【解析】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b a be e eee+++≥⋅-=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立, 于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ②如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作BF CP ⊥交CP 于F . 因为()()22AC A CD f x f x y y y ++==,2AC B x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确; 所以结论①,④正确.故选B.第Ⅱ卷(非选择题 共90分)二、填空题:(每小题4分,共16分)【2011⋅福建理,11】11.运行如图所示的程序,输出的结果是 .【答案】 3.【解析】 123a =+=.所以输出的结果是3.【2011⋅福建理,12】12.三棱锥P ABC -中,PA ⊥底面ABC ,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于 .【解析】2Δ1123334ABC V S PA =⋅=⨯⨯⨯=ED BCA【2011⋅福建理,13】13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于 . 【答案】35. 【解析】所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 【2011⋅福建理,14】14.如图,ABC ∆中,2AB AC ==,3BC =D 在BC 边上,ADC ∠=45o ,则AD 的长度等于 .2.【解析】解法1:由余弦定理2223cos 22223AC BC AB C AC BC +-===⋅⋅⨯⨯所以30C =︒. 再由正弦定理sin sin AD AC C ADC =∠,即2sin 30sin 45AD =︒︒,所以2AD = 解法2:作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC 的 中点,因为23BC =3EC =. 于是221AE AC EC -=,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以2AD =【2011⋅福建理,15】15.设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量1122(,),(,),a x y V b x y V =∈=∈以及任意R λ∈,均有((1))()(1)(),f a b f a f b λλλλ=-=+-则称映射f 具有性质P .先给出如下映射:① 1:f V R → ()1f m x y =- (),m x y V =∈;② 2:f V R → ()2f m x y =+ (),m x y V =∈; ③ 3:f V R → ()31f m x y =++ (),m x y V =∈.其中,具有性质P 的映射的序号为 .(写出所有具有性质P 的映射的序号) 【答案】①③.【解析】设()11,a x y V =∈r,()22,b x y V =∈r ,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλr r.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλr r()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλr r,所以()()()()()11f a b f a f b +-=+-λλλλr r r r成立,①是具有性质P 的映射;对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλr r()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλr r ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλr r r r成立,所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλr r()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλr r()()()()112211x y x y =++-+++-λλλλ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλr r r r成立,③是具有性质P 的映射.因此,具有性质P 的映射的序号为①、③.三、解答题:(本大题共6小题,共80分)【2011⋅福建理,16】16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和S 3=133. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解析】本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想.(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.又因为函数()f x 在6x π=处取得最大值,则sin(2)16πϕ⨯+=,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin(2)6f x x π=+.【2011⋅福建理,17】17.(本小题满分13分)已知直线:l y x m =+,m R ∈.(Ⅰ) 若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (Ⅱ) 若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由. 【解析】本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.(Ⅰ)解法1:由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则()()2202208r MP ==-+-=,所以,所求的圆的方程为()2228x y -+=. 解法2:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,20,2m r m r ⎧+=-+=解得2,2 2.m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--. 设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-.所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =. 所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.【2011⋅福建理,18】18.(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ) 求a 的值;(Ⅱ) 若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.【解析】本小题主要考查函数、导数等基础知识,考查运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归与转化思想. (Ⅰ)因为5x =时,11y =,由函数式210(6)3ay x x =+-- 得 11102a=+,所以2a =. (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<. 每日销售该商品所获得的利润为()()()222310(6)2103(6)3f x x x x x x ⎡⎤=-+-=+--⎢⎥-⎣⎦,()36x <<.()()()()()()21062363064f x x x x x x ⎡⎤'=-+--=--⎣⎦.于是,当x 变化时,()f x ',()f x 的变化情况如下表:x()3,44 ()4,6()f x ' +-()f x单调递增极大值42单调递减由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点.所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【2011⋅福建理,19】19.(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,……,8,其中5X ≥为标准A ,3X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准.(Ⅰ) 已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数字期望16EX =,求,a b 的值;(Ⅱ) 为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望. (Ⅲ) 在(Ⅰ)、(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.【解析】本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想.(Ⅰ)因为16EX =,所以50.46780.16a b ⨯+++⨯=,即67 3.2a b +=, 又0.40.11a b +++=,所以0.5a b +=,解方程组67 3.2,0.5a b a b +=⎧⎨+=⎩解得0.3a =,0.2b =.(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 4 5 6 7 8 f0.30.20.20.10.10.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:2X3 4 5 6 7 8P 0.3 0.20.2 0.1 0.1 0.1所以230.340.250.260.170.180.1 4.8EX =⨯+⨯+⨯+⨯+⨯+⨯=. (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=, 甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>. 所以,乙厂的产品更具可购买性.【2011⋅福建理,20】20.(本小题满分14分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,四边形ABCD 中,AB AD ⊥,4AB AD +=,2CD =,CDA ∠=45o .(Ⅰ) 求证:平面PAB ⊥平面PAD ; (Ⅱ) 设AB AP =.()i 若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;()ii在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.【解析】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.【解析二】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.(Ⅰ)因为PA ABCD ⊥底面,AB ABCD ⊂底面,所以PA AB ⊥.又AB AD ⊥,PA AD A =∩,所以P AB AD ⊥面平,又P AB AB ⊂面平,P PAB AD ⊥面平面平.(Ⅱ)以A 为坐标原点,建立如图乙的空间直角坐 标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ⊥.在Rt ΔCDE 中,2sin 45212DE CD =︒=⋅=. 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =-u u u r ,()0,4,PD t t =--u u u r,(i )设平面PCD 的法向量为(),,n x y z =r ,由n CD ⊥u u u r r ,n PD ⊥u u u r r 得0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u rr ()0,40,x y t y tz -+=⎧⎨--=⎩取x t =,则y t =,4z t =-.(),,4n t t t =-r, 又(),0,PB t t =-u u u r,由直线PB 与平面PCD 所成的角为︒30,得()22222241cos 60242t t n PB n PB t t t t -⋅︒===⋅++-⋅u u u r r u u u r r . 解得45t =或4t =(因为40,4AD t t =-><,故舍去) 所以45AB =. (ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,设()0,,0G m ,()04m t ≤≤-.则()1,3,0GC t m =--u u u r, ()0,4,0GD t m =--u u u r ,()0,,GP m t =-u u u r,则由GC GD =u u u r u u u r 得()()22134t m t m +--=--,即3t m =-,① 由GP GD =u u u r u u u r 得()2224t m m t --=+, ②从①,②消去t ,并化简得2340m m -+= ③ 方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.解法2:假设线段AD 上存在一个点G ,使得点G 到 点,,,P B C D 的距离都相等,由GC GD =得45GCD GDC ∠=∠=︒, 从而90CGD ∠=︒,则CG GD ⊥,设AB λ=,则由4AB AD +=,得4AD λ=-,3AG AD GD λ=-=-.在Rt ΔABG 中,()222223932122GB AB AG λλλ⎛⎫=+=+-=-+> ⎪⎝⎭与1GB GD ==矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.【2011⋅福建理,21】21.(本小题满分14分)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换设矩阵 00a M b ⎛⎫= ⎪⎝⎭(其中0a >,0b >).(I )若2a =,3b =,求矩阵M 的逆矩阵1M -;(II )若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线C ':2214x y +=,求,a b 的值.【解析】本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)设矩阵M 的逆矩阵11122x y Mx y -⎛⎫= ⎪⎝⎭,则11001MM -⎛⎫= ⎪⎝⎭, 因为2003M ⎛⎫=⎪⎝⎭,所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以121x =,120y =,230x =,231y =,即112x =,10y =,20x =.213y =, 所以1102103M -⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭. (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y '''.则00a x x b y y '⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭,即,ax x by y'=⎧⎨'=⎩, 又点(),P x y '''在曲线22:14x C y '+=上,所以2214x y ''+=, 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =, 又因为0,0a b >>,则2,1a b ==.(2)(本小题满分7分)选修4-4:坐标系与参数方程在直接坐标系xOy 中,直线l 的方程为40x y -+=,曲线C的参数方程为sin x ay a⎧=⎪⎨=⎪⎩.(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π,判断点P 与直线l 的位置关系;(II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解析】本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)点P 的极坐标为(4,)2π,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,因为0440-+=,所以点P 在直线l 上.(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q的坐标可设为,sin )Q αα. 点Q 到直线l 的距离为2cos()4)6d παπα++===++.所以当cos()16πα+=-时,d.(3)(本小题满分7分)选修4-5:不等式选讲 设不等式211x -<的解集为M . (I )求集合M ;(II )若,a b M ∈,试比较1ab +与a b +的大小.【解析】本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)由|21|1x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(Ⅱ)因为,a b M ∈,则01a <<,01b <<,(1)()(1)(1)0ab a b a b +-+=-->,所以1ab a b +>+.。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

第 1 页 共 4 页2008年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上. 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数iz -=11的共轭复数是( )A .i 2121+B .i 2121-C .i -1D .i +1 2.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是 ( )A .15B .30C .31D .64 3.在△ABC 中,∠C=90°,),3,2(),1,(==AC k AB 则k 的值是 ( )A .5B .-5C .23D .23-4.已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m 其中真命题的个数是( )A .0B .1C .2D .35.函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( )A .0,1<>b aB .0,1>>b aC .0,10><<b a第 2 页 共 4 页D .0,10<<<b a6.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( )A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==7.已知p :,0)3(:,1|32|<-<-x x q x 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中 点,则异面直线A 1E 与GF 所成的角是( ) A .515arccosB .4πC .510arccosD .2π9.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种10.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+ D .13+11.设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-12.)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间(0,6)内解的个数的最小值是( ) A .2B .3C .4D .5第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

2008年普通高等学校招生全国统一考试(福建卷)

2008年普通高等学校招生全国统一考试(福建卷)

2008年普通高等学校招生全国统一考试(福建卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第2至第4页。

全卷满分150分,考试时间120分钟。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)+P(B)第一卷(选择题60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

⑴若复数i a a a )1()23(2-++-是纯虚数,则实数a 的值为( ) A )1 B )2 C )1或2 D )-1 ⑵设集合}01|{<-=x xx A ,}30|{<<=x x B ,那么“A m ∈”是“B m ∈”的( ) A )充分而不必要条件 B )必要而不充分条件C )充要条件D )既不充分也不必要条件⑶设}{n a 是公比为正数的等比数列,若16,151==a a ,则数列}{n a 的前7项的和为( ) A )63 B )64 C )127 D )128⑷函数)(1sin )(3R x x x x f ∈++=,若2)(=a f ,则)(a f -的值为( ) A )3 B )0 C )-1 D )-2 ⑸某一批花生种子,如果每1粒发芽的概率为54,那么播下4粒种子恰有2粒发芽的概率是( ) A )62516 B )62596 C )625192 D )625256⑹如图,在长方体1111D C B A ABCD -中,1,21===AA BC AB , 则1BC 与平面D D BB 11所成角的正弦值为( )A )36 B )552 C )515 A )510⑺某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A )14B )24C )28D )48⑻若实数⎩⎨⎧>≤+-001x y x ,则x y的取值范围是( )A ))1,0(B )]1,0(C )),1(+∞D )),1[+∞D 1C 1ABB 1CDA 1⑼函数)(cos )(R x x x f ∈=的图象按向量)0,(m 平移后,得到函数)(x f y '-=的图象,则m 的值可以为( )A )2π B )π C )π- D )2π- ⑽在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为( )A )6π B )3π C )6π或65π D )3π或32π ⑾双曲线)0,0(12222>>=-b a by a x 的两个焦点为1F 、2F ,若P 为其上一点,且||2||21PF PF =,则双曲线离心率的取值范围是( )A ))3,1(B )]3,1(C )),3(+∞D )),3[+∞ ⑿已知函数)(),(x g y x f y ==的导函数的图象如右图, 那么)(),(x g y x f y ==的图象可能是( )第二卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008福建(理):
(13)若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________.(用数字作答)
x=1+cosθ
(14)若直线3x+4y+m=0与圆y=-2+sinθ(θ为参数)没有公共点,则实数m的取值范围是.
(15)若三棱锥的三个侧面两两垂直,则其外接球的表面积是. (16)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b,ab、
a
b ∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集
{}
,
F a b Q
=+∈也是数域.有下列命题:
①整数集是数域;②若有理数集Q M
⊆,则数集M必为数域;
③数域必为无限集;④存在无穷多个数域.
其中正确的命题的序号是.(把你认为正确的命题的序号都填上)
2009福建(理):
11. 若
2
1
a bi
i
=+
-(i为虚数单位,,a b R
∈)则a b
+=_________
12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。

记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。

若记分员计算失误,则数字x应该是___________
13. 过抛物线
22(0)
y px p
=>的焦点F作倾斜角为45 的直线交抛物线于A、B两点,若线段AB的长为8,则
p=________________
14. 若曲线
3
()ln
f x ax x
=+存在垂直于y轴的切线,则实数a取值范围是_____________.
15. 五位同学围成一圈依序循环报数,规定:
①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的
数都是前两位同学所报出的数之和;
②若报出的数为3的倍数,则报该数的同学需拍手一次
已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.
2010福建(理):
11.在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式

12.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于 .
13.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问
题,即停止答题,晋级下一轮。

假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。

14.已知函数和的图象的对称轴完全相同。

若,则的取值范围是 。

15.已知定义域为的函数满足:①对任意,恒有成
立;当时,。

给出如下结论:
①对任意,有;②函数的值域为;③存在,使得
;④“函数在区间上单调递减”的充要条件是 “存在,使得
”。

其中所有正确结论的序号是 。

{}n a q=4n a
=0.8f(x)=3sin(x-)(>0)6
π
ωωg(x)=2cos(2x+)+1ϕx [0,
]2
π
∈f(x)0+∞(,)f(x)x 0∈+∞(,)f(2x)=2f(x)x ]∈(1,2f(x)=2-x m Z ∈m
f(2)=0f(x)[0+∞,)n Z ∈n f(2+1)=9f(x)(,)a b Z k ∈1(,)(2,2)k k a b +⊆
2011福建(理):
11.运行如图所示的程序,输出的结果是_______。

12.三棱锥P-ABC 中,PA ⊥底面ABC ,PA=3,底面ABC 是边长为2的正三角形,则三棱锥P-ABC 的体积等于______。

13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。

若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。

14.如图,△ABC 中,AB=AC=2,BC= D 在BC 边上,∠ADC=45°,则AD 的长度等于______。

15.设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量
1122(,),(,),a x y V b x y V =∈=∈以及任意λ∈R ,均有
((1))()(1)(),a b a b λλλλ=-=⎰+-⎰⎰
则称映射f 具有性质P 。

先给出如下映射:
其中,具有性质P 的映射的序号为________。

(写出所有具有性质P 的映射的序号)
2008福建答案(理):
2009福建答案(理):11. 【答案】:2
解析:由
22(1)
1
1(1)(1)
i
a bi i
i i i
+
=+⇒=+
--+,所以1,1,
a b
==故2
a b
+=。

12. 【答案】:1
解析:观察茎叶图,
可知有
888989929390929194
911
9
x
x +++++++++
=⇒=。

13. 【答案】:2
解析:由题意可知过焦点的直线方程为
2p
y x =-
,联立有
222
23042y px
p x px p y x ⎧=⎪⇒-+=⎨=-⎪⎩
,又82AB p ==⇒=。

14. 【答案】:(,0)-∞
解析:由题意可知
'21
()2f x ax x =+
,又因为存在垂直于y 轴的切线,
所以
2311
20(0)(,0)2ax a x a x x +
=⇒=->⇒∈-∞。

15. 【答案】:5
解析:由题意可设第n 次报数,第1n +次报数,第2n +次报数分别为n a ,1n a +,2n a +,
所以有
12n n n a a a +++=,又121,1,a a ==由此可得在报到第100个数时,甲同学拍手5次。

2010福建答案(理):
11.【答案】
【解析】由题意知,解得,所以通项。

【命题意图】本题考查等比数列的通项公式与前n 项和公式的应用,属基础题。

12.【答案】
【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为
,所以其表面积为
【命题意图】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。

13.【答案】0.128
【解析】由题意知,所求概率为。

【命题意图】本题考查独立重复试验的概率,考查基础知识的同时,进一步考查同学们
n-1
4
11141621a a a ++=11a =n a =n-1
4
244
=3216⨯⨯=2
4
25C 0.80.2=0.128⋅⋅
的分析问题、解决问题的能力。

14.【答案】
【解析】由题意知,,因为,所以,由三角函数
图象知:
的最小值为,最大值为,所以的取值范围是。

【命题意图】本题考查三角函数的图象与性质,考查了数形结合的数学思想。

15.【答案】①②④
【解析】对①,因为,所以,故①正确;经分析,容易得出②④也正确。

【命题意图】本题考查函数的性质与充要条件,熟练基础知识是解答好本题的关键。

2011福建答案(理):
11.解析:123a a b =+=+=,答案应填3. 12.
解析:111
322sin 60332
ABC V PA S ∆=⋅=⋅⋅⋅⋅⋅=
13.解析:11
32
2
50.6C C P C ⋅==,答案应填0.6。

14.解析:在△ABC 中,AB=AC=2,
BC=30ACB ABC ∠=∠=
,而∠ADC=45°,
sin 45sin 30
AC AD =
,AD =
15.解析:①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-
12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-
具有性质P 的映射,同理可验证③符合,②不符合,答案应填①③.
3[-,3]2
2ω=x [0,]2
π
∈52x-
[-
,]6
66
π
ππ
∈f(x)33sin (-
)=-62π
3sin =32πf(x)3[-,3]2
m
2>0m f(2)=0。

相关文档
最新文档