扫描电镜经典总结
扫描电镜经典总结.
• 扫描电镜(SEM)• 透射电镜(TEM)• 原子力显微镜(AFM)• X射线衍射(XRD)• 元素分析(EA)显微分析技术——电子显微镜一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。
透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射电镜(TEM)的成像和衍射二次电子入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,成为真空中的自由电子,此即二次电子。
在电场的作用下它可呈曲线运动进入检测器,使表面凹凸的各个部分都能清晰成像。
二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜的分辨率。
二次电子的强度主要与样品表面形貌相关。
二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。
当探针很细,分辨高时,基本收集的是二次电子而背景电子很少,称为二次电子成像(SEI)。
背景散射电子入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子,前者的份额远大于后者。
背散射电子反映样品表面的不同取向、不同平均原子量的区域差别,产额随原子序数的增加而增加;利用背散射电子为成像信号,可分析形貌特征,也可显示原子序数衬度而进行定性成分分析。
特征X射线入射电子和原子中的内层电子发生非弹性散射作用而损失一部分能量(几百个eV),激发内层电子发生电离,形成离子,该过程称为芯电子激发。
除了二次电子外,失去内层电子的原子处于不稳定的较高能量状态,将依一定的选择定则向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元素组成信息的特征X射线,可用于材料的成分分析。
俄歇(Auger)电子如果入射电子把外层电子打进内层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。
扫描电镜分析2篇
扫描电镜分析2篇第一篇:扫描电镜分析花粉形态结构特征扫描电镜是现代生物学和医学研究中一种重要的分析技术,可以对显微结构进行高清晰度的成像和观察。
在植物学中,花粉是非常重要的微观结构,它们的形态结构特征和尺寸大小对于花粉的传播、定位和分类具有重要意义。
因此,采用扫描电镜对花粉形态结构进行分析,可以深入了解花粉的形态学特征和花粉学的研究对象。
在本次扫描电镜分析中,我们选取了几种常见的植物花粉样本,包括罂粟花、向日葵、松树、紫罗兰等。
通过精细制备和扫描电镜成像,我们得到了以下结果。
罂粟花的花粉罂粟花的花粉呈球形或近球形,外表呈现有棱角的圆形,直径约为48微米。
在扫描电镜下观察,罂粟花的花粉表面呈现出一种微细的网状结构,而且表面布满了大小不一的刺状突起。
这些刺状突起有的长而细,有的短而粗,有的呈锯齿状。
整个花粉表面分布不均,有的地方突起密集,有的地方比较平整。
整体上看,罂粟花的花粉表面相当粗糙,具有明显的纹理和质感。
向日葵的花粉向日葵的花粉为椭圆形或肾形,直径大约为50微米左右,花粉壁厚度较薄。
扫描电镜下观察,向日葵的花粉表面呈现出一种平滑的纹理,花粉壁内部有大小不一的坑陷。
同时,向日葵的花粉壁上也分布着一些小的碎片状突起。
整体上看,向日葵的花粉表面比较光滑,不像罂粟花那样粗糙。
松树的花粉松树的花粉为卵圆形,长38-55微米,宽25-30微米,花粉壁较厚。
在扫描电镜下观察,松树的花粉表面呈现出一种分布均匀的刺状突起,形态呈现出有规律的菱形和六边形等几何形状。
这些刺状突起密集而均匀,大小相当,长度为0.1-0.5微米。
整个花粉表面呈现出一种精细而规则的网状结构,十分复杂,呈现出明显的纹理和层次感。
紫罗兰的花粉紫罗兰的花粉为卵形、扁平,长35-45微米,宽20-25微米,花粉壁厚度较薄。
在扫描电镜下观察,紫罗兰的花粉表面呈现出一种不规则的凹凸纹理,与其他花粉的凸起和刺状突起不同。
这些凹凸纹理大小相当,分布不均,有的地方密集,有的地方较为稀疏。
扫描电镜实验报告
扫描电镜实验报告扫描电镜是一种高分辨率的显微镜,能够对样品进行高分辨率成像。
在本次实验中,我们使用了扫描电镜对样品进行了观察和分析。
本报告将对实验的目的、方法、结果和结论进行详细的描述和分析。
实验目的。
本次实验的主要目的是利用扫描电镜对样品进行表面形貌和微观结构的观察和分析,了解扫描电镜在材料科学和生物科学领域的应用,掌握扫描电镜的操作技巧和注意事项。
实验方法。
1. 样品制备,首先,我们准备了需要观察的样品,如金属材料、生物组织等,并对样品进行表面处理和固定。
2. 扫描电镜操作,接下来,我们将样品放入扫描电镜的样品台上,并根据仪器操作手册进行电镜的开机、预热和调试,确保仪器处于正常工作状态。
3. 观察和记录,在样品放置好并仪器调试完成后,我们通过调整扫描电镜的参数,如放大倍数、对焦等,对样品进行观察,并记录观察到的表面形貌和微观结构。
实验结果。
经过扫描电镜的观察,我们得到了样品的高分辨率图像,并对样品的表面形貌和微观结构进行了分析。
我们观察到样品表面的微观结构非常复杂,有许多微小的颗粒和纹理,这些结构对样品的性能和功能具有重要影响。
通过扫描电镜的观察,我们能够更加深入地了解样品的微观特征,为进一步的研究和分析提供了重要的参考。
实验结论。
本次实验通过扫描电镜的观察和分析,我们对样品的表面形貌和微观结构有了更加深入的了解。
扫描电镜作为一种高分辨率的显微镜,能够为材料科学和生物科学领域的研究提供重要的技术支持。
通过本次实验,我们掌握了扫描电镜的操作技巧和注意事项,为今后的科研工作打下了良好的基础。
总结。
通过本次实验,我们不仅学习了扫描电镜的操作和应用,还对样品的表面形貌和微观结构有了更深入的了解。
扫描电镜在材料科学和生物科学领域具有重要的应用价值,能够为科研工作提供重要的技术支持。
希望通过本次实验,能够对大家对扫描电镜的应用有更深入的了解,为今后的科研工作提供帮助和指导。
在本次实验中,我们通过扫描电镜对样品进行了观察和分析,了解了扫描电镜在科研领域的重要应用价值。
扫描电镜分析
扫描电镜分析扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高精度显微镜,能够以极高的放大倍数观察样品的微观结构和形貌。
通过利用电子束对样品进行扫描,SEM能够提供比光学显微镜更高的分辨率和放大倍数。
本文将介绍扫描电镜的工作原理、应用领域以及其在科研和工业中的重要性。
扫描电镜的工作原理是基于电子的性质和电磁场的作用。
它通过发射高能电子束,并将电子束聚焦到极小的尺寸,然后扫描在样品表面。
当电子束与样品的表面交互作用时,会产生许多信号,包括二次电子、背散射电子、特征X射线等。
这些信号接收后,经过电子学系统的处理和分析,最终形成样品的显微图像。
由于扫描电镜的电子束具有很小的波长,因此它能提供更高的分辨率和放大倍数,可以观察到更加详细的微观结构。
扫描电镜在许多领域都有广泛的应用。
在材料科学中,它可以用来研究材料的表面形貌和微观结构,对材料的组成和纳米尺寸的特征进行分析。
在生物学研究中,扫描电镜可以观察生物细胞、组织和器官的内部结构,对病毒、细菌等微生物进行观察和分析。
在纳米科技领域,扫描电镜可以研究纳米材料的制备和性质,包括纳米颗粒、纳米材料的形貌和尺寸分布等。
此外,扫描电镜在矿物学、工业品质检测、环境科学和考古学等领域也有广泛应用。
在矿物学中,扫描电镜可以对矿石和矿物进行分析,帮助确定它们的成分和结构。
在品质检测中,扫描电镜可以用于检查和验证产品的表面和微观结构,确保产品符合质量标准。
在环境科学中,扫描电镜可以用来研究大气颗粒物、水质中的微生物和化合物等。
在考古学研究中,扫描电镜可以协助鉴定古代人工制品的材质和表面特征,帮助研究人员了解古代文化和技术。
扫描电镜在科学研究和工业生产中具有重要的地位。
它能够提供高分辨率的显微观察,帮助科学家们深入了解材料的微观结构和形貌,从而促进科学研究的发展。
在工业领域,扫描电镜可以用于质量控制和产品改进,确保产品具有良好的性能和质量。
扫描电镜知识汇总
扫描电镜(SEM)超全知识汇总真空技术扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
▲图1. 扫描电子显微镜特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
3、真空系统真空系统主要包括真空泵和真空柱两部分。
真空柱是一个密封的柱形容器。
真空泵用来在真空柱内产生真空。
有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。
扫描电镜经典总结
• 扫描电镜(SEM)• 透射电镜(TEM)• 原子力显微镜(AFM)• X射线衍射(XRD)• 元素分析(EA)显微分析技术——电子显微镜一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。
透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射电镜(TEM)的成像和衍射二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,成为真空中的自由电子,此即二次电子。
在电场的作用下它可呈曲线运动进入检测器,使表面凹凸的各个部分都能清晰成像。
二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜的分辨率。
二次电子的强度主要与样品表面形貌相关。
二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。
当探针很细,分辨高时,基本收集的是二次电子而背景电子很少,称为二次电子成像(SEI)。
背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子,前者的份额远大于后者。
背散射电子反映样品表面的不同取向、不同平均原子量的区域差别,产额随原子序数的增加而增加;利用背散射电子为成像信号,可分析形貌特征,也可显示原子序数衬度而进行定性成分分析。
特征X射线入射电子和原子中的层电子发生非弹性散射作用而损失一部分能量(几百个eV),激发层电子发生电离,形成离子,该过程称为芯电子激发。
除了二次电子外,失去层电子的原子处于不稳定的较高能量状态,将依一定的选择定则向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元素组成信息的特征X射线,可用于材料的成分分析。
俄歇(Auger)电子如果入射电子把外层电子打进层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。
扫描电镜对比以及扫描电镜基础知识点-科邦实验室
扫描电镜对比以及扫描电镜基础知识点扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
一、特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
二、基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
图2:扫描电子显微镜结构图(图片来源:西南石油大学能源材料实验教学中心)其中最重要的三个系统是电子光学系统、信号探测处理和显示系统以及真空系统。
1、电子光学系统电子光学系统包括电子枪、电磁透镜、扫描线圈、样品室等,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成象。
电子枪:用于产生电子,主要分类如下:电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
扫描电镜基础知识
扫描电子显微镜(ScanningElectronMicroscope)基础知识一、扫描电子显微镜的工作原理扫描电镜是用聚焦电子束在试样表面逐点扫描成像。
试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。
其中二次电子是最主要的成像信号。
由电子枪发射的能量为5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。
聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。
二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。
二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。
(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。
(3) 放大倍数变化范围大,一般为15 ~200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。
(4) 具有相当高的分辨率,一般为3.5 ~6nm。
(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。
采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。
(6) 可进行多种功能的分析。
与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。
(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。
三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。
扫描电镜实验报告图像分析怎么写
扫描电镜实验报告图像分析怎么写一、引言扫描电镜(Scanning Electron Microscope, SEM)是一种常用的高分辨率表面形貌分析仪器,广泛应用于材料科学、生物学、纳米科技等领域。
本实验旨在利用扫描电镜对样品进行观察和分析,掌握图像分析技巧,并结合实际图像进行详细分析,从而深入了解样品的表面形貌和微观结构。
二、实验方法1. 样品制备:选择需要观察的样品,根据不同的要求进行制备,如金属材料可以进行抛光、腐蚀处理,生物样品可以进行固定和超薄切片等。
2. 仪器操作:将制备好的样品放入扫描电镜的样品台上,调节加速电压和放大倍数等参数,开始观察和拍摄图像。
3. 图像获取:通过扫描电镜获取样品的图像,并保存在电脑上,以备后续的图像分析工作。
三、图像分析1. 图像质量评估:首先对所获得的图像进行质量评估。
评估图像的对比度、噪声、清晰度等指标,确保图像的质量符合要求。
可以通过测量像素密度、区域灰度分布等方法进行评估。
2. 图像预处理:针对图像中存在的噪声、伪影等问题,可以对图像进行预处理。
例如,可以利用图像处理软件进行滤波、增强对比度等操作,以提高图像清晰度和可视化效果。
3. 形貌分析:通过对图像进行形貌分析,可以获得样品的表面形貌特征。
可以使用图像处理软件中的测量工具来计算样品的颗粒大小、距离、角度等参数。
同时,可以根据图像中的拓扑结构特征,推测样品的形成过程和相互关系。
4. 结构分析:通过图像分析,可以对样品的微观结构进行分析。
可以从图像中观察并描述样品的晶体结构、纤维形态等。
同时,可以对样品中存在的裂纹、孔洞等缺陷进行分析,评估样品的完整性和质量。
5. 成分分析:在图像分析的基础上,可以借助图谱分析和能谱分析等技术手段,对样品的成分进行分析。
通过识别元素的峰位和峰强,可以得到样品的成分组成,进一步了解样品的化学特性。
四、实验结果与讨论本次扫描电镜实验中,我们选择了一块金属样品,并进行了抛光和腐蚀处理。
扫描电镜要点总结(蔡司Gemini450电镜各模式和探头使用参数介绍)
扫描电镜要点总结(蔡司Gemini450电镜各模式和探头使用参数介绍)扫描电子显微镜(Scanning Electron Microscope, SEM)是一种高分辨率的显微镜,能够通过扫描样品表面的电子束来获取高清晰度的图像。
蔡司Gemini 450是一种常见的扫描电子显微镜,拥有多种模式和探头,下面将对其各模式和探头的使用参数进行介绍。
1.高真空模式:-工作距离:3-20毫米之间可调。
-放大倍率:高达1,000,000倍。
-检测器:二次电子检测器、能量分散X射线(EDX)探测器等。
高真空模式适用于大多数样品,特别是金属、半导体等导电材料。
该模式下的电子束会扫描样品表面,从而产生二次电子图像。
EDX探测器可用于进行元素成分分析。
2.低真空模式:-气压范围:从10到130帕斯卡(Pa)。
-工作距离:5-25毫米之间可调。
-放大倍率:高达100,000倍。
低真空模式适用于非导电材料以及生物样品等需要避免高真空环境的样品。
低真空模式下,可以使用水冷样品冷凝器来减少样品的水膜蒸发。
3.非接触模式:-工作距离:约为30微米。
-放大倍率:高达100,000倍。
非接触模式使用非接触方式扫描样品表面,减少了对样品的损伤。
它适用于对样品表面要求严格的情况下,如软性材料或纳米材料等。
4.电子背散射模式:-工作距离:约为3毫米。
-放大倍率:高达300,000倍。
电子背散射模式用于观察样品的表面形态和材料本身的晶体结构。
通过背散射电子来获取高对比度的图像。
探头是扫描电镜中十分重要的组成部分,蔡司Gemini 450电镜提供了多种探头供选择,具有不同的特点和应用范围。
1.热阴极电子枪:-适用于常规高真空模式下的成像。
-具有较高的亮度和小的发射面积。
2.场发射电子枪:-适用于较低真空模式下的成像。
-具有更小的亮度和更小的发射面积。
3.高抛射场发射电子枪:-适用于非接触模式。
-具有更大的发射面积,可以提供更高的电子流,为非接触模式下的成像提供更好的性能。
扫描电镜实验报告
扫描电镜实验报告一、背景介绍扫描电镜(Scanning Electron Microscope,SEM)是一种常用于观察材料表面形貌的高分辨率显微镜。
与光学显微镜不同,SEM使用电子束来对样品进行扫描,从而获得样品表面的高清晰度图像。
本文将对扫描电镜实验进行详细描述和分析。
二、实验目的本次实验的目的是研究和观察不同样品的表面形貌及其微观结构。
通过使用扫描电镜,我们可以进一步了解材料的性质和特征,并为后续的研究工作提供有力的支持。
三、实验步骤1. 样品制备:将待观察的样品进行必要的处理,例如切割、研磨、涂覆导电剂等,以保证样品的表面光滑且导电性良好。
2. 装备样品:将处理完成的样品放置在SEM样品台上,固定好并调整角度,确保样品表面垂直于电子束的入射方向。
3. 调整参数:根据不同样品的特性和需求,调整加速电压、放大倍数、探头电流等参数,以获得最佳的图像质量。
4. 扫描观察:打开SEM仪器,开始对样品进行扫描观察。
电子束在样品表面扫描时,与样品表面相互作用,产生二次电子信号,这些信号被探测器接收并转换成图像。
四、实验结果与分析在本次实验中,我们观察了不同样品的表面结构,并获得了一系列高分辨率的SEM图像。
以一块常见的金属材料——铝为例,通过SEM观察,我们可以清晰地看到铝表面的微观结构。
观察结果显示,铝表面呈现出许多沟槽和凸起的特征,这些特征是铝晶粒的显著标记。
SEM图像还揭示了铝表面的晶粒大小和分布情况,有助于我们进一步研究金属的力学性质和形变行为。
同样,我们还观察了纳米颗粒的表面形貌。
SEM图像显示,纳米颗粒具有较大的表面积和丰富的形态结构,这使得纳米颗粒在催化剂、材料科学等领域有着广泛的应用价值。
通过SEM观察,我们可以研究纳米颗粒的大小分布、形状特征以及粒子间的相互作用,为相关研究提供了重要的依据。
五、实验的意义与应用前景扫描电镜作为一种重要的表征工具,在材料科学、生物学、纳米技术等领域具有广泛的应用和重要意义。
扫描电镜学习资料
扫描电镜(一)扫描电镜的使用方法1、形貌观察ProbeSpecimen图2-1 注意保持工作距离WD(work distance)Soptsize24左右用来观察形貌37左右用来打成分Vent:放气Evac:抽真空常用按钮:View(35X)、Scan1(用于聚焦)、Scan2(整体观察)、Scan3(整体观察,分辨率比Scan2高,但显示速度慢)、Contrast、Brightness、Focus(放大倍数由小到大依次调整)、Stage control、SEM menu、Vent、Evac、Image、beam controller操作步骤:放样(载物台不要抽出太多,能放进去试样即可,注意要目测试样距探头的高度,要求大于25mm)用手按住载物台外露部分,帮助吸住载物台点击SEM menu→Evac,这时机器上的Vacuum system面板上的Evac灯闪烁,表示正在抽真空,电脑上显示Pre Evac真空抽好后显示readyHT on点击View→Stage control→调到中心→go→closeACB (auto contrast brightness)如果图象不清晰,作如下调整调灯丝,SEM→gun alignment→load current 是调灯丝,不能超过黄线,否则会烧毁灯丝调整contrast和brightness高倍调焦,低倍观察,Scan1调焦(倍数100→1000→10000依次递增),Scan2观察,Scan3固定图象固定图象后,可以用菜单里的命令量距离SEM menu→HT on/off→SEM menu→Vent→close→待Vent灯不再闪烁后等待10s,打开载物台,取出试样保存图像步骤:在Scan3状态下,点击Freeze→File→Save as→找到D盘ltj组,文件命名,注意框选,右下侧的Merge text,这样才会在图片中出现下边的黑色显示条,显示**ev,放大倍数和基线注意事项:WD不能小于20mmLoad current 是调灯丝,不能超过黄线制备SEM试样不能太大,最大20mmX20mmX20mm,高度尽量一致,试样上不能有氧化膜,尤其是底部,否则影响导电性,导电性不好可以粘导电胶,3003和4004需用0.5%的HF腐蚀20s用记号笔在试样上作标记以确定界面、4004永远在左侧,3003永远在右侧。
扫描电镜测试相关知识点总结
扫描电镜测试相关知识点总结1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。
光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。
2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv=h / (2qmV)1/2=12.2 / (V)1/2 (Å)在 10 KV 的加速电压之下,电子的波长仅为0.12Å,远低于可见光的4000 - 7000Å,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。
3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。
4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径(Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子(Backscattered Electron) 成像。
5. 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。
扫描电镜测试相关知识点总结
扫描电镜测试相关知识点总结扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束扫描物体表面并获取显微图像的仪器。
相比于传统光学显微镜,扫描电镜可以提供更高的分辨率和放大倍率,可以观察到更为详细的细节结构。
以下是与扫描电镜测试相关的一些知识点总结:1.SEM的工作原理:扫描电镜利用电子枪产生的高速电子束照射样品表面,样品与电子束发生相互作用后产生的不同信号被探测器接收并转化为电信号,进而生成二维或三维显微图像。
2.SEM的分辨率:扫描电镜的分辨率受到电子束的精细程度、样品的尺寸和形状、探测器的性能等因素的影响。
一般情况下,扫描电镜的分辨率可达到亚纳米级别。
3.SEM的样品制备:由于扫描电镜对样品的表面必须是导电性的,并且要求样品表面干净,因此在进行SEM观察前需要对样品进行适当的处理。
常见的制备方法包括金属喷镀、碳喷镀、薄层沉积、低温冷冻破碎等。
4.SEM观察模式:扫描电镜观察样品时可采用不同的观察模式,包括二次电子显微镜(SEI)模式和反射电子显微镜(BEI)模式。
SEI模式观察到的图像反映了样品表面的形貌特征,而BEI模式则主要反映了样品的晶体结构信息。
5.SEM的探测器:SEM内常配备有不同类型的探测器,常见的有二次电子探测器(SE)和反射电子探测器(BSE)。
SE探测器主要用于观察样品表面形貌特征,BSE探测器则用于获得样品的元素分布和晶体结构信息。
6.SEM的配套设备:SEM通常还配备有能量散射谱仪(EDS)和电子背散射衍射仪(EBSD)等附属设备。
EDS可用于分析样品中不同元素的含量和分布情况,而EBSD则可用于分析样品的晶体取向和晶界性质。
7.SEM在材料科学领域的应用:扫描电镜在材料科学领域广泛应用于材料的微观表征和分析。
通过SEM可以观察到材料的孔隙结构、晶格形貌、晶粒尺寸和形态、裂纹和缺陷等细节结构信息,为材料设计和性能优化提供重要参考。
扫描电镜检测报告
扫描电镜检测报告1. 引言扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,可用于观察样品表面的微观结构。
扫描电镜检测报告记录了对样品进行扫描电镜观察的结果和分析。
2. 检测目的本次检测的目的是对样品进行表面形貌分析,以了解其微观结构和特征。
3. 检测方法使用型号为XXXX的扫描电镜对样品进行观察。
检测过程中,首先将样品固定在扫描电镜的样品台上,然后通过电子束扫描样品表面,并获得高分辨率的图像。
4. 检测结果通过扫描电镜观察,我们获得了样品的高清图像,可以清晰地看到其表面的微观结构。
以下是我们观察到的几个重要特征:4.1 粗糙度样品表面呈现出一定的粗糙度,可以观察到微小的凹凸结构。
这些凹凸结构可能是由于加工过程中的磨削或其他物理力作用导致的。
4.2 颗粒分布在样品表面,我们还观察到均匀分布的微小颗粒。
通过进一步分析,我们发现这些颗粒的尺寸大致在1-10微米之间,形状多样,可能是杂质或其他微粒的沉积。
4.3 裂纹和缺陷在观察过程中,我们还发现样品表面存在一些细微的裂纹和缺陷。
这些缺陷可能是由于材料的应力集中、热膨胀等因素引起的,需要进一步的分析来确定其具体原因。
5. 结论通过扫描电镜的观察和分析,我们对样品的表面形貌有了更深入的了解。
样品表面呈现出一定的粗糙度,存在颗粒分布和细微的裂纹和缺陷。
这些观察结果对于进一步分析样品的性能和品质具有重要意义。
6. 建议基于本次检测结果,我们建议进一步研究以下几个方面:•对样品表面的粗糙度进行进一步的测量和分析,以确定其对材料性能的影响程度。
•对颗粒分布进行成分分析,以确定其来源和对样品性能的潜在影响。
•对细微裂纹和缺陷进行更详细的调查,以确定其成因并采取相应的措施进行修复。
7. 参考文献[1] Smith, J. K. Scanning electron microscopy. Materials Characterization Techniques, 2017.[2] Chen, L., & Wang, Q. Applications of scanning electron microscopy in material science. Journal of Materials Science & Technology, 2019.8. 致谢感谢本次检测中参与实验和数据分析的所有人员的辛勤工作和贡献。
扫描电镜实验报告
扫描电镜实验报告
本次实验我们使用了扫描电镜来观察各种微观结构。
扫描电镜是一种高分辨率的显微镜,可以观察到小至0.01微米的结构。
首先,我们观察了一些有机物样品。
我们先将其放入扫描电镜中,并用电子束来激发样品表面的电子。
随后,样品表面的电子会被电子束所控制,造成电子的放出。
这些漫反射的电子就会被探测器拾取,最终转化成二维图像。
通过实验,我们所得到的图像结果十分有趣,有的组织结构长得像秋天的银杏叶,有的则如竹子一般,细长有弧度等。
我们可以清楚地看到它们的外形和细节。
接下来,我们观察了一些无机物样品,如一些金属纳米颗粒、各种晶体颗粒和非晶态颗粒等等。
我们不仅在超微结构方面能够看到一些非常细微的特征,如晶界(grain boundaries)、晶缺陷(lattice vacancies)、位错(dislocations)等等,我们还能观察到传统光学显微镜无法看到的微观特征,如金属内部结构的形态、非晶态的颗粒等等。
同时,我们还使用扫描电镜观察了一些细胞和细胞器的结构。
我们清楚地看到了生物组织中的微观结构,如细胞膜、微绒毛、高尔基体等等。
我们不仅仅看到了它们的外形,而且还能够通过结构上的细微变化来了解细胞的生理和病理状态。
最后,我们在实验中使用了一些特殊技术来进一步增强图像的细节,如图像增强、三维图像重建等等。
总的来说,本次扫描电镜实验让我们更加深入地了解了微观结构以及它们的性质和形态。
这样的结果对于探究材料科学、生物学、病理学等领域都有很大的意义。
同时,这也让我们更加深入了解了扫描电镜这种高级显微镜,它成为了化学科学和工程领域的重要工具之一。
扫描电镜介绍范文
扫描电镜介绍范文扫描电子显微镜(Scanning Electron Microscope, SEM)是一种常用的高分辨率成像工具,可以在微观范围内观察样品的表面形貌和显微结构。
相比传统的光学显微镜,扫描电子显微镜具有更高的分辨率和更大的深度信息。
扫描电子显微镜的工作原理是利用电子束对样品表面进行扫描,通过探针电子显微镜和信号探测系统获取样品表面的信号,从而得到高分辨率的图像。
扫描电子显微镜由四个主要部分组成:电子枪、透镜系统、扫描系统和探测系统。
电子枪是扫描电子显微镜的核心部件,它产生高能电子束。
电子枪中的热阴极产生电子,然后通过加速极加速到很高的速度。
这些高能电子束经过聚焦系统进行聚焦,并通过调节电压和电流来控制电子束的强度和直径。
透镜系统通过控制电子束的聚焦和形状,将电子束聚焦在样品表面上。
透镜系统中包括电子透镜和扫描线圈,通过调整透镜的电压和扫描线圈的电流,可以控制电子束的聚焦和扫描范围。
扫描系统用于控制电子束在样品表面上的扫描。
它通过改变扫描线圈的电流,控制电子束的位置和速度。
扫描系统可以按照一定的模式(如线性、环形或斜线)扫描样品表面,以获取更全面的信息。
探测系统用于收集和转换电子束与样品交互作用的信号。
常见的探测器包括二次电子和反射电子探测器。
二次电子探测器用于检测电子束与样品表面的相互作用,生成成像信号。
反射电子探测器检测电子束中被样品散射的电子,可以提供更多的表面和成分信息。
扫描电子显微镜的工作原理是通过扫描电子束,获取样品表面反射或二次电子的强度和分布信息,然后通过信号处理和数据分析,生成高分辨率的图像。
扫描电子显微镜的分辨率通常可以达到纳米级别,可以观察到微观结构和表面形貌。
扫描电子显微镜的应用非常广泛。
在材料科学领域,它可以用于研究材料的晶体结构、表面形貌和成分分析。
在生物科学领域,它可以用于观察细胞和组织的微观结构。
在地质学和环境科学领域,它可以用于研究岩石和土壤的粒度和成分。
扫描电镜分析 (2)
扫描电镜分析引言扫描电镜(Scanning Electron Microscope,SEM)是一种高分辨率的显微镜,利用电子束来观察和分析材料的表面形貌和组成。
相比传统光学显微镜,扫描电镜具有更高的放大倍数和更好的分辨率,能够提供更详细的信息和更全面的材料表征。
本文将介绍扫描电镜分析的基本原理、操作步骤和应用领域。
扫描电镜分析的基本原理扫描电镜利用电子束与样品表面的相互作用生成图像,采用场发射电子源作为电子束的发射源。
电子束从电子源中发射出来后被加速,在经过透镜系统的聚焦作用下,聚焦在样品表面上。
样品表面的电子与电子束发生相互作用,包括散射、逸出等过程。
逸出的电子被收集和放大,转换成电信号,通过不同的检测器获得样品表面的形貌和组成信息。
扫描电镜分析的操作步骤1.准备样品:将待观察的样品切割、打磨,使其表面平整,去除杂质。
如果样品是不导电的,需要进行导电处理,如镀一层金属薄膜。
2.真空系统准备:将样品放置在扫描电镜的样品台上,通过真空系统排除气体,以保证电子束的传输。
3.调试扫描电镜参数:根据样品的性质和分析需求,设置电子束的加速电压、电子枪的亮度、放大倍数等参数。
4.扫描电镜观察:启动扫描电镜的电子束,将电子束聚焦在样品表面,利用扫描线圈扫描样品表面,收集和放大逸出的电子信号,生成图像。
5.图像分析:通过软件分析图像,测量样品表面的形貌和组成,获取相关的形态参数和元素成分信息。
扫描电镜分析的应用领域扫描电镜广泛应用于材料科学、生物学、化学等领域的研究和分析。
具体应用包括: - 材料表面形貌分析:扫描电镜能够提供高分辨率的材料表面形貌信息,用于评价材料的纹理、晶格形貌等。
- 生物样品观察:扫描电镜可以观察生物样品的微观结构,包括细胞形态、器官结构等,对生物学研究有重要意义。
- 纳米材料研究:扫描电镜在纳米材料的研究中得到广泛运用,能够观察和分析纳米颗粒的大小、形状、分布等特征。
- 化学成分分析:扫描电镜结合能谱仪可以进行化学成分分析,通过测量逸出电子的能谱来确定材料的元素成分。
SEM扫描电子显微镜知识要点
扫描电子显微镜知识A—Z / SEM的构造扫描电子显微镜(Scanning Electron Microscope:SEM)是观察样品表面的装置。
用很细的电子束(称为电子探针)照射样品时,从样品表面会激发二次电子,在电子探针进行二维扫描时,通过检测二次电子形成一幅图像,就能够观察样品的表面形貌。
SEM的构造装置的结构SEM由形成电子探针的电子光学系统、装载样品用的样品台、检测二次电子的二次电子检测器、观察图像的显示系统及进行各种操作的操作系统等构成(图1),电子光学系统由用于形成电子探针的电子枪、聚光镜、物镜和控制电子探针进行扫描的扫描线圈等构成,电子光学系统(镜筒内部)以及样品周围的空间为真空状态。
图1 SEM的基本结构图2 电子枪的构造图电子枪电子枪是电子束的产生系统,图2是热发射电子枪的构造图。
将细(0.1 mm左右)钨丝做成的灯丝(阴极)进行高温加热(2800K左右)后,会发射热电子,此时给相向设置的金属板(阳极)加以正高圧(1~30kV),热电子会汇集成电子束流向阳极,若在阳极中央开一个孔,电子束会通过这个孔流出,在阴极和阳极之间,设置电极并加以负电圧,能够调整电子束的电流量,在这个电极(被称为韦氏极)的作用下,电子束被细聚焦,最细之处被称为交叉点(Crossover),成为实际的光源(电子源),其直径为15~20μm。
以上说明的是最常用的热发射电子枪,此外还有场发射电子枪和肖特基发射电子枪等。
热发射电子枪的阴极除使用钨丝外,还使用单晶六硼化镧(LaB6),LaB6由于活性很强,所以需要在高真空中工作。
透镜的构造电子显微镜一般采用利用磁铁作用的磁透镜。
当绕成线圈状的电线被通入直流电后,会产生旋转对称的磁场,对电子束来说起着透镜的作用。
由于制作强磁透镜(短焦距的透镜)需要增加磁力线的密度,如图3所示,线圈的周围套有铁壳(轭铁),磁力线从狭窄的开口中漏洩出来,开口处被称作磁极片(极靴),经精度极高的机械加工而成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扫描电镜经典总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII• 扫描电镜(SEM)• 透射电镜(TEM)• 原子力显微镜(AFM)• X射线衍射(XRD)• 元素分析(EA)显微分析技术——电子显微镜一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。
透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射电镜(TEM)的成像和衍射二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,成为真空中的自由电子,此即二次电子。
在电场的作用下它可呈曲线运动进入检测器,使表面凹凸的各个部分都能清晰成像。
二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜的分辨率。
二次电子的强度主要与样品表面形貌相关。
二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。
当探针很细,分辨高时,基本收集的是二次电子而背景电子很少,称为二次电子成像(SEI)。
背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子,前者的份额远大于后者。
背散射电子反映样品表面的不同取向、不同平均原子量的区域差别,产额随原子序数的增加而增加;利用背散射电子为成像信号,可分析形貌特征,也可显示原子序数衬度而进行定性成分分析。
特征X射线入射电子和原子中的内层电子发生非弹性散射作用而损失一部分能量(几百个eV),激发内层电子发生电离,形成离子,该过程称为芯电子激发。
除了二次电子外,失去内层电子的原子处于不稳定的较高能量状态,将依一定的选择定则向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元素组成信息的特征X射线,可用于材料的成分分析。
俄歇(Auger)电子如果入射电子把外层电子打进内层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。
主要用于轻元素和超轻元素(除H和He)的分析,称为俄歇电子能谱仪。
阴极荧光如果入射电子使试样的原于内电子发生电离,高能级的电子向低能级跃迁时发出的光波长较长(在可见光或紫外区),称为阴极荧光,可用作光谱分析,但它通常非常微弱。
各种信号的深度与区域大小高能电子束受到物质原子的散射作用偏离入射方向,向外发散;随着深度的增加,分布范围增大,动能不断降低、直至为0,形成一个作用区。
“梨形作用体积”:对轻元素样品,入射电子经多次小角散射,在未达到较大散射角之前已深入样品内部;最后散射角增大,达到漫散射的程度。
“半球形作用体积”:对重元素样品,入射电子在样品表面不很深的位置就达到漫反射的程度。
电子在样品内散射区域的形状主要取决于原子序数,改变电子能量只引起作用体积大小的改变而不会显著改变形状。
深度能逸出材料表面的俄歇电子距表面的深度:~2nm,为表面信号;能逸出材料表面的二次电子距表面的深度:5~10nm;能逸出材料表面的X射线距表面的深度:500nm~5μm。
:分辨率:俄歇电子与二次电子的空间分辨率最高;背散射电子的空间分辨率次之;X射线信号的空间分辨率最低。
二次电子像的分辨率主要取决于电子探针束斑尺寸和电子枪的亮度。
二次电子的最高分辨率可达。
扫描电镜的分辨率指的是二次电子的分辨率。
扫描电镜的特点★景深大,图像富有立体感,特别适合于表面形貌的研究.★放大倍数范围广,从十几倍到2万倍,几乎覆盖了光学显微镜和TEM的范围.★制样简单,样品的电子损伤小.这些方面优于TEM,所以SEM成为材料常用的重要剖析手段.扫描电镜(SEM)的几大要素(1)分辨率影响扫描电镜的分辨本领的主要因素有:(a) 入射电子束束斑直径:为扫描电镜分辨本领的极限。
一般,热阴极电子枪的最小束斑直径可缩小到6nm,场发射电子枪可使束斑直径小于3nm。
(b) 入射电子束在样品中的扩展效应:扩散程度取决于入射束电子能量和样品原子序数的高低。
入射束能量越高,样品原子序数越小,则电子束作用体积越大,产生信号的区域随电子束的扩散而增大,从而降低了分辨率(c) 成像方式及所用的调制信号:当以二次电子为调制信号时,由于其能量低(小于50 eV),平均自由程短(10~100 nm左右),只有在表层50~100 nm的深度范围内的二次电子才能逸出样品表面,发生散射次数很有限,基本未向侧向扩展,因此,二次电子像分辨率约等于束斑直径。
当以背散射电子为调制信号时,由于背散射电子能量比较高,穿透能力强,可从样品中较深的区域逸出(约为有效作用深度的30%左右)。
在此深度范围,入射电子已有了相当宽的侧向扩展,所以背散射电子像分辨率要比二次电子像低,一般在500~2000nm左右。
如果以吸收电子、X射线、阴极荧光、束感生电导或电位等作为调制信号的其他操作方式,由于信号来自整个电子束散射区域,所得扫描像的分辨率都比较低,一般在l 000 nm或l0000nm以上不等。
(2)放大倍数扫描电镜的放大倍数可表示为M =Ac/As式中,Ac—荧光屏上图像的边长;As—电子束在样品上的扫描振幅。
一般地,Ac 是固定的(通常为100 mm),则可通过改变As 来改变放大倍数。
目前,大多数商品扫描电镜放大倍数为20~20,000倍,介于光学显微镜和透射电镜之间,即扫描电镜弥补了光学显微镜和透射电镜放大倍数的空挡。
(3)景深景深是指焦点前后的一个距离范围,该范围内所有物点所成的图像符合分辨率要求,可以成清晰的图像;也即,景深是可以被看清的距离范围。
扫描电子显微镜的景深比透射电子显微镜大10倍,比光学显微镜大几百倍。
由于图像景深大,所得扫描电子像富有立体感。
电子束的景深取决于临界分辨本领d0和电子束入射半角αc。
其中,临界分辨本领与放大倍数有关,因人眼的分辨本领约为mm, 放大后,要使人感觉物像清晰,必须使电子束的分辨率高于临界分辨率d0 :电子束的入射角可通过改变光阑尺寸和工作距离来调整,用小尺寸的光阑和大的工作距离可获得小的入射电子角。
(4) 衬度包括:表面形貌衬度和原子序数衬度表面形貌衬度由试样表面的不平整性引起。
原子序数衬度原子序数衬度指扫描电子束入射试祥时产生的背散射电子、吸收电子、X射线,对微区内原子序数的差异相当敏感二次电子来自试样表面层5~10nm的深度范围,表面形貌特征对二次电子的发射系数影响可由下式表示:δ=δ0/Cosαδ0——物质的二次电子发射系数,与具体物质有关的常数。
可见,二次电子的发射系数随α角的增大而增大。
事实上,α角大,入射电子束的作用体积较靠近试样表面,由于二次电子主要来自试样表层5~10nm深度,因此,作用体积内产生的大量二次电子离开表面的机会增加;其次,α角大,入射电子束的总轨迹增长,引起电子电离的机会增多。
因此,在试样表面凸凹不平的部位,入射电子束作用产生的二次电子信号的强度要比在试样表面平坦的部位产生的信号强度大,从而形成表面形貌衬度。
原子序数越大,图像越亮。
二次电子受原子序数的影响较小。
高分子中各组分之间的平均原子序数差别不大;所以只有—些特殊的高分子多相体系才能利用这种衬度成像。
背散射电子像背散射电子也称为反射电子或初级背散射电子,其能量在50eV, 接近于入射电子能量。
利用背散射电子的成像,称为背散射电子像。
背散射电子像既可以用来显示形貌衬度,也可以用来显示成分衬度。
形貌衬度类似二次电子,样品表面的形貌也影响背散射电子的产率,在α角较大(尖角)处,背散射电子的产率高;在α角较小(平面)处,背散射电子的产率低。
由于背反射电子是来自一个较大的作用体积,用背反射信号进行形貌分析时,其分辨率远比二次电子低。
由试样微区的原子序数或化学成分的差异所形成的像。
成分衬度背散射电子是受原子反射回来的入射电子,受核效应的影响比较大。
由经验公式,对原子序数大于10的元素,背散射电子发射系数可表示为∴背散射电子发射系数随原子序数Z的增大而增加。
η = ln Z/6 -1/4但是,二次电子大部分是由价电子激发出来的,所以原子序数的影响不大明显:当原子序数Z<20时,δ随着Z的增加而增大;当Z>20时,δ与Z几乎无关。
(如图3一15所示)。
若试样表面存在不均匀的元素分布,平均原子序数较大的区域产生较强的背散射电子信号,因而在背散射电子像上显示出较亮的衬度;反之,平均原子序数较小的区域在背散射电子图像上是暗区。
因此,可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。
扫描电子显微镜的样品制备(1)导电性好,以防止表面积累电荷而影响成像;(2)具有抗辐射损伤的能力,在高能电子轰击下不分解、不变形;(3)具有高的二次电子和背散射电子系数,以保证图像良好的信噪比。
扫描电镜试样一般要求具有以下特点:对不满足以上要求的试样(陶瓷、玻璃、塑料等绝缘材料,导电性差的半导体,热稳定性不好的有机材料,二次电子、背散射电子系数较低的材料等),需要表面涂层处理。
表面涂层处理的常用方法有真空蒸发和离子溅射镀膜法。
二次电子像的样品制备方法(1)导电样品。
将允许尺寸的样品放入样品室观察前先需用丙酮、酒精或甲苯这类溶剂清洗掉样品表面的油污,或在超声波清洁器中去除油污,也可用复型剥离及化学刻蚀等方法去除在高放大倍数下易分解的碳氢化物等的玷污,因为这些物质分解后会在样品表面沉积一层碳和其他产物,当放大倍数缩小时,图像中原视域就成为暗色的方块。
(2)绝缘体或导电性能较差的样品。
如陶瓷、半导体,高分子、不需固定脱水处理的生物样品及一些无机材料等,只需清洁样品之后,用离子喷镀仪在样品表面喷镀一层金产生导电层就可观察了。
(3)不论样品导不导电,块状样品都得借助于双面胶带将样品粘在铜或铝样品台上,并用银粉导电胶连通样品与样品台,或直接用石墨导电双面胶带粘贴样品,使吸收电子能流入接地的样品架,以尽量减少因表面充电效应或热损伤引起的起泡、龟裂、像漂移、像散不稳定等现象,尤其是生物样品、聚合物等。
(4)颗粒样品,如果是干燥的粉末,可直接撒在粘有双面胶带的样品台上,抖去或用洗耳球吹去松散的颗粒,并用导电胶涂在胶带四周再喷金。
(5)如果是含水或含有挥发性物质的样品,必须先去除水分或挥发性物质,再喷金观察。
去除水分的方法有很多种:烘箱干燥、湿度干燥、置换干燥、真空干燥、冷冻干燥、临界点干燥等,根据样品的不同特点和要求选择不同的方法。
温度干燥是将样品保持在一定的温度下干燥,真空干燥与冷冻干燥都是用真空喷镀仪抽真空,使水分挥发。
不同的是后者将样品投入液氮或其他骤冷剂然后再抽真空,水分从固态直接升华,使得通常的液相蒸发带来的表面张力减小,减少样品损伤。