高一上学期期末考试数学试题

合集下载

四川省眉山市高一上学期期末考试数学试题(解析版)

四川省眉山市高一上学期期末考试数学试题(解析版)

高一上期末考试数学试题本试卷共150分,考试时间120分钟.注意事项:1.答卷前,请考生务必把自己的姓名、准考证号填写在答题卡上; 2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效; 3.考试结束后,将答题卡交回.第I 卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 命题:“,有”的否定形式为( ) p Q x ∀∈2Q x ∈p ⌝A. ,有 B. ,有 Q x ∀∉2Q x ∉Q x ∀∈2Q x ∉C. ,使 D. ,使Q x ∃∉2Q x ∉Q x ∃∈2Q x ∉【答案】D 【解析】【分析】根据全称命题的否定是特称命题可得答案. 【详解】根据全称命题的否定是特称命题得命题:“,有”的否定形式为,使 p Q x ∀∈2Q x ∈p ⌝Q x ∃∈2Q x ∉故选:D.2. 已知集合,,则( ) {}2A x x =<{}2120B x x x =-->A B = A. B.C.D.(,4)-∞-(,3)-∞-()3,2-(4,2)-【答案】B 【解析】【分析】求出集合中元素范围,再直接求交集即可.B 【详解】或,{}{2120|3B x x x x x =-->=<-}4x >{}2A x x =<则 A B = (,3)-∞-故选:B.3. 已知,,则的取值范围是( ) 13x <<31y -<<3x y -A. B.C.D.(0,12)(2,10)-(2,12)-(0,10)【答案】C 【解析】【分析】利用不等式的性质得到的范围,再和的范围相加即可. 3y -x 【详解】,31y -<< ,又, 339y ∴-<-<13x <<2312x y ∴-<-<故选:C4. 设,下列说法中错误的是( ) ,x y ∈R A. “”是“”的充分不必要条件 1x >21x >B. “”是“”的必要不充分条件 0xy =220x y +=C. “”是“”的充要条件 1,1x y >>2,1x y xy +>>D. “”是“”的既不充分也不必要条件 x y >22x y >【答案】C 【解析】【分析】根据充分条件,必要条件的概念依次判断各选项即可.【详解】解:对于A ,因为的解集为,所以“”是“”的充分不必要条21x >()(),11,-∞-⋃+∞1x >21x >件,故正确;对于B ,“”时, “”不一定成立,反之“”成立时,“”一定成0xy =220x y +=220x y +=0xy =立,所以“”是“”的必要不充分条件,故正确;0xy =220x y +=对于C ,“”时,“”一定成立,反之 “”成立时,1,1x y >>2,1x y xy +>>2,1x y xy +>>不一定成立,例如,所以 “”是“”的充分不必要条1,1x y >>1,32x y ==1,1x y >>2,1x y xy +>>件,故错误;对于D ,当时,满足“”,但不满足“”;当时,满足“x 1,y 2==-x y >22x y >2,1x y =-=-22x y >”,但不满足“”,所以“”是“”的既不充分也不必要条件,故正确. x y >x y >22x y >故选:C 5. 函数的定义域为,则的取值范围为( )()f x =R a A. B.C.D.{2}[]1,2(2,)+∞[2,)+∞【答案】A 【解析】【分析】先验证时的情况,再当时,利用二次函数的性质列不等式求解. 1a =1a ≠【详解】当时,;1a =()f x =R 当时,若函数的定义域为,1a ≠()f x =R 则,解得 ()()210Δ410a a a ->⎧⎪⎨=---≤⎪⎩2a =故选:A. 6. 函数的图象大致为( )0.5log ||()22xxx fx -=+A. B.C. D.【答案】B 【解析】【分析】判断函数的奇偶性可排除C 、D ,,,排除A ,即可得出答案.()0,1x ∈()0.5log 022xxx f x -=>+【详解】因为的定义域为,0.5log ||()22x xx f x -=+}{0x x ≠则,所以为偶函数,()0.5log ()22xxx f x f x ---==+()f x 所以排除C 、D ;当时,,()0,1x ∈0.5log 0,220xxx ->+>所以,排除A .()0.5log 022x xx f x -=>+故选:B .7. 设,则的最小值为( ) ||1a <1211a a+-+A.B.C. 1D. 232+32【答案】A 【解析】【分析】先得到,再变形,展开,利用10,10a a ->+>()121121111211a a a a a a ⎛⎫+=+-++ ⎪-+-+⎝⎭基本不等式求最值即可.【详解】,则,||1a < 10,10a a ->+>()()21121121111311211211a a a a a a a a a a ⎡⎤-+⎛⎫∴+=+-++=++⎢⎥ ⎪-+-+-+⎝⎭⎣⎦,(13213322⎛ ≥+=+= +⎝当且仅当,即时,等号成立. ()21111a aa a-+=-+3a =-故选:A.8. 已知函数满足,若与的图像有交点,()()f x x ∈R ()()2f x f x +-=1y x =+()y f x =()11,x y ,,则( )()22,x y ()33,x y 123123x xx y y y +++++=A. B. 0C. 3D. 63-【答案】C 【解析】【分析】两个函数图像都关于点对称,则图像交点也关于点对称,可求值. ()0,1()0,1【详解】由可得,()()2f x f x +-=()()2f x f x -=-函数的图像上任意一点关于点的对称点为, 即点,()f x ()(),x f x ()0,1()(),2x f x --()(),x f x --函数的图像可以由奇函数的图像向上平移1个单位得到,所以函数的图像也关于1y x =+y x =1y x =+点对称,()0,1若与的图像有交点,,,不妨设, 1y x =+()y f x =()11,x y ()22,x y ()33,x y 123x x x <<由对称性可得,,,, 1302x x +=20x =1312y y +=21y =所以. 1231233x x x y y y +++++=故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知为全集,集合M ,,若,则( ) I N I ⊆M N ⊆A. B.C.D.M N N ⋃=M N N ⋂=I I M N ⊆ðð()I N M ⋂=∅ð【答案】AD 【解析】【分析】直接根据集合间的关系逐一判断即可.【详解】因为,则,,则A 正确,B 错误; M N ⊆M N N ⋃=M N M ⋂=又为全集,集合M ,,则,,C 错误,D 正确; I N I ⊆I I M N ⊇ðð()I N M =∅ ð故选:AD.10. 下列命题是真命题的是( ) A. 已知且, B. 若,则 0x >1x ≠1ln 2ln x x+≥a b c >>a c b c ->-C. 若,则D.0a b >>55a b >1<【答案】BCD 【解析】【分析】根据对数函数的性质,结合不等式的性质、假设法进行逐一判断即可. 【详解】对A :当时,,显然不成立,故本选项不是真命题; (0,1)x ∈ln 0x <1ln 2ln x x+≥对B :根据不等式的性质,由,即,所以本选项是真命题; ()()a b a c b c >⇒+->+-a c b c ->-对C :根据不等式的性质,由,所以本选项是真命题; 0a b >>⇒55a b >对D :,所以本选项是真命题.)()2216230+-=-=-<1<11. 现代研究结果显示,饮茶温度最好不要超过60℃.一杯茶泡好后置于室内,1分钟、2分钟后测得这杯茶的温度分别为80℃,65℃,给出两个茶温T (单位:℃)关于茶泡好后置于室内时间t (单位:分钟,)的函数模型:①;②.根据所给的数据,下列结论中正确的t ∈N 380204t T ⎛⎫=⋅+ ⎪⎝⎭260203tT ⎛⎫=⋅+ ⎪⎝⎭是( )(参考数据:,) lg 20.30≈lg 30.48≈A. 选择函数模型① B. 选择函数模型②C. 该杯茶泡好后到饮用至少需要等待2分钟D. 该杯茶泡好后到饮用至少需要等待2.5分钟 【答案】AD 【解析】【分析】将分别代入与,从而可判断AB ;解不等式2x =380204t T ⎛⎫=⋅+ ⎪⎝⎭260203tT ⎛⎫=⋅+ ⎪⎝⎭可得判断CD.38020604tT ⎛⎫=⋅+≤ ⎪⎝⎭【详解】将代入,得;2x =380204tT ⎛⎫=⋅+ ⎪⎝⎭65T =将代入,得. 2x =260203tT ⎛⎫=⋅+ ⎪⎝⎭1403T =故选择函数模型①.由,可得, 38020604tT ⎛⎫=⋅+≤ ⎪⎝⎭1lglg 22 2.532lg 2lg 3lg 4t ≥=≈-故该杯茶泡好后到饮用至少需要等待2.5分. 故选:AD.12. 函数满足,,,则( )()f x ()()2111f x f x x -++=+()()224f x f x x +=-+x ∈R A. B.()932f =()()246f f +=C. 为偶函数 D. 当时,()22y f x x =+-0x ≥()()48f x f x +-≥【答案】ACD【分析】利用赋值法可判断AB 选项;将已知等式变形为,利用函数奇偶()()2222f x x f x x +-=-+性的定义可判断C 选项;由已知等式推导得出的表达式,可判断D 选项的正误. ()()4f x f x +-【详解】对于A 选项,在等式中,令可得,则, ()()2111f x f x x -++=+0x =()211f =()112f =在等式中,令可得,A 对; ()()224f x f x x +=-+1x =()()93142f f =+=对于B 选项,在等式中令可得, ()()2111f x f x x -++=+1x =()()022f f +=在等式中,令可得, ()()224f x f x x +=-+2x =()()408f f =+所以,,因此,,B 错;()()4822f f -+=()()4210f f +=对于C 选项,因为可得, ()()224f x f x x +=-+()()2222f x x f x x +-=-+令,则,所以,, ()()22g x f x x =+-()()22g x f x x -=-+()()g x g x -=所以,函数为偶函数,C 对;()22y f x x =+-对于D 选项,由可得,()()2111f x f x x -++=+()()()2221122f x f x x x x ++-=++=++由可得, ()()224f x f x x +=-+()()()()44248f x f x x f x x +=-++=-++所以,,()()()224222486102f x x x f x x x x f x +=++-+++=++-+所以,,①()()242610f x f x x x +++=++所以,,②()()()()2222621022f x f x x x x x ++=-+-+=++①②可得,故当时,,D 对. -()()448f x f x x +-=+0x ≥()()4488f x f x x +-=+≥故选:ACD.第II 卷三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13. 函数的定义域为______.0()f x x =【答案】 ()(],00,4-∞ 【解析】【分析】直接根据被开方数不小于零,0的0次无意义列不等式求解.【详解】由已知得,解得且,40x -≥⎧⎨4x ≤0x ≠即函数的定义域为0()f x x =()(],00,4-∞ 故答案为:.()(],00,4-∞ 14. 已知幂函数的图象经过点,则函数的图象必经过定点()y f x =(2,8)()1()(0,1)f x g x a a a +=>≠______. 【答案】 ()1,1-【解析】【分析】先设出,代入点可得,则可得到,令即()y f x x α==(2,8)3()f x x =31()x g x a +=310x +=可得定点.【详解】设,则由已知,得,()y f x x α==(2)28f α==3α=,3()f x x ∴=,31()xg x a +∴=令,得, 310x +==1x -则01(1)g a -==所以函数的图象必经过定点. ()1()(0,1)f x g x a a a +=>≠()1,1-故答案为:.()1,1-15. 已知函数,则的零点个数为______. ()32022||x f x x =-()f x 【答案】 3【解析】【分析】零点转化为两个函数交点的问题,利用两个函数的单调性的性质进行求解即可.【详解】令,的零点个数问题转化为函数与()32022||32022x xf x x x =-⇒=()f x 3x y =函数的图象交点问题,2022,020222022,0x x y x x x ≥⎧==⎨-<⎩当时,函数单调递增,且,0x <3x y =031x <<函数单调递减,且,所以此时两个函数有一个交点, 2022y x =-20220y x =->当时,函数单调递增,且,0x ≥3x y =31x ≥函数单调递减,且,2022y x =20220y x =≥当,则;当,则; 0x =031202200=>⨯=1x =133202212022=<⨯=所以,在上、有一个交点,(0,1)2022y x =3x y =而随的增大,由指数函数增长的远快于正比例函数,在上、有一个交点, x (1,)+∞2022y x =3x y =所以当时,两个函数的图象有两个交点, 0x ≥综上所述:函数与函数的图象有3个交点,3x y =2022,020222022,0x x y x x x ≥⎧==⎨-<⎩所以函数,则的零点个数为, ()32022||x f x x =-()f x 3故答案为:316. 设函数则满足的的取值范围是______.()ln ,1,0,1,x x f x x ≥⎧=⎨<⎩(1)(3)f x f x -<x 【答案】 1,3⎛⎫+∞ ⎪⎝⎭【解析】【分析】根据函数的单调性列式,求解即可.3131x x x >⎧⎨>-⎩【详解】由对数函数单调性可得,则有,故所求的取值范围为(1)(3)f x f x -<311313x x x x >⎧⇒>⎨>-⎩x . 1,3⎛⎫+∞ ⎪⎝⎭故答案为:.1,3⎛⎫+∞ ⎪⎝⎭四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (1)已知,求的值;2log 31a =442358log 93a a ⨯++(2)已知,求的值. 22x x -+=1616x x -+【答案】(1);(2) 1000434【解析】【分析】(1)直接利用指数幂和对数的运算性质计算即可;【详解】(1)由得2log 31a =,,2222log 9log 32log 32a a a ===321log 2log 33233a ===;4143344258log 93221041000458a a ⎛∴⎫=++=+= ⎪⎭⨯++⨯⎝(2)由,两边平方得, 22x x -+=4482x x -++=即,再两边平方得,446x x -+=6121636x x -++=416163x x -+=∴18. 请在①充分不必要条件,②必要不充分条件这两个条件中任选一个,补充在下面的问题(2)中.若问题(2)中的实数存在,求出的取值范围;若不存在,说明理由.已知全集,集合是不m m U =R A 等式的解集,集合是函数在上的值域. 12317x x <+<B 22y x x m =-++[]0,4(1)求集合;A (2)若是成立的______条件,判断实数是否存在. x A ∈xB ∈m 【答案】(1){}03A x x =<<(2)选①,;选②,实数不存在. 28m ≤≤m 【解析】【分析】(1)令,分析函数的单调性,将不等式变形为()23xf x x =+()f x 12317x x <+<,结合函数的单调性可求得集合;()()()03f f x f <<()f x A (2)求出集合,选①,可得出 ,可得出关于实数的不等式,解之即可;选②,可得出 ,B A B m A B 根据集合的包含关系可得出结论. 【小问1详解】解:令,其中,()23xf x x =+x ∈R 因为函数、在上为增函数,故函数在上为增函数,2x y =3y x =R ()f x R 又因为,,由可得,()01f =()3232317f =+=12317x x <+<()()()03f f x f <<可得,所以,. 03x <<{}03A x x =<<【小问2详解】[]2[]若选①,若是成立的充分不必要条件,则 ,则,解得;x A ∈x B ∈A B 8013m m -≤⎧⎨+≥⎩28m ≤≤若选②,若是成立的必要不充分条件,则 ,则,解得.x A ∈x B ∈A B 8013m m ->⎧⎨+<⎩m ∈∅19. 如图,在直角三角形 中,,动点P 从点A 出发,以 的速度沿 向ABC 8cm AB AC ==1cm/s AB B 点移动,动点Q 从点C 出发,以 的速度沿 向A 点移动.若 同时出发,设运动时间2cm /s CA ,P Q 为(), 的面积为.s t 04t <<APQ △2cm S(1)求S 与之间的函数关系式; t (2)求S 的最大值;(3)当为多少时,为等腰直角三角形,并求出此时S 的值. t APQ △【答案】(1);24,(04)S t t t =-+<<(2)4;2cm (3),. 8s 3232cm 9S =【解析】【分析】(1)由题意表示出,根据三角形面积公式 cm,2 cm,(82)cm AP t CQ t AQ AC CQ t ===-=-即可得答案.(2)利用二次函数性质求得答案即可.(3)由为等腰直角三角形,得,即得方程,即可求得答案. APQ △AP AQ =82t t =-【小问1详解】设同时出发后经过 ,的面积为, ,P Q s t APQ △2cm S 则, cm,2 cm,(82)cm AP t CQ t AQ AC CQ t ===-=-所以. 211(82)4,(04)22S AP AQ t t t t t =⋅=-=-+<<【小问2详解】由(1)知, 224(2)4,(04)S t t t t =-+=--+<<当时,取得最大值4. 2t =S 【小问3详解】若为等腰直角三角形,则, APQ △AP AQ =即,此时. 882,(s)3t t t =-=28832(4339S =-+⨯=20. 已知函数. ()215()log 2f x x mx =-+(1)若在内单调递增,求的取值范围; ()f x (,1]-∞m (2)若任意,都有,求的取值范围.1,22x ⎡⎤∈⎢⎥⎣⎦()0f x <m 【答案】(1)23m ≤<(2) 2m <【解析】【分析】(1)根据复合导函数的单调性,函数在内单调递减,且恒大于零,据此22y x mx =-+(,1]-∞列不等式组求解即可;(2)将问题转化为对任意都成立,参变分离得,利用基本不等式221x mx -+>1,22x ⎡⎤∈⎢⎥⎣⎦1m x x <+求出的最小值即可. 1x x+【小问1详解】若在内单调递增,()f x (,1]-∞则根据复合导函数的单调性,函数在内单调递减,且恒大于零,22y x mx =-+(,1]-∞即, 12120m m ⎧≥⎪⎨⎪-+>⎩解得 23m ≤<【小问2详解】,即对任意都成立()215()log 20f x x mx =-+<221x mx -+>1,22x ⎡⎤∈⎢⎥⎣⎦即对任意都成立, 1m x x <+1,22x ⎡⎤∈⎢⎥⎣⎦即 min1m x x ⎡⎤<+⎢⎥⎣⎦又,当且仅当时等号成立,12x x +≥=1x =2m <∴21. 已知函数.()441f x x x =-+(1)判断在上的单调性,并用定义证明; ()f x ()1,+∞(2)求零点的个数.()f x 【答案】(1)函数在上为增函数,证明见解析()f x ()1,+∞(2) 4【解析】【分析】(1)判断出在上为增函数,任取、且,作差()f x ()1,+∞1x ()21,x ∈+∞12x x >,因式分解,并判断的符号,即可证得结论成立;()()12f x f x -()()12f x f x -(2)分析函数在上的单调性,并分析函数的奇偶性,结合零点存在定理可得出结论. ()f x ()0,1()f x 【小问1详解】解:当时,,函数在上为增函数,证明如下:1x >()441f x x x =-+()f x ()1,+∞任取、且,则,,, 1x ()21,x ∈+∞12x x >120x x ->122x x +>22122x x +>()()()()()()4444121122121241414f x f x x x x x x x x x -=-+--+=---, ()()()()()()()222212121212121212440x x x x x x x x x x x x x x ⎡⎤=-++--=-++->⎣⎦,所以,函数在上为增函数.()()12f x f x ∴>()f x ()1,+∞【小问2详解】解:当时,,01x <<()441f x x x =-+任取、且,则,,,1x ()20,1x ∈12x x >120x x ->1202x x <+<221202x x <+<则,,()()()()()221212121240f x f x x x x x x x ⎡⎤-=-++-<⎣⎦()()12f x f x ∴<所以,函数在上为增函数,()f x ()0,1对任意的,, x ∈R ()()()444141f x x x x x f x -=---+=-+=所以,函数为上的偶函数,()f x R 故当时,,,, ()0,x ∈+∞()()min 120f x f ==-<()010f =>()290f =>由零点存在定理可知,函数在、上各有一个零点, ()f x ()0,1()1,2由于函数为偶函数,故函数的零点个数为.()f x ()f x 422. 已知函数(其中,均为常数,且)的图象经过点与点 ()log a f x x b =+a b 0a >1a ≠(2,5)(8,7)(1)求,的值; a b (2)求不等式的解集;()425-<x xf (3)设函数,若对任意的,存在,使得2()x xg x b a +=-1[1,4]x ∈[]220,log 5x ∈()()12f x g x m=+成立,求实数的取值范围.m 【答案】(1);(2);(3). 2,4a b ==()0,1[]1,8【解析】【分析】(1)将点的坐标代入函数解析式进行求解可得.,a b (2)根据(1)的条件解出的解,即,然后令进行求解即可. ()5f x <02x <<2042x x <-<(3)记函数的值域为,函数的值域为,则,列出不等式组,从而得到实数的()f x A ()h x B A B ⊆m 取值范围.【详解】(1)由已知得,log 25log 87a ab b +=⎧⎨+=⎩消去得,即,又,, b log 8log 2log 42a a a -==24a =0a >1a ≠解得.2,4a b ==(2)由(1)可知:,则 2()log 4f x x =+2()log 4502f x x x =+<⇒<<又,所以,()425-<x xf 2042xx <-<即 ()()4200122210422x x x x x xx x >⎧⎧->⎪⇒⇒<<⎨⎨-+<-<⎩⎪⎩所以不等式的解集为()425-<x xf ()0,1(3)由(1)知函数的解析式为..()f x ()2log 4f x x =+()242x x g x +=-当时,函数单调递增,其值域为;[]1,4x ∈()2log 4f x x =+[]4,6A =令,当时,,2x t =[]20,log 5x ∈[]1,5t ∈于是 .()()22242424x x g x t t t +=-=-=--[]4,5∈-设函数,则函数的值域为,()()hx g x m =+()h x []4,5B m m =-++根据条件知,于是,解得.A B ⊆5644m m +≥⎧⎨-+≤⎩18m ≤≤所以实数的取值范围为. m []1,8【点睛】思路点睛:本题第(1)问主要代点计算;第(2)问可以使用整体法进行计算;第(3)问在于理解值域之间的关系.。

高一数学上学期期末考试试题含解析

高一数学上学期期末考试试题含解析
【解析】
【分析】
先由奇函数的性质,得到 ,求出 ;再由二次函数的单调性,以及奇函数的性质,得到函数 在区间 上单调递减,进而可求出结果。
【详解】因为函数 是奇函数,
所以 ,即 ,解得: ;
因此
根据二次函数的性质,可得,当 时,函数 在区间 上单调递减,在区间 上单调递增;
又因为 ,所以由奇函数的性质可得:函数 在区间 上单调递减;
,即至少遇到4个红灯的概率为0。33。
(3)设事件 为遇到6个及6个以上红灯,则至多遇到5个红灯为事件 .
则 。
【点睛】本题主要考查互斥事件的概率计算,以及概率的性质的应用,熟记概率计算公式,以及概率的性质即可,属于常考题型。
19。一商场对5年来春节期间服装类商品的优惠金额 (单位:万元)与销售额 (单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
【分析】
根据奇偶性的概念,判断函数 的奇偶性,再结合函数单调性,即可解所求不等式。
【详解】因为 的定义域为 ,
由 可得,函数 是奇函数;
根据幂函数单调性可得, 单调递增;所以函数 是增函数;
所以不等式 可化为 ,
因此 ,解得: 。
故选:D
【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性的概念,会根据函数解析式判定单调性即可,属于常考题型.
【解析】
【分析】
(1)根据换元法,令 ,即可结合已知条件求出结果;
(2)根据指数函数单调性,即可得出单调区间.
【详解】(1)令 ,即 ,
代入 ,可得 ,
所以
(2)因为 ,根据指数函数单调性,可得:
函数 的单调增区间是 ,单调减区间是 。
【点睛】本题主要考查求函数解析式,以及求指数型函数的单调区间,灵活运用换元法求解析式,熟记指数函数的单调性即可,属于常考题型.

2023-2024学年广东省深圳中学高一学期期末数学试题及答案

2023-2024学年广东省深圳中学高一学期期末数学试题及答案

深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A. 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C.D. 5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg 为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值④此人的心跳为80次/分.的其中正确结论的个数为( )A. 1B. 2C. 3D. 46. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长10个时段占比的中位数为20.2%7. 将函数()2sin f x x =图象上所有点横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B.C.D. 8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1B. 2C. 3D. 4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.的的的9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为8112. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.14. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.15. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.16. cos()cos cos 1y αβαβ=++--的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈-⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法【答案】C 【解析】【分析】根据抽样方法确定正确答案.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”,“老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”,所以最合理的是按年龄段分层随机抽样.故选:C 2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C. ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈【答案】B 【解析】【分析】AC 项角度与弧度混用,排除AC ;D 项终边在第三象限,排除D.【详解】因为7πrad 3154= ,终边落在第四象限,且与45- 角终边相同,故与7π4终边相同的角的集合.的{}{}31536045360S k k αααα==+⋅==-+⋅即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-【答案】A 【解析】【分析】利用三角函数定义以及同角三角函数之间的平方关系即可得出结果.【详解】根据三角函数定义可知3cos 5α=,又22sin cos 1αα+=53cos α===.故选:A4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C. D. 【答案】B 【解析】【分析】根据余弦的二倍角公式即可求解.【详解】因为21cos 212sin3αα=-=,所以sin α=,因为()0,πα∈,所以sin α=.故选:B .5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人的血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值 ④此人的心跳为80次/分其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】根据所给函数解析式及正弦函数的性质求出()P t 的取值范围,即可得到此人的血压在血压计上的读数,从而判断①②③,再计算出最小正周期,即可判断④.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t -≤≤,所以11525()11525P t -≤≤+,即90()140P t ≤≤,即此人的血压在血压计上的读数为140/90mmhg ,故①正确;因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围,即此人的血压不在健康范围内,故②错误,③正确;对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ),则此人的心跳为180T=次/分,故④正确;故选:C6. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时的占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长的10个时段占比的中位数为20.2%【答案】C 【解析】【分析】根据题意结合统计相关知识逐项分析判断.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%-=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确.故选:C .7. 将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B. C.D. 【答案】B 【解析】【分析】根据函数图象的变换可得()π2sin 23g x x ⎛⎫=-⎪⎝⎭,即可结合正弦函数的对称性得12πt t +=,进而125π6x x +=,即可求解.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象,再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π23x t -=,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33-⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x -+-=,则125π6x x +=,所以()125πtan tan 6x x +==.故选:B8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】利用三角函数定义域代入选项逐个验证即可得出结论.【详解】考虑三角函数的定义域,对于选项A ,当1k =时,sin π,cos π,tan πn n n 对于任意整数n ,都是整数,满足题意;对于B ,当2k =时,2ππtantan n n k =对于整数1,没有意义,不满足题意;同理可得对于C 和D ,当3ππtantan n n k =或4ππtan tan n n k =时,代入验证可知不满足题意;所以可知最大“好整数”为1故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC 【解析】【分析】根据角度制与弧度制的定义,以及角度制和弧度制的换算公式,以及角的定义,逐项判定,即可求解.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒【答案】ACD 【解析】【分析】利用两角差的余弦公式,诱导公式,二倍角公式即可逐个选项判断.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=--== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒-︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=-︒-︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502-︒-︒-︒===-︒-︒-︒,D 正确.故选:ACD11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为81【答案】BC【解析】【分析】利用频率分布直方图,用样本估计总体,样本的极差、平均值、百分位数相关知识计算即可.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值,所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =,所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+-⨯⨯=,解得2413m =,所以D 错误.故选:BC .12. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点【答案】AB 【解析】【分析】利用三角函数的定义求得α,从而得到()f x 的解析式,进而利用三角函数的性质与平移的结论,逐一分析各选项即可得解.【详解】因为ππ1sin ,cos 332⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,cos α=,所以5π2π,6k k α∈=+Z ,则()()cos sin 2sin cos 2sin 2f x x x x ααα=-=-5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭Z ,A : 22111cos 22sin 222αα⎛⎫-==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫-= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈-=⇒=+Z Z ,仅0k =,1,即5π11π,1212x =符合题意,即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.【答案】95【解析】【分析】利用平均数的求法计算即可.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =.故答案为:9514. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.【答案】12##0.5【解析】【分析】根据题意,分别求得()sin ,cos ααβ+,再由余弦的差角公式,代入计算,即可得到结果.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<,又02βπ<<,所以π3παβ<+<,且()sin αβ+=<,所以π2π3αβ<+<,则()11cos 14αβ+==-,sin α==,所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++⎡⎤⎣⎦11111472=-⨯+=.故答案为:1215. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.【答案】43【解析】【分析】由函数为奇函数,得0ϕ=,再根据函数图像关于点3,04A π⎛⎫⎪⎝⎭对称,可知43kω=,根据函数的单调性可得04ω<≤,进而得解.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x -=-,即sin cos cos sin x x ϕωωϕ=-,又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=;又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=,故答案为:43.16. cos()cos cos 1y αβαβ=++--取值范围是_________.【答案】1[4,]2-【解析】【分析】由和角的余弦公式变形给定函数,再利用辅助角公式变形,结合正弦函数的性质用含cos β的关系式表示y ,再借助二次函数最值求解即得.【详解】cos cos sin sin cos cos 1y αβαβαβ=-+--(cos 1)cos (sin )sin (cos 1)βαβαβ=+--+)(cos 1)αϕβ=+-+)(cos 1)αϕβ=+-+由sin()[1,1]αϕ+∈-,得(cos 1)(cos 1)y ββ-+≤≤+,令t =,则t ∈,则22t y t ≤≤--,所以221(42y t t ≥-=-+≥-,当且仅当t =,即cos 1β=时取等号,且2211(22y t t ≤-=-+≤,当且仅当t =,即1cos 2β=-时取等号,的所以y 的取值范围为1[4,]2-.故答案为:1[4,]2-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.【答案】(1)()cos f αα=-(2【解析】【分析】(1)利用诱导公式化简即可;(2)利用诱导公式及同角三角函数的关系计算即可.【小问1详解】因为()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin cos sin sin αααααα⋅⋅-==-⋅,所以()cos fαα=-.【小问2详解】由诱导公式可知()1sin πsin 5αα-=-=,即1sin 5α=-,又α是第三象限角,所以cos α===所以()cos fαα=-=.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?【答案】(1)1300a =,200n = (2)16.6吨 (3)20.64吨【解析】【分析】(1)频率分布直方图总面积为1,由此即可求解.(2)先判断所求值所在的区间,再按比例即可求解.(3)按题意列不等式即可求解.【小问1详解】()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯= ,1.300a ∴=用水量在(]9,12频率为0.06530.195⨯=,392000.195n ∴==(户)【小问2详解】()0.0150.0250.0500.0650.08530.720.8++++⨯=< ,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72-∴+⨯=-(吨)【小问3详解】设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>,则()16.6316.6570w m =⨯+-⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【答案】(1)[]0,3(2)5π11π,1212⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用诱导公式以及二倍角公式化简可得()f x 的表达式,结合ππ,63x ⎡⎤∈-⎢⎥⎣⎦,确定π26x +的范围,即可求得答案;(2)由π,6x m ⎡⎤∈-⎢⎥⎣⎦,确定πππ2[,2666x m +∈-+,根据()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,结合正弦函数的零点,列出相应不等式,即求得答案.【小问1详解】由题意得()()2πcos 2cos f x x x x=-+的πcos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦,则ππ5π2[,666x +∈-,则1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;【小问2详解】由题可得π6m >-,当π,6x m ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,2666x m +∈-+,()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=-⎭=,且()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,而sin y x =在π[,2π)6-有且仅有2个零点,分别为0,π,故π5π11ππ22π,61212m m ≤+<∴≤<,即5π11π,1212m ⎡⎫∈⎪⎢⎣⎭.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1x y ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).【答案】(1)选择模型()0,1x y ka k a =>>符合要求,*32323N 2,11,xy x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭ (2)六月份【解析】【分析】(1)根据指数函数与幂函数的增长速度即可选得哪一个模型,再利用待定系数法即可求出该模型的解析式;(2)由(1)结合已知可得3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,再结合已知数据即可得出答案.【小问1详解】函数()0,1x y ka k a =>>与()120,0y pxk p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数()0,1x y kak a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1x y kak a =>>符合要求,根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;【小问2详解】当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,由3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,得3102x ⎛⎫> ⎪⎝⎭,所以32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =(2)1,1349n λ==【解析】【分析】(1)由周期求得ω,再由对称性求得ϕ得解析式;(2)由图象变换求得()g x ,然后可得()F x 的表达式,令[]sin 1,1t x =∈-,()0F x =化为22210,Δ80t t λλ--==+>,则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,然后分类讨论()0F x =在(0,π)n 上解的个数后得出结论.【小问1详解】由三角函数的周期公式可得()()2π2,sin 2πf x x ωϕ==∴=+,令()π2π2x k k Z ϕ+=+∈,得()ππ422k x k Z ϕ=-+∈,由于直线π2x =-为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ-=-+∈,得()3ππZ 2k k ϕ=+∈,由于0π,1k ϕ<<∴=-,则π2ϕ=,因此,()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭;小问2详解】将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin242y x x x ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++ ,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得22210,Δ80t t λλ--==+>,【则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()*0,πNn n ∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()*0,πNn n ∈也有偶数个根,不合乎题意;(ii )当11t =-时,则212t =,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2024个根,不合乎题意,(iii )当11t =,则212t =-,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2023个根,合乎题意;此时,1122λ-+=,1λ=,综上所述:1,1349n λ==.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+ ⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.【答案】(1)()2f x x x =+ (2)在()0,∞+上单调递减,值域是()1,+∞.(3)1-【解析】【分析】(1)利用换元法,令1t x =+,代入化简即可求出函数的解析式;(2)可设4231x u =+-,利用复合函数的单调性,即可判定函数的单调性,进而求得值域;(3)由(2)知,()12g =,()12f =,结合()(),f x g x 的单调性可知当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<,由()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦恒成立,即为()1h x ≥恒成立,设[]cos 0,1x t =∈,只需不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,讨论m 的取值范围即可求解.【小问1详解】由题意()2132f x x x +=++,令1t x =+,则1x t =-,有()()22(1)312f t t t t t =-+-+=+,故()2f x x x =+【小问2详解】函数()24log 231x g x ⎛⎫=+⎪-⎝⎭,由420031x x +>⇒>-,即定义域为()0,∞+,且4231x u =+-在()0,∞+上单调递减及2log y u =单调递增所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在()0,∞+上单调递减.因为()0,x ∞∈+,42231x u =+>-,所以()g x 的值域是()1,∞+【小问3详解】结合(2)结论知()24log 231x g x ⎛⎫=+⎪-⎝⎭在()0,∞+上单调递减且()12g =,又()2f x x x =+在()0,∞+上单调递增且()12f =故当1x ≥时,()()2,01f xg x x ≥≥<<时,()()2f x g x <<,由()()()1f h x g h x h x ⎡⎤⎡⎤≥⇒≥⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在ππ,22x ⎡⎤∈-⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈,则不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,将0=t 代入得()10m -+≥,与0m >矛盾;③当0m <时,只需()()10,1,12210,1,m m m m m m ⎧-+≥≤-⎧⎪⇒⇒=-⎨⎨+-+≥≥-⎪⎩⎩,综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.。

2022-2023学年云南省保山市文山州高一上学期期末考试数学试题(解析版)

2022-2023学年云南省保山市文山州高一上学期期末考试数学试题(解析版)

2022-2023学年云南省保山市文山州高一上学期期末考试数学试题一、单选题1.已知集合{}ln 1A x x =<,{}1,0,1,2,3,4B =-,则A B =( ) A .{}1,2 B .{}0,1,2C .{}1,2,3D .{}1,2,3,4【答案】A【分析】解对数不等式化简集合A ,再由交集运算即可求解.【详解】由ln 1x <得0e x <<,所以{}0e A x x =<<,所以{}1,2A B =, 故选:A.2.命题“0x ∃>,sin 1x x =”的否定是( )A .0x ∃>,sin 1x x ≠B .0x ∀>,sin 1x x =C .0x ∀>,sin 1x x ≠D .0x ∀≤,sin 1x x ≠【答案】C【分析】特称命题的否定是全称命题,根据命题“x M ∃∈,()p x ”的否定是“x M ∀∈,()p x ⌝”解决即可.【详解】由题知,命题“0x ∃>,sin 1x x =”是特称命题,于是其否定是“0x ∀>,sin 1x x ≠”, 故选:C3.若0,0a b >>,则“4a b +=”是“4ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A【分析】根据充分必要条件的概念验证题中的命题即可得出答案. 【详解】0,0a b >>,4a b +=,根据基本不等式可得,242a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当 2a b ==时取等号∴“4a b +=”是“4ab ≤”充分条件;4ab ≤时,显然4a b +=不一定成立,∴“4a b +=”不是“4ab ≤”的必要条件.∴“4a b +=”是“4ab ≤”的充分不必要条件,选项A 正确.故选:A.4.下列函数既是偶函数,又在()0,∞+上单调递增的是( ) A .cos y x = B .2y x =-C .1y x=D .y x =【答案】D【分析】根据基本初等函数的单调性与奇偶性判断即可.【详解】对于A :cos y x =为偶函数,但是在()0,∞+上不具有单调性,故A 错误; 对于B :2y x =-为偶函数,但是在()0,∞+上单调递减,故B 错误; 对于C :1y x=为奇函数,故C 错误;对于D :()y f x x ==,则()()f x x f x -=-=,所以y x =为偶函数, 且当0x >时y x =,则函数在()0,∞+上单调递增,故D 正确; 故选:D5.已知函数()()()1,2log 1,12a a x a x f x x x ⎧-+≥⎪=⎨-<<⎪⎩是()1,+∞上的减函数,则实数a 的取值范围是( )A .21,52⎡⎫⎪⎢⎣⎭B .10,2⎛⎫ ⎪⎝⎭C .20,3⎛⎤ ⎥⎝⎦D .10,5⎛⎤ ⎥⎝⎦【答案】C【分析】根据分段函数的性质结合一次函数和对数函数的单调性,列出不等式组,即可求得实数a 的取值范围.【详解】由题意10,01,log 122,a a a a a -<⎧⎪<<⎨⎪≥-+⎩解得203a <≤,所以实数a 的取值范围是20,3⎛⎤⎥⎝⎦,故选:C.6.已知lg9x =,0.13y =,1ln 3z =,则x ,y ,z 的大小关系是( )A .y x z <<B .z x y <<C .y z x <<D .x y z <<【答案】B【分析】由对数、指数得运算性质,分别将,,x y z 与0,1比较大小,即可得到结果.【详解】0lg1lg9lg101x =<=<=,即01x <<; 00.1133y =<=,即1y >;1ln ln103z =<=,即0z <.故y x z >>. 故选:B.7.在ABC 中,若tan tan tan B C B C +=且sin 2B =则C =( ) A .60° B .45° C .30° D .15°【答案】C【分析】根据tan tan tan B C B C ++=利用两角和的正切公式可得60B C +=,即可得120A =,根据sin 2B =B 的范围可得30B =,进而可求得30C =.【详解】解:因为tan tan tan B C B C +=所以)tan tan 1tan tan B C B C +-,即()tan tan tan 1tan tan B CB C B C++==-因为B ,C 为ABC 的内角,所以60B C +=,即120A =,所以060B <<,02120B <<,因为sin 2B =所以260B =, 即30B =,所以30C =. 故选:C8.重庆有一玻璃加工厂,当太阳通过该厂生产的某型防紫外线玻璃时,紫外线将被过滤为原来的13,而太阳通过一块普通的玻璃时,紫外线只会损失10%,设太阳光原来的紫外线为()0k k >,通过x块这样的普通玻璃后紫外线为y ,则()*0.9x y k x N =⋅∈,那么要达到该厂生产的防紫外线玻璃同样的效果,至少通过这样的普通玻璃块数为( )(参考数据:lg30.477≈) A .9 B .10 C .11 D .12【答案】C【解析】由题意得30.9(0)x k k k ⋅<>,化简得10.93x <,两边同时取常用对数得110.913x g g <,利用对数的运算性质可得选项.【详解】由题意得30.9(0)xk k k ⋅<>,化简得10.93x <,两边同时取常用对数得110.913x g g <,因为lg 0.90<,所以11130.477310.37lg 0.92lg310.046gg x -->=≈≈--,则至少通过11块玻璃. 故选:C.二、多选题9.下列说法正确的是( ) A .若,a b ∈R ,则2ab b a +≥B .若0a b >>,0m n >>,则b b m a a n+<+ C .若a b >,则22a b >D .若a b >,c d >,则22a c b d ->- 【答案】BC【分析】当a ,b 异号时即可判断A ;利用作差法得()b m b ma nba n a a n a+--=++,再根据题意判断ma nb -的符号即可判断B ;根据0a b >≥,两边平方后不等式也成立即可判断C ;利用特殊值法即可判断D . 【详解】对于A ,a ,b 异号时,不等式不成立,故A 错误; 对于B ,由()()()()b m a b a n b m b ma nba n a a n a a n a+-++--==+++, 又0a b >>,0m n >>,所以0ma nb ->,即b b ma a n+<+,故B 正确; 对于C ,由0a b >≥,所以22a b >,故C 正确;对于D ,2a =,1b =,1c =,0d =,则20a c -=,21b d -=,不满足22a c b d ->-,故D 错误. 故选:BC .10.已知函数()()sin f x A x =+ωϕπ0,0,2A ωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .2A =,2ω=,π3ϕ=B .函数π6f x ⎛⎫- ⎪⎝⎭的图象关于坐标原点对称C .函数()f x 的图象关于直线17π12x =-对称 D .函数()f x 在ππ,124⎛⎤- ⎥⎝⎦上的值域为(]1,2【答案】ABC【分析】最值求A ,周期求ω,特殊点求ϕ,观察图像找出特征值即可求出函数()f x ,后根据()f x 的性质可作出判断.【详解】A 选项:由图象知2A =; 设()f x 的最小正周期为T ,7ππ3π3T 12644⎛⎫--== ⎪⎝⎭,所以2πT πω==得2ω=, 当7π12x =时,函数()f x 取得最小值,则()7ππ22π122k k ϕ⨯+=-∈Z , 即()52ππ3k k ϕ=-∈Z ,又π2ϕ<,则当1k =时,π3ϕ=符合题意.所以2A =,2ω=,π3ϕ=,所以A 正确. B 选项:πππ2sin 22sin 2663f x x x ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦为奇函数,所以B 正确.C 选项:令()ππ2π32x k k Z +=+∈,解得()ππ212k x k Z =+∈,所以函数()f x 图象的对称轴方程为()ππZ 212k x k =+∈,当3k =-时,17π12x =-,所以C 正确. D 选项:因为ππ,124x ⎛⎤∈- ⎥⎝⎦,ππ2,62x ⎛⎤∈- ⎥⎝⎦,ππ5π2,366x ⎛⎤+∈ ⎥⎝⎦,所以π1sin 2,132x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以()[]1,2f x ∈,所以D 不正确.故选:ABC11.已知函数2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩,下列说法正确的是( ) A .((0))3f f =B .函数()y f x =的值域为[2,)+∞C .函数()y f x =的单调递增区间为[0,)+∞D .设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是[2,2]- 【答案】ABD【解析】作出函数()f x 的图象,先计算(0)f ,然后计算((0))f f ,判断A ,根据图象判断BC ,而利用参变分离可判断D .【详解】画出函数()f x 图象.如图,A 项,(0)2f =,((0))(2)3f f f ==,B 项,由图象易知,值域为[2,)+∞C 项,有图象易知,[0,)+∞区间内函数不单调D 项,当1x ≥时,22xx a x +≥+恒成立, 所以222x x a x x x --≤+≤+即32222x x a x x--≤≤+在[)1,+∞上恒成立, 由基本不等式可得222x x +≥,当且仅当2x =时等号成立,32232x x +≥23x = 所以32a -≤≤. 当1x <时,22x x a +≥+恒成立,所以222xx a x --≤+≤+在(),1∞-上恒成立, 即2222x xx a x ---≤≤+-在(),1∞-上恒成立 令()32,02222,012x x x g x x xx ⎧-+≤⎪⎪=+-=⎨⎪+<<⎪⎩,当0x ≤时,()2g x ≥,当01x <<时,()322g x <<,故()min 2g x =; 令()12,022322,012x x x h x x xx ⎧-≤⎪⎪=---=⎨⎪--<<⎪⎩,当0x ≤时,()2h x ≤-,当01x <<时,()722h x -<<-,故()max 2h x =-;所以22a -≤≤. 故()2xf x a ≥+在R 上恒成立时,有22a -≤≤. 故选:ABD .【点睛】关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.12.设x ∈R ,用[]x 表示不超过x 的最大整数(例如:[]2.83-=-,[]2.52=,已知函数()sin sin f x x x =+,()()x f x ϕ⎡⎤=⎣⎦,下列结论中正确的是( )A .函数()x ϕ是周期函数B .函数()x ϕ的图象关于直线π2x =对称 C .函数()x ϕ的值域是{}0,1,2D .函数()()π2g x x x ϕ=-只有一个零点【答案】CD【分析】首先判断函数()f x 的性质,奇偶性和周期性,对x 的取值范围讨论,进而得出函数()()x f x ϕ⎡⎤=⎣⎦的解析式并且画出()x ϕ的图象,由()x ϕ的图象分别对选项ABC 进行判断,对于D选项,函数()()π2g x x x ϕ=-的零点个数可由2πy x =与函数()y x ϕ=交点个数确定.【详解】∵()sin sin f x x x =+,x ∈R ,∴()()()sin sin sin sin f x x x x x f x -=-+-=+=, ∴函数()sin sin f x x x =+为偶函数,sin y x =不是周期函数,sin y x =是周期函数.对于0x ≥,当2π2ππk x k ≤≤+,k ∈Z 时,()2sin f x x =. 当2ππ2π2πk x k +<<+,k ∈Z 时,()0f x =,∴当0x ≥时,()()π2,2π,Z 2π5π0,2π2π,2π2π2π,Z,66π5ππ1,2π2π,2π,Z 662x k k x f x k x k k x k k k x k x k k ϕ⎧=+∈⎪⎪⎪⎡⎤==≤<++<<+∈⎨⎣⎦⎪⎪+≤≤+≠+∈⎪⎩ 由函数()sin sin f x x x =+为偶函数,可得()x ϕ的图象如图所示, 由图易知函数()x ϕ不是周期函数,所以A 错误;∵ππ222ϕϕ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3π02ϕ⎛⎫= ⎪⎝⎭,∴函数()x ϕ的图象不关于直线π2x =对称,故B 错误;由上述可知函数()x ϕ的值域是{}0,1,2,故C 正确; 由()()π02g x x x ϕ=-=可得()2πx x ϕ=,当20πx =时,0x =,()00ϕ=; 当21πx =时,π2x =,π22ϕ⎛⎫= ⎪⎝⎭; 当22πx =时,πx =,()π0ϕ=, 故直线2πy x =与()y x ϕ=的图象只有一个交点,即函数()()π2g x x x ϕ=-只有一个零点,故D 正确. 故选:CD.三、填空题13.已知角α的顶点与原点重合,始边与x 轴正半轴重合,终边过点()43P ,-,则sin cos 66ππαα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭______.31225【分析】根据角α终边过点()43P ,-,可求出角α三角函数值,再利用正弦和余弦的和差角公式,以及同角三角函数的平方关系,即可求出结果. 【详解】∵α的终边过点()43P ,-, ∴3sin 5α=,4cos 5=-α(三角函数的概念),∴3131sin cos cos sin 6622ππαααααα⎫⎛⎫⎛⎫+-=++⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭)2212sin cos sin cos 25αααα=++=,1225. 14.已知tan 3α=,则sin cos 2sin cos αααα=-___________.【答案】65-【分析】首先利用二倍角公式化简,再变形为sin ,cos αα的齐次分式形式,用tan α表示,代入即可求解.【详解】()()22sin cos sin sin cos 2sin cos sin sin cos sin cos αααααααααααα-==-+--()222222sin cos sin tan tan 336sin cos tan 1315αααααααα+++=-=-=-=-+++. 故答案为:65-15.已知lg5a =,104b =,则22a ab b ++=______. 【答案】2【分析】根据给定条件,利用指数式与对数式互化及对数运算法则计算作答. 【详解】因104b =,则lg42lg2b ==,又lg5a =,所以22(2)lg5(2lg52lg2)2lg22(lg5lg2)lg52lg2a ab b a a b b ++=++=⋅++=+⋅+2lg52lg22=+=. 故答案为:2四、双空题16.已知函数()f x 满足()()226412f x f x x x +-=-+,则()f x =_________;若函数()2816g x x x m =+-,若对任意[]3,3x ∈-,()()f x g x ≥恒成立,则实数m 的取值范围是_________.【答案】 2244x x ++ [)86,+∞【分析】将原式中的x 代换成x -,再消去()f x -即可得到()f x 的解析式;若对任意[]3,3x ∈-,()()f x g x ≥恒成立,利用参变分离,得到26124m x x ≥+-,转化为()2max 6124m x x ≥+-,即可求得实数m 的取值范围.【详解】由()()226412f x f x x x +-=-+知,将原式中的x 代换成x -得()()226412f x f x x x -+=++()()()()222641226412f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩,消去()f x -得()2244f x x x =++; 由()()f x g x ≥,得22244816x x x x m ++≥+-, 即26124m x x ≥+-对任意[]3,3x ∈-,恒成立,∴()2max6124m x x ≥+-,当3x =时,26124x x +-取得最大值86. ∴实数m 的取值范围为[)86,+∞. 故答案为:2244x x ++;[)86,+∞五、解答题17.已知集合()(){}110A x x a x a =-+--<,{}1139x B x -=≤≤.(1)若1a =,求A B ⋃;(2)若x B ∈是x A ∈的必要不充分条件,求实数a 的值. 【答案】(1){}03A B x x ⋃=<≤ (2)2【分析】(1)将1a =代入集合A ,解不等式求出集合A 与集合B ,再求并集即可;(2)由x B ∈是x A ∈的必要不充分条件确定集合A 是集合B 的真子集,由此求实数a 的值即可. 【详解】(1)∵不等式1139x -≤≤等价于012333x -≤≤,且函数3x y =在R 上单调递增,∴012x ≤-≤,即13x ≤≤,∴{}{}113913x B x x x -=≤≤=≤≤,若1a =,则(){}{}2002A x x x x x =-<=<<, ∴{}03A B x x ⋃=<≤.(2)不等式()()110x a x a -+--<即()()110x a x a ---+<⎡⎤⎡⎤⎣⎦⎣⎦, ∵11a a -<+,∴解得11a x a -<<+,∴()(){}{}11011A x x a x a x a x a =-+--<=-<<+, 由(1)知,{}13B x x =≤≤若x B ∈是x A ∈的必要不充分条件,即x B ∈x A ∈,x A ∈⇒x B ∈,∴集合A 是集合B 的真子集, ∴1311a a +≤⎧⎨-≥⎩,即22a a ≤⎧⎨≥⎩, ∴2a =.18.已知函数()222sin sin 63f x x x x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的单调递增区间;(2)将函数()f x 的图象向右平移3π个单位长度,得到函数()y g x =的图象,若关于x 的方程()g x m =在7,66x ππ⎡⎤∈⎢⎥⎣⎦上有四个根,从小到大依次为1234x x x x <<<,求123422x x x x +++的值. 【答案】(1)()5,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z (2)92π.【分析】(1)根据三角函数的诱导公、二倍角公式以及差角公式,整理函数,利用辅助角公式,化简为单角三角函数,结合整体思想,建立不等式,可得答案;(2)根据函数变换,写出新函数解析式,利用其对称性,可得答案.【详解】(1)()222sin cos 623f x x x x πππ⎡⎤⎛⎫⎛⎫=---+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ))2sin cos cos 21sin 2cos 21663x x x x x πππ⎛⎫⎛⎫⎛⎫=--+=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1sin 22sin 223x x x π⎛⎫=+ ⎪⎝⎭ 令()222232k x k k πππππ-+≤+≤+∈Z ,解得51212k x k ππππ-+≤≤+, 所以()f x 的单调递增区间为()5,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z .(2)由题意知:()sin 23g x x π⎛⎫=-+ ⎪⎝⎭∴()sin 23y g x x π⎛⎫==- ⎪⎝⎭, 因为512x π=和1112π=x 是sin 23y x π⎛⎫=- ⎪⎝⎭在7,66x ππ⎡⎤∈⎢⎥⎣⎦上的对称轴, 由对称性可知:1256x x π+=,34116x x π+=,所以12349222x x x x π+++=. 19.已知函数()21log 3f x ax a x ⎛⎫=++- ⎪⎝⎭(0a ≥). (1)当0a =时,解关于x 的不等式:()2f x >;(2)若()f x 在0x >时都有意义,求实数a 的取值范围.【答案】(1)107x x ⎧⎫<<⎨⎬⎩⎭ (2){}1a a >.【分析】(1)由0a =时得到()21log 3f x x ⎛⎫=- ⎪⎝⎭,再根据()2f x >结合对数函数的单调性得到130134x x⎧->⎪⎪⎨⎪->⎪⎩,即可求解. (2)根据对数函数的定义域,得到()f x 在0x >时都有意义,转化为()2310ax a x +-+>在0x >时恒成立,分离参数得到22313111x x x a x x x -->=++在0x >时恒成立,构造函数令()23111x x g x x-=+(0x >),则只需()max a g x >即可,利用换元法令10t x =>,得到()()2341511t t h t t t t -==-+-+++,结合基本不等式即可求解.【详解】(1)当0a =时,()21log 3f x x ⎛⎫=- ⎪⎝⎭, 因为2log y x =在()0,∞+上单调递增,且2log 42=,由()2f x >得130134x x⎧->⎪⎪⎨⎪->⎪⎩,解得:107x <<, 即不等式解集为107x x ⎧⎫<<⎨⎬⎩⎭. (2)()f x 在0x >时都有意义,即130ax a x++->在0x >上恒成立, 即()2310ax a x +-+>在0x >时恒成立,即22313111x x x a x x x-->=++在0x >时恒成立, 令()23111x x g x x-=+,0x >,则只需()max a g x >即可, 令10t x =>,()()2341511t t h t t t t -==-+-+++, ∵0t >,()4141t t ++≥+, 当且仅当,411t t +=+,且0t >,即1t =时等号成立, ∴()()44151545111h t t t t t ⎛⎫=-+-+=-+++≤-+= ⎪++⎝⎭, ∴()1g x ≤,即()g x 最大值为1,∴1a >,∴a 的取值范围为{}1a a >.20.已知函数()124212x x xa a f x +-⋅++=,a ∈R . (1)判断()f x 是否有零点,若有,求出该零点;若没有,请说明理由;(2)若函数()f x 在[]1,3x ∈上为单调递增函数,求实数a 的取值范围.【答案】(1)没有,理由见解析(2){a a【分析】(1)将问题转化为124210x x a a +-⋅++=是否有解,设2x t =,判断22210t at a -++=在0t >时是否有解即可;(2)设1213x x ≤<≤,利用()f x 在[]1,3x ∈上为单调递增函数得12211022x x a +->恒成立,常数分离后得a 的取值范围. 【详解】(1)设()f x 有零点,则方程()0f x =有解,即124210x x a a +-⋅++=有解, 设2x t =,0t >,得22210t at a -++=(*),()224410a a ∆=-+<,(*)方程无正解,所以()f x 没有零点.(2)()12242112222x x x x x a a a f x a +-⋅+++==++, 设1213x x ≤<≤,()()210f x f x ->恒成立,()()()2121211222221111222212222x x x x x x x x a a a f x f x ⎛⎫+++-=+--=-- ⎪⎝⎭, 因为21220x x ->,所以12211022x x a +->恒成立, 所以112221222x x x x a +=+<恒成立,又12121326x x x x ≤<≤⇒<+<,所以214+≤a ,所以a的取值范围为{a a ≤≤.21.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()ln f x x x =+.(1)求()f x 的解析式;(2)若正数m ,n 满足22ln ln m m n n +=+,求n m -的最大值.【答案】(1)()()ln ,0,0,0,ln ,0.x x x f x x x x x ⎧+>⎪==⎨⎪--<⎩ (2)14.【分析】(1)根据函数的奇偶性即可求出函数解析式;(2)根据题意,由(1)得()()2f m f n =,利用函数的单调性得20m n =>,则21124n m n ⎛⎫-=--+ ⎪⎝⎭,结合二次函数的性质即可求解.【详解】(1)当0x <时,则0x ->,()()ln f x x x -=-+-, 函数()f x 是定义在R 上的奇函数,()()f x f x =--, 所以,当0x <时()()ln f x x x =--,当0x =时()0f x =,()ln ,00,0ln(),0x x x f x x x x x +>⎧⎪==⎨⎪--<⎩. (2)因为22ln ln m m n n +=+,由,m n 都为正数,得()()2f m f n =,设120x x <<,则1111212122()()ln ln ()ln x f x f x x x x x x x x -=-+-=-+, 因为11220,ln ln10x x x x -<<=,所以11()()0f x f x -<, 故()ln f x x x =+为单调递增的函数,所以20m n =>,221124n m n n n ⎛⎫-=-=--+ ⎪⎝⎭, 当且仅当12n =时,n m -求得最大值14. 22.已知定义在()0,∞+上的函数()f x ,满足()()m f f m f n n ⎛⎫=- ⎪⎝⎭,且当1x >时,()0f x >. (1)讨论函数()f x 的单调性,并说明理由;(2)若()21f =,解不等式()()333f x f x +->.【答案】(1)()f x 在()0,∞+上单调递增,理由见解析 (2)30,23⎛⎫ ⎪⎝⎭【分析】(1)取21,m x n x ==,利用单调性的定义,进行取值,作差,变形,定号,结论即可得出结果;(2)先根据()21f =,求得83f ,再利用抽象函数的式子化为()383x f f x +⎛⎫> ⎪⎝⎭,根据(1)中的单调性结论,列出不等式,解出即可.【详解】(1)解:()f x 在()0,∞+上单调递增,理由如下: 因为()f x 定义域为()0,∞+,不妨取任意()12,0,x x ∈+∞,且12x x <,则211x x >, 由题意()()22110x f f x f x x ⎛⎫=-> ⎪⎝⎭,即()()21f x f x >, 所以()f x 在()0,∞+上单调递增.(2)因为,0m n ≠,令mn m n =,由()()m f f m f n n ⎛⎫=- ⎪⎝⎭可得: ()()()mn f m f f mn f n n ⎛⎫==- ⎪⎝⎭, 即()()()f mn f m f n =+,由()21f =,可得()()()4222f f f =+=, 令4m =,2n =,则()()()8423f f f =+=,所以不等式()()333f x f x +->,即()()()338f x f x f +->,即()383x f f x +⎛⎫> ⎪⎝⎭, 由(1)可知()f x 在定义域内单调递增, 所以只需3030383x x x x⎧⎪>⎪+>⎨⎪+⎪>⎩,解得0323x <<, 所以不等式()()333f x f x +->的解集为30,23⎛⎫ ⎪⎝⎭.。

甘肃省兰州市第一中学2022高一数学上学期期末考试试题(含解析)

甘肃省兰州市第一中学2022高一数学上学期期末考试试题(含解析)
2.某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上( )
A.快、新、乐B.乐、新、快
C.新、乐、快D.乐、快、新
【答案】A
【解析】
【分析】
根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,即可得出结论.
设点 坐标为 ,则 ,
即 ,
由于点 在圆 上,则 ,所以, ,
整理得 对任意的 恒成立,
,解得 或 (舍去),
所以,存在点 ,对于圆 上任意一点 ,都使得 .
故答案为: .
【点睛】本题考查动点的轨迹方程,涉及两点间距离公式的应用,同时也要注意到点在圆上这一条件的应用,考查计算能力,属于中等题.
三、解答题(本大题共6小题,共70分)
19.如图所示,矩形 中, ⊥平面 , , 为 上的点,且 ⊥平面 .
(1)求证: ⊥平面 ;
(2)求三棱锥 的体积.
【答案】(1)见解析;(2)
【解析】
试题分析:解:(1)∵ 平面 , ∥ ,
∴ 平面 ,∴ ,
又∵ 平面 ,∴ ,
又∵ ,∴ 平面 .
(2)由题意可得, 是 的中点,连接 ,
∵ 平面 ,∴1)求弦 的垂直平分线方程;
(2)求弦 的长.
【答案】(1) ;(2) .
【解析】
【分析】
(1)将圆 方程化为标准式,可得出圆心坐标,由垂径定理可知,线段 的垂直平分线为过圆心且与直线 垂直的直线,由此可得出线段 的垂直平分线方程;
(2)计算出圆心到直线 的距离 ,然后利用勾股定理可计算出弦 的长.
∴ 是 的中点,

四川省南充市2023-2024学年高一上学期期末考试 数学(含答案)

四川省南充市2023-2024学年高一上学期期末考试 数学(含答案)

南充市2023—2024学年度上期普通高中年级学业质量监测数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{}26A x x =<<,{}04B x x =<≤,则()U B A ⋂=ð()A.{}02x x <≤ B.{}02x x << C.{}0,2 D.∅2.命题“01x ∃>,20010x ax ++≤”的否定是()A .1x ∀>,210x ax ++≤ B.1x ∀>,210x ax ++>C.1x ∀≤,210x ax ++≤ D.1x ∀≤,210x ax ++>3.函数()sin f x x x =⋅的部分图象可能是()A. B.C. D.4.函数()2log 4f x x x =+-的零点所在的一个区间为()A.()0,1 B.()1,2 C.()2,3 D.()3,45.已知()1,3P 为角α终边上一点,则()()()()2sin πcos πsin 2π2cos αααα-++=++-()A.17-B.1C.2D.36.已知33log 2a =,2log 5b =,3πcos 4c =,则()A.a b c<< B.b c a << C.c a b<< D.b a c<<7.已知()33ln43xf x ax b x+=+--,若()26f =,则()2f -=()A.14- B.14C.6- D.108.我国某科研机构新研制了一种治疗支原体肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量()c t (单位:mg /L )随着时间t (单位:h )的变化用指数模型()0ektc t c -=描述,假定该药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量03000mg /L c =,且这种新药在病人体内的血药含量不低于1000mg /L 时才会对支原体肺炎起疗效,现给某支原体肺炎患者注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln 20.693≈,ln 3 1.099≈)A.5.32hB.6.23hC.6.93hD.10.99h二、多选题:本题共4小题,每小题5分,共20分.在每小题给出四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如果0a b >>,那么下列不等式正确的是()A.11a b< B.22ac bc < C.11a b b a+>+ D.22a ab b <<10.下列说法正确的有()A.21x y x+=的最小值为2;B.已知1x >,则41y x x =+-的最小值为5;C.若正数x 、y 满足213x y+=,则2x y +的最小值为3;D.设x 、y 为实数,若223x y xy ++=,则x y +的取值范围为[]22-,.11.已如定义在R 上的函数()f x 满足()()0f x f x +-=,()()40f x f x ++=且对任意的1x ,[]22,0x ∈-,当12x x ≠时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦,则以下判断正确的是()A.函数()f x 是偶函数B.函数()f x 的最小正周期是4C.函数()f x 在[]2,6上单调递增D.直线1x =是函数()1f x +图象的对称轴12.已知函数()2log ,04ππ2sin ,41666x x f x x x ⎧<<⎪=⎨⎛⎫-≤≤ ⎪⎪⎝⎭⎩,若方程()f x m =有四个不等的实根1x ,2x ,3x ,4x 且1234x x x x <<<,则下列结论正确的是()A.02m <<B.121=x x C.()[)123422,x x x x ∞+++∈+ D.31x x 取值范围为()1,7三、填空题:本题共4小题,每小题5分,共20分.13.设()20243,0log ,0x x f x x x ⎧≤=⎨>⎩,则()()1f f =______.14.如果1sin 3α=-,α为第三象限角,则3πsin 2α⎛⎫-=⎪⎝⎭______.15.若()()11121a a ---<+,则实数a 的取值范围为______.16.我们知道,函数()f x 的图象关于坐标原点成中心对称的充要条件是函数()f x 为奇函数,由此可以推广得到:函数()f x 的图象关于点(),P a b 成中心对称的充要条件是函数()y f x a b =+-为奇函数,利用题目中的推广结论,若函数()2xn f x m =+的图象关于点10,2P ⎛⎫- ⎪⎝⎭成中心对称,则m n -=______.第Ⅱ卷四、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.设集合{A x y ==,{}521B x m x m =-≤≤+.(1)若1m =时,求A B ⋃;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.18.(1)求值:1ln 222314lg 25lg 2e log 9log 22+++-⨯(2)已知()tan π2α+=.求222sin sin cos cos αααα-⋅+的值.19.已知函数()πsin 23f x x ⎛⎫=-⎪⎝⎭.(1)求函数()f x 的周期以及单调递增区间;(2)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值及相应的x 值.20.已知函数()21f x x mx =-+.(1)若关于x 的不等式()10f x n +-≤的解集为[]1,2-,求实数m ,n 的值;(2)求关于x 的不等式()()10f x x m m -+->∈R 的解集.21.已知()22xxf x a -=⋅-是定义域为R 的奇函数.(1)求实数a 的值;(2)判断函数()f x 在R 上的单调性,并利用函数单调性的定义证明;(3)若不等式()()92350xxf f t -++⋅-<在[]1,1x ∈-上恒成立,求实数t 的取值范围.22.已知函数()2log 1f x x =+,()22xg x =-.(1)求函数()()()()2123F x f x mf x m =--+∈⎡⎤⎣⎦R 在区间[]2,4上的最小值;(2)若函数()()()h x g f x =,且()()y h g x =的图象与()()243y g x n g x n =-⋅+⎡⎤⎣⎦的图象有3个不同的交点,求实数n 的取值范围.南充市2023—2024学年度上期普通高中年级学业质量监测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{}26A x x =<<,{}04B x x =<≤,则()U B A ⋂=ð()A.{}02x x <≤ B.{}02x x << C.{}0,2 D.∅【答案】A 【解析】【分析】应用集合的交补运算求集合.【详解】由题设{|2U A x x =≤ð或6}x ≥,故(){|02}U A B x x ⋂=<≤ð.故选:A2.命题“01x ∃>,20010x ax ++≤”的否定是()A.1x ∀>,210x ax ++≤B.1x ∀>,210x ax ++>C.1x ∀≤,210x ax ++≤D.1x ∀≤,210x ax ++>【答案】B 【解析】【分析】由特称命题的否定是将存在改为任意并否定原结论,即可得答案.【详解】由特称命题的否定为全称命题知:原命题的否定为1x ∀>,210x ax ++>.故选:B3.函数()sin f x x x =⋅的部分图象可能是()A. B.C. D.【答案】D 【解析】【分析】定义判断函数的奇偶性并结合π4f ⎛⎫⎪⎝⎭的符号,应用排除法即可得答案.【详解】由()sin()sin ()f x x x x x f x -=-⋅-==且定义域为R ,即函数为偶函数,排除A 、C ;由πππsin 0444f ⎛⎫=⋅>⎪⎝⎭,排除B.故选:D4.函数()2log 4f x x x =+-的零点所在的一个区间为()A.()0,1 B.()1,2 C.()2,3 D.()3,4【答案】C 【解析】【分析】根据解析式判断单调性,结合零点存在定理确定区间.【详解】由解析式知()2log 4f x x x =+-在(0,)+∞上单调递增,又()130f =-<,()210f =-<,()23log 310f =->,所以零点所在的一个区间为()2,3.故选:C5.已知()1,3P 为角α终边上一点,则()()()()2sin πcos πsin 2π2cos αααα-++=++-()A.17-B.1C.2D.3【答案】B 【解析】【分析】应用诱导公式及由弦化切化简目标式为2tan 1tan 2αα-+,结合三角函数的定义求得tan 3α=,即可求值.【详解】由()()()()2sin πcos π2sin cos 2tan 1sin 2π2cos sin 2cos tan 2αααααααααα-++--==++-++,又tan 3α=,所以2tan 12311tan 232αα-⨯-==++.故选:B6.已知33log 2a =,2log 5b =,3πcos 4c =,则()A.a b c <<B.b c a <<C.c a b<< D.b a c<<【答案】C 【解析】【分析】利用对数函数的单调性及中间量0和2即可求解.【详解】因为333log 2log 8a ==,函数3log y x =在()0,∞+上单调递增,所以330log 8log 92<<=,即02a <<.又因为函数2log y x =在()0,∞+上单调递增,所以22log 5log 42>=,即2b >.又因为3πcos 042c ==-<,所以c a b <<.故选:C.7.已知()33ln43xf x ax b x+=+--,若()26f =,则()2f -=()A.14- B.14C.6- D.10【答案】A 【解析】【分析】构造(x)(x)4g f =+并判断其奇偶性,利用奇偶性求()2f -即可.【详解】令33()()4ln3xg x f x ax b x+=+=+-,且定义域为()3,3-,3333()ln ln ()33x xg x ax b ax b g x x x-+-=-+=--=-+-,即()g x 为奇函数,所以()()()()80g x g x f x f x -+=-++=,即()(2)28(2)14f f f -+=-⇒-=-.故选:A8.我国某科研机构新研制了一种治疗支原体肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量()c t (单位:mg /L )随着时间t (单位:h )的变化用指数模型()0ektc t c -=描述,假定该药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量03000mg /L c =,且这种新药在病人体内的血药含量不低于1000mg /L 时才会对支原体肺炎起疗效,现给某支原体肺炎患者注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln 20.693≈,ln 3 1.099≈)A.5.32hB.6.23hC.6.93hD.10.99h【答案】D 【解析】【分析】由题设有103000e1000t-≥,利用指数函数单调性及指对数关系求解,即可得答案.【详解】由题意()103000e 1000t c t -=≥,则1ln 10ln 310.99103t t -≥⇒≤≈小时.故选:D二、多选题:本题共4小题,每小题5分,共20分.在每小题给出四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如果0a b >>,那么下列不等式正确的是()A.11a b< B.22ac bc < C.11a b b a+>+ D.22a ab b <<【答案】AC 【解析】【分析】根据不等式性质判断A 、C 、D ;特殊值0c =判断B.【详解】由0a b >>,则22a ab b >>,110b a >>,故11a b b a+>+,A 、C 对,D 错;当0c =时22ac bc =,故B 错.故选:AC10.下列说法正确的有()A.21x y x+=的最小值为2;B.已知1x >,则41y x x =+-的最小值为5;C.若正数x 、y 满足213x y+=,则2x y +的最小值为3;D.设x 、y 为实数,若223x y xy ++=,则x y +的取值范围为[]22-,.【答案】BCD 【解析】【分析】由0x <对应函数符号即可判断A ;应用基本不等式及其“1”的代换、一元二次不等式解法判断B 、C 、D ,注意取最值条件.【详解】A :当0x <时,210x y x+=<,若存在最小值,不可能为2,错;B :由10x ->,411151y x x =-++≥=-,当且仅当3x =时取等号,所以41y x x =+-的最小值为5,对;C :由题设12112212(2)((5)(53333y x x y x y x y x y +=++=++≥+=,当且仅当1x y ==时取等号,所以2x y +的最小值为3,对;D :22222()()3()4x y x y xy x y xy x y +=+-=++-+≥,可得2()4x y +≤,当且仅当1x y ==±时取等号,则22x y -≤+≤,故x y +的取值范围为[]22-,,对.故选:BCD11.已如定义在R 上的函数()f x 满足()()0f x f x +-=,()()40f x f x ++=且对任意的1x ,[]22,0x ∈-,当12x x ≠时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦,则以下判断正确的是()A.函数()f x 是偶函数B.函数()f x 的最小正周期是4C.函数()f x 在[]2,6上单调递增D.直线1x =是函数()1f x +图象的对称轴【答案】CD 【解析】【分析】由题设()()f x f x -=-且()(4)f x f x =-+、()f x 在[]2,0-上递减,再进一步判断函数的奇偶性、周期性、区间单调性和对称性.【详解】由()()0()()f x f x f x f x +-=⇒-=-,函数为奇函数,A 错;由()()40()(4)(8)f x f x f x f x f x ++=⇒=-+=+,函数的周期为8,B 错;对任意的1x ,[]22,0x ∈-,当12x x ≠时,都有()()()12120x x f x f x ⎡⎤-⋅-<⎣⎦,所以()f x 在[]2,0-上递减,结合奇函数知:函数在[0,2]上递减,即函数[2,2]-上函数递减,由上可知()()(4)f x f x f x =--=-+,即()(4)f x f x -=+,故()f x 关于2x =对称,所以()f x 在[]26,上单调递增,且直线1x =是函数()1f x +图象的对称轴,C 、D 对.故选:CD12.已知函数()2log ,04ππ2sin ,41666x x f x x x ⎧<<⎪=⎨⎛⎫-≤≤ ⎪⎪⎝⎭⎩,若方程()f x m =有四个不等的实根1x ,2x ,3x ,4x 且1234x x x x <<<,则下列结论正确的是()A.02m <<B.121=x x C.()[)123422,x x x x ∞+++∈+ D.31x x 取值范围为()1,7【答案】ABD 【解析】【分析】根据解析式画出函数大致图象,数形结合可得02m <<,且1234114713164x x x x <<<<<<<<<,结合对数函数、正弦型函数性质可得121=x x 、3420x x +=,综合运用基本不等式、区间单调性判断各项正误.【详解】由函数解析式可得函数大致图象如下,由上图,要使方程()f x m =有四个不等的实根1x ,2x ,3x ,4x 且1234x x x x <<<,则02m <<,且1234114713164x x x x <<<<<<<<<,3421020x x +=⨯=,由2122|log ||log |x x =,则212221212log log log ()01x x x x x x -=⇒=⇒=,A 、B 对;所以1234111202022x x x x x x +++=++≥+,又1114x <<,即等号取不到,所以()1234(22,)x x x x ∞+++∈+,C 错;由图知:()f x 在区间(1,14)、(4,7)上单调性相同,且1311,474x x <<<<,所以13,x x 随m 变化同增减,故31x x 取值范围为()1,7,D 对.故选:ABD【点睛】关键点点睛:根据解析式得到图象并确定02m <<,且1234114713164x x x x <<<<<<<<<为关键.三、填空题:本题共4小题,每小题5分,共20分.13.设()20243,0log ,0x x f x x x ⎧≤=⎨>⎩,则()()1f f =______.【答案】1【解析】【分析】根据分段函数的解析式,从内到外运算求解即可.【详解】由题意,()20241log 10f ==,则()()1f f =0(0)31f ==.故答案为:1.14.如果1sin 3α=-,α为第三象限角,则3πsin 2α⎛⎫-= ⎪⎝⎭______.【答案】3【解析】【分析】由平方关系及角所在象限得cos 3α=-,应用诱导公式即可求函数值.【详解】由1sin 3α=-,α为第三象限角,则cos 3α=-,33πsin cos 2αα⎛⎫-=-= ⎪⎝⎭.故答案为:315.若()()11121a a ---<+,则实数a 的取值范围为______.【答案】()1,2,12⎛⎫-∞-⋃-⎪⎝⎭【解析】【分析】利用函数1y x -=的单调性,分三类讨论即可求解.【详解】考虑函数1y x -=.因为函数1y x -=的单调递减区间为()0,∞+和(),0∞-.所以不等式()()11121a a ---<+等价于10210121a a a a -<⎧⎪+<⎨⎪->+⎩或者10210a a -<⎧⎨+>⎩或者10210121a a a a ->⎧⎪+>⎨⎪->+⎩,解得:2a <-或112a -<<.所以实数a 的取值范围为:()1,2,12∞⎛⎫--⋃-⎪⎝⎭.故答案为:()1,2,12∞⎛⎫--⋃- ⎪⎝⎭16.我们知道,函数()f x 的图象关于坐标原点成中心对称的充要条件是函数()f x 为奇函数,由此可以推广得到:函数()f x 的图象关于点(),P a b 成中心对称的充要条件是函数()y f x a b =+-为奇函数,利用题目中的推广结论,若函数()2x n f x m =+的图象关于点10,2P ⎛⎫- ⎪⎝⎭成中心对称,则m n -=______.【答案】2±【解析】【分析】由题设定义有()11[()]22f x f x -+=-+,进而得到22()2(21)20x x n m m mn n m ++++⋅++=恒成立,求参数值,即可得答案.【详解】由题意()12y f x =+为奇函数,所以()11[()]22f x f x -+=-+,则112222x x n n m m -=+++--,所以202(2221)(12)(2)122(12)(2)10x x x x x x x x x n n n m m m m m m m ⋅+⋅+++=⋅+++⋅++++⇒=⋅,所以22()2(21)20x x n m m mn n m ++++⋅++=恒成立,故2012101m n m m mn n +==-⎧⎧⇒⎨⎨++==⎩⎩或11m n =⎧⎨=-⎩,所以2m n -=±.故答案为:2±【点睛】关键点点睛:根据定义得到22()2(21)20x x n m m mn n m ++++⋅++=恒成立为关键.第Ⅱ卷四、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.设集合{A x y ==,{}521B x m x m =-≤≤+.(1)若1m =时,求A B ⋃;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【答案】(1){}45A B x x ⋃=-≤≤(2)[]2,3【解析】【分析】(1)先将集合A 化简,利用并集运算得解;(2)根据题意可得AB ,列式运算可求解.【小问1详解】由y =+,所以2050x x +≥⎧⎨-≥⎩,解得25x ≤≤,{}25A x x ∴=-≤≤,当1m =时,{}43B x x =-≤≤,{}45A B x x ∴⋃=-≤≤.【小问2详解】由题x A ∈是x B ∈的充分不必要条件,即A B ,则25521521m m m m -≥-⎧⎪≤+⎨⎪-≤+⎩(等号不同时取),解得23m ≤≤,所以实数m 的取值范围为[]2,3.18.(1)求值:1ln 222314lg 25lg 2e log 9log 22+++-⨯(2)已知()tan π2α+=.求222sin sin cos cos αααα-⋅+的值.【答案】(1)3;(2)75.【解析】【分析】(1)应用指对数运算性质及指对数关系化简求值;(2)由题设tan 2α=,再应用“1”的代换及齐次运算求值即可.【详解】(1)原式232lg 5lg 222log 3log 2523=+++-⨯=-=;(2)由()tan πtan 2αα+==,22222222222sin sin cos cos 2tan tan 1222172sin sin cos cos sin cos tan 1215ααααααααααααα-⋅+-+⨯-+-⋅+====+++.19.已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的周期以及单调递增区间;(2)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值及相应的x 值.【答案】19.π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈20.最大值为1,相应的5π12x =;最小值为2-,相应的0x =.【解析】【分析】(1)利用正弦型函数的周期公式即可求解函数的周期;利用整体代入法和正弦函数的性质即可求出函数的单调增区间.(2)利用整体代入法和正弦函数的性质即可求解.【小问1详解】由()πsin 23f x x ⎛⎫=-⎪⎝⎭可得:函数()f x 的周期为2ππ2T ==.令πππ2π22π,Z 232k x k k -+≤-≤+∈,解得:π5πππ,Z 1212k x k k -+≤≤+∈,∴()f x 的单调递增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈.【小问2详解】令π23t x =-,因为π0,2⎡⎤∈⎢⎣⎦x ,所以π2π,33t ⎡⎤∈-⎢⎥⎣⎦.所以当ππ232x -=,即5π12x =时,()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上可取得最大值,最大值为1;当233x -=-ππ,即0x =时,()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上可取得最小值,最小值为.故()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上最大值为1,相应的5π12x =;最小值为2,相应的0x =.20.已知函数()21f x x mx =-+.(1)若关于x 的不等式()10f x n +-≤的解集为[]1,2-,求实数m ,n 的值;(2)求关于x 的不等式()()10f x x m m -+->∈R 的解集.【答案】(1)1,2m n ==-;(2)答案见解析.【解析】【分析】(1)由不等式解集可得1,2-是20x mx n -+=的两个根,利用根与系数关系求参数值;(2)由题意有()(1)0x m x -->,讨论1m <、1m =、1m >求不等式解集.【小问1详解】由题设20x mx n -+≤的解集为[]1,2-,即1,2-是20x mx n -+=的两个根,所以121,122m n =-+==-⨯=-.【小问2详解】由题意()21(1)()(1)0f x x m x m x m x m x -+-=-++=-->,当1m <时,解得x m <或1x >,故解集为(,)(1,)m -∞+∞ ;当1m =时,解得1x ≠,故解集为{|1}x x ∈≠R ;当1m >时,解得1x <或x >m ,故解集为(,1)(,)-∞+∞ m ;21.已知()22x xf x a -=⋅-是定义域为R 的奇函数.(1)求实数a 的值;(2)判断函数()f x 在R 上的单调性,并利用函数单调性的定义证明;(3)若不等式()()92350x x f f t -++⋅-<在[]1,1x ∈-上恒成立,求实数t 的取值范围.【答案】21.1a =22.单调递增,答案见解析23.(,∞-【解析】【分析】(1)利用奇函数的性质即可得出a 的值;(2)先判断单调性,再根据函数单调性的定义判断即可;(3)结合(2)的结论和奇函数的性质,不等式可转化为3t m m<+,利用基本不等式求出最值即可.【小问1详解】()f x 是R 上的奇函数,()()f x f x ∴-=-,对任意x ∈R ,即()2222x x x x a a --⋅-=-⋅-,即()()1220x x a --+=,对任意x ∈R 恒成立,10a ∴-=,即1a =.【小问2详解】()f x 为R 上的增函数,证明如下:任取1x ,2R x ∈,且12x x <,()()()1122122222x x x x f x f x ---=---()121212222222x x x x x x -=-+⋅()1212122122x x x x ⎛⎫=-+ ⎪⋅⎝⎭,12x x < ,1212122,1022x x x x ∴<+>⋅,()()120f x f x ∴-<,即()()12f x f x <,所以函数()f x 为R 上的增函数.【小问3详解】不等式()()92350x x f f t -++⋅-<在R 上恒成立,()()()929235x x x f f f t ∴--+=->⋅-,又()f x 为R 上的增函数,9235x x t ∴->⋅-在R 上恒成立,即()23330x x t -⨯+>,令3x m =,0m >,上式等价于230m tm -+>对0m >恒成立,即3t m m <+,令()3g m m m =+,只需()min t g m <即可,又()3g m m m =+≥()min g m ∴=,t ∴<.所以实数t的取值范围为(,∞-.22.已知函数()2log 1f x x =+,()22x g x =-.(1)求函数()()()()2123F x f x mf x m =--+∈⎡⎤⎣⎦R 在区间[]2,4上的最小值;(2)若函数()()()h x g f x =,且()()y h g x =的图象与()()243y g x n g x n =-⋅+⎡⎤⎣⎦的图象有3个不同的交点,求实数n 的取值范围.【答案】(1)答案见解析(2)25n ³【解析】【分析】(1)根据已知条件求出()[]()()222log 2log 13F x x m x m =-++∈R ,令2log x t =换元后()F x 变为2223y t mt m =--+,利用二次函数的性质确定最小值;(2)求出()2log 12222x h x x +=-=-,进而确定()()()22h g x g x =-,令()g x a =换元后有()()y h g x =化为22y a =-,()()243y g x n g x n ⎡⎤=-⋅+⎣⎦化为243y a na n =-+,问题转化为()242320a n a n -+++=有两个根,且一个根在()0,2内,一个根在[)2,+∞内,设()()24232a a n a n ϕ=-+++,通过限制二次函数根所在区间得出不等式,求解不等式即可解出实数n 的取值范围.【小问1详解】()()()()2123F x f x mf x m ⎡⎤=--+∈⎣⎦R ,所以()()()()222log 2log 13F x x m x m =-++∈R ,令2log x t =,因为[]2,4x ∈,则[]1,2t ∈,所以()F x 变为2223y t mt m =--+,函数的对称轴为t m =,当1m £时,函数在[]1,2上单调递增,1t =时,函数有最小值44m -;当12m <<时,函数在[]1,m 上单调递增减,函数在(],2m 上单调递增,t m =时,函数有最小值223m m --+;当2m ≥时,函数在[]1,2上单调递减,2t =时,函数有最小值67m -+.【小问2详解】()()()h x g f x =即()()2log 122220x h x x x +=-=->,所以()22y g x =-,令()g x a =,所以()()y h g x =化为:()220y a a =->,()()243y g x n g x n ⎡⎤=-⋅+⎣⎦化为243y a na n =-+;令22243a a na n -=-+,整理有:()242320a n a n -+++=;因为()22xa g x ==-,作出简图如下注意到0a >,可得:当02a <<时,22x a =-有两个根;当2a ≥时,22x a =-有一个根;因为()()y h g x =的图象与()()243y g x n g x n ⎡⎤=-⋅+⎣⎦的图象有3个不同的交点,所以()242320a n a n -+++=有两个根,且一个根在()0,2内,一个根在[)2,+∞内,设()()24232a a n a n ϕ=-+++,则有:()x ϕ为关于a 的二次函数,图象开口向上,对称轴为21a n =+,根据题意有:()()0020ϕϕ⎧>⎪⎨<⎪⎩,即320520n n +>⎧⎨-+<⎩解得25n >,或()()00200212n ϕϕ⎧>⎪=⎨⎪<+<⎩,即3205201122n n n ⎧⎪+>⎪-+=⎨⎪⎪-<<⎩解得25n =综上所述:25n ³.【点睛】方法点睛:①换元法的应用,注意取值范围;②数形结合的应用.。

2022-2023学年河北省邢台市第一中学高一上学期期末考试数学试题(解析版)

2022-2023学年河北省邢台市第一中学高一上学期期末考试数学试题(解析版)

2022-2023学年河北省邢台市第一中学高一上学期期末考试数学试题一、单选题1.()sin 1320︒-=( )A .12B .12-C D .【答案】C【分析】利用诱导公式进行化简求值.【详解】()()480480sin120sin 1320sin 1800sin ︒︒︒︒︒+-=-==故选:C.2.已知集合212112x x A x +-⎧⎫⎪⎪⎛⎫=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,304x B x x ⎧⎫+=≥⎨⎬-⎩⎭,则()RA B =( )A .{}34x x -<<B .{}33x x -<<C .{}34x x -<≤D .{}33x x -<≤【答案】D【分析】分别解不等式求出集合A 和集合B ,然后再求()RAB 即可.【详解】不等式212112x x +-⎛⎫≥ ⎪⎝⎭等价于2121122x x +-⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭, ∵12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,∴2120x x +-≤,解得43x -≤≤,∴{}21211432x x A x x x +-⎧⎫⎪⎪⎛⎫=≥=-≤≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭, 不等式304x x +≥-等价于()()34040x x x ⎧+-≥⎨-≠⎩,解得3x ≤-或>4x , ∴{3034x B xx x x ⎧⎫+=≥=≤-⎨⎬-⎩⎭或}4x >, ∴{}34B x x =-<≤R , ∴(){}33A B x x ⋂=-<≤R . 故选:D.3.下列函数中,既是奇函数又在定义域上是减函数的是( ) A .ln y x =- B .()tan y x =- C .3y x =- D .1y x=【答案】C【分析】根据奇函数和减函数的特征,结合选项进行判定. 【详解】对于选项A ,ln y x =-不是奇函数,排除A ;对于选项B ,()tan y x =-是奇函数,但是在其定义域上不是减函数,排除B ; 对于选项C ,3y x =-是奇函数,在其定义域上也是减函数,符合题意; 对于选项D ,1y x=是奇函数,但是在其定义域上不是减函数,排除D. 故选:C.4.函数()()1ln 23f x x x =---的零点所在区间为( )A .()4,3--B .()3,e --C .()e,2--D .()2,1--【答案】B【分析】根据公共定义域内判断函数的单调性及复合函数的单调性, 得出函数()f x 的单调性,再利用函数零点的存在性定理即可求解. 【详解】由题意可知,()f x 的定义域为(),0-∞, 令u x =-,则ln y u =,由u x =-在(),0-∞上单调递减, ln y u =在定义域内单调递增,所以()ln y x =-在(),0-∞单调递减.所以函数()()1ln 23f x x x =---在(),0-∞上单调递减.所以()()()12214ln 442ln 4ln e 03333f -=---⨯--=->-=>⎡⎤⎣⎦ ()()()13ln 332ln 31ln e 103f -=---⨯--=->-=⎡⎤⎣⎦()()()1e e ln e e 21033f -=---⨯--=-<⎡⎤⎣⎦ ()()()1442ln 222ln 2ln e 0333f -=---⨯--=-<-<⎡⎤⎣⎦ ()()()151ln 112033f -=---⨯--=-<⎡⎤⎣⎦故()3(e)0f f -⋅-<,根据零点的存在性定理,可得 函数()()1ln 23f x x x =---的零点所在区间为()3,e --.故选:B.5.命题0:p x ∃∈R ,使得200680kx kx k -++<成立.若p 是假命题,则实数k 的取值范围是( ) A .[]0,1B .(]0,1C .()(),01,-∞⋃+∞D .][(),01,∞∞-⋃+【答案】A【分析】根据p 是假命题,得出p ⌝为真命题,利用恒成立知识求解.【详解】因为p 是假命题,所以p ⌝为真命题,即x ∀∈R ,使得2680kx kx k -++≥成立. 当0k =时,显然符合题意;当0k ≠时,则有0k >,且()236480k k k -+≤,解得01k <≤.故选:A.6.已知幂函数()y f x =的图象过()4,2A 、()cos1,B m 、()sin1,C n 三点,则m 与n 的大小关系为( ) A .m n > B .m n < C .m n = D .不能确定【答案】B【分析】设()af x x =,根据点A 在函数()f x 的图象上可求得a 的值,可得出()f x 的解析式,分析函数()f x 的定义域与单调性,比较cos1与sin1,利用函数()f x 的单调性可得出m 、n 的大小关系.【详解】设()af x x =,则()442a f ==,可得12a =,()12f x x ∴= 所以,函数()f x 是定义在[)0,∞+上的增函数, 因为ππ0cos1cos sin sin144<<=<,所以,()()cos1sin1f f <,即m n <. 故选:B.7.已知tan π22α⎛⎫-=- ⎪⎝⎭,则π3π1cos sin 22π14ααα⎛⎫⎛⎫+--+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫+ ⎪⎝⎭( )A.2B.C .12D .1【答案】C【分析】利用诱导公式可求得tan2α,利用三角恒等变换化简所求代数式,可求得结果.【详解】因为tan πtan 222αα⎛⎫-=-=- ⎪⎝⎭,则tan 22α=,若cossin022αα+=,则tan12α=-,矛盾,故cossin022αα+≠.因此,()π3π1cos sin 1sin cos 1cos sin 22π1cos sin 1cos sin 14ααααααααααα⎛⎫⎛⎫+--+ ⎪ ⎪++++⎝⎭⎝⎭==---+⎛⎫+ ⎪⎝⎭ 222coscos sin 12cos 12sincos112222222tan112sin 2sin cos 2sin cos sin 2222222ααααααααααααα⎛⎫++-+ ⎪⎝⎭====⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭.故选:C.8.“一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:C )满足函数关系e ax b y +=(,a b 为常数),若该果蔬在5C 的保鲜时间为216小时,在20C 的保鲜时间为8小时,那么在10C 时,该果蔬的保鲜时间为( )小时. A .72 B .36C .24D .16【答案】A【分析】根据题意列出5,20x x ==时,a b 所满足等式,利用指数幂的运算分别可求解出5e ,e a b 的值,然后即可计算出10x =时y 的值,则对应保鲜时间可求. 【详解】当5x =时,5e 216a b +=;当20x时,20e 8a b +=,则520e 21627e 8a b a b ++==,整理可得51e 3a=,于是e 2163648b =⨯=, 当10x =时,10521e(e )e 648729a ba b y +==⋅=⨯=. 故选:A二、多选题9.下到说法错误的是( )A .若α终边上一点的坐标为()()3,40k k k ≠,则3cos 5α= B .α为第二或第三象限角的充要条件是sin tan 0αα<C .将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π3个单位长度,得到函数()cos2g x x =的图象D .若1sin cos 5αα+=,且0απ<<,则4tan 3α=-【答案】AC【分析】结合选项逐个判定,利用定义可知A 错误,结合象限符号可得B 正确,根据平移规则可得C 错误,利用平方关系和商关系可得D 正确. 【详解】对于A ,3355cos k k α===±,故不正确; 对于B ,α为第二象限时,sin 0,tan 0αα><,所以sin tan 0αα<;α为第三象限角时,sin 0,tan 0αα<>,所以sin tan 0αα<;反之,sin tan 0αα<,则sin ,tan αα异号,所以α为第二或第三象限角,故正确;对于C ,将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π3个单位长度,得到的函数解析式为()πcos 23g x x ⎛⎫=+ ⎪⎝⎭,故不正确;对于D ,因为1sin cos 5αα+=,所以12sin cos 25αα=-,所以222sin cos tan 12sin cos tan 125αααααα==-++,解得3tan 4α=-或4tan 3α=-. 因为1sin cos 05αα+=>,12sin cos 025αα=-<,且0πα<<,所以sin >cos αα, 所以4tan 3α=-,故D 正确.故选:AC.10.已知a ,b 为正数,41a b +=,则下列说法正确的是( ) A .114a b+的最小值为4 B .11a b+的最小值为9 C .()()411a b ++的最大值为94D .()()11a b ++的最大值为94【答案】ABC【分析】选项A 和选项B 使用基本不等式“1”的妙用求解,选项C 和选项D 构造“和为定值”对“积的最大值”进行求解. 【详解】对于A ,()1111442444a b a b a b a b b a ⎛⎫+=++=++ ⎪⎝⎭,∵0a >,0b >,∴40a b >,04b a >,∴由基本不等式424a b b a +≥=, 当且仅当44a b b a =,即18a =,12b =时,等号成立, ∴114222444a b a b b a+=++≥+=,114a b +的最小值为4,故选项A 正确;对于B ,()1111445a b a b a b a b b a ⎛⎫+=++=++ ⎪⎝⎭, ∵0a >,0b >,∴40a b >,0b a >,∴由基本不等式44a b b a +≥, 当且仅当4a bb a =,即16a =,13b =时,等号成立, ∴1145549a ba b b a +=++≥+=,11a b+的最小值为9,故选项B 正确; 对于C ,∵0a >,0b >,∴410a +>,10+>b ,∴由基本不等式()()()()222411421294112224a b a b a b +++⎡⎤+++⎛⎫⎛⎫++≤===⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦, 当且仅当411a b +=+,即18a =,12b =时,等号成立,∴()()411a b ++的最大值为94,故选项C 正确;对于D ,∵0a >,0b >,∴440a +>,10+>b ,∴由基本不等式()()()()()()2244111145911441442424a b a b a b a b +++⎡⎤++⎛⎫++=++≤⋅=⋅=⎢⎥ ⎪⎝⎭⎣⎦,当且仅当441a b +=+,即14a =-,2b =时,等号成立,这与0a >矛盾,上式无法取等号,故选项D 错误. 故选:ABC.11.已知函数()()4log 1,11,14x x x f x x ⎧->⎪=⎨⎛⎫≤⎪ ⎪⎝⎭⎩,则下列结论正确的是( )A .若()1f a =,则5a =B .202320222022f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭C .若()2f a ≥,则12a ≤-或17a ≥D .若方程()f x k =有两个不同的实数根,则14k ≥ 【答案】BCD【分析】解方程可()1f a =判断A 选项;求出20232022f f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭的值,可判断B 选项;解不等式()2f a ≥可判断C 选项;数形结合可判断D 选项.【详解】对于A 选项,当1a ≤时,由()114af a ⎛⎫== ⎪⎝⎭,可得0a =,当1a >时,由()()4log 11f a a =-=,可得5a =. 综上所述,若()1f a =,则5a =或0,A 错; 对于B 选项,41420231log log 2022020222022f ⎛⎫==< ⎪⎝⎭, 所以,14log 20221420231log 2022202220224f f f ⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,B 对;对于C 选项,当1a ≤时,由()21224aa f a -⎛⎫==≥ ⎪⎝⎭,可得21a -≥,解得12a ≤-,此时12a ≤-,当1a >时,由()()4log 12f a a =-≥,可得116a -≥,解得17a ≥,此时17a ≥, 综上所述,若()2f a ≥,则12a ≤-或17a ≥,C 对;对于D 选项,作出函数y k =与函数()f x 的图象如下图所示:由图可知,当14k ≥时,直线y k =与函数()f x 的图象有两个交点, 此时方程()f x k =有两个不等的实根,D 对. 故选:BCD.12.设函数()f x 的定义域为D ,如果对任意的1x D ∈,存在2x D ∈,使得12()()2f x f x c +=(c 为常数),则称函数()y f x =在D 上的均值为c ,下列函数中在其定义域上的均值为1的有( ) A .3y x = B .tan y x =C .2sin y x =D .24y x -【答案】ABD【分析】根据题意将问题转化为关于2x 的方程是否存在有解问题,然后逐个分析判断即可 【详解】由题意可得1c =,则12()()12f x f x +=,即12()()2f x f x +=,将问题转化为关于2x 的方程是否存在有解问题,对于A ,3y x =的定义域为R ,则对于任意1R x ∈,关于2x 的方程为33122x x +=,则33212x x =-,2x ,方程一定有解,所以A 正确,对于B ,tan y x =的定义域为,2D x x k k Z ππ⎧⎫=≠+∈⎨⎬⎩⎭,值域为R ,则对于任意1x D ∈,总存在2x D ∈,使得12tan tan 2x x +=,所以B 正确,对于C ,2sin y x =的定义域为R ,值域为[2,2]-,当12x π=-时,1()2f x =-,此时不存在2x R ∈,使12()()2f x f x +=,所以C 错误,对于D ,y {}22D x x =-≤≤,值域为[0,2],则对于任意1x D ∈,关于2x 的方2,整理得(22242x =-,则总存在2x D ∈满足上式,所以D 正确,故选:ABD三、填空题13.已知集合(){}222810A x ax a x =+-+=有且仅有两个子集,则a 的取值集合为___________.【答案】{}0,2,8【分析】根据题意集合A 有一个元素,考虑0a =和0a ≠两种情况,计算得到答案即可.【详解】由题意,集合(){}222810A x ax a x =+-+=有且仅有两个子集,则集合A 只有一个元素,当0a =时,810x -+=,解得18x,符合题意; 当0a ≠时,()2284210a a ∆=--⨯⨯=,解得2a =或8a =, 当2a =时,{}2144102A x x x ⎧⎫=-+==⎨⎬⎩⎭,符合题意,当8a =时,{}21168104A x x x ⎧⎫=++==-⎨⎬⎩⎭,符合题意.综上所述,a 的取值集合为{}0,2,8. 故答案为:{}0,2,8.14.已知函数()()212log 2f x x x t =-++的定义域是(),6m m +,则函数()f x 的单调增区间为__________. 【答案】()1,4【分析】先根据定义域求出,m t 的值,再结合复合函数求出单调区间.【详解】因为函数()()212log 2f x x x t =-++的定义域是(),6m m +,所以,6m m +是方程220x x t -++=的两个根,所以()()22206260m m t m m t ⎧-++=⎪⎨-++++=⎪⎩,解得28m t =-⎧⎨=⎩,即()()212log 28f x x x =-++. 令()222819n x x x =-++=--+,0n >,则12log y n=为减函数,函数()219n x =--+是开口向下,对称轴为1x =的二次函数,且()1,4x ∈时,为减函数;所以函数()f x 的单调增区间为()1,4. 故答案为:()1,4.15.如图,在Rt PBO 中,90PBO ∠= ,以O 为圆心、OB 为半径作圆弧交OP 于A 点.若圆弧AB 等分POB 的面积,且AOB α∠=弧度,则tan αα=________.【答案】12【详解】设扇形的半径为r ,则扇形的面积为212r α,直角三角形POB 中, tan PB r α=, POB ,面积为1tan 2r r α⨯,由题意得211222r rtan r αα⨯=⨯,∴tan 2αα=,∴1tan 2αα=,故答案为12. 点睛:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题;设出扇形的半径,求出扇形的面积,再在直角三角形中求出高PB ,计算直角三角形的面积,由条件建立等式,解此等式求出tan α与α的关系,即可得出结论. 16.函数()f x 为定义在()(),00,∞-+∞上的奇函数,且()31f =,对于任意()1212,0,,x x x x ∈+∞≠,都有()()1122120x f x x f x x x ->-成立,则()3f x x≤的解集为__________. 【答案】(](]30,3-∞-⋃,【分析】构造函数,利用函数的单调性和奇偶性进行求解.【详解】设函数()()g x xf x =,因为()f x 为奇函数,所以()g x 为偶函数; 因为()()1122120x f x x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,∞+为增函数;因为(3)3(3)3g f ==,()g x 为偶函数,所以(3)3g -=,且()g x 在(),0∞-为减函数;当0x >时,()3f x x ≤等价于()3(3)g x g ≤=,所以03x <≤; 当0x <时,()3f x x ≤等价于()3(3)g x g ≥=-,所以3x ≤-;即()3f x x≤的解集为(](]30,3-∞-⋃,. 故答案为:(](]30,3-∞-⋃,.四、解答题17.设a ∈R ,集合(){}(){}22log 2,30A x x a B x x a x =+<=-+<,(1)若2a =,求A B ⋃(2)若()3A B ∈⋂R ,求a 的取值范围. 【答案】(1){}|25A B x x ⋃=-<< (2)30a -<≤【分析】(1)先根据2a =,化简两个集合,再求两个集合的并集; (2)由3在集合A 中,不在集合B 中,可求取值范围.【详解】(1)当2a =时,(){}{}{}{}22|log 22|22|50|05A x x x x B x x x x x =+<=-<<=-<=<<,,所以{}{}{}|22|05|25A B x x x x x x ⋃=-<<⋃<<=-<<.(2)集合(){}2|30B x x a x =-+<,所以(){}2|30.B x x a x =-+≥R因为()3A B ∈⋂R ,所以3A ∈且3B ∈R.则()()22log 323330a a ⎧+<⎪⎨-+≥⎪⎩,即03430a a <+<⎧⎨-≥⎩,解得30a -<≤.18.函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭部分图象如图所示,已知41x x π-=.再从条件①112x π=、条件②26x π=、条件③32x π=这三个条件中选择两个作为已知.(1)求函数()f x 的解析式; (2)求6f x π⎛⎫-⎪⎝⎭的单调增区间. 【答案】(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭(2)5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z【分析】(1)先由41x x π-=求出ω,分三种情况讨论求解,代入点的坐标求出,A ϕ,从而得到解析式; (2)先求6f x π⎛⎫-⎪⎝⎭的解析式,整体代换可求6f x π⎛⎫- ⎪⎝⎭的单调增区间. 【详解】(1)因为41x x π-=,由图可知T π=,所以22Tπω==.所以()()sin 2f x A x ϕ=+. 若选择条件①②,即112x π=,26x π=.因为()1sin 0126f x f A ππϕ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.由图可知26k πϕπ+=,k ∈Z ,即26k πϕπ=-+.因为02πϕ<<,所以6πϕ=-,所以()sin 26f x A x π⎛⎫=- ⎪⎝⎭.又因为()2sin 166f x f A ππ⎛⎫=== ⎪⎝⎭,所以2A =,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭.若选择条件①③,即112x π=,32x π=. 因为()1sin 0126f x f A ππϕ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.由图可知26k πϕπ+=,k ∈Z ,即26k πϕπ=-+.因为02πϕ<<,所以6πϕ=-,所以()sin 26f x A x π⎛⎫=- ⎪⎝⎭.又因为()3sin 126f x f A ππ⎛⎫=== ⎪⎝⎭,所以2A =,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭.若选择条件②③,即26x π=,32x π=. 因为()()23f x f x =,由图可知,当2323x x x +π==时,()f x 取得最大值, 即3f A π⎛⎫= ⎪⎝⎭,sin 23A A πϕ⎛⎫⨯+= ⎪⎝⎭,由2sin 13πϕ⎛⎫+=⎪⎝⎭,得2232k ϕππ+=+π,k ∈Z , 因为02πϕ<<,所以6πϕ=-. 又()216f x f π⎛⎫== ⎪⎝⎭,所以2A =,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)()2sin[2()]2sin(2)2sin(2)66666f x x x x πππππ-=--=-=--,故()6f x π-的单调增区间即为2sin(2)6x π-的单调递减区间.由3222262k x k πππππ+≤-≤+,k ∈Z ,得536k x k ππππ+≤≤+,k ∈Z .所以()6f x π-的单调递增区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z . 19.已知函数()5ππ3πsin 22sin cos 644f x x x x ⎛⎫⎛⎫⎛⎫=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求()f x 的最小正周期及对称轴方程;(2)ππ,46x ⎡⎤∈-⎢⎥⎣⎦时,()()g x af x b =+的最大值为7,最小值为1,求a ,b 的值.【答案】(1)最小正周期为πT =,对称轴方程为ππ23k x =+,k ∈Z (2)4a =,5b =或4a =-,3b =【分析】(1)使用两角和差的正余弦公式、二倍角公式、辅助角公式进行化简后,即可求得最小正周期和对称轴方程;(2)结合正弦函数的图象和性质,分别对0a >和a<0两种情况进行讨论即可. 【详解】(1)()5ππ3πsin 22sin cos 644f x x x x ⎛⎫⎛⎫⎛⎫=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1cos 2sin 222x x x x x x ⎛⎫⎛⎫=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()()1cos 22sin cos cos sin 2x x x x x x =----()221cos22cos sin 22x x x x =+--1cos 22cos 22x x x =-12cos 22x x =- πsin 26x ⎛⎫=- ⎪⎝⎭∴()πsin 26f x x ⎛⎫=- ⎪⎝⎭,则()f x 的最小正周期为2ππ2T ==,∵sin y x =的对称轴为直线ππ+2=x k ,k ∈Z , ∴由ππ2π62x k -=+,k ∈Z ,解得ππ23k x =+,k ∈Z , ∴()f x 的对称轴方程为ππ23k x =+,k ∈Z . (2)πsi 2()(n 6)x b g x af x b a =+=⎛⎫-+ ⎪⎝⎭,∵ππ,46x ⎡⎤∈-⎢⎥⎣⎦,∴ππ2[,]23x ∈-,∴π2ππ2[,]636x -∈-,∴π1sin(2)[1,]62x -∈-,当0a >时,()()g x af x b =+的最大值为12a b +,最小值为a b -+,∴由1721a b a b ⎧+=⎪⎨⎪-+=⎩,解得45a b =⎧⎨=⎩,当a<0时,()()g x af x b =+的最大值为a b -+,最小值为12a b +,∴由7112a b a b -+=⎧⎪⎨+=⎪⎩,解得43a b =-⎧⎨=⎩,综上所述,4a =,5b =或4a =-,3b =.20.比亚迪是我国乃至全世界新能源电动车的排头兵,新能源电动车汽车主要采用电能作为动力来源,目前比较常见的主要有两种:混合动力汽车、纯电动汽车.有关部门在国道上对比亚迪某型号纯电动汽车进行测试,国道限速60km/h .经数次测试,得到该纯电动汽车每小时耗电量Q (单位:wh )与速度x (单位:km/h )的数据如下表所示:为了描述该纯电动汽车国道上行驶时每小时耗电量Q 与速度x 的关系,现有以下三种函数模型供选择:①3211()250Q x x x cx =-+;②22()13xQ x ⎛⎫=- ⎪⎝⎭;3()300log a Q x x b =+.(1)当060x ≤≤时,请选出你认为最符合表格中所列数据的函数模型(需说明理由),并求出相应的函数表达式;(2)现有一辆同型号纯电动汽车从重庆育才中学行驶到成都七中,其中,国道上行驶50km ,高速上行驶300km .假设该电动汽车在国道和高速上均做匀速运动,国道上每小时的耗电量Q 与速度x 的关系满足(1)中的函数表达式;高速路上车速x (单位:km/h )满足[80,120]x ∈,且每小时耗电量N (单位:wh )与速度x (单位:km/h )的关系满足2()210200(80120)N x x x x =-+≤≤).则当国道和高速上的车速分别为多少时,该车辆的总耗电量最少,最少总耗电量为多少? 【答案】(1)选①3211()250Q x x x cx =-+,321()216050Q x x x x =-+ (2)当这辆车在高速上的行驶速度为80km/h ,在国道上的行驶速度为50km/h 最少,最少为51250wh .【分析】(1)利用表格中数据进行排除即可得解;(2)在分段函数中分别利用均值不等式和二次函数求出最值即可得解.【详解】(1)解:对于③3()300log a Q x x b =+,当0x =时,它无意义,故不符合题意,对于②22()13xQ x ⎛⎫=- ⎪⎝⎭,当10x =时,1022(10)13Q ⎛⎫=- ⎪⎝⎭,又100122033<⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝=⎭,所以1022(10)113Q ⎛⎫=-< ⎪⎝⎭,故不符合题意,故选①3211()250Q x x x cx =-+, 由表中的数据可得,3211021010142050c ⨯-⨯+⨯=,解得160c = ∴321()216050Q x x x x =-+. (2)解:高速上行驶300km ,所用时间为300h x, 则所耗电量为()2300300100()()2102006003000f x N x x x x x x x ⎛⎫=⋅=⋅-+=+- ⎪⎝⎭, 由对勾函数的性质可知,()f x 在[80,120]上单调递增,∴min 100()(80)60080300045750wh 80f x f ⎛⎫==⨯+-= ⎪⎝⎭,国道上行驶50km ,所用时间为50h x,则所耗电量为32250501()()2160100800050g x Q x x x x x x x x ⎛⎫=⋅=⋅-+=-+ ⎪⎝⎭, ∵060x ≤≤,∴当50x =时,min ()(50)5500wh g x g ==,∴当这辆车在高速上的行驶速度为80km/h ,在国道上的行驶速度为50km/h 时,该车从重庆育才中学行驶到成都七中的总耗电量最少,最少为45750550051250wh +=. 21.已知函数()log (0a f x x a =>,且1)a ≠.(1)若函数()f x 的图象与函数()h x 的图象关于直线y x =对称,且点()4,256P 在函数()h x 的图象上,求实数a 的值; (2)已知函数()1,,162322x x g x f f x ⎛⎫⎛⎫⎡⎤=∈ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦.若()g x 的最大值为12,求实数a 的值. 【答案】(1)4a = (2)12或2【分析】(1)根据两个函数图象对称的特征求出()xh x a =,代入点的坐标可得实数a 的值;(2)先化简()g x ,利用换元法和二次函数知识,结合最大值求出实数a 的值.【详解】(1)因为函数()log (0=>a f x x a ,且1a ≠)的图象与函数()h x 的图象关于直线y x =对称, 所以()xh x a =(0a >,且1a ≠),因为点(4,256)P 在函数()h x 的图象上,所以4256a =,解得4a =,或4a =-(舍去). (2)()()()log log log log log 5log 22232aa a a a a x xg x x x =⋅=--()()()2222log 6log log 5log 2log 3log 4log 2(2)2a a a a a a a x x x =-⋅+-=-.令log a t x =. ①当01a <<时,由1162x ≤≤,有4log 2log log 2a a a x ≤≤-, 二次函数()()226log 25log 2a a t t t ϕ=-+的对称轴为3log 2a t =,最大值为()()()()()2222log 2log 26log 25log 212log 212a a a a a ϕ-=++==,解得12a =或2a =(舍去);②当1a >时,由1162x ≤≤,有log 2log 4log 2a a a x -≤≤, 二次函数()22()6log 25log 2a a t t t ϕ=-+的对称轴为3log 2a t =,可得最大值为()()()()()2222log 2log 26log 25log 212log 212a a a a a ϕ-=++==,解得2a =或12a =(舍去),综上,实数a 的值为12或2. 22.已知函数()14x b f x a =++的定义域为R ,其图像关于点11,22⎛⎫⎪⎝⎭对称.(1)求实数a ,b 的值; (2)求122022202320232023f f f ⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值;(3)若函数()412log 22x g x f x x +⎛⎫=++ ⎪-⎝⎭,判断函数()g x 的单调性(不必写出证明过程),并解关于t的不等式()()2121g t g t -++>. 【答案】(1)2,2a b ==- (2)1011(3)103t -<<【分析】(1)根据对称性列方程解出a 和b ; (2)根据对称性分组计算;(3)构造函数,根据函数的单调性和奇偶性求解不等式.【详解】(1)有条件可知函数()f x 经过点11,22⎛⎫ ⎪⎝⎭ ,()()112210122f f f ⎧⎛⎫= ⎪⎪⎪⎝⎭∴⎨⎪+=⨯⎪⎩,即12112411114b a b b aa ⎧+=⎪⎪+⎨⎪+++=⎪++⎩ , 解得:2,2a b ==- ,()2414242xx xf x -=+=++ ; (2)由于120222************1,1,,1202320232023202320232023+=+=+= , 1202222021101110121,1,,1202320232023202320232023f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 1220221011202320232023f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)由于42log 2x y x +=- 是奇函数,根据函数平移规则,()()12h x g x =- 也是奇函数, 并且由于()f x 是增函数,42log 2xy x+=- 也是增函数,()h x ∴ 也是增函数,定义域为()2,2- 不等式()()2121g t g t -++> 等价于()()11212022g t g t --++-> ,即()()2120h t h t -++> ,()()()2122h t h t h t ->-+=-- ,由于()h x 是增函数,2122212222t t t t ->--⎧⎪∴-<-<⎨⎪-<+<⎩,解得103t -<< ;综上,(1)2,2a b ==-;(2)1220221011202320232023f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)103t -<<.。

高一上学期期末考试数学试题(原卷版)

高一上学期期末考试数学试题(原卷版)
11.若将函数 的图象先向右平移 个单位长度再将所得的图象上所有点的横坐标缩短为原来的 (纵坐标不变)得到函数 的图象则()
A. 的最小正周期为
B. 图象的一个对称中心为
C. 的值域为
D. 图象的一条对称轴方程为
12.定义:实数 满足 则称 比 远离 .已知函数 的定义域为 任取 等于 和 中远离0的那个值则()
高一数学试卷
试卷120分钟满分:150分
一选择题:本题共8小题每小题5分共40分.在每小题给出的四个选项中只有一项是符合题目要求的.
1.下列函数中周期为 的是()
A. B.
C. D.
2.函数 的单调递增区间为()
A. B.
C. D.
3.函数 的部分图象如图所示则 可能是()
A B.
C. D.
4.已知角 的终边在射线 上则 的值为()
17.已知复数 .
(1)若 是实数求 的值;
(2)若复数 在复平面内对应的点在第三象限且 求实数 的取值范围.
18 已知 .
(1)若 三点共线求 满足的等量关系;
(2)在(1)条件下求 的最小值.
19.问题:在 中内角A 所对的边分别为a .
(1)求A;
(2)若 的面积为 ________求 .
请在① ;② ;③ 这三个条件中选择一个补充在上面的横线上并完成解答.
20.某网红景区拟开辟一个平面示意图如图 五边形 观光步行道 为景点电瓶车专用道 .
(1)求 的长;
(2)请设计一个方案使得折线步行道 最长(即 最大).
21.如图所示在 中 与 相交于点 . 的延长线与边 交于点 .
(1)试用 表示 ;
(2)设 求 的值.
22.已知 的内角 所对的边分别为 向量 .

高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题本试卷共4页,20题,满分为150分钟,考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13,4,5,7,9}=A ,B {3,5,7,8,10}=,那么=AB ( )A 、{13,4,5,7,8,9},B 、{1,4,8,9}C 、{3,5,7}D 、{3,5,7,8} 2.cos()6π-的值是( )A B . C .12 D .12- 3.函数)1ln()(-=x x f 的定义域是( )A . ),1(+∞B .),1[+∞C . ),0(+∞D .),0[+∞ 4.函数cos y x =的一个单调递增区间为 ( ) A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 5.函数tan(2)4y x π=+的最小正周期为( )A .4π B .2πC .πD .2π 6.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A .(1,2) B .(,3)e C .(2,)e D .(,)e +∞7.已知0.30.2a=,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 8.若函数23()(23)m f x m x-=+是幂函数,则m 的值为( )A 、1-B 、0C 、1D 、2 9.若1tan()47πα+=,则tan α=( )A 、34 B 、43C 、34-D 、43-10.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是( ) A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数二、填空题:本大题共4小题,每小题5分,满分20分.11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩,则()0f f =⎡⎤⎣⎦ . 12.已知3tan =α,则ααααsin 3cos 5cos 2sin 4+-= ;13.若cos α=﹣,且α∈(π,),则tan α= .14.设{1,2,3,4,5,6},B {1,2,7,8},A ==定义A 与B 的差集为{|},A B x x A x B A A B -=∈∉--,且则()三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(满分12分)(1)4253sin cos tan()364πππ-(2)22lg 4lg 25ln 2e -+-+16.(满分12分)已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭)(R x ∈ (1)求()f x 的振幅和初相;(2)该函数图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?17.(本题满分14分) 已知函数()sin 2cos 21f x x x =+-(1)把函数化为()sin(),(0,0)f x A x B A ωϕω=++>>的形式,并求()f x 的最小正周期;(2)求函数()f x 的最大值及()f x 取得最大值时x 的集合; 18.(满分14分)()2sin(),(0,0,),()62.1(0)228730(),(),sin 35617f x x A x R f x f ABC A B C f A f B C πωωπωππ=->>∈+=+=-已知函数且的最小正周期是()求和的值;()已知锐角的三个内角分别为,,,若求的值。

湖南省高一上学期期末考试数学试题(解析版)

湖南省高一上学期期末考试数学试题(解析版)

一、单选题1.已知集合,,则( ){}24M x x =≤{}24xN x =<M N ⋂=A . B . {}2x x ≤-{}22x x -≤<C . D .{}22x x -≤≤{}02x x <<【答案】B【分析】化简集合即得解.M N 、【详解】由题得, {}22,{|2}M x x N x x =-≤≤=<所以. M N ⋂={}22x x -≤<故选:B2.”是“”的( ) b >2a b >A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B【分析】根据不等式性质,结合特殊值,从充分性和必要性进行分析,即可判断和选择.【详解】取,但不满足,故充分性不满足; 4,3a b ==-b >2a b >当,故满足必要性; 20a b >≥b >综上所述,”是“”的必要不充分条件. b >2a b >故选:B.3.函数的定义域为,则的定义域为( ) ()21y f x =-[]0,1()y f x =A . B .C .D .[]1,1-1,12⎡⎤⎢⎥⎣⎦[]0,1[]1,0-【答案】A【分析】由的取值范围求得的范围,即得所求 x 21x -【详解】因为,所以, 01x ≤≤1211-≤-≤x 所以的定义域为 ()y f x =[]1,1-故选:A.4.某同学在研究函数时,分别给出下面四个结论,其中正确的结论是( )2()||1x f x x =+A .函数是奇函数B .函数的值域是()f x ()f x ()1,+∞C .函数在R 上是增函数D .方程有实根()f x ()2f x =【答案】D【分析】由函数的奇偶性,单调性等对选项逐一判断【详解】对于A ,,故是偶函数,,不是奇函数,2()()()||1x f x f x x --==-+()f x (1)(1)1f f -==()f x 故A 错误,对于B ,当时,,由对勾函数性质知,0x ≥21()1211x f x x x x ==++-++()()00f x f ≥=而是偶函数,的值域是,故B 错误,()f x ()f x [0,)+∞对于C ,当时,,由对勾函数性质知在上单调递增,0x >21()1211x f x x x x ==++-++()f x (0,)+∞而是偶函数,故在上单调递减,故C 错误,()f x ()f x (,0)-∞对于D ,当时,,即,解得,故D 正确, 0x >()2f x =2220x x --=1x =+故选:D5.已知函数若,则实数的取值范围是( )()33,0,0x x f x x x -⎧≤=⎨->⎩()()22f a f a -≥-a A . B .C .D .[2,1]-1,12⎡⎤⎢⎥⎣⎦(,1]-∞1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】根据分段函数每一段的单调性及端点值判断函数在定义域内的单调性,再利用单调性解抽象不等式即可.【详解】因为,当时单调递减,且,()33,0,0x x f x x x -⎧≤=⎨->⎩0x ≤()3x f x -=()1f x ≥当时,单调递减,且,0x >3()f x x =-()0f x <所以函数在定义域上单调递减,因为,()33,0,0x x f x x x -⎧≤=⎨->⎩()22()f a f a -≥-所以,解得,即实数的取值范围为:. 22a a -≤-21a -≤≤a [2,1]-故选:A.6.已知函数的值域与函数的值域相同,则实数a 的取值范围是22(1),1()3,1a x a x f x x x ⎧-+<=⎨≥⎩y x =( ) A .B .(,1)-∞(,1]-∞-C .D .[1,1)-(,1][2,)-∞-+∞ 【答案】B【分析】根据的值域为列不等式,由此求得的取值范围.()f x R a 【详解】依题意,,22(1),1()3,1a x a x f x x x ⎧-+<=⎨≥⎩当时,,1x ≥2()33=≥f x x 函数的值域与函数的值域相同,即为,()f x y x =R 需满足,解得.∴()211310a a a ⎧-⨯+≥⎨->⎩1a ≤-所以实数a 的取值范围是. (,1]-∞-故选:B7.已知函数则下述关系式正确的是( )()e 31e 111e ,log ,log ,log ,3e 9xf x a f b f c f -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A . B . b a c >>b c a >>C . D .c a b >>a b c >>【答案】A【分析】根据,为偶函数,在(0,+∞)上单调递减求解. ||()x f x e -=【详解】解:∵,||()x f x e -=∴f (x )为偶函数,且f (x )在(0,+∞)上单调递减,∴.e e 331e 111(log (log 3),(log )(log e),(log )3e 9======a f f b f f c f e (log 9)f ∵, 3e e 0log e 1log 3log 9<<<<∴, b a c >>故选:A.8.已知,函数在上存在最值,则的取值范围是( )0ω>()sin f x x ω=π,π3⎛⎫⎪⎝⎭ωA . B . C . D .13,22⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭1339,,2222⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ 133,,222⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D【分析】根据的最值点为,进而根据不等式得到,由()sin f x x ω=ππ+2,k x k ω=∈Z 1132k ωω<+<的取值范围即可求解.ωk ,【详解】当取最值时,.()sin f x x ω=ππ+,2x k k ω=∈Z 即, ππ+2,k x k ω=∈Z 由题知,故. ππ+π2<<π3ωk 1132k ωω<+<即.33,2Z 1,2k k k ωω⎧<+⎪⎪∈⎨⎪>+⎪⎩因为时,;时,; 0,0k ω>=1322ω<<1k =3922ω<<显然当时,,此时在上必有最值点.32ω>2πππ2=π32232T ωω==<()sin f x x ω=π,π3⎛⎫⎪⎝⎭综上,所求.133,,222ω⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭ 故选:D .二、多选题9.已知函数,将的图象向右平移个单位长度后得到函数的图()π2cos 26f x x ⎛⎫=+ ⎪⎝⎭()f x π6()g x 象,则( )A .的图象关于轴对称B .的最小正周期是 ()g x y ()g x πC .的图象关于点对称D .在上单调递减()g x π,06⎛⎫- ⎪⎝⎭()g x π7π,1212⎡⎤⎢⎥⎣⎦【答案】BCD【分析】根据余弦函数图象的平移变换可得的解析式,结合余弦函数的奇偶性、周期、对称()g x 性以及单调性一一判断各选项,即可得答案. 【详解】将的图象向右平移个单位长度后得到的图象,则()f x π6()g x ,()πππ2cos 22cos 2666g x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦该函数不是偶函数,最小正周期为,则A 错误,B 正确. 2ππ2=令,,解得,,当时,, ππ262x k π-=+Z k ∈ππ23k x =+Z k ∈1k =-π6x =-即的图象关于点对称,则C 正确.()g x π,06⎛⎫- ⎪⎝⎭令,,解得,,π2π22ππ6k x k ≤-≤+Z k ∈π7πππ1212k x k +≤≤+Z k ∈当时,即得在上单调递减,则D 正确.0k =()g x π7π,1212⎡⎤⎢⎥⎣⎦故选:BCD.10.下列说法正确的是( )A .若不等式的解集为,则220ax x c ++>{}12x x -<<2a c +=B .若命题,则的否定为 ():0,,1ln p x x x ∞∀∈+->p ()0,,1ln x x x ∃∈+∞-≤C .在中,“”是“”的充要条件ABC A sin cos sin cos A A B B +=+A B =D .若对恒成立,则实数的取值范围为 2320mx x m ++<[]0,1m ∀∈x ()2,1--【答案】ABD【分析】由一元二次不等式的解法可判断A ;由全称量词命题的否定可判断B ;由充要条件的判断可判断C ;变元转化为一次函数恒成立可判断D【详解】对于A :不等式的解集为,220ax x c ++>{}12x x -<<则和是方程的两个根,故,1-2220ax x c ++=()()021212a a c a ⎧⎪<⎪⎪-+=-⎨⎪⎪-⨯=⎪⎩解得,所以,故A 正确; 2,4a c =-=2a c +=对于B :命题, ():0,,1ln p x x x ∞∀∈+->则的否定为,故B 正确;p ()0,,1ln x x x ∃∈+∞-≤对于C :由可得, sin cos sin cos A A B B +=+2sin cos 2sin cos A A B B ⋅=⋅所以, sin2sin2A B =又, 0<222πA B +<所以或, π2A B +=A B =所以“”不是“”的充要条件,故C 错误;sin cos sin cos A A B B +=+A B =对于D :令,由对恒成立,()()223f m x m x +=+()0f m <[]0,1m ∀∈则,解得, ()()20301320f x f x x ⎧=<⎪⎨=++<⎪⎩2<<1x --所以实数的取值范围为,故D 正确; x ()2,1--故选:ABD11.下列说法正确的是( )A .如果是第一象限的角,则是第四象限的角 αα-B .如果,是第一象限的角,且,则 αβαβ<sin sin αβ<C .若圆心角为的扇形的弧长为,则该扇形面积为3ππ23πD .若圆心角为的扇形的弦长为23π83π【答案】AD【分析】由象限角的概念判断A ;举反例判断B ;由扇形弧长、面积公式计算判断C ,D 作答. 【详解】对于A ,是第一象限的角,即,则α22,Z 2k k k ππαπ<<+Î,22,Z 2k k k ππαπ--<<-Î是第四象限的角,A 正确;α-对于B ,令,,是第一象限的角,且,而,B 不正确; 11,66ππαβ=-=αβαβ<sin sin αβ=对于C ,设扇形所在圆半径为r ,则有,解得,扇形面积,C 不正3r ππ=3r =13322S ππ=⨯⨯=确;对于D ,设圆心角为的扇形所在圆半径为,依题意,,扇形弧长23πr '4r '==2833l r ππ'==,D 正确. 故选:AD12.已知函数,,,有,()()23log 1f x x =-()22g x x x a =-+[)12,x ∃∈+∞21,33x ⎡⎤∀∈⎢⎥⎣⎦()()12f x g x ≤则实数a 的可能取值是( ) A . B .1 C .D .31252【答案】CD【分析】将问题转化为当,时,,然后分别求出两函数的[)12,x ∈+∞21,33x ⎡⎤∈⎢⎥⎣⎦()()12min min f x g x ≤最小值,从而可求出a 的取值范围,进而可得答案【详解】,有等价于当,时,[)12,x ∃∈+∞21,33x ⎡⎤∀∈⎢⎥⎣⎦()()12f x g x ≤[)12,x ∈+∞21,33x ⎡⎤∈⎢⎥⎣⎦.()()12min min f x g x ≤当时,令,则,因为在上为增函数,在定义[)2,x ∞∈+21t x =-3log y t =21t x =-[2,)+∞3log y t =域内为增函数,所以函数在上单调递增,所以.()()23log 1f x x =-[2,)+∞()()min 21f x f ==的图象开口向上且对称轴为, ()22g x x x a =-+1x =∴当时,,1,33x ⎡⎤∈⎢⎥⎣⎦()()min 11g x g a ==-∴,解得. 11a ≤-2a ≥故选:CD .三、填空题13.函数的定义域为___________.3tan 24y x π⎛⎫=-- ⎪⎝⎭【答案】 5|,Z 82k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭【分析】先得到使函数有意义的关系式,求解即可. 32,Z 42x k k πππ-≠+∈【详解】若使函数有意义,需满足:, 32,Z 42x k k πππ-≠+∈解得; 5,Z 82k x k ππ≠+∈故答案为: 5|,Z 82k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭14.函数的单调递减区间是______.()20.8log 43y x x =-+-【答案】(]1,2【分析】先求得函数的定义域,结合二次函数、对数函数的单调性,利用复合函数单调性的判定方法,即可求解.【详解】由题意,函数,()20.8log 43y x x =-+-令,即,解得,2430x x -+->243(1)(3)0x x x x -+=--<13x <<又由函数的对称为,可得在区间单调递增,在单调递减, 2=+43y x x --2x =(1,2](2,3)又因为函数为定义域上的单调递减函数,0.8log y x =根据复合函数的单调性的判定方法,可得函数的单调递减区间是.()20.8log 43y x x =-+-(1,2]故答案为:.(1,2]15.已知是第四象限角,且___________.αcos α=()()sin cos cos sin 22πααππαα++-=⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】3-【分析】利用同角三角函数关系可得.sin α=【详解】由题设, sin α==. ()()sin cos cos sin 3sin cos cos sin 22πααααππαααα++--===-+⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭故答案为:3-16.命题“对任意的,总存在唯一的,使得”成立的充要条件是[]1,1m ∈-[]0,3x ∈2210x x am ---=______.【答案】11a -<<【分析】方程变形为,转化为函数与与有且仅有一个交点,依221x x am -=+22y x x =-1y am =+据,,分类讨论,数形结合,求解a 的范围即可 0a =0a >a<0【详解】由得:;2210x x am ---=221x x am -=+当时,,则,解得:∵,,满足题意; 0a =11am +=221x x -=1x =[]10,3[]10,3当时,;若存在唯一的,使得成立,则0a >[]11,1am a a +∈-+[]0,3x ∈221x x am -=+22y x x =-与有且仅有一个交点,在平面直角坐标系中作出在上的图象如下图所1y am =+22y x x =-[]0,3示,由图象可知:当时,与有且仅有一个交点,∴,解013am <+≤22y x x =-1y am =+0131aa<-⎧⎨≥+⎩得:,则;1a <01a <<当时,,结合图象可得:,解得:,则;a<0[]11,1am a a +∈+-0131aa <+⎧⎨≥-⎩1a >-10a -<<综上所述:原命题成立的充要条件为, 11a -<<故答案为:-1<a <1.四、解答题17.设集合,.{}24120A x x x =--={}20B x ax =-=(1)若,求a 的值; {}2,1,6A B =- (2)若,求实数a 组成的集合C . A B B = 【答案】(1) 2a =(2)11,0,3C ⎧⎫=-⎨⎬⎩⎭【分析】(1)求出集合,根据,即可得出,从而即得; A A B ⋃1B ∈(2)由题可知,然后分类讨论,从而得出实数组成的集合. B A ⊆a 【详解】(1)由,解得或,所以, 24120x x --=2x =-6x ={}2,6A =-因为, {}2,1,6A B =- 所以,则, 1B ∈120a ⋅-=所以;2a =(2)因为,则, A B B = B A ⊆当时,; B =∅0a =当时,;{}2B =-1a =-当时,,{}6B =13a =综上可得集合.11,0,3C ⎧⎫=-⎨⎬⎩⎭18.已知函数. ()()222log log 2f x x x =--(1)若 , 求 的取值范围; ()0f x …x (2)当时, 求函数 的值域. 184x ≤≤()f x【答案】(1);1,42⎡⎤⎢⎥⎣⎦(2). 9,44⎡⎤-⎢⎥⎣⎦【分析】(1)利用换元法令,列不等式先解出的范围,再解出的范围即可; 2log x t =t x (2)利用(1)中的换元,先得到的范围,再根据的范围求值域即可.t t 【详解】(1)令,,可整理为,则即,解得2log x t =R t ∈()f x 22y t t =--()0f x ≤220t t --≤,所以,解得, 12t -≤≤21log 2x -≤≤142x ≤≤所以.1,42x ⎡⎤∈⎢⎥⎣⎦(2)当时,,因为,且当,有最小值;184x ≤≤23t -≤≤22y t t =--12t =94-当或3时,有最大值4; 2t =-所以的值域为.()f x 9,44⎡⎤-⎢⎥⎣⎦19.设函数.()2,4f x x x R π⎛⎫=-∈ ⎪⎝⎭(1)求函数的最小正周期和单调递增区间;()f x (2)求函数在区间上的最小值和最大值,并求出取最值时的值.()f x 3,84ππ⎡⎤⎢⎥⎣⎦x 【答案】(1),;(2)见解析 T π=3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【分析】(1)根据正弦函数性质求函数的最小正周期和单调递增区间; ()f x (2)先确定取值范围,再根据正弦函数性质求最值及其对应自变量.24t x π=-【详解】(1)函数的最小正周期为 , ()f x 22T ππ==由的单调增区间是可得sin y x =2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,解得222242k x k πππππ-+≤-≤+388k x k ππππ-+≤≤+故函数的单调递增区间是. ()f x 3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)设,则,24t x π=-3,84x ππ⎡⎤∈⎢⎥⎣⎦50,4t π⎡⎤∈⎢⎥⎣⎦由在上的性质知,当时,即,y t =50,4t π⎡⎤∈⎢⎥⎣⎦2t π=38x π=max f当时,即, . 54t π=34x π=min 1f ⎛=- ⎝【点睛】本题考查正弦函数周期、单调区间、最值,考查基本分析求解能力,属中档题. 20.已知定义域为R 的函数是奇函数, ()221x f x a =++(1)求的值.a (2)判断函数在上的单调性并加以证明;()f x R (3)若对于任意不等式恒成立,求的取值范围. ,t R ∈()()22620f t t f t k -+-<k 【答案】(1);(2)减函数;(3)1a =-(),3-∞-【详解】试题分析:(1)可利用如果奇函数在处有意义,一定满足,代入即可解得;(2)用单调性定义证明,特别注意“变形”这一步中,需通过通分、分解因式等手段,达到能判断差式的符号的目的;(3)含参数的不等式恒成立问题,我们往往可以采用分离参数的办法,将其转化为求函数的最值问题,从而求得参数的取值范围.试题解析:(1)因为是R 上的奇函数,则()f x ()00=f 即所以 20,11a +=+1a =-又成立,所以()()f x f x -=-1a =-(2)证明:设, 12x x <()()()()()21121212222221121212121x x x x x x f x f x --=--+=++++因为,所以,故12x x <1222x x <()()12f x f x >所以是R 上的减函数且为奇函数()f x (3)由于是R 上的减函数且为奇函数()f x 故不等式可化为()()22620f t t f t k -+-<()()2262f t t f k t -<-所以 即恒成立2262t t k t ->-()2236313k t t t <-=--所以 ,即的取值范围为3k <-k (),3∞--21.某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的曲线.当p t 时,曲线是二次函数图象的一部分,当时,曲线是函数(]0,14t ∈[]14,40t ∈图象的一部分.根据专家研究,当注意力指数大于80时学习效果()()log 5830,1a y x a a =-+>≠p 最佳.(1)试求的函数关系式;()p f t =(2)教师在什么时段内安排核心内容,能使得学生学习效果最佳?请说明理由.【答案】(1)(2)1232t -≤≤【详解】【解】(1)当时, [014]t ∈,设,2()(12)82(0)p f t c t c ==-+<所以当时,. [014]t ∈,21()(12)824p f t t ==--+当时,将(14,81)代入,得 [1440]t ∈,()log 583a y x =-+1.3a =于是(2)解不等式组得1214.t -<解不等式组得131440{log (5)8380t t ≤≤-+>,1432.t ≤<故当时,,1232t -<<()80p t >答:老师在时段内安排核心内容能使得学生学习效果最佳.()1232t ∈-22.若函数对定义域内的每一个值,在其定义域内都存在,使成立,()y T x =1x 2x ()()121T x T x ⋅=则称该函数为“圆满函数”.已知函数;()sin ,()224x x f x x g x π-==-(1)判断函数是否为“圆满函数”,并说明理由;()y f x =(2)设,证明:有且只有一个零点,且. 2()log ()h x x f x =+()h x 0x 05sin 46x g π⎛⎫< ⎪⎝⎭【答案】(1)不是“圆满函数”,理由见解析;(2)证明见解析.【解析】(1)取特殊值,代入“圆满函数”的定义,判断是否有实数能满足123x =2x ;(2)当时,利用零点存在性定理讨论存在零点,以及当22sin()sin 1434x ππ⎛⎫⋅⋅⋅= ⎪⎝⎭(]0,2x ∈时,证明在上没有零点,再化简,转化为证明不等式()2,x ∈+∞()h x ()2,∞+0sin 4x g π⎛⎫ ⎪⎝⎭00156x x -<.【详解】解:(1)若是“圆满函数”.取,存在,使得 ()sin 4f x x π=123x =2x R ∈,即,整理得,但是,矛盾,所以()()121f x f x =2sinsin 164x ππ⋅=2sin 24x π=2sin 14x π≤()y f x =不是“圆满函数”. (2)易知函数的图象在上连续不断. ()2log sin 4h x x x π=+()0+∞,①当时,因为与在上单调递增,所以在上单调递增.(]0,2x ∈2log y x =sin 4y x π=(]0,2()h x (]0,2因为,, 2222221log sin log log 033632h π⎛⎫=+=+=< ⎪⎝⎭()1sin 04h π=>所以.根据函数零点存在定理,存在,使得, ()2103h h ⎛⎫< ⎪⎝⎭02,13x ⎛⎫∈ ⎪⎝⎭()00h x =所以在上有且只有一个零点.()h x (]0,20x ②当时,因为单调递增,所以,因为.所以()2,x ∈+∞2log y x =22log log 21y x =>=sin 14y x π=≥-,所以在上没有零点.()110h x >-=()h x ()2,∞+综上:有且只有一个零点. ()h x 0x 因为,即,()0020log sin 04x h x x π=+=020sin log 4x x π=-所以,. ()2020log log 020001sin log 224x x x g g x x x π-⎛⎫=-=-=- ⎪⎝⎭02,13x ⎛⎫∈ ⎪⎝⎭因为在上单调递减,所以,所以. 1y x x =-2,13⎛⎫ ⎪⎝⎭001325236x x -<-=05sin 46x g π⎛⎫< ⎪⎝⎭【点睛】关键点点睛:本题第二问的关键是根据零点存在性定理先说明零点存在,并且存在,使得,再利用,化简,利用02,13x ⎛⎫∈ ⎪⎝⎭()00h x =020sin log 4x x π=-()020sin log 4x g g x π⎛⎫=- ⎪⎝⎭,利用函数的最值证明不等式.. 02,13x ⎛⎫∈ ⎪⎝⎭。

【数学】安徽省合肥六中、八中、168中学等校2021-2022学年高一上学期期末考试试题(解析版)

【数学】安徽省合肥六中、八中、168中学等校2021-2022学年高一上学期期末考试试题(解析版)

安徽省合肥六中、八中、168中学等校2021-2022学年高一上学期期末考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.440°角的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限2.集合{x∈N|x﹣2<2}用列举法表示是()A.{1,2,3}B.{1,2,3,4}C.{0,1,2,3,4}D.{0,1,2,3} 3.若a>b>0,d<c<0,则下列不等式成立的是()A.ac>bc B.a﹣d<b﹣c C.<D.a3>b34.函数y=tan(x﹣),x∈(,)的值域为()A.(﹣,1)B.(﹣1,)C.(﹣∞,﹣)∪(1,+∞)D.(,1)5.已知定义在R上的函数f(x)满足f(x)+2f(1﹣x)=x2+1,则f(0)=()A.﹣1B.1C.D.6.根据如表数据,可以判定方程ln x﹣=0的根所在的区间是()x12e34ln x00.691 1.10 1.393 1.5 1.1010.75 A.(3,4)B.(2,e)C.(e,3)D.(1,2)7.已知a=1.80.8,b=log25,c=sin1﹣cos1,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>b>a D.b>c>a8.若函数f(x)=sin()(x∈[0,π],ω>0)的图象与x轴有交点,且值域M⊆[﹣,+∞),则a的取值范围是()A.[]B.[,2]C.[,]D.[,]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各式正确的是()A.设a>0,则=aB.已知3a+b=1,则=3C.若log a2=m,log a5=n,则a2m+n=20D.=lg310.已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则能够使得y=2cos x变成函数f(x)的变换为()A.先横坐标变为原来的倍,再向右平移个单位长度B.先横坐标变为原来的2倍,再向左平移个单位长度C.先向右平移个单位长度,再横坐标变为原来的倍D.先向左平移个单位长度,再横坐标变为原来的2倍11.已知a>0,b>0,且a+b=1,则下列结论正确的是()A.的最小值是4B.ab+的最小值是2C.2a+2b的最小值是2D.log2a+log2b的最小值是﹣212.已知f(x)为定义在(﹣∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=,则下列说法正确的是()A.函数f(x)在(0,+∞)上单调递增B.函数f(x)有2个零点C.不等式f(x)≤3的解集为[﹣,]D.方程f(f(x))﹣5=0有6个不相等的实数根三、填空题:本题共4小题,每小题5分,共20分.13.命题“∃m∈R,使关于x的方程mx2﹣x+1=0有实数解”的否定是.14.函数f(x)=2cos(2x+φ)的图象关于原点对称,则φ=.15.=.16.函数f(x)是定义在R上的偶函数,f(x﹣1)是奇函数,且当0<x≤1时,,则=.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣8x+m=0,m∈R},B={x|ax﹣1=0,a∈R},且A∪B=A.(1)若∁A B={2},求m,a的值;(2)若m=15,求实数a组成的集合.18.(12分)已知函数f(x)=2|x|.(1)判断并证明函数f(x)的奇偶性;(2)判断函数f(x)在区间[0,+∞)上的单调性(不必写出过程),并解不等式f(x+2)>f(2x﹣1).19.(12分)如图,在平面直角坐标系xOy中,A(,)为单位圆上一点,射线OA 绕点O按逆时针方向旋转θ后交单位圆于点B,点B的横坐标为f(θ).(1)求f(θ)的表达式,并求f()+f(3);(2)若f()=,θ∈(0,)求sin()+cos()的值.20.(12分)已知函数f(x)=log4x.(1)求g(x)=(f(x)﹣2)f(x)的值域;(2)当x∈[1,16]时,关于x的不等式mf(x)﹣f2(x)+f(x2)﹣3≥0有解,求实数m 的取值范围.21.(12分)已知函数f(x)=cos2x﹣sin2x+2sin x cos x.(1)求f(x)图象的对称轴方程;(2)若关于x的方程a|f(x)|+a﹣1=0在x∈[0,]上有两个不同的实数根,求实数a 的取值范围.22.(12分)如图所示,设矩形ABCD(AB>AD)的周长为20cm,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,设AB=x cm,AP=y cm.(1)建立变量y与x之间的函数关系式y=f(x),并写出函数y=f(x)的定义域;(2)求△ADP的最大面积以及此时的x的值.【参考答案】一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A【解析】∵440°=360°+80°,∴440°角的终边落在第一象限.故选:A.2.D【解析】集合{x∈N|x﹣2<2}={x∈N|x<4}={0,1,2,3}.故选:D.3.D【解析】对于A,∵a>b,c<0,∴ac<bc,故A错误,对于B,∵a>b>0,d<c<0,∴a+c>b+d,即a﹣d>b﹣c,故B错误,对于C,∵d<c<0,∴c﹣d>0,cd>0,∴﹣=>0,即>,故C错误,对于D,∵f(x)=x3在R上单调递增,a>b,∴f(a)>f(b),a3>b3,故D正确.故选:D.4.A【解析】当x∈(,)时,x﹣∈(﹣,),所以y=tan(x﹣)∈(﹣,1),故选:A.5.B【解析】根据题意,函数f(x)满足f(x)+2f(1﹣x)=x2+1,令x=0可得:f(0)+2f(1)=1,①令x=1可得:f(1)+2f(0)=2,②联立①②可得:f(0)=1,故选:B.6.C【解析】令f(x)=ln x﹣,由表格可知f(e)=1﹣1.90=﹣0.10<0,f(3)=1.10﹣1=0.10>0,可得f(e)f(3)<0,所以函数的零点在(e,3)之间.故选:C.7.B【解析】∵1.80<1.80.8<1.81,∴1<a<1.8,b=log25>log24=2,∵c2=(sin1﹣cos1)2=1﹣sin2<1,∴0<c<1,∴b>a>c,故选:B.8.D【解析】当x∈[0,π]时,ωx∈[0,ωπ],ωx∈[﹣,ωπ﹣],要使f(x)的图象与x轴有交点,则ωπ﹣≥0,得ω≥,设t=ωx∈[﹣,ωπ﹣],∵y=sin(﹣)=﹣,sin(π+)=﹣,∴要使值域M⊆[﹣,+∞),则ωπ﹣≤π+,即ω≤,综上≤ω≤,故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ABC【解析】对于选项A:∵a>0,∴====,故选项A正确,对于选项B:===33a+b=3,故选项B正确,对于选项C:∵log a2=m,log a5=n,∴a m=2,a n=5,∴a2m+n=a2m•a n=(a m)2•a n=22×5=20,故选项C正确,对于选项D:==log94+log35=log32+log35=log310≠lg3,故选项D错误,故选:ABC.【解析】由图可知,A=2,T=4×(﹣)=π,所以ω==2,所以f(x)=2cos(2x+φ),把点(,2)代入函数f(x)的解析式中,可得2=2cos(2×+φ),所以+φ=2kπ,k∈Z,即φ=2kπ﹣,k∈Z,因为|φ|<,所以φ=﹣,所以f(x)=2cos(2x﹣)=2cos2(x﹣),方法一:将y=2cos x先横坐标变为原来的倍,得到y=2cos2x,再向右平移个单位,得到y=f(x);方法二:将y=2cos x先向右平移个单位,得到y=2cos(x﹣),再横坐标变为原来的倍,得到y=f(x).故选:AC.11.AC【解析】A:∵a>0,b>0,a+b=1,∴+=(+)(a+b)=++2≥2+2=4,当且仅当=,a=b=时取等号,∴+的最小值为4,∴A正确,B:∵ab+≥2=2,当且仅当时取等号,∵无解,∴ab+>2,∴B错误,C:∵a+b=1,∴2a+2b≥2=2=2,当且仅当a=b=时取等号,∴2a+2b的最小值为4,∴C正确,D:∵a>0,b>0,∴1=a+b≥2,∴ab≤,当且仅当a=b=时取等号,∴log2a+log2b=log2(ab)≤log2=﹣2,∴log2a+log2b的最大值为﹣2,∴D错误,故选:AC.【解析】根据题意,f(x)的大致图像如图:依次分析选项:对于A,函数f(x)在(1,2)上单调递减,A错误;对于B,当x>0时,f(x)=,则f(x)在区间(0,+∞)上只有1个零点x=2,又由f(x)为偶函数,则f(x)在区间(﹣∞,0)上有零点x=﹣2,则函数f(x)有2个零点,B正确;对于C,不等式f(x)≤3,结合图象可得|4﹣x2|≤3且x≠0,解可得﹣≤x≤且x≠0,即不等式的解集为{x|﹣≤x≤且x≠0},C错误;对于D,若f(f(x))﹣5=0,即f(f(x))=5,必有f(x)=±3,若f(x)=3,即|4﹣x2|=3,解可得x=±1或±,若f(x)=﹣3,即log2|x|=﹣3,解可得x=±,故方程f(f(x))﹣5=0有6个不相等的实数根,D正确;故选:BD.三、填空题:本题共4小题,每小题5分,共20分.13.∀m∈R,关于x的方程mx2﹣x+1=0无实数根【解析】因为:“∃m∈R,使关于x的方程mx2﹣x+1=0有实数根”是特称命题,所以其否定为全称命题;所以,其否定为:∀m∈R,关于x的方程mx2﹣x+1=0无实数根.故答案为:∀m∈R,关于x的方程mx2﹣x+1=0无实数根.14.kπ+(k∈Z)【解析】据题意,f(x)=2cos(2x+φ)是奇函数,可得φ=kπ+(k∈Z).故答案为:kπ+(k∈Z).15.【解析】==cos30°=.故答案为:.16.﹣1【解析】因为f(x)是定义在R上的偶函数,所以f(﹣x)=f(x),可得f(﹣x﹣1)=f(x+1),因为f(x﹣1)是奇函数,所以f(﹣x﹣1)=﹣f(x﹣1),所以f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),f(x+4)=f(x),所以f(x)为周期是4的周期函数,所以=f(1)+f()=0+log2020=﹣1.故答案为:﹣1.四、解答题:本题共6小题,共T0分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)因为A={x|x2﹣8x+m=0,m∈R},B={x|ax﹣1=0,a∈R},且A∪B=A,∁A B={2},所以2∈A,2∉B,所以4﹣8×2+m=0,所以m=12,A={2,6};所以6∈B,6a﹣1=0,故a=;(2)若m=15,A={x|x2﹣8x+15=0}={3,5},因为A∪B=A,所以B⊆A,当B=∅时,a=0,当B={3},则a=,当B={5},则a=,综上,a的取值集合为{0,,}.18.解:(1)f(x)是R上的偶函数,证明:依题意,函数f(x)的定义域为R,对任意x∈R,都有f(﹣x)=2|﹣x|=2|x|=f(x),所以f(x)是R上的偶函数.(2)函数f(x)在[0,+∞)上单调递增,因为f(x)是R上的偶函数,所以f(x+2)>f(2x﹣1)等价于f(|x+2|)>f(|2x﹣1|).因为函数f(x)在[0,+∞)上单调递增,所以|x+2|>|2x﹣1|,即3x2﹣8x﹣3<0,解得﹣<x<3,所以不等式f(x+2)>f(2x﹣1)的解集为(﹣,3).19.解:(1)∵A(,),∴∠xOA=,由三角函数的定义得:f(θ)=cos(θ+),∴f()+f()=cos+cos=﹣=;(2)∵f(θ﹣)=,∴cosθ=,∵θ∈(0,),∴sinθ==,∴sin(θ﹣)+cos(θ+)=sin(θ+﹣)+cos(θ++π)=﹣cos(θ+)﹣cos(θ+)=﹣2cos(θ+)=sinθ﹣cosθ=.20.解:(1)令μ=f(x)=log4x,u∈R,则y=g(x)=(f(x)﹣2)f(x)=(μ﹣2)μ,y=(μ﹣2)μ=(μ﹣1)2﹣1≥﹣1,故函数g(x)的值域为[﹣1,+∞);(2)不等式mf(x)﹣f2(x)+f(x2)﹣3≥0可化为m log4x﹣(log4x)2+2log4x﹣3≥0,令μ=log4x,∵x∈[1,16],∴μ∈[0,2],原不等式可化为mμ﹣μ2+2μ﹣3≥0,即mμ﹣μ2+2μ﹣3≥0在μ∈[0,2]上有解,显然0不是不等式mμ﹣μ2+2μ﹣3≥0的解,故mμ﹣μ2+2μ﹣3≥0在μ∈(0,2]上有解,故m≥μ+﹣2在μ∈(0,2]上有解,而μ+﹣2≥2﹣2(当且仅当μ=,μ=时,等号成立),故实数m的取值范围为[2﹣2,+∞).21.解:(1)f(x)=cos2x+2sin x cos x=sin2x+cos2x=2sin(2x+),由2x+=,解得x=,故函数f(x)的对称轴方程为x=;(2)因为a|f(x)|+a﹣1=0,当a=0时,不满足题意;当a≠0时,可得|f(x)|=,画出函数|f(x)|在x∈[0,]上的图象,由图可知,或0,解得或,综上,实数a的取值范围为()).22.解:(1)依题意有:AD=10﹣x,DP=x﹣y,在Rt△ADP中,有(10﹣x)2+(x﹣y)2=y2,化简得:,即.由x>10﹣x>0可得函数f(x)的定义域为:(5,10).(2)依题意有:==,由基本不等式可得:,当且仅当即时取等号,于是,综上:△ADP的最大面积为,此时.。

2022-2023学年 山东省临沂市第四中学高一上学期期末考试数学试题(解析版)

2022-2023学年 山东省临沂市第四中学高一上学期期末考试数学试题(解析版)
临沂四中高一上学期期末考试数学学科试题
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】集合M中元素是实数,集合N中元素是整数,先化简集合M再与集合N取交集即可解决.
【详解】方程 有两根 或 ,则由不等式 可得
【详解】对于A:
函数 的图像经过第一、三象限,故A正确;
对于B:
函数 的定义域为 ,
单调递增区间为 ,故B错误;
对于C:
若 在 的图象上,则 在 的图象上,所以图象关于y轴对称,故C正确;
对于D:
由于 与 互为反函数,所以图象关于 对称,故D正确.
故选:ACD
10.已知 为第一象限角,下述正确的是()
【详解】 等价于 ,解得: ; 等价于 ,解得: , 可以推出 ,而 不能推出 ,所以 是 的必要不充分条件,所以“ ”是“ ”的必要不充分条件
故选:B
7.已知 都是正实数,若 ,则 的最小值为()
A.2B.4C.6D.8
【答案】D
【解析】
【分析】均值定理连续使用中要注意等号是否同时成立.
【详解】由 可知
A. B. 为第一或第三象限角
C. D.
【答案】BCD
【解析】
【分析】根据 为第一象限角,可得 ,即可判断A,求出 的范围,从而可判断B,结合商数关系即可判断C,根据余弦函数的性质即可判断D.
【详解】解:因为 为第一象限角,所以 ,故A错误;

当 时, ,为第一象限角,
当 时, ,为第三象限角,
所以 为第一或第三象限角,故B正确;

高一上学期期末考试数学试卷

高一上学期期末考试数学试卷

高一上学期数学期 末 试 卷一、选择题(5′×12=60′)1.设集合},2,1,0,2{}2,0,2{},1,0{}1,0,1{-=-⋃=-⋂A A 则满足上述条件的集合A 的个数为 ( ) A .1 B .2 C .3 D .4 2.若)21(),0(1)]([,21)(22g x x x x f g x x f 则≠-=-=的值为( )A .1B .3C .15D .303.奇函数)()0,(,)(),0()(x f x x x f x f 上的则在上的表达式为在-∞+=+∞的表达式为 f (x )= ( ) A .x x +- B .x x -- C .x x -+- D .x x --- 4.设f(x)是定义在R 上的偶函数,它在)(log ,0)31(,),0[81>>+∞x f f 则不等式且上为增函数的解集为 ( )A .)21,0(B .(2,+∞)C .),2()1,21(+∞⋃D .),2()21,0(+∞⋃5.已知a x ax y a则的减函数上为在,]1,0[)2(log -=的取值范围为( )A .(0,1)B .(1,2)C .(0,2)D .),2[+∞6.在等差数列{a n }中,公差4231731,,,,0a aa aa a a d ++≠则成等比数列且的值为( ) A .43B .32C .65D .1 7.等差数列{a n }中,a 10〈0, a 11〉0, a 11〉|a 10|, S n 为前n项和,则有( )B .S 1,S 2,…,S 19都小于0,S 20,S 21,…都大于0C .S 1,S 2,…,S 5都小于0,S 6,S 7,…都大于0D .S 1,S 2,…,S 20都大于0,S 21,S 22,…都小于08.某商品零售价2000年比1999年上涨25%,欲控制2001年比1999年上涨10%,则2001年比2000年应降价 ( )A .15%B .12%C .10%D .5%9.设)()()(,0,0,0,,,,)(3211332213213x f x f x f x x x x x x R xx x x x x f ++>+>+>+∈--=则且的值( ) A .一定大于零 B .一定小于零 C .小于等于零D .正负均有可能10.一等比数列{a n }的首项a 1=2-5,前11项的几何平均数为25,现从这11项中抽去一项,下余的十项的几何平均数为24,则抽去的一定是( )A .第8页B .第9页C .第10页D .第11页11.从1998年到2001年期间,甲每年5月1日都到银行存入m 元的一年定期储蓄,若年利率为t 保持不变且计复利,到2002年5月1日,甲仅去取款,则可取回本息共( )A .元4)1(t m + B .元5)1(t m + C .元)]1()1[(4t t t m +-+ D .元)]1()1[(5t t tm +-+12.设函数f (x )是实数集上的奇函数,且满足),1(log )(,)1,0(),()1(21x x f x x f x f -=∈-=+时当则f (x )在(1,2)上是 ( )A .增函数且f (x )〈0B .增函数且f (x )〉0C .减函数且f (x )<0D .减函数且f (x )〉013.已知函数⎩⎨⎧<+≥=)4()2()4(2)(x x f x x f x,那么)3(log 21f 的值 为 .14.已知y =f (x )为偶函数,且在),0[+∞上是减函数,则f (1-x 2)的增函数区间为 。

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上册期末数学质量测试题一、单选题1.已知1sin3α=,,2παπ⎛⎫∈ ⎪⎝⎭,则tanα的值为()A.4BC.-D.【正确答案】A根据同角三角函数的基本关系求出cosα,tanα;【详解】解:因为1sin3α=,22sin cos1αα+=,所以cos3α=±,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以cos3α=-,所以1sin3tancos43ααα==-故选:A2.已知命题:0p x∀>,2log2x x>,则命题p的否定为()A.0x∀>,2log2x x≤B.00x∃>,002log2x x≤C.00x∃>,002log2x x<D.00x∃≤,002log2x x≤【正确答案】B根据全称命题的否定是特称命题,可得选项.【详解】因为全称命题的否定是特称命题,所以命题:0p x∀>,2log2x x>,则命题p的否定为“00x∃>,002log2x x≤”,故选:B.3.已知函数()xf x a=(0a>且1a≠)在(0,2)内的值域是2(1,)a,则函数()y f x=的函数大致是()A .B.C .D .【正确答案】B【详解】试题分析:由题意可知21a>,所以1a>,所以()f x是指数型的增函数.故选B.指数函数的图象与性质.4.若正实数a ,b ,c 满足1b a c c c <<<,则a ,b 的大小关系为()A .01a b <<<B .01b a <<<C .1b a <<D .1a b<<【正确答案】A【分析】根据已知可得01c <<,根据指数函数的单调性,即可得出答案.【详解】因为c 是正实数,且1c <,所以01c <<,则函数x y c =单调递减.由1b a c c c <<<,可得10b a c c c c <<<,所以01a b <<<.故选:A.5.若0a >且1a ≠,函数()(),140.52,1x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩,满足对任意的实数12x x ≠都有11222112()()()()x f x x f x x f x x f x +>+成立,则实数a 的取值范围是()A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)【正确答案】D【分析】由已知可得函数()f x 在R 上单调递增,根据分段函数的单调性列出不等式组,即可求得实数a 的取值范围.【详解】解:11222112()()()()x f x x f x x f x x f x +>+ ,∴对任意的实数12x x ≠都有1212()[()()]0x x f x f x -->成立,可知函数()f x 在R 上单调递增,1140.50(40.5)12a a a a >⎧⎪∴->⎨⎪≥-⨯+⎩,解得[4,8)a ∈,故选:D.6.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为()A .(],4-∞B .[]1,4C .(]1,4D .()1,4【正确答案】C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤,解不等式2x a -<,即22x a -<-<,解得22a x a -<<+,由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤.因此,实数a 的取值范围是(]1,4.故选:C.本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.7.已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,且当π3x =时,函数()f x 取最小值,若函数()f x 在[,0]a 上单调递减,则a 的最小值是()A .π6-B .5π6-C .2π3-D .π3-【正确答案】A【分析】根据最小正周期求出2ω=,根据当π3x =时,函数取最小值,求出π3ϕ=,从而π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,由[,0]x a ∈得到22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,由单调性列出不等式,求出06π,a ⎡⎫∈-⎪⎢⎣⎭,得到答案.【详解】因为0ω>,所以2π2π2πT ω===,故13πcos(2)ϕ⨯+=-,所以2ππ2π,Z 3k k ϕ+=+∈,解得:ππ,Z k k ϕ=+∈23,因为π||2ϕ<,所以只有当0k =时,π3ϕ=满足要求,故π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,因为[,0]x a ∈,所以22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,故π2,33π0a ⎡⎫∈⎪⎢⎣⎭+,解得:06π,a ⎡⎫∈-⎪⎢⎣⎭,故a 的最小值为π6-.故选:A8.质数也叫素数,17世纪法国数学家马林·梅森曾对“21p -”(p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21p -”(p 是素数)形式的素数称为梅森素数.已知第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为()(参考数据:lg 20.3010≈)A .18010B .17710C .14110D .14610【正确答案】B【分析】根据题意,得到6076075901717212==2212N M -≈-,再结合对数的运算公式,即可求解.【详解】由第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,,可得6076075901717212=212N M -≈-,令5902k =,两边同时取对数,则590lg 2lg k =,可得lg 590lg 2k =,又lg 20.3010≈,所以lg 5900.3010177.59k ≈⨯=,17710k ≈与NM最接近的数为17710.故选:B.二、多选题9.下列结论正确的是()A .若,a b 为正实数,a b ¹,则3223+a b a b b a +>B .若,,a b m 为正实数,a b <,则a m ab m b+<+C .若,a b R ∈,则“0a b >>”是“11a b <”的充分不必要条件D .当0,2x π⎛⎫∈ ⎪⎝⎭时,2sin sin x x +的最小值是【正确答案】AC利用作差法可考查选项A 是否正确;利用作差法结合不等式的性质可考查选项B 是否正确;利用不等式的性质可考查选项C 是否正确;利用均值不等式的结论可考查选项D 是否正确.【详解】对于A ,若a ,b 为正实数,a b ¹,()()()233220a b a b ab a b a b +-+=-+>,3322a b a b ab ∴+>+,故A 正确;对于B ,若a ,b ,m 为正实数,a b <,()()0m b a a m a b m b b b m -+-=>++,则a m ab m b+>+,故B 错误;对于C ,若11a b <,则110b aa b ab--=<,不能推出0a b >>,而当0a b >>时,有0>0b a ab -<,,所以0b aab -<成立,即11a b<,所以“0a b >>”是“11a b<”的充分不必要条件,故C 正确;对于D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,0sin 1x <<,2sin sin x x +≥=,当且仅当()sin 0,1x =时取等号,故D 不正确.故选:AC.易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10.已知关于x 的方程23xm -=有两个不等实根,则实数m 的取值可能是()A .2B .3C .4D .5【正确答案】CD【分析】化简方程得23x m =±,利用指数函数的值域,列式求解得出答案.【详解】23xm -= ,23x m ∴-=±,23x m -= 有两个不等实根,即23x m =±有两个不等实根,则3030m m +>⎧⎨->⎩,解得3m >,显然选项A ,B 不满足,选项C ,D 满足.故选:CD.11.定义在R 上的函数()f x 满足()(2)f x f x =+,当[3,5]x ∈时,()2|4|f x x =--,则下列说法正确的是()A .ππsin cos 66f f⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭B .(sin1)(cos1)f f <C .2π2πcos sin 33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .(cos 2)(sin 2)f f >【正确答案】BD【分析】根据函数的周期性可得()f x 在[]1,1-上的解析式以及函数在[0,1]上的单调性.比较自变量的大小,即可根据单调性判断A 、B 项;又易知()f x 在[1,1]-上为偶函数,则根据()()f x f x =,可将[1,0]-上的自变量转化为[0,1]上,进而根据单调性,即可判断C 、D 项.【详解】当[1,1]x ∈-时,则[45]3,x +∈,于是()(2)(4)2||f x f x f x x =+=+=-,当01x ≤≤时,()2f x x =-,所以函数()f x 在[0,1]上单调递减;当10x -≤<时,()2f x x =+,所以函数()f x 在[1,0]-上是增函数.()f x 的定义域[1,1]-关于原点对称,且此时()()22-=--=-=f x x x f x则()f x 在[1,1]-上为偶函数.对于A 项,因为ππ0sincos 166<<<,所以ππsin cos 66f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B 项,因为0cos1sin11<<<,所以(cos1)(sin1)f f >,故B 正确;对于C项,因为2π12π0cossin 1323<==<,所以2π2πcossin 33f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,所以2π2πcos sin 33f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 错误;因为ππ0|cos 2|cos sin |sin 2|144<<=<<,所以(|cos2|)(|sin 2|)f f >,所以(cos 2)(sin 2)f f >,故D 正确.故选:BD.12.已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<≤⎪=⎨>⎪-⎩,下列说法中错误的是()A .当121122x x -<<<时,恒有()()12f x f x >B .若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17,26⎡⎤⎢⎥⎣⎦C .存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D .若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,则34a =-【正确答案】ACD【分析】根据奇函数的定义确定()f x 在(1,0)-上单调性与性质,然后由函数值大小可判断A ,由函数解析式分段求函数值的范围后可判断B ,由直线y kx =与函数()f x 的图象交点个数判断C ,求出3()4f x =的根是17,26,然后确定a 值使()f x a =根的和为53-即可判断D .【详解】选项A ,()f x 是奇函数,10x -≤<时,22()()[()()1]1f x f x x x x x =--=----+=---213()24x =-+-,在1(,0)2-上递减,且()0f x <,()f x 是奇函数,则(0)0f =,01x <≤时,2213()1()24f x x x x =-+=-+,在1(0,)2上递减,但()0f x >,因此()f x 在11(,)22-上不是增函数,A 错;选项B ,当01x <≤时,2213()1()24f x x x x =-+=-+,13()24f =,因此12m ≥,当1m >时,1()21f x x =-是减函数,由13214x =-得76x =,因此76m ≤,综上有1726m ≤≤,B 正确;选项C ,易知0x =是()F x 的一个零点,由于(1)1f =,y kx =过点(1,1)时,1k =,此时由21y xy x x =⎧⎨=-+⎩得21x x x -+=,2(1)0x -=,121x x ==,即直线y x =与21y x x =-+在点(1,1)处相切,因此1k >时,直线y kx =与21(01)y x x x =-+<<的图象只有一交点,在01k <<时,直线y kx =与1(1)21y x x =>-只有一个交点,从而0k >时,直线y kx =与()F x 的图象有三个交点,而0x >时,()0f x >,因此0k ≤,直线y kx =与()F x 的图象无交点,所以直线y kx =与()F x 的图象不可能是5个交点,即函数()()F x f x kx =-不可能有5个不相等的零点,C 错;选项D ,由上讨论知3()4f x =的解为12x =和76x =,因此若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,由()f x 是奇函数知若34a =-,则()f x a =的解是12x =-和76x =-,符合题意,但513(537213f ==⨯-(由此讨论知3()7f x =只有一解),即53()37f -=-,即37a =-时,关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和也为0,D 错.故选:ACD .方法点睛:解决分段函数的零点与交点问题,把零点问题转化为直线与函数图象交点问题进行处理,从而利用函数的性质确定出函数解析式,作出函数图象,观察出结论并找到解题思路.三、填空题13.已知弧长为πcm 3的弧所对圆周角为6π,则这条弧所在圆的半径为____________cm .【正确答案】1【分析】由弧度制公式lrα=求解即可得出答案.【详解】已知弧长为πcm 3的弧所对圆周角为6π,则所对的圆心角为π3,lrα=,313l r ππα∴===,故1.14.已知函数()()22,1log 1,1x ax f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则实数a 的值为_________.先求()03f =,再代入求()3f ,求实数a 的值.【详解】()00223f =+=,()()03log 22a f f f ⎡⎤===⎣⎦,即22a =,又0a >,且1a ≠,所以a =15.若函数()log a f x x =(0a >且1a ≠)在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为m,函数()(32g x m =+[0,)+∞上是增函数,则a m -的值是____________.【正确答案】3【分析】根据对数函数的单调性,分类讨论,再结合已知进行求解得出a 和m 的值,最后根据()g x 的单调性检验即可得到.【详解】当1a >时,函数()log a f x x =是正实数集上的增函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有(4)log 42a f ==,解得2a =,所以21log 12m ==-,此时()g x =[)0,∞+上是增函数,符合题意,因此()213a m -=--=;当01a <<时,函数()log a f x x =是正实数集上的减函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有11log 222a f ⎛⎫== ⎪⎝⎭,a =44m ==-,此时()g x =-在[)0,∞+上是减函数,不符合题意.综上所述,2a =,1m =-,3a m -=.故3.16.若函数()()()sin cos 0f x x x ϕϕ<π=++<的最大值为2,则常数ϕ的值为_______.【正确答案】2π根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+,可得2=,即可解出.【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,因为0ϕπ<<,所以2ϕπ=.故答案为.2π四、解答题17.在①22{|1}1x A x x -=<+,②{||1|2}A x x =-<,③23{|log }1xA x y x -==+这三个条件中任选一个,补充在下面的横线上,并回答下列问题.设全集U =R ,______,22{|0}.B x x x a a =++-<(1)若2a =,求()()U UC A C B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.【正确答案】(1)1{}1|x x x ≤-≥或(2)(][),34,-∞-⋃+∞【分析】(1)根据除法不等式,绝对值不等式,对数函数的定义域即可分别求出三种情形下的集合A ;(2)对集合B 中不等式进行因式分解,再根据充分必要条件和集合包含关系即可求解.【详解】(1)若选①:222213{|1}{|0}{|0}{|13}1111x x x x A x x x x x x x x x --+-=<=-<=<=-<<++++,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选②:{|12}{|212}{|13}A x x x x x x =-<=-<-<=-<<()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选③:()(){}233{|log }031011x x A x y x x x x x x ⎧⎫--====-+=⎨⎬++⎩⎭{|13}x x -<<,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.(2)由(1)知{|13}A x x =-<<,()22{|0}{|()10}B x x x a a x x a x a ⎡⎤=++-<=++-<⎣⎦,因为“x A ∈”是“x B ∈”的充分不必要条件,(i )若(1)a a -<--,即12a >,此时{|(1)}B x a x a =-<<--,所以1,3(1)aa -≥-⎧⎨≤--⎩等号不同时取得,解得4a ≥.故4a ≥.(ii )若(1)a a -=--,则B =∅,不合题意舍去;(iii )若(1)a a ->--,即12a <,此时{|(1)}B x a x a =--<<-,1(1),3a a -≥--⎧⎨≤-⎩等号不同时取得,解得3a ≤-.综上所述,a 的取值范围是(][),34,-∞-⋃+∞.18.(1)已知sin 2cos 0αα-=,求22sin cos sin 3sin cos 2cos αααααα--的值;(2)已知4sin()5απ+=,且sin cos 0αα<,求()()()2sin 3tan 34cos παπααπ----的值.【正确答案】(1)12-;(2)73.【分析】(1)先求出tan 2α=,再进行弦化切代入即可求解;(2)先求出4sin 5α=-,3cos 5α=,得到4tan 3α=-,再进行诱导公式和弦化切变换,代入即可求解.【详解】(1)由sin 2cos 0αα-=知tan 2α=∴原式=2tan 21tan 3tan 24622ααα==-----(2) 4sin()5απ+=∴4sin 05α=-<又sin cos 0αα<∴cos 0α>∴3cos 5α==∴4tan 3α=-原式=()()2sin 3tan 4cos απαπα---=2sin 3tan 4cos ααα+-=44237533345⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭=-⨯19.已知函数()323log 1x f x x -=-.(1)求函数()f x 的解析式及定义域;(2)求函数()f x 在()(),00,2x ∈-∞⋃时的值域.【正确答案】(1)()()12031xf x x =-≠-,()f x 的定义域为()(),00,∞-+∞U (2)()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)利用换元法求得函数的解析式,根据函数定义域的求法,求得函数的定义域.(2)结合3x 的取值范围来求得()f x 在()(),00,2x ∈-∞⋃时的值域.【详解】(1)对于3log x ,需0x >;对231x x --,需1x ≠;则()()3log ,00,x ∈-∞⋃+∞,令3log t x =,则0t ≠,3t x =,()()231123312313131tt t t t f t ⋅--⋅-===----,所以()()12031x f x x =-≠-,即()f x 的定义域为()(),00,∞-+∞U .(2)当0x <时,11031,1310,1,13131x xxx <<-<-<<-->--,12331x ->-.当02x <<时,1111139,0318,,318318x xx x <<<-<>-<---,1115223188x-<-=-.所以()f x 在()(),00,2x ∈-∞⋃时的值域为()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭.20.已知函数()24f x x π⎛⎫=- ⎪⎝⎭,x R ∈.(1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在区间,82ππ⎡⎤-⎢⎣⎦上的最小值和最大值,并求出取得最值时x 的值.【正确答案】(1)最小正周期为π,单调减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2)max ()f x =,此时8x π=,min ()1f x =-,此时2x π=.【分析】(1)直接利用周期公式计算周期,再利用整体代入法求余弦型函数的单调减区间即可;(2)先求出24x π-的取值范围,再利用余弦函数的性质求最值及取最值的条件即可.【详解】解:(1)()f x 的最小正周期22||2T πππω===.令2224k x k ππππ≤-≤+,解得588k x k ππππ+≤≤+,Z k ∈,此时时,()f x 单调递减,()f x ∴的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2),82x ππ⎡⎤∈-⎢⎥⎣⎦,则32,424x πππ⎡⎤-∈-⎢⎥⎣⎦,故cos 2,142x π⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦,()24f x x π⎛⎫⎡=-∈- ⎪⎣⎝⎭,max ()f x ∴=cos 214x π⎛⎫-= ⎪⎝⎭,即204x π-=,即8x π=;min ()1f x =-,此时cos 242x π⎛⎫-=- ⎪⎝⎭,即3244x ππ-=,即2x π=.方法点睛:解决三角函数()cos y A x ωϕ=+的图象性质,通常利用余弦函数的图象性质,采用整体代入法进行求解,或者带入验证.21.2022年冬天新冠疫情卷土重来,我国大量城市和地区遭受了奥密克戎新冠病毒的袭击,为了控制疫情,某单位购入了一种新型的空气消毒剂用于环境消毒,已知在一定范围内,每喷洒1个单位的消毒剂,空气中释放的浓度(y 单位:毫克/立方米)随着时间(x 单位:小时)变化的关系如下:当04x 时,1618y x =--;当410x <时,15.2y x =-若多次喷洒,则某一时刻空气中的消毒剂浓度为每次投放的消毒剂在相应时刻所释放的浓度之和.由实验知,当空气中消毒剂的浓度不低于4(毫克/立方米)时,它才能起到杀灭空气中的病毒的作用.(1)若一次喷洒4个单位的消毒剂,则有效杀灭时间可达几小时?(2)若第一次喷洒2个单位的消毒剂,6小时后再喷洒(14)a a 个单位的消毒剂,要使接下来的4小时中能够持续有效消毒,试求a 的最小值.(精确到0.1取1.4)【正确答案】(1)8(2)1.6【分析】(1)根据喷洒4个单位的净化剂后浓度为()644,048202,410x f x x x x ⎧-≤≤⎪=-⎨⎪-<≤⎩,由()4f x ≥求解;(2)得到从第一次喷洒起,经()610x x ≤≤小时后,浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,化简利用基本不等式求解.【详解】(1)解:因为一次喷洒4个单位的净化剂,所以其浓度为()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,64448x-≥-,解得0x ≥,此时04x ≤≤,当410x <≤时,2024x -≥,解得8x ≤,此时48x <≤,综上08x ≤≤,所以若一次喷洒4个单位的消毒剂,则有效杀灭时间可达8小时;(2)设从第一次喷洒起,经()610x x ≤≤小时后,其浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,1616101441414a ax a x a x x=-+-=-+----,因为[][]144,8,1,4x a -∈∈,所以161444414a x a a a x -+--≥--=---,当且仅当161414ax x-=-,即14x =-时,等号成立;所以其最小值为4a --,由44a -≥,解得244a -≤,所以a 的最小值为24 1.6-≈.22.我们知道,指数函数()xf x a =(0a >,且1a ≠)与对数函数()log a g x x =(0a >,且1a ≠)互为反函数.已知函数()2xf x =,其反函数为()g x .(1)求函数()()()223F x g x tg x =-+⎡⎤⎣⎦,[]2,8x ∈的最小值;(2)对于函数()x ϕ,若定义域内存在实数0x ,满足()()00x x ϕϕ-=-,则称()x ϕ为“L 函数”.已知函数()()()223,1,3,1f x mf x x h x x ⎧⎡⎤--≥-⎪⎣⎦=⎨-<-⎪⎩为其定义域上的“L 函数”,求实数m 的取值范围.【正确答案】(1)答案见解析(2)[)1,∞-+【分析】(1)利用换元法令2log ,[1,3]p x p =∈,可得所求为关于p 的二次函数,根据二次函数的性质,分析讨论,即可得答案.(2)根据题意,分别讨论在[1,1]-、(,1)-∞-和(1,)+∞上存在实数0x ,满足题意,根据所给方程,代入计算,结合函数单调性,分析即可得答案.【详解】(1)由题意得2()log g x x=所以()()()()222223log 2log 3F x g x tg x xt x =-+=-+⎡⎤⎣⎦,[]2,8x ∈,令2log ,[1,3]p x p =∈,设2()23,[1,3]M p p tp p =-+∈则()M p 为开口向上,对称轴为p t =的抛物线,当1t ≤时,()M p 在[1,3]上为单调递增函数,所以()M p 的最小值为(1)42M t =-;当13t <<时,()M p 在(1,)t 上单调递减,在(,3)t 上单调递增,所以()M p 的最小值为2()3M t t =-;当3t ≥时,()M p 在[1,3]上为单调递减函数,所以()M p 的最小值为(3)126M t =-;综上,当1t ≤时,()F x 的最小值为42t -,当13t <<时,()F x 的最小值为23t -,当3t ≥时,()F x 的最小值为126t-(2)①设在[1,1]-上存在0x ,满足()()00x x ϕϕ-=-,则0000114234230x x x x m m +--+-⋅-+-⋅-=,令0022x x t -=+,则2t ≥=,当且仅当00x =时取等号,又0[1,1]x ∈-,所以115222t -≤+=,即52,2t ⎡⎤∈⎢⎥⎣⎦,所以00001124234232260x x x x m m t mt +--+-⋅-+-⋅-=---=,所以28471,2220t t m t t -⎡⎤==---⎢⎥⎣⎦所以71,20m ⎡⎤∈--⎢⎥⎣⎦②设在(,1)-∞-存在0x ,满足()()00x x ϕϕ-=-,则00134230x x m --+-+-⋅-=,即001232x x m --=-⋅有解,因为1232x x y --=-⋅在(,1)-∞-上单调递减,所以12m >-,同理当在(1,)+∞存在0x ,满足()()00x x ϕϕ-=-时,解得12m >-,所以实数m 的取值范围[)1,∞-+解题的关键是理解新定义,并根据所给定义,代入计算,结合函数单调性及函数存在性思想,进行求解,属难题。

高一上学期期末考试数学试卷及答案

高一上学期期末考试数学试卷及答案

高一上学期期末考试数学试卷(总分:150分时间:120分钟)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1。

已知集合,则=()A.B.C.D.2.等于()A.B.C.D.3.如果幂函数的图像不过原点,则的取值范围是()A.B.或C.D.或4。

要得到的图像, 需要将函数的图像()A 向左平移个单位B 向右平移个单位C. 向左平移个单位 D 向右平移个单位5。

锐角满足,则的值是( )A.B.C.D.6.函数的最小值和最大值分别为()A。

-3,1 B. -2,2 C. -3, D. -2,7.若的内角满足,则角的取值范围是( )A.B.C.D.8.已知函数在区间上的最小值是,则的最小值为( )A.B.C.2 D.39.动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。

已知时间时,点的坐标是,则当时,动点的纵坐标关于(单位:秒)的函数的单调递增区间是()A. B。

C. D.和10。

设曲线的一条对称轴为,则曲线的一个对称点为( )A. B。

C。

D。

第II卷(非选择题,共100分)二、填空题(本大题共5小题,每题5分,共25分,把答案填在题中横线上)11.已知扇形半径为8,弧长为12, 则中心角为弧度, 扇形面积是12.13.已知函数,若,则14.化简:_________15.若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形"函数.给出下列四个函数:①②,③,④其中“同形”函数有.(填序号)三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知,且,求的值.17.(本小题满分12分)已知函数。

(1)求的定义域;(2)若角在第一象限且,求的值.18.(本小题满分12分)已知二次函数:(1) 若函数的最小值是—60,求实数的值;(2) 若函数在区间上存在零点,求实数的取值范围.19.(本小题满分12分)已知定义在区间上的函数的图像关于直线对称,当时,的图像如图所示.(1)求在上的表达式;(2)求方程的解.20.(本小题满分13分)已知函数,。

2023-2024学年酒泉市高一数学上学期期末考试卷附答案解析

2023-2024学年酒泉市高一数学上学期期末考试卷附答案解析

2023-2024学年酒泉市高一数学上学期期末考试卷考生注意:1.本试卷满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:必修第一册第1章至第5章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列各角中,与760︒角终边相同的角是()A.60︒B.360︒C.320-︒D.440-︒2.已知集合{}1A x x =<,{}2280B x x x =--≤,则A B ⋂=()A.[]1,4B.[2,1)-C.(2,4]D.(,4]-∞3.函数ln(4)y x =+-的定义域为()A.[2,4)B.(2,4)C.[2,4]D.[2,)+∞4.函数3()20f x x x =+-的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.已知0.12a =,2log 0.1b =,0.13c =,则a ,b ,c 的大小关系是()A.c a b>> B.a c b>> C.b a c>> D.b c a>>6.将函数()sin(2)(0π)f x x ϕϕ=+<<的图象向右平移π6个单位长度后得到函数()g x =πsin 212x ⎛⎫- ⎪⎝⎭的图象,则ϕ的值为()A.π6B.π4C.π3D.2π37.由于我国与以美国为首的西方国家在科技领域内的竞争日益激烈,美国加大了对我国一些高科技公司的打压.为突破西方的技术封锁和打压,我国的一些科技企业积极实施了独立自主、自力更生的策略,在一些领域取得了骄人的成绩.我国某科技公司为突破“芯片卡脖子”问题,实现芯片制造的国产化,加大了对相关产业的研发投入.若该公司2020年全年投入芯片制造方面的研发资金为120亿元,在此基础上,计划以后每年投入的研发资金比上一年增长9%,则该公司全年投入芯片制造方面的研发资金开始超过200亿元的年份是()参考数据:lg1.090.0374≈,lg20. 3010≈,lg30.4771≈.A.2024年B.2025年C.2026年D.2027年8.已知函数()2f x ax =-,122,13,()1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩对1[3,3]x ∀∈-,2[3,3]x ∃∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A.[1,1]- B.[]0,4 C.[]1,3 D.[2,2]-二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若sin cos 0αα⋅>,则α终边可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.设函数()||2f x x x x =-,则()f x ()A.是奇函数B.是偶函数C.在(1,1)-上单调递减D.在(,1)-∞-上单调递减11.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,π||2ϕ<)的部分图象如图所示,下列说法正确的是()A.2ω=B.函数π6y f x ⎛⎫=-⎪⎝⎭为偶函数C.函数()y f x =的图象关于直线5π12x =-对称D.函数()y f x =在ππ,312⎡⎤-⎢⎥⎣⎦上的最小值为12.若242log 42log a ba b +=+,则下列结论错误的是()A.2a b >B.2a b< C.2a b > D.2a b <三、填空题:本题共4小题,每小题5分,共20分.13.已知角α的终边经过点(5,12)P -,则sin α=__________.14.如果函数()f x 对任意的正实数a ,b ,都有()()()f ab f a f b =+,则()f x 的解析式可以是()f x =__________.(写出一个即可)15.建于明朝的杜氏雕花楼被誉为“松江最美的一座楼”,该建筑内有很多精美的砖雕,砖雕是我国古建筑雕刻中很重要的一种艺术形式,传统砖墙精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD 截去同心扇形OAB 所得部分,已知1m AD =,弧 πm 3AB =,弧 2πm 3CD =,则此扇环形砖雕的面积为__________2m.16.已知函数()|lg |f x x =,()()f a f b =,a b <,则2023a b +的取值范围是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知命题:p x ∃∈R ,2260x x a -+=,当命题p 为真命题时,实数a 的取值集合为A .(1)求集合A ;(2)设非空集合{}321B a m a m =-≤≤-,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.18.(12分)已知幂函数()23()69m f x m m x +=++在(0,)+∞上单调递减.(1)求实数m 的值;(2)若11(32)(4)m m a a -----<+,求实数a 的取值范围.19.(12分)(1)已知4cos 5α=-,且α为第二象限角,求sin α的值;(2)已知tan 3α=,计算4sin 2cos 5cos 3sin αααα-+的值.20.(12分)已知函数1()(,)f x a b ax b =∈+R ,且1(1)3f =,(1)1f -=-.(1)求a ,b 的值;(2)试判断函数()f x 在(2,)+∞上的单调性,并证明;(3)求函数()f x 在[2,6]x ∈上的最大值和最小值.21.(12分)已知函数()x f x a b =+(0a >,且1a ≠)的部分图象如图所示.(1)求()f x 的解析式;(2)若关于x 的不等式1(2)0xx b m a ⎛⎫+--≤ ⎪⎝⎭在[1,)+∞上有解,求实数m 的取值范围.22.(12分)已知点()()11,A x f x ,()()22,B x f x 是函数π())0,02f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭图象上的任意两点,(0)1f =,且当()()12f x f x -=时,12x x -的最小值为π2.(1)求()f x 的解析式;(2)当ππ,88x ⎡⎤∈-⎢⎥⎣⎦时,2[()]()0f x mf x m --≤恒成立,求实数m 的取值范围.参考答案、提示及评分细则1.C 与760 角终边相同的角为()360760k k ⋅+∈Z.当1k =时,3607601120+= ;当1k =-时,360760300-+= ;当2k =-时,236076040-⨯+= ;当3k =-时,3360760320-⨯+=- ,所以320- 角的终边与760 角的终边相同.2.B 由2280x x -- ,得24x - ,所以{}24,{21}B xx A B x x =-⋂=-<∣∣ .3.A 由题知20,40,x x -⎧⎨->⎩ 得24x < .4.C()y f x =的图象是一条连续不断的曲线,且()f x 在R 上递增,而()()()020,118,210f f f =-=-=-,()()310,448f f ==,可得()()230f f ⋅<,满足零点存在性定理,故()f x 零点所在的区间是()2,3.5.A 因为函数0.1y x =在()0,∞+上单调递增,所以0.10.1023<<,即a c <,又22log 0.1log 10<=,所以c a b >>.6.B 函数()f x 的图象向右平移π6个单位长度后得到函数为ππsin 2sin 263y x x ϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由题意可知,()ππsin 2sin 2123g x x x ϕ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭,则ππ2π123k ϕ-+=-+,得π2π,4k k ϕ=+∈Z ,因为0πϕ<<,所以π4ϕ=.7.C 设2020年后第n 年该公司全年投入芯片制造方面的研发资金开始超过200亿元,由120(19%)n ⨯+>200,得5(1.09)3n,两边同取常用对数,得lg5lg31lg2lg3 5.93lg1.09lg1.09n --->=≈,所以6n ,所以从2026年开始,该公司全年投入芯片制造方面的研发资金开始超过200亿元.8.D 当[]3,3x ∈-时,记()f x 和()g x 的值域分别为集合,A B .当13x 时,[]121,4x -∈,当31x -< 时,[]218,1x -+∈-,所以函数()g x 的值域为[]8,4B =-.因为对[][]123,3,3,3x x ∀∈-∃∈-,使得()()12f x g x =成立,所以A B ⊆.当0a =时,{}2A =-,满足题意;当0a >时,[]32,32A a a =---,则328,324,a a ---⎧⎨-⎩ 解得02a < ;当0a <时,[]32,32A a a =---,则324,328,a a --⎧⎨--⎩解得20a -< .综上,实数a 的取值范围是[]2,2-.9.AC 因为sin cos 0αα⋅>,若sin 0,cos 0αα>>,则α终边在第一象限;若sin 0,cos 0αα<<,则α终边在第三象限.10.AC11.ACD 由题意ππ2,4π312A T ⎛⎫==⨯-=⎪⎝⎭,则2π2T ω==,A 正确;ππ22π,122k k ϕ⨯+=+∈Z ,又π2ϕ<,所以π3ϕ=,所以()ππ2sin 2,2sin236f x x y f x x ⎛⎫⎛⎫=+=-= ⎪ ⎪⎝⎭⎝⎭为奇函数,B 错误;5ππ2sin 22123⎡⎤⎛⎫⨯-+=- ⎪⎢⎥⎝⎭⎣⎦,所以函数()y f x =的图象关于直线5π12x =-对称,C 正确;ππ,312x ⎡⎤∈-⎢⎥⎣⎦时,πππ2,336x ⎡⎤+∈-⎢⎥⎣⎦,所以min π()3f x f ⎛⎫=-= ⎪⎝⎭D 正确.12.ACD 设()22log xf x x =+,则()f x 在()0,∞+上为增函数,因为22422log 42log 2log a b b a b b +=+=+,所以()()()()22222222122log 2log 22log 2log 2log 102a b b b f a f b a b b b -=+-+=+-+==-<,所以()()2f a f b <,所以2a b <,故B 正确;()()()()22222222222222log 2log 2log 2log 22log a b b b b b f a f b a b b b b -=+-+=+-+=--,当1b =时,()()220f a f b -=>,此时()()2f a f b >,有2a b >;当2b =时,()()21f a f b -=-<0,此时()()2f a f b <,有2a b <,所以A 、C 、D 均错误.13.1213点()5,12P -在角α的终边上,所以12sin 13α==.14.()lg f x x =(答案不唯一)由题意,函数()f x 对任意的正实数,a b ,都有()()()f ab f a f b =+,可考虑对数函数()lg f x x =,满足()()()()lg lg lg f ab ab a b f a f b ==+=+,故()lg f x x =.15.π2设圆心角为α,则 CDAB OD OA α==,所以2ππ331OA OA=+,解得1m OA =,所以2m OD =,所以此扇环形砖雕的面积为 21112π1ππ21m 2223232CD OD AB OA ⋅⋅-⋅=⨯⨯-⨯⨯=.16.()2024,∞+函数()lg f x x =的定义域为()0,∞+,由()(),f a f b a b =<,得lg lg a b =,即有lg lg 0a b +=,解得1ab =,即1a b =,又0b a >>,因此110,20232023b a a b b b>>>+=+,而函数12023y x x =+在()1,∞+上单调递增,于是120232023120232024a b b b+=+>+=,所以2023a b +的取值范围是()2024,∞+.17.解:(1)因为p 为真命题,所以方程2260x x a -+=有解,即2Δ3640a =- 得33a -<<,所以{}33A aa =-∣ .(2)因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集,且B ≠∅,则321,323,13,m m m m --⎧⎪--⎨⎪-⎩解得1132m - ,综上,实数m 的取值范围11,32⎡⎤-⎢⎥⎣⎦.18.解:(1)由幂函数的定义可得2691m m ++=,即2680m m ++=,解得2m =-或4m =-.因为()f x 在()0,∞+上单调递减,所以30m +<,即3m <-,则4m =-.(2)设()()3,g x x g x =是R 上的增函数.由(1)可知11(32)(4)m m a a -----<+,即33(32)(4)a a -<+,则324a a -<+,解得3a <,即实数a 的取值范围为(),3∞-.19.解:(1)因为4cos 5α=-,且α为第二象限角,则3sin 5α==,即sin α的值为35.(2)因为tan 3α=,则4sin 2cos 4tan 243255cos 3sin 53tan 5337αααααα--⨯-===+++⨯.20.解:(1)因为()1f x ax b =+,且()()11,113f f =-=-,所以11,311,a b a b⎧=⎪⎪+⎨⎪=-⎪-+⎩解得2,1.a b =⎧⎨=⎩(2)函数()121f x x =+在()2,∞+上为减函数,证明如下:任取()12,2,x x ∞∈+,且12x x <,则()()()()()2112121221121212121x x f x f x x x x x --=-=++++因为()12,2,x x ∞∈+,且12x x <,所以21120,210,210x x x x ->+>+>,所以()()120f x f x ->,即()()12f x f x >,所以函数()121f x x =+在()2,∞+上为减函数,(3)由(2)可知()121f x x =+在[]2,6上为减函数,所以当2x =时,函数取得最大值,即max 11()2215f x ==⨯+,当6x =时,函数取得最小值,即min 11()26113f x ==⨯+.21.解:(1)由图象可知函数()xf x a b =+经过点()1,0-和()0,1-,所以100,1,a b a b -⎧+=⎨+=-⎩解得1,22,a b ⎧=⎪⎨⎪=-⎩所以函数()f x 的解析式是()122xf x ⎛⎫=- ⎪⎝⎭.(2)由(1)知12,24b a=-=,根据题意知240x x m +- ,即24x x m + 在[)1,∞+上有解,设()24x xg x =+,则min ()g x m ,因为2x y =和4x y =在[)1,∞+上都是单调递增函数,所以()g x 在[)1,∞+上是单调递增函数,故()min ()16g x g ==,所以6m ,实数m 的取值范围是[)6,∞+.22.解:(1)由()01,π02f ϕϕ⎧==⎪⎨<<⎪⎩得π,4ϕ=又因为当()()12f x f x -=12x x -的最小值为π2,所以1ππ22T ω==,即2,ω=所以故()π24f x x ⎛⎫=+⎪⎝⎭.(2)由ππ,88x ⎡⎤∈-⎢⎥⎣⎦,得ππ20,42x ⎡⎤+∈⎢⎥⎣⎦,于是[]πsin 20,14x ⎛⎫+∈ ⎪⎝⎭,则()f x ⎡∈⎣,令(),t f x t ⎡=∈⎣,不等式()()2[]0f x mf x m -- 恒成立,即20t mt m -- 恒成立,设()2,0h t t mt m t =--,因此()00,20,h m h m ⎧=-⎪⎨=--⎪⎩解得2m ,所以实数m的取值范围是)2,∞⎡-+⎣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高一上学期期末考试数学试卷
2018.01
一、选择题:(本大题共12小题,每小题5分,共60分。

)
1.已知全集}7,6,5,4,3,2,1{=U ,集合}6,5,3,1{=A ,则=A C U ( )
A.}6,5,3,1{
B.}7,3,2{
C.}7,4,2{
D.}7,5,2{
2.已知向量()()1,2,,1,a b x ==-),若a b ⊥,则实数x 的值为( )
A . -2
B . 2
C . -1
D . 1
3.若cos α=-32
,且角α的终边经过点P (x ,2),则P 点的横坐标x 是( ) A .2 3 B .±2 3 C .-2 2 D .-2 3
4.已知向量a =(2,4),b =(-1,1),c =(2,3),若a +λb 与c 共线,则实数λ=( ) A.25 B .-25 C.35 D .-35
5.已知集合(){|lg 21}A x x =-<,集合1{|28}2
x B x =<<,则A B ⋂等于( ) A. ()2,12 B. ()1,3- C. ()2,3 D. ()1,12-
6.函数()()ax x f a -=6log 在[]2,0上为减函数,则a 的取值范围是( )
A .()1,0
B .()3,1
C .(]3,1
D .[)+∞,3
7.函数y =sin x x
,x ∈(-π,0)∪(0,π)的图象大致是( )
8.如图所示,M ,N 是函数y =2sin(ωx +φ)(ω>0)的图象与x 轴的交点,点P 在M ,N 之间
的图象上运动,当△MPN 的面积最大时PM →·PN →=0,则ω等于( )
A.π4
B.π3
C.π2
D .8
9.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λμ
的值为( )
A .-3
B .3
C .2
D .-2 10.已知函数(
)(ln ,f x x =若实数,a b 满足()()20f a f b +-=则a b +=( ) A .2 B .-1 C .0 D .-2
11.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小是( )
A.2-
B.32-
C. 43
- D.1- 12.已知函数()224log ,021512,22
x x f x x x x ⎧<<⎪=⎨-+≥⎪⎩,若存在实数a,b,c,d ,满足()()()f a f b f c ==
()f d =,其中0d c b a >>>>,则abcd 的取值范围是( ) A .(16,21) B .()16,24 C .(17,21) D .(18,24)
二:填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)
13.已知点P (sin θcos θ,2cos θ)位于第三象限,则θ是第________象限角.
14.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a
满足
1(2)(a f f ->,则a 的取值范围是______.
15.函数(
)23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦
)的最大值是。

16.定义在(-∞,+∞)上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,下面是关于f (x )的判断:
①f (x )的图象关于点P ⎪⎭
⎫ ⎝⎛0,21对称;②f (x )的图象关于直线x =1对称;
③f (x )在[0,1]上是增函数;④f (2)=f (0).
其中正确的是______.(把你认为正确的判断序号都填上)
三:解答题(本大题共6小题,共70分.10+12+12+12+12+12=70解答时应写出必要的文字说明、证明过程或演算步骤)
17.已知扇形AOB 的周长为8.
(1)若这个扇形的面积为3,求圆心角的大小;
(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .
18.在平面直角坐标系xoy 中,以ox 轴为始边,锐角α的终边与单位圆在第一象限交于点
A ,且点A 的纵坐标为10
10,锐角β的终边与射线x-7y=0(0x ≥)重合. (1)求tan tan αβ和的值;
(2)求2αβ+的值.
19.已知函数f (x )=2x x 2
+1. (1)用定义证明该函数在[1,+∞)上是减函数;
(2)求函数在(]1,-∞-上的值域.
20.已知向量()()
[]π,0,3,3,sin ,cos ∈-==x b x x a (1)若b a //,求x 的值;
(2)记()b a x f ∙=,求()x f 的最大值和最小值以及对应的x 的值.。

相关文档
最新文档