八年级数学上册第十一章三角形单元综合测试题(人教版含答案)

合集下载

人教版八年级数学上册第十一章三角形单元测试卷-(含答案)

人教版八年级数学上册第十一章三角形单元测试卷-(含答案)

人教版八年级数学上册第十一章三角形单元测试卷一、单选题(共30分,每小题3分)1.能用三角形的稳定性解释的生活现象是()A.B.C.D.2.如图,BE、CF都是ABC的角平分线,且115BDC∠=︒,则A∠=()A.45°B.50°C.65°D.70°3.如果一个多边形的每一个外角都是90︒,那么这个多边形的内角和是()A.180︒B.360︒C.540︒D.720︒4.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.135.一个多边形截去一个角后,得到的多边形的内角和为1980,那么原来的多边形的边数为().A.12或13取14B.13或14C.12或13D.13或14或15 6.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60︒C.直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半7.下列各组线段,能构成三角形的是( )A .1,3,5cm cm cmB .2,4,6cm cm cmC .4,4,1cm cm cmD .8,8,20cm cm cm8.在三角形的①三条中线;①三条角平分线;①三条高中,一定相交于一点的是( )A .①①①B .①C .①D .①① 9.如图,在①ABC 中,D 是BC 延长线上一点,①B =40°,①ACD =120°,则①A 等于A .60°B .70°C .80°D .90° 10.如图在△ABC 中,BO ,CO 分别平分①ABC ,①ACB ,交于O ,CE 为外角①ACD 的平分线,BO 的延长线交CE 于点E ,记①BAC =①1,①BEC =①2,则以下结论①①1=2①2,①①BOC =3①2,①①BOC =90°+①1,①①BOC =90°+①2正确的是( )A .①①①B .①①①C .①①D .①①①二、填空题(共24分,每小题3分) 11.若一个多边形的内角和是 1980°,则这个多边形的边数为________. 12.等腰三角形一边长为5,另一边长为7,则周长为__________.13.如图,①BCD =145°,则①A +①B +①D 的度数为_____.14.一个多边形的每一个外角都等于60°,则这个多边形的内角和为_____度. 15.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连___________条对角线.16.小华从点A 出发向前走10m ,向右转36︒然后继续向前走10m ,再向右转36︒,他以样的方法继续走下去,当他走回到点A 时共走_________米.17.如图,在①ABC 中,①CAD =①CDA ,①CAB −①ABC =30°,则①BAD =________︒.18.如图,在ABC 中,12∠=∠,34∠=∠,80A ∠=︒,则x =______.三、解答题(共66分) 19.如图,ABCD 是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE ,小明的做法正确吗?说说你的理由.(共6分)20.如图①A =20°,①B =45°,①C =40°,求①DFE 的度数.(共6分)21.已知,如图,在ABC ∆中,AD 、AE 分别是ABC ∆的高和角平分线,若30ABC ∠=,60ACB ∠=(共8分)(1)求DAE ∠的度数;(2)写出DAE ∠与C B ∠-∠的数量关系 ,并证明你的结论22.若一个多边形的内角和比外角和多540°,求这个多边形的边数.(共8分)23.如图:(共8分)(1)画出△ABC 的BC 边上的高线AD ;(2)画出△ABC 的角平分线CE .24.已知在△ABC 中,∠A :∠B :∠C =2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.(共10分)25.如图,已知:点P 是ABC ∆内一点.(共10分)(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.26.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求①CAD的度数.(共10分)答案第1页,共1页 参考答案:1.C2.B3.B4.C5.A6.B7.C8.D9.C10.C 11.1312.17或1913.145°14.72015.616.10017.1518.13020.小明的做法正确,21.105°22.(1)15°;(2)()12DAE C B ∠=∠-∠, 23.724.略25.∠A =40°,∠CDB =80°.26.(1)略;(2)110°27.①CAD =36°.。

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。

人教版数学八年级上册《第11章三角形》单元测试题(含答案)

人教版数学八年级上册《第11章三角形》单元测试题(含答案)

三角形章节同步测试题基础卷(满分:100分,时间:45分钟)一、精心选一选(每小题3分,共24分)1.请根据凸多边形的定义,判断下列选项中不是凸多边形的是( )2.小华在计算四个多边形的内角和时,得到下列四个答案,则他计算不对的是( ) A .0720 B .01080 C .01440 D .01900 3.随着一个多边形的边数增加,它的外角和( )A .随着增加B .随着减少C .保持不变D .无法确定4.过多边形的一个顶点的所有对角线把这个多边形分成6个三角形,则这个多边形的内角和等于( )A .0720 B .0900 C .01080 D .012605.若四边形ABCD 中,∠A :∠B :∠C :∠D=1:2:4:5,则∠A+∠D 等于( ) A .030 B .075 C .0180 D .0210 6.能进行镶嵌的正多边形组合是( )A .正三角形和正八边形B .正五边形和正十边形C .正方形和正八边形D .正六边形和正八边形7.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是( )A .0110 B .0108 C .0105 D .0100 8.能构成如图所示的图案的基本图形是( )ABCDA B CDC DE4二、细心填一填(每小题4分,共32分)9.正十边形的内角和等于 度,每个内角等于 度. 10.如果正多边形的一个外角为072,那么它的边数是 . 11.如图是三个完全相同正多边形拼成的无缝隙,不重叠图形的一部分,这种正多边形是正 边形.12.“三江”黄金广场用三种不同的正多边形地砖铺设(每种只选一块),其中已知选好了用正方形和正六边形这两种,还需再选用 ,使这三种组合在一起的广场铺满.13.多边形每一个内角都等于0140,则从此多边形一个顶点出发的对角线有 条. 14.若一个多边形的各边长相等,其周长为63厘米,且内角和为0900,那么它的边长为 厘米.15.过a 边形的一个顶点有7条对角线,正b 边形的内角和与外角和相等,c 边形没有对角线,d 边形有d 条对角线,则代数式ab dc )( = .16.小华骑自行车在一个正多边形广场上训练,在训练中小华发现,每5分钟就要转弯一次,当他汽车一圈回到出发点发现正好用了30分钟,则此多边形的内角和为 .三、专心解一解(共44分)17.(5分)小华想:2012年奥运会在伦敦举办,设计一个内角和为02012的多边形图案多有意义,他的想法能实现吗?请说明理由.18.(7分) 小华画了一个八边形,请问: (1)从八边形的一个顶点出发,可以引几条对角线?它们将八边形分成几个三角形?(2)请你求出八边形的内角和是外角和的几倍? 19.(7分)如图,已知五边形ABCDE 中,AE ∥CD ,∠A=0130,∠C=0135,求∠B 的度数.20.(8分)小华从点A 出发向前走10m ,向右转036然后继续向前走10m ,再向右转036,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回点A 时共走多少米?若不A BCDE第19题图第11题图ADEFGQ P能,写出理由.21.(8分)如图,求∠A+∠B+∠C+∠D+∠E+∠F +∠G 的度数.22.(9分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪.(1)图1中草坪的周长为 ; (2)图2中草坪的周长为 ; (3)图3中草坪的周长为 ;(4)如果多边形边数为n ,其余条件不变,那么,你认为草坪的周长为 .加强卷(满分:50分,时间:30分钟)一、精心选一选(每小题3分,共15分)1.若一个多边形的每个外角都是锐角,那么这个多边形的边数至少是( ) A .3 B .4 C .5 D .62.鹿鸣社区里有一个五边形的小公园(如图所示),王老师每天晚饭后都要到公园里去散步,已知图中的∠1=095,王老师沿公园边由A 点经B →C →D →E 一直到F 时,他在行程中共转过了( )A .0265 B .0275 C .0360 D .04453.一个多边形的每一个内角都是0144,则它的内角和等于( ) A .01260 B .01440 C .01620 D .018004.四边形ABCD 中,∠A+∠C=∠B+∠D ,∠A 的一个外角为0105,则∠C 的度数为( ) A .075 B .090 C .0105 D .0120 5.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地第22题图图1图2 图31 ABCDE F第2题图砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是( )A .54B .54C .60D .66 二、细心填一填(每小题3分,共15分)6.若一个多边形的每个外角都等于030,则这个多边形的对角线总条数为 . 0140,7.一个多边形的每一个外角都相等,且比它的内角小则这个多边形的边数是 .8.一个四边形的四个内角中做多有 个钝角,最多有个锐角.9.一个正方形的截取一个角后,得到的图形的内角和可能是 .10.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图所示的正五边形ABCDE ,其中∠BAC= .(提示:由AB=AC ,可得∠BAC=∠BCA )三、专心解一解(共20分)11.(8分)多边形除一个内角外,其余各内角和为01200. (1)求多边形的边数;(2)此多边形必有一外角为多少度?12.(12分)如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 、∠1及∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.参考答案基础卷一、1~4 ADCA ;5~8 CCDD .二、9.1440,45; 10.5; 11.六; 12.正十二边形; 13.6; 14.9; 15.3; 16.0540.三、17.解:不能,理由如下.设存在n 边形的内角和为02012,有02012180)2(=-n ,解得n ≈13.18.ABCDE第10题图∵多边形的边数不能为小数,∴不存在内角和为02012的多边形.18.解:(1)从八边形的一个顶点出发,可以引5条对角线?它们将八边形分成6个三角形.(2)2360180)28(0=-.故八边形的内角和是外角和的2倍. 19.解:∵AE ∥CD ,∴∠D+∠E=0180.∵ABCDE 是五边形,∴∠A+∠B+∠C+∠D+∠E=0180)25(-. 即0130+∠B 0135++0180=0540,解得∠B=095. 20.解:小华能回到A 点,当他回到A 点时共走了100m . 21.解:∵∠QPE=∠D+∠G ,又∠QPE+∠E+∠F+∠FQP=0360,即∠D+∠G+∠E+∠F+∠FQP=0360. ∴∠D+∠G+∠E+∠F=0360—∠FQP .∵∠A+∠B+∠C+∠AQC=0360,∴∵∠A+∠B+∠C=0360—∠AQC .故∠A+∠B+∠C+∠D+∠G+∠E+∠F=(0360—∠AQC)+(0360—∠FQP )=0720—(∠AQC+∠FQP )=0720—0180=0540.22.解:(1)R π;(2)R π2;(3)R π3;(4)R n π)2(-.加强卷一、1.C ; 2.B ; 3.B ; 4.C ; 5.D .二、6.54; 7.18; 8.3,3; 9.0180,0360或0540; 10.036. 三、11.解:(1)设该多边形的一个内角为0x ,边数为n , 依题意,有01200180)2(x n +=-.∵00012061801200⋅⋅⋅⋅⋅⋅=÷,∴01201806180)2(x n ++⨯=-. 又∵1800<<x ,∴180120=+x ,解60=x .把60=x 代入原方程,得0601200180)2(+=-n ,解得9=x . ∴该多边形的边数为9.(2)∵该多边形有一角为060,∴此多边形必有一外角为0120. 12.解:规律为∠1+∠2=2∠A .∵∠B+∠C=A ∠-0180,∠ADE+∠AED=A ∠-0180,又∠B+∠C+∠CDE+∠DEB=0360,即∠B+∠C+∠2+∠ADE+∠1+∠AED=0360. ∴A ∠-0180+∠1+∠2+A ∠-0180=0360, 整理,得∠1+∠2=2∠A .。

人教版八年级数学上册《第11章三角形》单元测试题含答案

人教版八年级数学上册《第11章三角形》单元测试题含答案

第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.三角形的两边分别为3,5,那么它的第三边可以是()A.1 B.2 C.3 D.82.在Rt△ABC中∠C=90°,∠B=25°则∠A的度数是()A.75°B.65°C.55°D.45°3.已知一个多边形的内角和为720°,则这个多边形是()A.八边形B.七边形C.六边形D.五边形4.如图,AE是△ABC的中线,点D是BE上一点,若BD=5,CD=9则CE的长为()A.5 B.6 C.7 D.85.如图,要使一个七边形木架不变形,至少要再钉上木条的根数是()A.1根B.2根C.3根D.4根6.如图,在△ABC中,点D在BC边上AB=AD=CD,∠DAC=2∠BAD则∠BAC等于()A.80°B.70°C.60°D.50°7.如图,直线a∥b,∠1=85°,∠2=45°则∠3的度数是()A.75°B.40°C.35°D.50°8.如图D、E分别是BC、AC的中点SΔCDE=2,则△ABC的面积为()A.4 B.8 C.10 D.12二、填空题9.一个三角形的两边长分别是3和7,则它的第三边的长为x,则x的范围为.10.如图,已知∠B=20°,∠C=35°,∠D=165°,则∠A的度数为°.11.根据如图所表示的已知角的度数,求出其中∠α的度数为.12.如图,△ABC的三条中线AD,BE,CF交于点O,若△ABC的面积为20,那么阴影部分的面积之和为.13.如图,在△ABC中AB⊥AC,∠C=55°点E为BA延长线上一点,点F为BC边上一点,若∠E=30°,则∠CFE的度数为.三、解答题14.如图∠B=30°,∠CAD=65°,AD平分∠CAE,求∠ACD的度数.15.如图,在△ABC中,AD平分∠BAC交BC于D,DE⊥AC于E,∠B=54°,∠C=40°求∠ADE 的度数.16.如图,AD是△ABC的角平分线,CE是△ABC的高∠BAC=50°,∠BCE=25°求∠ADB的度数.17.在△ABC中AB=8,AC=1.(1)若BC是整数,求BC的长.(2)已知AD是△ABC的中线,若△ACD的周长为10,求三角形ABD的周长.18.如图,在四边形ABCD中AB//CD,点E、F分别在AD、BC边上,连接AC交EF于G,∠1=∠BAC.(1)求证:EF//CD;(2)若∠CAF=15°,∠2=45°,∠3=20°求∠B和∠ACD的度数.参考答案1.C2.B3.C4.C5.D6.C7.B8.B9.4<x<1010.11011.50°12.1013.65°14.解:∵∠CAD=65°,AD平分∠CAE∴∠EAC=2∠CAD=2×65°=130°∴∠BAC=180°−∠EAC=180°−130°=50°∵∠B=30°∴∠ACD=∠B+∠CAB=30°+50°=80°.15.解:∵∠B=54°∴∠BAC=180°−∠B−∠C=86° .∵AD平分∠BAC∠BAC=43° .∴∠DAE=12∵DE⊥AC∴∠AED=90°∴∠ADE=180°−∠DAE−∠AED=47°.16.解:∵AD是△ABC的角平分线,∠BAC=50°∴∠BAD=25°又∵CE是△ABC的高∠BCE=25°∴∠BEC=90°∴∠B=65°∴∠ADB=180°-∠B-∠BAD=180°-65°-25°=90°.17.(1)解:由三角形三边关系可得,在△ABC中AB=8,AC=1则AB−AC<BC<AB+AC即7<BC<9又∵BC是整数∴BC=8(2)解:∵AD是△ABC的中线∴BD=CD由△ACD的周长为10可得AC+CD+AD=10,则CD+AD=10−AC=9三角形ABD的周长=AB+BD+AD=8+9=1718.(1)证明:如下图∵∠1=∠BAC∴AB∥EF又∵AB∥CD∴EF∥CD.(2)解:由(1)可知:AB∥EF∴∠B+∠BFE=180°∵∠BFE=∠2+∠3,∠2=45°,∠3=20°∴∠BFE=65°∴∠B=115°又∵∠1是△AGF的外角,∠CAF=15°∴∠1=∠3+∠GAF=35°∵EF∥CD∴∠ACD=∠1=35°.。

人教版八年级数学上册第十一章《三角形》综合测试卷(含答案)

人教版八年级数学上册第十一章《三角形》综合测试卷(含答案)

人教版八年级数学上册第十一章《三角形》综合测试卷(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每小题3分,共30分)1.下列图形中,多边形有()A.1个B.2个C.3个D.4个2.有两根6cm,8cm的木棒,以这两根木棒做一个三角形,可以选用第三根木棒的长为()A.2cm B.6cm C.14cm D.16cm3.下列设计的原理不是利用三角形的稳定性的是()A.由四边形组成的伸缩门B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.照相机的三脚架4.每一个外角都等于72°,这样的正多边形边数是()A.3 B.4 C.5 D.65.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为( ) A.7 cm B.3 cm C.9 cm D.5 cm6.下列说法中正确的是 ( )A.三角形的外角大于任何一个内角B.三角形的内角和小于外角和C.三角形的外角和小于四边形的外角和D.三角形的一个外角等于两个两个内角的和.7.如图,在△ABC中,CD是AB边上的高,CM是∠ACB的角平分线,若∠CAB=45°,∠CBA =75°,则∠MCD的度数为()A.15°B.20°C.25°D.30°8.如图,△ABC中,∠A=30°,将△ABC沿DE折叠,点A落在F处,则∠FDB+∠FEC的度数为()A.140°B.60°C.70°D.80°9.一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()A.10或11 B.11或12或13 C.11或12 D.10或11或12 10.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠E=90°,则∠BDC的度数为()A.120°B.125°C.130°D.135°二、填空题(每题3分,共24分)11.如图,点D在△ABC的边BC上,∠B=∠BAD,∠ADC=74°,则∠B=.12.小华用三根木棒搭一个三角形,其中两根木棒的长度分别为10cm和2cm,第三根木棒的长度为偶数,则第三根的长度是cm.13.若一个正多边形的一个内角的度数是它相邻外角度数的3倍,则这个正多边形的边数为.14.如图,已知∠ACB=90°,OA平分∠BAC,OB平分∠ABC,则∠AOB=°.15.若某个正多边形的一个内角为108°,则这个正多边形的边数为.16.如图,在△ABC中,BD,BE将∠ABC分成三个相等的角,CD,CE将∠ACB分成三个相等的角.若∠A=105°,则∠D等于度.17.如图,在△ABC中,∠B=42°,将△ABC沿直线l折叠,点B落在点D的位置,则∠1﹣∠2的度数是.18. 如图,在△ABC中,点D在BC的延长线上,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2019BC和∠A2019CD的平分线交于点A2020,则∠A2020=________°.三.解答题(共46分,19题6分,20 ---24题8分)19.一个三角形的两边b=2,c=7.(1)当各边均为整数时,有几个三角形?(2)若此三角形是等腰三角形,则其周长是多少?20.如图,在△ABC中,BD平分∠ABC,DE∥BC交AB于点E,∠C=50°,∠BDC=95°,求∠BED的度数.21.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB =97°,求∠A和∠ACE的度数.22.如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE相交于点O,∠BOC=119°.(1)求∠OBC+∠OCB的度数;(2)求∠A的度数.23.图①,∠MON=90°,点A,B分别在OM,ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反向延长线与∠BAO的平分线交于点D.①若∠BAO=60°,则∠D=°;②猜想:∠D的度数是否随A,B的运动而发生变化?并说明理由;(2)若∠ABC=∠ABN,∠BAD=∠BAO,求∠D的度数;(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=(用含α,n的代数式表示).24.如图1,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于点D.(1)当∠B=35°,∠C=75°时,求∠EFD的度数;(2)若∠B=α,∠C=β,请结合(1)的计算猜想∠EFD、∠B、∠C之间的数量关系,直接写出答案,不用说明理由;(用含有α、β的式子表示∠EFD)(3)如图2,当点F在AE的延长线上时,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B B A C B B A B D D二、填空题11.解:∵∠ADC是△ABD的外角,∠ADC=74°,∴∠ADC=∠B+∠BAD.又∵∠B=∠BAD,∴∠B=∠BAD=37°,故答案为:37°.12.解:根据三角形的三边关系,得10﹣2<第三根木棒<10+2,即8<第三根木棒<12.又∵第三根木棒的长选取偶数,∴第三根木棒的长度只能为10cm.故答案为:10.13.解:设正多边形的一个内角等于x°,∵一个内角的度数恰好等于它相邻的外角的度数的3倍,∴x=3(180﹣x),解得:x=135,外角度数是180°﹣135°=45°,∴这个多边形的边数是:360°÷45°=8.故答案为:8.14.解:∵OA平分∠BAC,OB平分∠ABC,∴∠OAB=CAB,∠OBA=∠CBA.∵∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣∠CAB﹣∠CBA=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠C)=90°+∠C.当∠ACB=90°时,∠AOB=90°+×90°=135°.故答案为:135.15.解:设这个正多边形的边形为x.∵正多边形的一个内角为108°,∴这个正多边形的每个外角等于72°.∴=72°.∴n=5.故答案为:5.16.解:∵∠A=105°,∴∠ABC+∠ACB=180°﹣105°=75°,∵BD,BE将∠ABC分成三个相等的角,CD,CE将∠ACB分成三个相等的角,∴∠DBC+∠DCB=×75°=50°,∴∠D=180°﹣(∠DBC+∠DCB)=130°,故答案为130.17.解:如图所示:∵将△ABC沿直线l折叠,点B落在点D的位置,∴∠BEF=∠DEF,∠BFE=∠DFE,∵∠BED=180°﹣∠1,∴∠BEF=∠BED=(180°﹣∠1),∵∠EFC=∠B+∠BEF,∴∠BFE=∠EFD=∠EFC+∠2=∠B+∠BEF+∠2=∠B+(180°﹣∠1)+∠2,∴在△BEF中,∠B+∠BEF+∠BFE=180°,∠B+(180°﹣∠1)+∠B+(180°﹣∠1)+∠2=180°,整理得:∠1﹣∠2=2∠B,∵∠B=42°,∴∠1﹣∠2=84°.故答案为:84°.18. 【答案】(m22020)三、解答题19.解:(1)设第三边长为a,则5<a<9,由于三角形的各边均为整数,则a=6或7或8,因此有三个三角形;(2)当a=7时,有a=7=c,所以周长为7+7+2=16.20.解:∵∠C=50°,∠BDC=95°,∴∠DBC=180°﹣∠C﹣∠BDC=180°﹣50°﹣95°=35°.∵BD平分∠ABC,∴∠EBC=2∠DBC=70°,∵DE∥BC,∴∠BED+∠EBC=180°,∴∠BED=180°﹣70°=110°.21.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.22.解:(1)∵∠BOC=119°∴△BCO中,∠OBC+∠OCB=180°﹣∠BOC=61°;(2)∵BD平分∠ABC,CE平分∠ACB,∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=122°,∴△ABC中,∠A=180°﹣122°=58°.23.【解答】解:(1)①∵AD平分∠BAO,BC平分∠ABN,∴∠BAD=,∠CBA=.∵∠D+∠BAD=∠CBA,∴∠D=∠CBA﹣∠BAD==.∵∠MON=90°,∴∠D=45°.故答案为:45.②不变化,理由如下:与①同理可得:∠D=,是定值.(2)由(1)知:∠D=∠CBA﹣∠BAD.∵∠ABC=∠ABN,∠BAD=∠BAO,∴∠D==.∵∠MON=90°,∴∠D=30°.(3)与(2)同理:∠D=∠CBA﹣∠BAD.∵∠ABC=∠ABN,∠BAD=∠BAO,∴∠D==.∵∠MON=α,∴∠D=.故答案为:.24.∴∠BAC=180°﹣(∠B+∠C)=180°﹣(35°+75°)=70°.∵AE平分∠BAC,∴∠BAE=∠CAE=.∴∠FED=∠B+∠BAE=35°+35°=70°.∵FD⊥BC,∴∠EDF=90°.∴∠EFD=180°﹣∠EDF﹣∠FED=180°﹣90°﹣70°=20°.(2)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣(∠B+∠C)=180°﹣(α+β).∵AE平分∠BAC,∴∠BAE=∠CAE==90°﹣.∴∠FED=∠B+∠BAE=α+90°﹣=90°+.∵FD⊥BC,∴∠EDF=90°.∴∠EFD=180°﹣∠EDF﹣∠FED=180°﹣90°﹣(90°+)=.(3)成立,理由如下:由(2)知:∠FED=∠B+∠BAE=90°+,∠EDF=90°.∴∠EFD=180°﹣(∠FED+∠EDF)=180°﹣(90°++90°)=.。

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.给出下列长度的三条线段,不能构成三角形的是()A.10,8,6 B.4,8,7 C.2,3,4 D.3,4,72.把一副三角板按如图所示平放在桌面上,点E恰好落在CB的延长线上FE⊥CE,则∠BDE的大小为()A.10°B.15°C.20°D.25°3.一个正多边形的每个内角都等于135°,那么它是()A.正六边形B.正十边形C.正八边形D.正十二边形4.如图,点D、E分别是△ABC边BC、AC上一点BD=2CD,AE=CE连接AD、BE交于点F,若△ABC 的面积为12,则△BDF与△AEF的面积之差S△BDF−S△AEF等于()A.1 B.2 C.3 D.45.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑皮正五边形的内角和是()A.180°B.360°C.540°D.720°6.如图AD,AE,AF分别是△ABC的中线、角平分线、高线,下列结论中错误的是()BC B.2∠BAE=∠BACA.CD=12C.∠C+∠CAF=90°D.AE=AC7.如图,在直角三角形ABC中∠BAC=90°,∠B=56°,AD⊥BC,DE//AC则∠ADE的度数为( )A.56°B.46°C.44°D.34°8.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行∠BCD=62°,∠BAC=54°当∠MAC为()度时,AM与CB平行.A.54 B.64 C.74 D.114二、填空题9.若一个三角形两边的长分别为8cm和9cm(三边长均为整厘米数),则这个三角形第三边最长可以是cm.10.已知一个正多边形的一个外角为36°,则这个正多边形的边数是.11.将一副三角板按如图所示的位置摆放,图中∠2−∠1=°.12.如图,将一把直尺摆放在含30°角的三角尺(∠A=30°,∠C=90°)上,其中顶点B在直尺的一边上,已知∠1=55°,则∠2的度数为.13.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.三、解答题14.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.15.如图,在△ABC中DE∥BC,F是AC上一点,FD的延长线与CB的延长线交于点G.求证:∠DGH>∠AED.16.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD= 35°,∠ABE=20°求∠BFD的度数.17.如图,DE∥AB(1)判断AD与BE是否平行,并说明理由.(2)若∠A=∠C=2∠ABC,求∠E的度数.18.如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.B3.C4.B5.C6.D7.A8.B9.1610.1011.3012.25°13.414.解:∵CE是AB边上的高∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线∠ACB∴∠ACD=∠BCD= 12又∵∠DCE=10°,∠B=60°∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°∴∠A=90°﹣∠ACE=40°.15.证明:∵∠DGH是△DBG的一个外角∴∠DGH>∠DBG∵∠DBG是△ABC的一个外角∴∠DBG>∠C∴∠DGH>∠C∵DE∥BC∴∠AED=∠C∴∠DGH>∠AED.16.解:∵∠A=62°∴∠BDC=∠A+∠ACD=62°+35°=97°在△BDF中∵∠ABE=20°∴∠BFD=180°−∠ABE−∠BDC=180°−20°−97°=63°. 17.(1)解:AD∥BE,理由为:∵DE∥AB∴∠ABE+∠E=180°∵∠ABE+∠CDF=180°∴∠E=∠CDF∴AD∥BE;(2)解:∵∠A=∠C=2∠ABC∴5∠ABC=180°,则∠ABC=36°∴∠A=2∠ABC=72°∴∠E=∠CDF=∠A=72°.18.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°=39°2∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.下列说法中正确的是( ) A .直角三角形的高只有一条B .锐角三角形的三条高交于三角形内部C .直角三角形的高没有交点D .钝角三角形的三条高所在的直线没有交点 2.如图,在ABC 中,延长BC 至点D ,使CD BC =,记ABC 的面积为1S ,ACD 的面积为2S ,则1S 与2S 的大小关系是( )A .12S S >B .12S S <C .12S SD .不能确定3.现有长度分别为2cm 、4cm 、5cm 、7cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .44.如图,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O,若∠A=70°,则∠BOC 的度数为( )A .100°B .120°C .125°D .130°5.如图,在ABC 中9065C B ∠=︒∠=︒,,点D 、E 分别在AB AC 、上,将ADE 沿DE 折叠,使点A 落在点F 处.则BDF CEF ∠-∠=( )∠∠A=∠B=2∠C;∠∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.下列说法中错误的是().A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形的一个外角大于任何一个内角D.三角形的三条高至少有一条高在三角形的内部8.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.8B.7或8C.7或8或9D.8或9或10A.1B.2C.3D.4分别平分ABC的外角2A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠∠11.如图,在直角三角形ABC中90∠=︒,AB=3,AC=4,BC=5,DE//BC,若点A到DE的距离是1,则DEA与BC之间的距离是()A.2B.1.4C.3D.2.412.从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A.36°B.40°C.45°D.60°二、填空题(本大题共8小题,每小题3分,共24分)13.已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 .14.如图1,为响应国家新能源建设,某市公交站亭装上了太阳能电池板.当地某一季节的太阳光(平行光线)与水平线最大夹角为62︒,如图2,电池板AB 与最大夹角时刻的太阳光线相垂直,此时电池板CD 与水平线夹角为48︒,要使//AB CD ,而将电池板CD 逆时针旋转α度,则α为 .()090α<<15.如图,ABC 中55A ∠=︒,90ACB ∠=︒将ABC 沿过C 点的直线折叠,使A 点落在边BC 上的E 点处,折痕交边AB 于点D ,则BDE ∠= .16.如图,图中x 的值为 .17.三角形的三边长分别为2,5,32x -则x 的取值范围是 .18.如图,在∠ABC 中,AB >AC ,AE∠BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .19.如图中36B ∠=︒,76C ∠=︒且AD 、AF 分别是ABC 的角平分线和高,DAF ∠= .20.在△ABC 中,若A B C ∠=∠-∠,则B ∠的度数为 度.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,△ABC 的面积为21平方厘米,DC =3DB ,AE =ED ,求阴影部分面积.22.如图:已知在ABC 中,AD 平分BAC ∠,AE BC ⊥垂足为E ,38B ∠︒=和70C ∠︒=求DAE ∠的度数.23.如图,在ABC 中,AD 是BAC ∠的平分线,DE AC ∥交AB 于点E 且55B ∠=︒,95ADC ∠=︒求AED ∠的度数.24.如图,AB△CD,AC△BE,△MAC=40,△D=50°,CH平分△ACD,BH平分△ABD(1)求△EBH的角度(2)求△BHC的角度25.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).参考答案:1.B2.C3.B。

八年级数学上册《第十一章 三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章 三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、单选题1.安装空调一般会采用如图的方法固定,其根据的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短2.如图,一束光线与水平面成60°的角度照射地面,现在地面AB上支放一个平面镜CD,使这束光线经过平面镜反射后成水平光线,则平面镜CD与地面AB所成角∠DCB的度数等于()A.30°B.45°C.50°D.60°3.若一个多边形的每个外角都等于36°,则它的内角和是( )A.1 080°B.1 440°C.1 800°D.2 160°4.三角形的下列线段中能将三角形的面积分成相等的两部分的是()A.三角形的中线B.三角形的角平分线C.三角形的高D.以上答案均符合题意5.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为:()A.57°B.60°C.63°D.123°6.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15∘B.20∘C.25∘D.30∘7.如图,F是△ABC的角平分线CD和BE的交点,CG⊥AB于点G.若∠ACG=32°,则∠BFC的度数是()A.119°B.122°C.148°D.150°8.如图,将三角板的直角顶点放在直线a上,a∥b,∠1=55°,∠2=60°,则∠3的大小是()A.55°B.60°C.65°D.75°二、填空题9.在△ABC中,如果∠A=∠B+∠C,那么△ABC是三角形.(填“锐角”、“钝角”或“直角”)10.如果一个正多边形的每个外角是60°,则这个正多边形的对角线共有条.11.如图,△ABC中,点D、E分别是BC、AD的中点,△ABC的面积为6,则阴影部分的面积是.12.把一块直尺与一块直角三角板如图放置,若∠1=40°,则∠2的度数为.13.如图,AB∥CD,EF 分别交AB,CD 于点 J、G.,I为 AB 上一点,连接 FI 交 CD 于点 H,连接GI,若∠EJB=60°,∠IHD=40°,则∠F 的度数为.三、解答题14.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?15.如图所示,在△ABC中,AC=5,BC=6,BC边上高AD=4,若点P在边AC上(不含端点)移动,求BP最短时的值.16.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,求∠AOC ;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).17.如图,△ABC中,AD、AE分别是边BC上的中线和高,AE=4,S△ABD=10,求BC,CD的长.18.某个零件的的形状如图所示,按规定∠A等于90°,∠B、∠D应分别等于20°和30°,小李量得∠BCD=145°,他断定这个零件不合格,你能说出其中的道理吗?19.在△ABC 中,∠ABC 和∠ACB 的角平分线交于点 M.(1)若∠ABC=40°,∠ACB=60°,求∠BMC 的度数;(2)∠BMC 可能是直角吗?作出判断,并说明理由.参考答案1.A2.A3.B4.A5.A6.A7.A8.C9.直角10.911.3212.130°13.20°14.解:设边数为n,根据题意,得(n﹣2)×180°=360°+540°(n﹣2)×180°=900°n﹣2=5∴n=7.900÷7=9007.答:这个多边形的每一个内角等于9007度、它是正七边形.15.解:根据垂线段最短可知,当BP⊥AC时,BP最短.∵S△ABC=12×BC×AD=12×AC×BP∴6×4=5BP,∴PB=245即BP最短时的值为245.16.解:(1)∵∠BOD=60°,△AOB绕着O点旋转了30°,即∠AOD=30°,∴∠AOC=∠AOD+∠COD=30°+90°=120°;(2)若0°<α<90°,∵∠AOD=α,∠AOC=∠COD+∠AOD,∴∠BOD+∠AOC=(∠BOD+∠AOD)+∠COD=90°+90°=180°,在旋转的过程中∠BOD+∠AOC的值不变化,∠BOD+∠AOC=180°;(3)若90°<α<180°,问题(2)中的结论还成立理由:若90°<α<180°,∵∠AOB=∠COD=90°;又∵∠BOD+∠AOC+∠AOB+∠COD=360°∴∠BOD+∠AOC=360°﹣∠AOD﹣∠COD=360°﹣90°﹣90°=180°;(4)α=90°、60°、45°、105°、150°、135°时,两个三角形至少有一组边所在直线垂直。

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2cm,5 cm,8cm B.3 cm,3 cm,6 cmC.3 cm,4 cm,5 cm D.1 cm,2cm,3 cm2.在△ABC中,∠A=80°,∠B=50°,则∠C的余角是()A.130°B.50°C.40°D.20°3.如第3题图,∠C=25°,∠AED=150°,则∠CDE为()第3题图A.100°B.115°C.125°D.155°4.如第4题图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()第4题图A.25°B.50°C.65°D.70°5.如第5 题图,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这样做的根据是()第5题图A.三角形具有稳定性B.两点确定一条直线C.两点之间线段最短D.三角形内角和180°6.如果将一副三角板按如第6题图方式叠放,那么∠1=()第6题图A.90°B.100°C.105°D.135°7.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个8.一个正多边形的一个内角是它相邻外角的5倍,则这个正多边形的边数是()A.12 B.10 C.8 D.69.如第9题图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()第9题图A.40°B.41°C.42°D.43°10.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如第10题图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如第10题图2.照此下去,至多能进行()步.第10题图1 第10题图2A.3 B.4 C.5 D.6二、填空题(每小题4分,共24分)11.如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是.12.如第12题图,∠A+∠B+∠C+∠D+∠E+∠F=度.第12题图13.下列第13题图1、图2、图3中,具有稳定性的是图.图1 图2 图3第13题图14.如第14题图是由射线AB、BC、CD、DE、EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.。

人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)

人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)

第十一章《三角形》单元测试题(时间:120分钟 满分:150分)一、选择题(每小题4分,共40分)1.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形2.如图,能说明∠1>∠2的是( )3.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A B C D4.一个多边形的一个内角和是900°,则这个正多边形的边数为( )A .5B .6C .7D .85.下列条件中,能判定△ABC 为直角三角形的是( )A .∠A =2∠B =3∠C B .∠A +∠B =2∠CC .∠A =∠B =30°D .∠A =12∠B =13∠C6.如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果∠A =50°,那么∠DCB =( )A .50°B .45°C .40°D .25°7.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条,能构成三角形的选法有( )A .1种B .2种C .3种D .4种8.如图,在△ABC 中,∠C =90°,D ,E 为AC 边上的两点,且AE =DE ,BD 平分∠EBC ,则下列说法不正确的是() A .BC 是△ABE 的高 B .BE 是△ABD 的中线C .BD 是△EBC 的角平分线 D .∠ABE =∠EBD =∠DBC第8题图第9题图第10题图9.小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多( ) A.1 080° B.720° C.540° D.360°10.如图,在5×4的方格纸中,每个小正方形边长为1个单位长度,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共30分)11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=____________.第11题图第15题图第16题图第17题图12.已知△ABC的两条边长分别为2和5,且第三边长为整数,则第三边的长可能为____________.(填一个符合题意的答案)13.已知在△ABC中,∠A∶∠B∶∠C=1∶3∶5,则△ABC是____________三角形.14.一个正八边形每个内角的度数为____________.15.如图所示,直线a∥b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为点M.若∠1=58°,则∠2=____________.16.如果将一副三角板按如图方式叠放,那么∠1=____________.17.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD与△BCD的周长的差是____________.18.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数是____________.第18题图第19题图第20题图19.如图,△ABC中,D,E,F分别是BC,CA,AB的中点,作△DEF.若△ABC的面积是12,则△DEF的面积是____________.20.如图,已知在△OAB中,∠AOB=70°,∠OAB的平分线与△OBA的外角∠ABN的平分线所在的直线交于点D,则∠ADB的大小为____________.三、(本大题12分)21.如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.四、(本大题12分)22.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?五、(本大题14分)23.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.六、(本大题14分)24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.七、(本大题12分)25.如图,在△ABC中,∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.八、(本大题16分)26.已知:如图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:________________;(2)仔细观察,在图2中“8字形”的个数有____________个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系.(直接写出结论即可)参考答案:第十一章《三角形》单元测试题1.A2.C3.A4.C5.D6.A7.B8.D9.B10.B11.70°12.答案不唯一,如:4或5或613.钝角14.13515.32°16.105°17.218.5°19.320.35°21.∵S∵ABC=2BC·AE=12cm2,AE=3cm,∵BC=8cm.∵AD是BC边上的中线,∵DC=BC=4cm22.在∵AOB中,∵QBO=180°∵A-∵O=180°-28°-100°=52°即∵QBO应等于52才能确保BQ与AP在同一条直线上23.设∵1=∵2=x,则∵3=∵4=2x.∵∵BAC=63°,∵∵2+∵4=117°, 即x+2x=117°∵x=39°∵∵3=∵4=78°∵∵DAC=180°-∵3∵4=24°24.(1)证明:由三角板的性质,可知∵D=30°,∵3=45°,∵DCE=90°∵CF平分∵DCE,∵∵1=∵2=∵DCE=45°∵∵1=∵3.∵CF∵AB.(2)由三角形内角和,可得∵DFC=180°-∵1-∵D=180°-45°-30°=105°.25.∵∵B=30°,∵ACB=110°,∵∵BAC=1830°—110°=40°∵AE平分∵BAC,∵∵BAE=∵BAC=×40°=20°∵∵B=30°,AD是BC边上高线,∵∵BAD=90°30°=60°∵∵DAE=∵BAD∵BAE=60°-20°=40°26.(1)∵A+∵D=∵B+∵C.(2)6.(3)∵∵D=40°,∵B=36°,∵∵OAD+40°=∵OCB+36°∵∵OCB-∵OAD=4°∵AP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=2∵OCB.∵∵DAM+∵D=∵PCM+∵P,∵∵P=∵DAM+∵D-∵PCM=2(∵OAD-∵OCB)+∵D=2X(-4)+40=38°.(4)根据“8字形”数量关系,得∵OAD+∵D=∵OCB+∵B ∵DAM+∵D=∵PCM+∵P,所以∵OCB=∵OAD=∵D=∵B, ∵PCM-∵DAM=∵D-∵PAP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=∵OCB∵2(∵D∵B)=∵D-∵P.整理,得2∵P=∵B+∵D。

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)
∴∠C=60°,
∵BD平分∠ABC,
∴∠DBC=35° ,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
17.若n边形的内角和是它的外角和的2倍,则n=.
【答案】6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2),外角和=360º
所以,由题意可得180(n-2)=2×360º
16.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】∵在△ABC中,∠A=50°,∠ABC=70°,
【答案】2cm2
【解析】
【分析】
由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.
【解析】
解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB.∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.故答案为540.
点睛:本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.

八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、选择题(共9题)1.下列图形中具有稳定性的是( )A.B.C.D.2.判断下列说法,正确的是( )A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补3.等腰三角形的两边长分别是5cm和11cm,则它的周长是( )A.27cm B.21cmC.27cm或21cm D.无法确定4.两根木棒分别为5cm和6cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有( )A.3种B.4种C.5种D.6种5.如图所示,直线m∥n,∠1=63∘,∠2=34∘则∠BAC的大小是( )A.73∘B.83∘C.77∘D.87∘6.如图l1∥l2,∠1=120∘,∠2=100∘,则∠3=( )A.20∘B.40∘C.50∘D.60∘7.将一副直角三角板按如图所示的位置放置,使含30∘角的三角板的一条直角边和含45∘角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.35∘B.45∘C.60∘D.75∘8.如图,在△ABC中,E,F分别是AD,CE边的中点,且S△ABC=8cm2,则S△BEF为( )A.4cm2B.3cm2C.2cm2D.1cm29.如图,△ABC中,∠ABC=50∘,∠ACB=70∘,AD平分线∠BAC,过点D作DE⊥AB于点E,则∠ADE的度数是( )A.45∘B.50∘C.60∘D.70∘二、填空题(共5题)10.一个正多边形的每个内角都是150∘,则它是正边形.11.如图,△ABC中,∠BAC=70∘,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.12.如图,直线a∥b,∠1=60∘,∠2=40∘则∠3=∘.13.如图,△ABC的∠A为40∘,剪去∠A后得到一个四边形,则∠1+∠2=度.14.如图∠A=20∘,∠B=30∘,∠C=50∘则∠ADB的度数.三、解答题(共6题)15.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50∘,∠C=80∘求∠DAE的度数.16.如图,在△ABC中∠B=∠C=45∘点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1) 当∠BAD=60∘,则∠CDE的度数是:.(2) 当点D在BC(点B,C除外)边上运动时,设∠CDE=α,请用α表示∠BAD,并说明理由.17.在△ABC中∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合)PH⊥BC于点H.(1) 若∠C=2∠B=60∘,如图1,当点P与点A重合时,求∠QPH的度数;(2) 当△ABC是锐角三角形时,如图2,试探索∠QPH,∠C,∠B之间的数量关系,并说明理由.18.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1) 请说出AB∥CD的理由.(2) 若∠EHF=100∘,∠D=30∘,求∠AEM的度数.19.如图,在四边形ABCD中∠B=50∘,∠C=110∘,∠D=90∘,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.20.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1) 判断DE与BF是否平行?并说明理由;(2) 试说明:∠C=2∠P.参考答案1.【答案】A2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】十二11.【答案】3512.【答案】8013.【答案】22014. 100°15. 【答案】∵△ABC中∠B=50∘,∠C=80∘∴∠BAC=180∘−∠B−∠C=180∘−50∘−80∘=50∘,∵AE是∠BAC的平分线∠BAC=25∘∴∠EAC=12∵AD是BC边上的高∴在直角△ADC中∠DAC=90∘−∠C=90∘−80∘=10∘∴∠DAE=∠EAC−∠DAC=25∘−10∘=15∘.16.【答案】(1) 30∘ (2) ∠BAD=2α.证明:设∠BAD=x∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=45∘+x∵∠AED是△CDE的外角∴∠AED=∠C+∠CDE∵∠B=∠C,∠ADE=∠AED∴∠ADC−α=∠45∘+x−α=45∘+α解得:∠BAD=2∠CDE=2α.17.【答案】(1) ∵∠C=2∠B=60∘∴∠B=30∘,∠BAC=180∘−60∘−30∘=90∘.∵AQ平分∠BAC∠BAC=45∘∴∠BAQ=∠QAC=12∴∠AQH=∠B+∠BAQ=30∘+45∘=75∘∵PH⊥BC∴∠PHQ=90∘∴∠QPH=∠QAH=90∘−75∘=15∘.(2) 如图,过点A作AG⊥BC于点G 则∠PHQ=∠AGQ=90∘∴PH∥AG∴∠QPH=∠QAG设∠QPH=∠QAG=x∵AQ平分∠BAC∴∠BAQ=∠QAC=x+∠GAC∵∠AQH=∠B+∠BAQ又∠AQH=90∘−x∴∠BAQ=90∘−x−∠B.∴x+∠GAC=90∘−x−∠B∵AG⊥BC∴∠GAC=90∘−∠C∴x+90∘−∠C=90∘−x−∠B∴x=12(∠C−∠B),即∠QPH=12(∠C−∠B).18. 【答案】 (1) ∵∠CED=∠GHD∴CE∥GF∵∠C=∠FGD又∵∠C=∠EFG∴∠FGD=∠EFG∴AB∥CD∴∠AED+∠D=180∘.(2) ∵∠DHG=∠EHF=100∘,∠D=30∘∴∠CGF=100∘+30∘=130∘∵CE∥GF∴∠C=180∘−130∘=50∘∵AB∥CD∴∠AEC=50∘∴∠AEM=180∘−50∘=130∘.19. 【答案】∵AE⊥BC∴∠AEC=∠AEB=90∘∵∠B=50∘∴∠BAE=180∘−90∘−50∘=40∘∵∠C=110∘,∠D=90∘∴∠DAE=360∘−∠D−∠C−∠AEC=70∘∴∠DAB=∠BAE+∠DAE=40∘+70∘=110∘∵AF平分∠DAB∴∠FAB=12∠DAB=12×110∘=55∘∴∠EAF=∠FAB−∠BAE=55∘−40∘=15∘.20. 【答案】 (1) DE∥BF理由是:因为∠3=∠4所以BD∥CE所以∠5=∠FAB因为∠5=∠C所以∠C=∠FAB所以AB∥CD所以∠2=∠BGD因为∠1=∠2所以∠1=∠BGD所以DE∥BF.(2) 因为AB∥CD所以∠P=∠PDH因为DP平分∠BDH所以∠BDP=∠PDH所以∠BDP=∠PDH=∠P 因为∠5=∠P+∠BDP所以∠5=2∠P所以∠C=∠5所以∠C=2∠P.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第十一章三角形单元综合测试题
(人教版含答案)
第十一章三角形综合自测题
一.选择题
1.如图中三角形的个数是()
A.3
B.4c.5D.6
2.如图,已知,,则的度数为()
A.B.c.D.
3.如果三条线段之比是:(1)2:2:3;
(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能构成三角形的有()
A.1个
B.2个c.3个D.4个
4.一个三角形的三个内角中()
A.至少有一个等于90°
B.至少有一个大于90°
c.不可能有两个大于89°D.不可能都小于60°
5.下列图形中具有稳定性有()
A.2个
B.3个c.4个D.5个
6.一个多边形的内角和等于它的外角和2倍,这个多边形是()
A.三角形
B.四边形c.五边形D.六边形
7.在△ABc中,∠A=∠B=∠c,则△ABc是()
A.锐角三角形B.直角三角形c.钝角三角形D.无法确定8.若一个正多边形的每一个外角为20°,则这个多边形的边数为()
A.9B.10c.11D.18
9.四边形ABcD中,∠A,∠B,∠c,∠D的度数之比为2:3:4:3,则∠D等于()
A.60°B.75°c.90°D.120°
10.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()
A.三角形
B.矩形
c.正八边形D.正六边形
二.填空题
11.如图,工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.
12.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.
13.如图,△ABc中,D在Ac上,E在BD上,则∠1,∠2,∠A之间的大小关系用“&lt;•”表示为_________.
14.一个多边形的内角和等于它的外角和,这个多边形是边形.
15.如果一个多边形的每一外角都是240,那么它边形. 三.解答下列各题
16.对下面每个三角形,过顶点A画出中线,角平分线和高
17.如图,飞机要从A地飞往B地,因受大风影响,一开始就偏离航线(AB)180(即∠A=1800)飞到了c地,已知∠ABc=100,问飞机现在应以怎样的角度飞行才能到达B 处?(即求∠BcD的度数)
18.已知一个多边形的每一个外角都等于72,求这个多边形的内角和.
19.如图,在△ABc中,AD是∠BAc的平分线,∠2=350,∠4=65°,求∠ADB的度数.
20.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(12分)
(1)请你计算出图1中的∠ABc的度数.
(2)图2中AE∥Bc,请你计算出∠AFD的度数.第十一章综合自测题答案
一、选择题CABDBDBDCC
二、填空题11.稳定
12.120米
13.∠2&lt;∠1&lt;∠A
14.四
15.十五
三,解答题
16.略
17.28°
18.540°
19.105°
20、解:(1)∵∠F=30°,∠EAc=45°,
∴∠ABF=∠EAc﹣∠F=45°﹣30°=15°,
∵∠FBc=90°,
∴∠ABc=∠FBc﹣∠ABF=90°﹣15°=75°;(2)∵∠B=60°,∠BAc=90°,
∴∠c=30°,
∵AE∥Bc,
∴∠cAE=∠c=30°,
∴∠AFD=∠cAE+∠E=30°+45°=75°.。

相关文档
最新文档