2011~2012学年普通高中新课程模块结业考试试题高二数学必修2 扫描 B4

合集下载

人教版高中数学选择性必修第二册 全册模块综合检测2(含解析)

人教版高中数学选择性必修第二册 全册模块综合检测2(含解析)

人教版高中数学选择性必修第二册全册模块综合检测2(原卷版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f(x)=e2x+1,则f′(0)=()A.0B.eC.2e D.e22.在等差数列{a n}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9的值为() A.27B.30C.33D.363.已知a>0,b>0,a,b的等比中项为2,则a+1b+b+1a的最小值为()A.3B.4 C.5D.424.函数y=x-12x+1在(1,0)处的切线与直线l:y=ax垂直,则a=() A.-3B.3C.13D.-135.已知等差数列{a n}的前n项和S n满足:S37-S23=a,则S60=()A.4a B.307aC.5a D.407a6.函数f(x)=(x2+2x)e2x的图象大致是()7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸8.已知函数f(x)=x3-x和点P(1,-1),则过点P与该函数图象相切的直线条数为() A.1B.2C.3D.4二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+211.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1<0,则下列结论正确的是()a7-1A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T612.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=ln x,f(1)=12,则下列结论正确的是()A.xf(x)在(1,+∞)单调递增B.xf(x)在(0,1)单调递减C.xf(x)在(0,+∞)上有极大值12D.xf(x)在(0,+∞)上有极小值12三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n}中,a4=8,a8=4,则其通项公式a n=________.a1a9,则a n=________,数列14.已知正项等比数列{a n}满足a1=1,a2a6a7=116{log2a n}的前n项和为________.15.函数f(x)=12x2-ln x的单调递减区间是________.16.已知函数f(x)=ln x+mx,若函数f(x)的极小值不小于0,则实数m的取值范围为________.四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式a n;(2)若a3,a5分别是等差数列{b n}的第4项和第16项,求数列{b n}的通项公式及前n项和S n.18.(12分)已知函数f(x)=12x2-3ln x.(1)求f(x)在(1,f(1))处的切线方程;(2)试判断f(x)在区间(1,e)上有没有零点.若有,判断零点的个数.19.(12分)设数列{a n}是等差数列,其前n项和为S n,且a3=2,S9=54.(1)求数列{a n}的通项公式;(2)证明:1a1+3+1a2+3+1a3+3+…+1a100+3>13.20.(12分)设函数f(x)=e x-ax-1(a∈R).(1)若a=2,求函数f(x)在区间[0,2]上的最大值和最小值;(2)当x≥0时,f(x)≥0,求a的取值范围.21.(12分)等差数列{a n}中,S3=21,S6=24,(1)求数列{a n}的前n项和公式S n;(2)求数列{|a n|}的前n项和T n.22.(12分)已知a,b∈R,设函数f(x)=e x-ax-b x2+1.(1)若b=0,求f(x)的单调区间;(2)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:e=2.71828…为自然对数的底数.人教版高中数学选择性必修第二册全册模块综合检测2(解析版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f (x )=e 2x +1,则f ′(0)=()A .0B .e C .2e D .e 2C解析:∵f (x )=e 2x +1,∴f ′(x )=2e 2x +1,∴f ′(0)=2e.故选C .2.在等差数列{a n }中,a 1+a 4+a 7=36,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为()A .27B .30C .33D .36B解析:因为a 1+a 4+a 7=3a 4=36,所以a 4=12.因为a 2+a 5+a 8=33,所以a 5=11.所以d=a 5-a 4=-1,所以a 3+a 6+a 9=3a 6=3(a 5+d )=30.故选B .3.已知a >0,b >0,a ,b 的等比中项为2,则a +1b +b +1a 的最小值为()A .3B .4C .5D .42C解析:∵a +1b +b +1a =(a +b )+a +b ab=(a +b =54(a +b )≥54·2ab =5,等号成立当且仅当a =b =2,原式的最小值为5.4.函数y =x -12x +1在(1,0)处的切线与直线l :y =ax 垂直,则a =()A .-3B .3C .13D .-13A解析:∵y ′=3(2x +1)2,∴y ′|x =1=13,∴函数在(1,0)处的切线的斜率是13,所以,与此切线垂直的直线的斜率是-3,∴a =-3.故选A .5.已知等差数列{a n }的前n 项和S n 满足:S 37-S 23=a ,则S 60=()A .4aB .307a C .5aD .407aB 解析:因为S 37-S 23=a 24+a 25+…+a 37=a 24+a 372×14=7(a 24+a 37)=a .所以S 60=a 1+a 602×60=30(a 24+a 37)=307a .故选B .6.函数f (x )=(x 2+2x )e 2x 的图象大致是()A 解析:由于f ′(x )=2(x 2+3x +1)·e 2x ,而y =x 2+3x +1的判别式Δ=9-4=5>0,所以y=x 2+3x +1开口向上且有两个根x 1,x 2.不妨设x 1<x 2,所以f (x )在(-∞,x 1),(x 2,+∞)上递增,在(x 1,x 2)上递减.所以C ,D 选项不正确.当x <-2时,f (x )>0,所以B 选项不正确.由此得出A 选项正确.故选A .7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸B解析:由题知各节气日影长依次成等差数列,设为{a n },S n 是其前n 项和,则S 9=9(a 1+a 9)2=9a 5=85.5,所以a 5=9.5,由题知a 1+a 4+a 7=3a 4=31.5,所以a 4=10.5,所以公差d =a 5-a 4=-1.所以a 12=a 5+7d =2.5尺.故选B .8.已知函数f (x )=x 3-x 和点P (1,-1),则过点P 与该函数图象相切的直线条数为()A .1B .2C .3D .4B解析:因为f (1)=13-1=0,所以点P (1,-1)没有在函数的图象上.设切点坐标为(x 0,y 0),则y 0=x 30-x 0,则f ′(x )=3x 2-1.由导数的几何意义可知,过切点的斜率为k =3x 20-1,过P (1,-1)和切点的斜率表示为k =y 0+1x 0-1,-x0,3x20-1,化简可得x20(2x0-3)=0,所以x0=0或x0=32.所以切点有两个,因而有两条切线方程.故选B.二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值BD解析:由题意,当n=1时,S1=2a1-2,解得a1=2,当n≥2时,S n-1=2a n-1-2,所以S n-S n-1=a n=2a n-2-(2a n-1-2)=2a n-2a n-1,所以a na n-1=2,数列{a n}是以a1=2为首项,q=2为公比的等比数列,a n=2n,故选项A错误,选项B正确;数列{a2n}是以a21=4为首项,q1=4为公比的等比数列,所以a21+a22+…+a2n=a21(1-q n1)1-q1=4×(1-4n)1-4=4n+1-43,故选项C 错误;a m a n=2m2n=2m+n=64=26,所以m+n=6为定值,故选项D正确.故选BD.10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+2AD解析:对于选项A,f(x)=2-x,则g(x)=e x f(x)=e x·2-x为实数集上的增函数;对于选项B,f(x)=3-x,则g(x)=e x f(x)=e x·3-x为实数集上的减函数;对于选项C,f(x)=x3,则g(x)=e x f(x)=e x·x3,g′(x)=e x·x3+3e x·x2=e x(x3+3x2)=e x·x2(x+3),当x<-3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于选项D,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2x e x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.故选AD.11.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1a7-1<0,则下列结论正确的是()A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T6AD 解析:易知q >0,若q >1,则a 6>1,a 7>1,与a 6-1a 7-1>0矛盾,故0<q <1.所以0<a 7<1.所以a 6a 8=a 27<1.因为a 7>0,a 8>0,所以S n 的最大值一定不为S 7.因为0<a 7<1,a 6>1,所以T n 的最大值为T 6,故选AD .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论正确的是()A .xf (x )在(1,+∞)单调递增B .xf (x )在(0,1)单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12ABD解析:由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,由[xf (x )]′=ln xx .设g (x )=xf (x ),即g ′(x )=ln xx>0得x >1.由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)单调递增,在(0,1)单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABD .三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________.12-n 解析:∵等差数列{a n }中,a 4=8,a 8=4,4=a 1+3d =8,8=a 1+7d =4,解得a 1=11,d =-1,∴a n =11+(n -1)×(-1)=12-n .14.已知正项等比数列{a n }满足a 1=1,a 2a 6a 7=116a 1a 9,则a n =________,数列{log 2a n }的前n 项和为________.2-n +1-n (n -1)2解析:由a 1=1,a 2a 6a 7=1161a 9得a 5=a 1q 4=116,q =12,a n -1=2-n+1.而log 2a n =-n +1,所以{log 2a n }的前n 项和为-n (n -1)2.15.函数f (x )=12x 2-ln x 的单调递减区间是________.(0,1]解析:f (x )=12x 2-ln x ,则f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x≤0,故0<x ≤1.16.已知函数f (x )=ln x +mx,若函数f (x )的极小值不小于0,则实数m 的取值范围为________.1e,+∞解析:由f (x )=ln x +m x 得f ′(x )=1x -m x 2=x -mx2,定义域为(0,+∞).当m ≤0时,f ′(x )>0,函数y =f (x )单调递增,函数无极值;当m >0时,令f ′(x )=0⇒x =m ,当x ∈(0,m )时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(m ,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以当x =m 时,函数y =f (x )取极小值,且为f (m )=ln m +1.依题意有ln m +1≥0⇒m ≥1e ,因此,实数m 的取值范围是1e ,+∞四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式a n ;(2)若a 3,a 5分别是等差数列{b n }的第4项和第16项,求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2,所以a n =2n .(2)由(1)得a 3=8,a 5=32,则b 4=8,b 16=32.设{b n }的公差为d b 1+3d =8,b 1+15d =32,b 1=2,d =2.从而b n =2+2(n -1)=2n .所以数列{b n }的前n 项和S n =(2+2n )n2=n 2+n .18.(12分)已知函数f (x )=12x 2-3ln x .(1)求f (x )在(1,f (1))处的切线方程;(2)试判断f (x )在区间(1,e)上有没有零点.若有,判断零点的个数.解:(1)由已知得f ′(x )=x -3x ,有f ′(1)=-2,f (1)=12,∴在(1,f (1))处的切线方程为y -12=-2(x -1),化简得4x +2y -5=0.(2)由(1)知f ′(x )=(x -3)(x +3)x ,因为x >0,令f ′(x )=0,得x = 3.所以当x ∈(0,3)时,有f ′(x )<0,则(0,3)是函数f (x )的单调递减区间;当x ∈(3,+∞)时,有f ′(x )>0,则(3,+∞)是函数f (x )的单调递增区间;当x ∈(1,e)时,函数f (x )在(1,3)上单调递减,在(3,e)上单调递增.又因为f (1)=12,f (e)=12e 2-3>0,f (3)=32(1-ln 3)<0,所以f (x )在区间(1,e)上有两个零点.19.(12分)设数列{a n }是等差数列,其前n 项和为S n ,且a 3=2,S 9=54.(1)求数列{a n }的通项公式;(2)证明:1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.(1)解:设数列{a n }的公差为d ,∵S 9=9a 5=54,∴a 5=6,∴d =a 5-a 35-3=2,∴a n =a 3+(n -3)d =2n -4.(2)证明:∵1a n +3=12n -1>22n -1+2n +1=2n +1-2n -1,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>(3-1)+(5-3)+…+(201-199)=201-1>14-1=13,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.20.(12分)设函数f (x )=e x -ax -1(a ∈R ).(1)若a =2,求函数f (x )在区间[0,2]上的最大值和最小值;(2)当x ≥0时,f (x )≥0,求a 的取值范围.解:(1)f (x )=e x -2x -1,取f ′(x )=e x -2=0,即x =ln 2,函数在[0,ln 2]上单调递减,在(ln 2,2]上单调递增,且f (0)=0,f (2)=e 2-5,f (ln 2)=1-2ln 2,故函数的最大值为f (2)=e 2-5,最小值为f (ln 2)=1-2ln 2.(2)f (x )=e x -ax -1,f ′(x )=e x -a ,f (0)=0.当a ≤0时,f ′(x )=e x -a >0,函数单调递增,故f (x )≥f (0)=0,成立;当a >0时,f ′(x )=e x -a =0,即x =ln a ,故函数在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (ln a )<f (0)=0,不成立.综上所述,a 的取值范围为(-∞,0].21.(12分)等差数列{a n }中,S 3=21,S 6=24,(1)求数列{a n }的前n 项和公式S n ;(2)求数列{|a n |}的前n 项和T n .解:(1)设{a n }首项为a 1,公差为d ,由S 3=21,S 6=24,a 1+3×22d =21,a 1+6×52d =24,1=9,=-2.∴S n =n ×9+n (n -1)2×(-2)=-n 2+10n .(2)由(1)知,a n =9+(n -1)×(-2)=-2n +11,由a n ≥0得-2n +11≥0,即n ≤112.当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n ;当n ≥6时,T n =|a 1|+…+|a 5|+|a 6|+…+|a n |=(a 1+a 2+…+a 5)-(a 6+…+a n )=S 5-(S n -S 5)=n 2-10n +50.综上,T nn 2+10n (n ≤5),2-10n +50(n ≥6).22.(12分)已知a ,b ∈R ,设函数f (x )=e x -ax -b x 2+1.(1)若b =0,求f (x )的单调区间;(2)当x ∈[0,+∞)时,f (x )的最小值为0,求a +5b 的最大值.注:e =2.71828…为自然对数的底数.解:(1)f (x )=e x -ax ,f ′(x )=e x -a ,当a ≤0时,f ′(x )=e x -a ≥0恒成立,函数单调递增;当a >0时,f ′(x )=e x -a =0,x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,函数单调递减;当x ∈(ln a ,+∞)时,f ′(x )>0,函数单调递增.综上所述,a ≤0时,f (x )在R 上单调递增;a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)f (x )=e x-ax -bx 2+1≥0在x ∈[0,+∞)上恒成立,=e -12a -52b ≥0,故a +5b ≤2e ,现在证明存在a ,b ,a +5b =2e ,使f (x )的最小值为0.取a =3e 4,b =5e 4(此时可使f 0),f ′(x )=e x -a -bx x 2+1,f ″(x )=e x -b (x 2+1)x 2+1,b =5e 4<1,故当x ∈[0,+∞)时,(x 2+1)x 2+1≥1,e x ≥1,故f ″(x )≥0,f ′(x )在[0,+∞)上单调递增,f 0,故f (x )在0f (x )min =0.综上所述,a +5b 的最大值为2 e.。

2011-2012学年高二下学期第二次模块考试数学(文)试题(版已排好,含详解)

2011-2012学年高二下学期第二次模块考试数学(文)试题(版已排好,含详解)

2011-2012学年高二下学期模块考试数学试题(本试题共120分,时间100分钟)一、选择题:(本题共10个小题,每小题5分,共50分) 1.设zz i i z 2),(12+-=则为虚数单位=(A )i --1 (B )i +-1 (C )i -1(D )i +12.数列2,5,11,20,,47,x …中的x 等于(A )28 (B )32 (C )33 (D )273. 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则(A )r 2<r 1<0 (B )0<r 2<r 1 (C )120r r << (D )r 2=r 1 4. 若()sin cos f x x α=-,则'()f α等于 (A )sin α (B )cos α (C ) sin cos αα+ (D )2sin α 5. 函数xy 1=在点4=x 处的导数是(A)81 (B) 81- (C)161 ( D) 161-6. ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =, 则()f x 与()g x 满足(A) ()f x =()g x (B ) ()f x -()g x 为常数函数 (C) ()f x =()0g x = ( D) ()f x +()g x 为常数函数 7. 曲线x x y 43-=在点(1,3)- 处的切线倾斜角为 (A )4π(B )3π(C )43π (D )2π8. 若幂函数)(x f 的图象经过点)21,41(A ,则它在A 点处的切线方程为(A )0144=++y x (B )0144=+-y x (C )02=-y x (D )02=+y x9. 若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象可能是10. 设)(x f 是定义在R 上的奇函数,2)2(=f ,当0>x 时,有)()(x f x x f '>恒成立,则不等式x x f >)(的解集是 (A ) (2-,0)∪(2,∞+) (B ) (2-,0)∪(0,2) (C ) (∞-,2-)∪(2,∞+) (D ) (∞-,2-)∪(0,2)二、填空题:(本题共4个小题,每小题4分,共16分)11. 若(2)a i i b i -=-,其中a 、b R ∈,i 是虚数单位,则22a b +=_________。

(完整版)高中数学学业水平测试必修2练习和答案解析

(完整版)高中数学学业水平测试必修2练习和答案解析

WORD 格式 . 整理版高中数学学业水平测试系列训练之模块二一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请把正确答案的代号填在题后的括号内(每题 5 分,共 50 分).1.若一个几何体的三视图都是等腰三角形,则这个几何体可能是() A .圆锥B .正四棱锥C .正三棱锥D .正三棱台2.球的体积与其表面积的数值相等,则球的半径等于()A .1B . 1C . 2D . 323.已知平面α内有无数条直线都与平面β平行,那么( ) A .α∥β B .α与β订交 C .α与β重合 D .α∥β或α与β订交4.以下四个说法① // α,bα , 则 //b② a ∩α= P ,b α,则 a 与 b 不平行aa③ a α,则 a // α ④a // α, b // α,则 a // b此中错误的说法的个数是( )A . 1 个B . 2 个C . 3 个D . 4 个5.经过点 P( 2, m) 和 Q (m,4) 的直线的斜率等于 1,则 m 的值是 ()A . 4B . 1C . 1 或 3D . 1 或 4 6.直线 kx - y + 1=3k ,当 k 改动时,全部直线都经过定点()A . (0 , 0)B . (0 , 1)C . (3 , 1)D . (2 , 1)7.圆 x 2y 2 2x 2 y 0 的周长是( )A . 2 2B . 2C . 2D . 48.直线 x - y+3=0 被圆( x) 2 ( y - ) 2=2 截得的弦长等于()+2+2A .6B . 3C . 23D . 629.假如实数 x, y 知足等式 ( x 2)2y23 ,那么 y的最大值是()xA .1B . 3C . 3D . 323210.在空间直角坐标系中,已知点 P ( x , y , z ),给出以下 4 条表达:① 点 P 对于 x 轴的对称点的坐标是( x ,- y , z )② 点 P 对于 yOz 平面的对称点的坐标是( x ,- y ,- z ) ③ 点 P 对于 y 轴的对称点的坐标是( x ,- y , z ) ④ 点 P 对于原点的对称点的坐标是(- x ,- y ,- z )此中正确的个数是()A . 3B . 2C . 1D . 0优良 .参照 .资料WORD 格式 . 整理版11 x2 y22x 4 y 20 0,则x2y2 的最小值..已知实数 x,y 知足关系:12.向来线过点(- 3,4),而且在两坐标轴上截距之和为12,这条直线方程是 _____ _____ .13.一个长方体的长、宽、高之比为2:1:3,全面积为 88cm2,则它的体积为 ___________.14.在棱长为a的正方体 ABCD- A B C D 中, D 到 B C 的1 1 1 1 1 1距离为 _________, A 到 A1C 的距离为 _______.三、解答题:解答应写出文字说明、证明过程或演算步骤( 共 76分).15.已知:一个圆锥的底面半径为R,高为 H,在此中有一个高为x 的内接圆柱.(1)求圆柱的侧面积;(2)x为什么值时,圆柱的侧面积最大.16.以下图,四棱锥P- ABCD中,底面 ABCD是矩形, PA⊥平面 ABCD, M、 N 分别是 AB、PC的中点, PA= AD=a.(1)求证: MN∥平面 PAD;(2)求证:平面 PMC⊥平面 PCD.17.过点5, 4 作向来线l,使它与两坐标轴订交且与两轴所围成的三角形面积为5.18.( 12 分)已知一圆经过点A(2,-3)和 B(-2,-5),且圆心 C在直线 l :x 2 y 30 上,求此圆的标准方程.19.( 12 分)一束光芒l 自 A(-3,3)发出,射到x 轴上,被x 轴反射到⊙ C: x2+ y2-4x-4y+7=0上.(1)求反射线经过圆心C时,光芒l的方程;(2)求在x轴上,反射点M的范围.20.( 14 分)如图,在正方体ABCD A1 B1C1 D1中, E、 F分别是 BB1、 CD 的中点(1)证明:AD D1F;(2)求AE与D1F所成的角;(3)证明:面AED面A1FD1.高中数学学业水平测试系列训练之模块二(参照答案)一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请把正确答案的代号填在题后的括号内(每题5 分,共 50 分).CDDCB CADBC二、填空题:请把答案填在题中横线上(每题6 分,共 24 分).11. 3010 5;12. x 3y 9 0 或 4x y 160 ;13. 48cm 3;14. 6a ,6a ;23三、解 答题:解答应写出文字说明、证明过程或演算步骤( 共 76分).15. 解:( 1)设内接圆柱底面半径为 r .S 圆柱侧 2 r x ①r H xrR (Hx) ②RHH② 代入 ①S 圆柱侧2 xR( H x) 2 R x 2 Hx (0 x H ) H H22 ( 2) S 圆柱侧2 R x 2Hx2 R x HHHH2 4x H 时S圆柱侧最大RH2216.证明:如答图所示, ⑴ 设 PD 的中点为 E ,连接 AE 、NE ,由 N 为 PD 的中点知 EN //1DC ,2又 ABCD 是矩形,∴ DC // AB ,∴ EN //1AB2又 M 是 AB 的中点,∴ EN // AN ,∴AMNE 是平行四边形∴MN ∥AE ,而 AE 平面 PAD , NM 平面 PAD∴MN ∥平面 PAD证明: ⑵ ∵PA =AD ,∴ AE ⊥ PD ,又∵ PA ⊥平面 ABCD ,CD 平面 ABCD ,∴ C D ⊥PA ,而 CD ⊥AD ,∴ CD ⊥平面 PAD∴ C D ⊥AE , ∵PD ∩CD =D ,∴ AE ⊥平面PCD ,∵MN ∥AE ,∴ MN ⊥平面 PCD ,又 MN 平面 PMC ,∴平面 PMC ⊥平面 PCD.PNEDCAMBWORD 格式 . 整理版17.剖析:直线 l 应知足的两个条件是( 1)直线 l 过点(- 5,-4);( 2)直线 l 与两坐标轴订交且与两轴所围成的三角形面积为5.假如设 a ,b 分别表示 l 在 x 轴, y 轴上的截距,则有1 b5 .a2这样就有以下两种不一样的解题思路:第一,利用条件( 1)设出直线 l 的方程(点斜式),利用条件( 2)确立 k ; 第二,利用条件( 2)设出直线 l 的方程(截距式),联合条件( 1)确立 a , b 的值 .解法一:设直线 l 的方程为 y 4k x 5 分别令 y0, x 0 ,得 l 在 x 轴, y 轴上的截距为:a5k4,b5k 4k由条件( 2)得 ab105k 4 5k 410k得 25k 230 k 16 0 无实数解;或 25k250k16 0,解得 k 18, k 2 25 5故所求的直线方程为:8x 5y20 0 或2x 5y10 0解法二:设 l 的方程为x y 1,由于 l 经过点5, 4,则有:ab5 4 1 ①又ab10 ②ab5 b1a5 a5联立 ① 、② ,得方程组ab解得2或b4 b2ab10所以,所求直线方程为:8x 5y 20 0 或2x 5y 10 0 .18.解:由于 A ( 2,- 3),B (- 2,- 5) ,所以线段 AB 的中点 D 的坐标为 ( 0,- 4),y又k AB5 ( 3)1,所以线段 AB 的垂直x-2y-3=02 22O x均分线的方程是y2x 4 .A联立方程组 x2 y 3,解得 x 1 .By 2 x 4y 2所以,圆心坐标为C (- 1,- 2),半径r| CA |(2 1)2( 3 2) 2 10 ,所以,此圆的标准方程是(x1)2 ( y 2) 2 10 .19.解: ⊙ C : ( x - 2) 2+ ( y -2) 2= 1(Ⅰ) C 对于 x 轴的对称点 ′(2,- 2) ,过 , ′的方程 : x + y = 0 为光芒 l 的方程.CAC优良 .参照 .资料WORD 格式 . 整理版切时,有 2 k 2 3k 3 1 k 4 或k31 k234 ∴过 A′,⊙ C 的两条切线为y 3 4(x 3), y 33(x 3) 令y=0,得3 , x2 3 4x1 14∴反射点M x轴上的活动范围是3 ,1在420.( 1)AC1是正方体AD 面 DC 1 , 又 D1F 面 DC1 , AD D1 F (2)取AB中点G,连接A1G,FG , F是 CD中点GF / / AD 又 A1 D1 / / ADGF // A1 D1 GFD1 A1是平行四边形A1G // D1 F设 A1 G AE H则 AHA1是 AE与 D1 F所成的角E是BB1的中点Rt A1 AG Rt ABE GA1 A GAH A1 HA 90 即直线 AE 与D1 F所成角是直角(3)AD D1 F( (1)中已证)AE D1 F ,又 AD AE A, D1 F 面AED ,又 D1 F 面 A1 FD 1 ,面 AED 面 A1 FD1。

2011-2012学年度第二学期高二半期测试题

2011-2012学年度第二学期高二半期测试题

2011-2012学年度第二学期高二数学半期考试试题(会考模拟)本卷分第Ⅰ卷(选择题)和第Ⅱ巻(非选择题)两部分,请将每题的答案填写在答题卡上,考试结束后,只交答题卡。

第Ⅰ卷(本卷共35小题,每小题3分,共105分,在每小题给出的四个选项中,只有一项符合题目要求)一、选择题1、已知集合A={1,2,3},B={2,3,4,},那么集合AB=( )A、{2}B、{2,3}C、{1,2,3}D、{1,2,3,4}2、函数的零点的个数是( )A 、0 B、1 C、2 D、33、已知函数的图象经过点,那么等于A、 B、 C、 D、4、下列函数中,在上是减函数的是( )5、已知过点的直线与直线平行,则的值为 ( )106、函数的图像与 的图像( )关于轴对称 关于轴对称 关于直线对称 关于直线对称7、的值等于A、 B、 C、 D、8、等于( )A、 B、 C、1 D、109、下列函数中,是奇函数的是( )A、 B、 C、 D、10、已知,则( ).11、已知等差数列的首项为1,公差为-2,则等于( )A、-32B、-9C、32D、912、不等式的解集是( )A、 B、 C、 D、13、圆的圆心坐标和半径分别为( )A、(2,0),4B、(2,0),2C、(-2,0),4D、(-2,0),214、平面与平面平行的条件可以是( )A、内的一条直线与平行B、内的两条直线与平行C、内的无数条直线与平行D、内的两条相交直线分别与平行15、某几何体的三视图如下图所示,则该几何体是( )A、圆柱B、圆锥C、三棱柱D、三棱锥16、体积为的球的半径为 ( )A、 1B、 2C、 3D、 417、函数的定义域是( )A、 B、 C、 D、18、若a<b<0,则下列不等式成立的是 ( )A、 B、 C、a-b>0 D、|a|>|b|19、经过两点A(4,0),B(0,-3)的直线方程是( ).A、 B、C、 D、20、已知,且,那么的最小值是( )ABCDPA、2B、4C、6D、821、如图,在四棱锥中,平面,且四边形是矩形,则该四棱锥的四个侧面中是直角三角形的有( ).A.个 B.个C.个 D.个22、点A(0, 5)到直线的距离是( ).A、 B、 C、 D、23、在中,,则角为 ( )A、30°B、C、D、24、以下给出对流程图的几种说法,其中正确说法的个数是( ).①任何一个流程图都必须有起止框②输入框只能放在开始框后,输出框只能放在结束框之后③判断框是唯一一个具有超过一个退出点的符号A、0B、1C、2D、325、不等式的解集是 ( )A、x<3B、x>-1C、x<-1或x>3D、-1<x<326、已知向量,向量,且,那么的值等于( ).A、 B、 C、 D、27、函数的最小正周期是A、 B、 C、 D、28、当满足条件时,目标函数的最小值是A、0B、2C、 4D、529、简单随机抽样、系统抽样、分层抽样之间的共同点是( ).A、都是从总体中逐个抽取B、将总体分成几部分,按事先预定的规则在各部分抽取C、抽样过程中每个个体被抽到的可能性相等D、抽样过程中,将总体分成几层,按比例分层抽取30、如果,,那么等于( ).A、 B、C、D、31、当输入的值为1,的值为时,右边程序运行的结果是A、1INPUT a,ba=a+bPRINT aENDB、C、D、32、已知向量如果向量与垂直,则( )233、在正方体中,异面直线与所成的角的度数是( )(A) (B) (C) (D)34、函数的最大值是A、 B、 C、 D、35、.如图,边长为2的正方形内有一内切圆在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是A. B. C. D.第Ⅱ卷(本卷共35小题,每小题3分,共45分)二、填空题:本大题共5小题,每小题3分,共15分,把答案填在大体卡上。

人教新课标版数学高二-选修2-2模块综合检测卷(三)

人教新课标版数学高二-选修2-2模块综合检测卷(三)

数学·选修2-2(人教A 版)模块综合检测卷(三)(测试时间:120分钟 评价分值:150分)一、选择题(本大题共8小题,每小题5分,共40分;在每小题给出的四个选项中,只有一项是符合题中要求的)1.(2013·江门二模)已知复数z 的实部为1,且|z |=2,则复数z 的虚部是( )A .- 3 B.3i C .±3i D .±3解析:设复数z 的虚部是为b ,要求已知复数z 的实部为1,且|z |=2,故有1+b 2=4,解得b =±3,故选D. 答案:D2. 若θ∈⎝⎛⎭⎪⎫0,π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:因为θ∈⎝ ⎛⎭⎪⎫0,π4,所以复数的实部cos θ+sin θ>0,虚部sin θ-cos θ<0,所以复数对应的点在第四象限.故选D.答案:D3.(2014·安徽池州一中月考)设x ∈R ,则“x 2=x ”成立的充分不必要条件是( )A .“x =1”B .“x (x -1)=0”C .“x (x +1)=0”D .“x (x 2-1)=0”解析:“x =1”是“x 2=x ”的充分不必要条件; “x (x -1)=0”是“x 2=x ”的充要条件; “x (x +1)=0” 是“x 2=x ”的不充分不必要条件;“x (x 2-1)=0”是“x 2=x ”的不充分不必要条件.故选A.答案:A4.已知函数f (x )=ax 2-1且f ′(1)=2,则实数a 的值为( ) A .1 B .2 C.2 D .a >0解析:∵f ′(x )=12(ax 2-1)-12·2ax =axax 2-1,∴f ′(1)=aa -1=2,∴a =2. 答案:B5.函数f (x )=ln x -12x 2的图象大致是( )答案:B6.由曲线xy =1,直线y =x ,x =3及x 轴所围成的曲边四边形的面积为( )A.116B.92C.12+ln 3 D .4-ln 3解析:由xy =1得y =1x ,由⎩⎪⎨⎪⎧y =x ,y =1x得x D =1,所以曲边四边形的面积为x d x +1x d x =+=12+ln 3,故选C.7.某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1 000元.如果团体的人数超过100人,那么每超过1人,每人平均收费降低5元,但团体人数不能超过180人(不到100人不组团).要使旅行社的收费最多,旅游团组团人数为() A.130 B.140 C.150 D.160解析:设参加旅游的人数为x,旅游团收费为y,则依题意有f(x)=1 000x-5(x-100)x(100≤x≤180),令f′(x)=1 500x-10x=0得x =150.又f(100)=100 000,f(150)=112 500,f(180)=108 000,所以当参加人数为150人时,旅游团的收费最高,可达112 500元,故选C.答案:C8.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是()A.(-∞,-3]∪[3,+∞) B.[-3,3]C.(-∞,-3)∪(3,+∞) D.(-3,3)解析:f′(x)=-3x2+2ax-1≤0在(-∞,+∞)恒成立,Δ=4a2-12≤0⇒-3≤a≤ 3.二、填空题(本大题共6小题,每小题5分,共30分;将正确答案填在题中的横线上)9.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________.解析:因为z +1=-3+2ii =2+3i ,所以z =1+3i ,故z 的实部是1.答案:110.(2013·江西卷)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.解析:设e x =t ,则x =ln t (t >0),所以f (t )=t +ln t ,所以f ′(t )=1+1t ,所以f ′(1)=2.答案:211.(2013·潮州二模改编)计算⎰e 1⎝⎛⎭⎪⎫3x -1x d x =________________.解析:因为⎝ ⎛⎭⎪⎫32x 2′=3x ,(ln x )′=1x ,=32e 2-32-(ln e -ln 1)=3e 2-52. 答案:3e 2-5212.函数f (x )=(x -3)e x 的单调递增区间是________.解析:f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x . 令f ′(x )>0,解得x >2,故单调递增区间为(2,+∞). 答案:(2,+∞)13.一同学在电脑中打出如下若干个圆,○●○○●○○○●○○○○●○○○○○●…若将此若干个圆依此规律继续下去,得到一系列的圆,那么在前100个圆中有________个●.解析:∴2+3+4+…+(n +1)<100,即n(n+3)2<100,则满足条件的n=12.答案:1214.设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))=____________________.解析:观察1,3,7,15,…,与对应项的关系,显然满足2n-1,观察2,4,8,16,…,与对应项的关系,显然满足2n,故f n(x)=x(2n-1)x+2n.答案:x(2n-1)x+2n三、解答题(本大题共6小题,共80分;解答时应写出必要的文字说明、证明过程及演算步骤)15.(本小题满分12分)设|z |=1,且z ≠±i ,求证z1+z 2为实数.证明:由条件可知z ≠0,设z =x +y i(x ,y ∈R ,x ≠0),则z 2=x 2-y 2+2xy i ,且x 2+y 2=1,所以z 1+z 2=x +y i 1+x 2-y 2+2xy i =x +y i 2x 2+2xy i=12x ·x +y i x +y i =12x ∈R ,所以z 1+z2为实数.16.(本小题满分12分)已知数列{a n }满足S n +a n =2n +1.(1)写出a 1,a 2,a 3, 并推测a n 的表达式;解析:由S n +a n =2n +1得a 1=32, a 2=74, a 3=158,∴a n =2n +1-12n =2-12n .(2)用数学归纳法证明所得的结论.证明:①当n =1时, 左边=S 1+a 1=32+32=3,右边=2×1+1=3,∴结论成立. ②假设n =k (k ≥1,k ∈N *)时结论成立, 即a k =2-12k , 当n =k +1时,a 1+a 2+…+a k +a k +1+a k +1=2(k +1)+1, ∵a 1+a 2+…+a k =2k +1-a k,∴2a k +1=4-12k , ∴a k +1=2-12k +1成立.根据①②知对于任何自然数n ,结论成立.17.(本小题满分14分)设定义在(0,+∞)上的函数f (x )=ax +1ax +b (a >0).(1)求f (x )的最小值;解析:解法一 f (x )=ax +1ax +b ≥2ax ·1ax +b =b +2,当且仅当ax =1⎝ ⎛⎭⎪⎫x =1a 时,f (x )的最小值为b +2.解法二 f (x )的导数f ′(x )=a -1ax 2=a 2x 2-1ax 2,当x >1a 时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上递增;当0<x <1a 时,f ′(x )<0,f (x )在⎝ ⎛⎭⎪⎫0,1a 上递减.所以当x =1a 时,f (x )取得最小值2+b .(2)若曲线y =f (x )在点(1,f (1))处的切线方程y =32x ,求a ,b 的值.解析:由题意得:f (1)=32⇔a +1a +b =32, ①f ′(x )=a 2x 2-1ax 2⇒f ′(1)=a -1a =32, ② 由①②得:a =2,b =-1.18.(本小题满分14分)已知y =f (x )为定义在R 上奇函数,并且当x ∈(0,+∞)时,f (x )=2ln x -mx +12x 2.(1)求f (x )的解析式;解析:因为y =f (x )为定义在R 上奇函数, 所以设x ∈(-∞,0),有-x ∈(0,+∞),f (x )=-f (-x )=-⎣⎢⎡⎦⎥⎤2ln (-x )+mx +12x 2,即当x ∈(-∞,0),f (x )=-2ln(-x )-mx -12x 2.所以f (x )=⎩⎪⎨⎪⎧2ln x -mx +12x 2,x >0,0,x =0,-2ln (-x )-mx -12x 2,x <0.(2)若f (x )在[1,2]上单调递减,求m 的取值范围.解析:因为f (x )在[1,2]上单调递减,所以f ′(x )=2x -m +x =x 2-mx +2x≤0在[1,2]上恒成立. 设h (x )=x 2-mx +2,则有⎩⎨⎧h (1)≤0,h (2)≤0,解得m ≥3.19.(2013·河北唐山市一模)(本小题满分14分)已知函数f (x )=mx +nex 在x =1处取得极值e -1.(1)求函数f (x )的解析式,并求f (x )的单调区间;解析:f ′(x )=-mx +n -me x .依题意,f (1)=e -1,f ′(1)=0,即⎩⎨⎧(m +n )e -1=e -1,-n e -1=0,解得⎩⎨⎧m =1,n =0.所以f (x )=xe x ,f ′(x )=x -1e x .当x ∈(-∞,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.函数f (x )在(-∞,1)单调递增;在(1,+∞)单调递减.(2)当x >0时,试证:f (1+x )>f (1-x ).解析:设g (x )=f (1+x )-f (1-x )=1+x e 1+x -1+xe 1-x =(1+x )e -x -(1-x )e xe .设h (x )=(1+x )e -x -(1-x )e x =1+xex -(1-x )e x, 则h ′(x )=x (e 2x -1)e x>0,h (x )在(0,+∞)上单调递增,h (x )>h (0)=0,所以g (x )>0,从而f (1+x )>f (1-x ).20.(本小题满分14分)数列{a n }满足a 1=16,前n 项和S n =n (n +1)2a n .(1)求出a 2,a 3,a 4的值; 解析:(2)猜出a n 的表达式,并用数学归纳法证明.解析:猜想a n =1(n +1)(n +2),下面用数学归纳法给出证明.①当n =1时,a 1=16=1(1+1)(1+2),结论成立.②假设当n =k 时,结论成立,即a k =1(k +1)(k +2),则当n =k+1时,S k =k (k +1)2a k =k (k +1)2·1(k +1)(k +2)=k2(k +2),S k +1=(k +1)(k +2)2a k +1,即S k +a k +1=(k +1)(k +2)2a k +1.所以k2(k +2)+a k +1=(k +1)(k +2)2a k +1.所以a k +1=k2(k +2)(k +1)(k +2)2-1=kk (k +3)(k +2)=1(k +2)(k +3).当n =k +1时结论成立.由①②可知,对一切n ∈N *都有a n =1(n +1)(n +2).。

(word完整版)新课标高中数学测试题(必修2)全套含答案,推荐文档

(word完整版)新课标高中数学测试题(必修2)全套含答案,推荐文档

(数学2必修)第一章 空间几何体[基础训练A 组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )A . 3B . 23C . 33D . 433.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对4.正方体的内切球和外接球的半径之比为( )A .3:1B .3:2C .2:3D .3:35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A. 92πB. 72πC. 52πD. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .130B .140C .150D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。

2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。

3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a ,则三棱锥11O AB D -的体积为_____________。

4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。

主视图 左视图 俯视图C 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。

数学(必修2)结业考试试题(卷)(人教A版)

数学(必修2)结业考试试题(卷)(人教A版)

数学(必修2)结业考试试题(卷)(人教A 版)(90分钟100分)一.选择题(每小题3分,共3⨯10=30分) 1. 下列几何体中是棱柱的有( )⑦⑥⑤④③②①A . 1个B . 2个C . 3个D . 4个2. 如图所示,正方体的棱长为1,点A 是其一棱的中点,则点A 在空间直角坐标系中的坐标是( ) A . (21,21,1) B . (1,1,21) C . (21,1,21) D . (1,21,1)3.长方体ABCD-A 1B 1C 1D 1中,∠BAB 1 =30°,则C 1D 与B 1B 所成的角是( )A . 60°,B . 90°,C . 30°,D . 45°4.下列直线中,与直线01=-+y x 相交的是( ) A . 622=+y x B . 0=+y x C . 3--=x y D . 1-=x y5.在空间四边形ABCD 的各边AB ,BC ,CD ,DA 上依次取点E ,F ,G ,H ,若EH 、FG 所在直线相交于点P ,则( )A .点P 必在直线AC 上B .点P 必在直线BD 上C .点P 必在平面DBC 外D .点P 必在平面ABC 内ABC D A 1B 1D 1C 1BDCA6.已知直线a ⊂α,给出以下四个命题: ①若平面α//平面β,则直线a //平面β; ②若直线a //平面β,则平面α//平面β;③若直线a 不平行于平面β,则平面α不平行于平面β. 其中正确的命题是( )A . ②B . ③C . ①②D . ①③7.已知直线01)1(=-+-y x a a 与直线012=++ay x 垂直,则实数a 的值等于( ) A. 21 B . 23 C . 0,21 D . 0,238.如图所示,已知AB ⊥平面BCD ,BC ⊥CD ,则图中互相垂直的平面有( )A . 3对B . 2对C . 1对D . 0对9.已知P (2,-1)是圆25y 1)-(x 22=+的弦AB 的中点,则弦AB 所在直线的方程是( ) A . 03-y -x = B .01-y x =+ C . 03-y 2x =+ D .05-y -2x =10.已知直线ax+by+c=0(a ,b ,c 都是正数)与圆1y x 22=+相切,则以a ,b ,c 为三边长的三角形( )A . 是锐角三角形B . 是直角三角形C . 是钝角三角形D .不存在二.填空题(每题3分,共3⨯8=24分)11.直线y=2x 与直线x+y=3的交点坐标是 .12.已知a ,b ,c 是两两不等的实数,则经过两点A (a ,c )和B(b ,c )的直线的倾斜角是 . 13.如图所示,是一个正方体的展开图,若将它还原为正方体,则直线AB 与直线CD 的位置关系是 .H GFEBC DA14. 圆02x -y x :221=+O 与圆04y -y x :222=+O 的位置关系是 .15. 平面几何中我们有“垂直于同一条直线的两条直线平行”,试将该命题中的直线(部分或全部)换成平面,写出一个在空间成立的命题 : . 16. 如图,在直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2,AB =3,∠ABC =60°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是 .17.若关于x ,y 的方程04222=+--+m y x y x 表示圆,则实数m 的取值范围是 .18. 下列条件中,能判定平面α与平面β平行的条件可以是 .(写出所有正确条件的序号)①α内有无穷多条直线都与β平行; ②α内的任何直线都与β平行;③直线a ⊂α,直线b ⊂β,且a ∥β,b ∥α; ④a ⊥α,b ⊥β,a ∥b .三.解答题(本大题共46分)19.(本题8分)已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图是一个底边为6,高为4的等腰三角形,求该几何体的体积.20.(本题8分)如图,四棱锥S- ABCD 中,底面ABCD 为平行四边形,E 是SA 上一点,试探求点E 的位置,使SC //平面EBD ,并证明. 答:点E 的位置是 . 证明:21.(本题10分)已知直线l 平行于直线0734=-+y x ,直线l 与两坐标轴围成的三角形的周长为15,求直线l 的方程.BDA S(俯视图)22.(本题10分)建立适当的坐标系,用坐标法解决下列问题:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?23.(本题10分)如图,已知正方体ABCD-A1B1C1D1,AD1与A1D相交于点O.(1)判断AD1与平面A1B1CD的位置关系,并证明;(2)求直线AB1与平面A1B1CD所成的角.OB1 D1CA1DC1B。

新人教版11-12学年高二上学期单元测试(2)数学试题.pdf

新人教版11-12学年高二上学期单元测试(2)数学试题.pdf

2011—2012学年度上学期单元测试 高二数学试题(2)【新人教】 命题范围: 必修五第三章 第Ⅰ卷(选择题 共60分) 一、选择题:(共12小题,每小题分,共6分)在下列各小题的四个选项中,只有一项是符合题目要求的.请将选项前的字母填入下表相应的空格内. 1,且,则下列不等式一定成立的是 ( ) A. B. C. D. 2.若,则下列不等关系中,不能成立的是 ( ) A. B. C. D. 3.若实数a、b满足a+b=2,是的最小值是 ( ) A.18 B.6 C.2 D.2 4.如果不等式ax2+bx+c<0 (a≠0)的解集是φ,那么 ( ) A.a0 B.a0且b2-4ac≤0 D.a>0且b2-4ac>0 α,β满足-<α<,-<β<则2α+β的取值范围是( ) A.(-π,0)B.(-π,π)C.(-,)D.(-,) 6.有以下四个命题,其中真命题为?(? ? ) A.原点与点(2,3)在直线2x+y+3=0异侧 B.点(2,3)与点(3,2)在直线x-y=0的同侧 C.原点与点(2,1)在直线y-3x+=0的异侧 D.原点与点(2,1)在直线y-3x+=0的同侧 .不等式3x-y-表示的区域在3x-y-= 的? ( ? ?) A.右上方 B.右下方C.左上方 D.左下方.由所确定的平面区域内整点的个数是( ? ?)A.个? B.4个? C.5个? D.个 x、y满足约束条件,Z=2x+y的最大值是(? )A. B. C.? D. 10.下列选项正确的是 ()y=sin2a+ 4/sin2a的最小值是4 B.y=sina+ 1/sina的最小值是2 C.>+ D.> 312 11.若不等式ax2+bx+2>0的解集是{x| -< x 5/4 ,则y=4x-1+的最小值是___________是___________an}中,a1+a2=9,a1a2a3=27,则{an}的前n项和 Sn=___________ 16.已知,则不等式的解集是__________ 三、解答题:(共小题,共分)解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档