高中数学第三章导数及其应用3.4第1课时变化率问题导数的概念课件新人教A版
精选 《导数的概念及其几何意义》完整版教学课件PPT
点 处 的切 线方 程 .(数学
导函数的概念
抽象、直观想象、数学运
算)
激趣诱思
知识点拨
跳水运发动的跳台距水面高度分为5米、7.5米和10米3种,奥运会
、世界锦标赛等限用10米跳台.跳台跳水根据起跳方向和动作结构
分向前、向后、向内、反身、转体和臂立6组.比赛时,男子要完成
4个有难度系数限制的自选动作和6个无难度系数限制的自选动作,
不同?
提示:曲线f(x)在点(x0,f(x0))处的切线,点(x0,f(x0))一定是切点,只要求
出k=f'(x0),利用点斜式写出切线方程即可;而曲线f(x)过某点(x0,y0)
的切线,给出的点(x0,y0)不一定在曲线上,即使在曲线上也不一定是
切点.
激趣诱思
知识点拨
(3)曲线在某点处的切线是否与曲线只有一个交点?
D.0
)
2
(2)求函数 f(x)=- 的导数.
(0+x)2 -3(0+x)-02 +3×0
(1)解析:f'(0)= lim
x
Δ→0
(Δ)2 -3Δ
=
= lim (Δx-3)=-3.
Δ
Δ→0
x→0
答案:C
y
(2)解:f'(x)= lim x
Δ→0
= lim
Δ→0
2·Δ
-x
Δ→0
x→0
(0 +Δ)-(0)
f(x)在 x0 处可导,所以由导数的定义得
=f'(x0),故
Δ
x→0
(0 -Δ)-(0 )
lim
=-f'(x0).
人教A版高中数学选修1-1《三章导数及其应用3.1变化率与导数3.2导数的概念》优质课教案_24
1.1.2导数的概念(一)教材分析本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础•同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.(二)教学目标(1)在上一节学习平均变化率的基础上,了解瞬时速度、瞬时变化率的概念;(2)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(3)会求函数在某点的导数及简单应用.(三)教学重点与难点重点:通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.(四)教学过程1. 复习引入(1)函数y = f(x)从x i到X2的平均变化率公式;(2)函数y = f(x)从x0到X Q L X的平均变化率公式.2. 合作探究在高台跳水运动中,运动员在不同时刻的速度是不同的. 我们把物体在某一时刻(某一位置)的速度称为瞬时速度.探究一:瞬时速度的求解从前面的学习我们知道,平均速度只能粗略地描述某段时间内物体的运动状态,不一定能反映运动员在某一时刻的瞬时速度. 如何求运动员的瞬时速度呢?设计意图:让学生产生进一步学习的需求,即有必要知道任意时刻的速度.以高台跳水运动为例,研究运动员在某一时刻的瞬时速度.在高台跳水运动中,如果运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系ht =-4.9t26.5t 10.探究:如何求运动员瞬时速度?比如t =2s的瞬时速度是多少?平均速度与瞬时速度有关系吗?设计意图:问题具体化,即求运动员在t=2s时的瞬时速度.针对具体的问题情境,寻求解决问题的想法.我们求t=2s的瞬时速度是多少,先察t=2s附近平均速度的情况:(2) 我们如何表示运动员在t=2s 时的瞬时速度? (3) 运动员在某一时刻t o 的瞬时速度怎样表示?设计意图:从特殊到一般,即从特殊点t=2上升到任意点t=t °瞬时速度的表示. (4) 函数f(x)在x=x 0处的瞬时变化率怎样表示?设计意图:舍弃具体变化率问题的实际意义,抽象为数学问题,定义导数. 探究二:导数的定义瞬时速度是平均速度—当览趋近于0时的极限.L t导数的定义:函数y =f(x)在x =x o 处的瞬时变化率是啊卡=|m f(xo:-f (xo),我们称它为函数y = f(x)在x=x o 处的导数,记作 f (x o ) 或 y'U 即 f(x o )pm of(x x)—f(x o )注意:(1) 函数应在点X 。
高中数学第三章导数及其应用3.1.1变化率问题3.1.2导数的概念新人教A版选修
探究2:根据函数的瞬时变化率与在某点处导数的定 义,回答下列问题:
(1)瞬时变化率与平均变化率的关系是什么?它们的 物理意义分别是什么?
提示 瞬时变化率是平均变化率在Δx 无限趋近于 0 时,ΔΔxy无限趋近的值;瞬时变化率的物理意义是指物体运 动的瞬时速度,平均变化率的物理意义是指物体运动的平 均速度.
(2)瞬时变化率与函数在某点处导数的关系是什么? 提示 函数在某点处的瞬时变化率就是函数在此点 处的导数.
课堂探究案·核心素养提升
题型一 求函数的平均变化率
例1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的
平均变化率,并求当x0=2,Δx=0.1时平均变化率的 值.
【自主解答】 函数 y=f(x)=3x2+2 在区间[x0,x0
【答案】
1 (1)2
(2)见自主解答
●规律总结
1.求函数y=f(x)在点x0处的导数的三个步骤
2.瞬时变化率的几种变形形式
f(x0+Δx)-f(x0) Δx
2×12=5.
题型二 求函数在某点处的导数
例2 (1)函数 y= x在 x=1 处的导数为________.
(2)如果一个质点由定点 A 开始运动,在时间 t 的位 移函数为 y=f(t)=t3+3,
①当 t1=4,Δt=0.01 时,求Δy 和比值ΔΔyt; ②求 t1=4 时的导数.
【自主解答】 (1)Δy= 1+Δx-1, ΔΔxy= 1+ΔΔxx-1= 1+Δ1 x+1,
+
Δ
x]
上
的
平
均
变
化
率
为
f(x0+Δx)-f(x0) (x0+Δx)-x0
=
[3(x0+Δx)2+2]-(3x20+2) Δx
最新人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
2024届高考一轮复习数学课件(新教材人教A版 提优版):导数的概念及其意义、导数的运算
fx+Δx-fx Δx .
知识梳理
2.导数的几何意义 函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0)) 处的切线的 斜率 ,相应的切线方程为 y-f(x0)=f′(x0)(x-x0) .
知识梳理
3.基本初等函数的导数公式 基本初等函数 f(x)=c(c为常数)
知识梳理
f(x)=logax(a>0,且a≠1) f(x)=ln x
1 f′(x)=_x_ln__a_
1 f′(x)=__x _
知识梳理
4.导数的运算法则 若f′(x),g′(x)存在,则有 [f(x)±g(x)]′= f′(x)±g′(x) ; [f(x)g(x)]′= f′(x)g(x)+f(x)g′(x) ; gfxx′=f′xg[xg-xf]2xg′x(g(x)≠0); [cf(x)]′= cf′(x) .
教材改编题
1.若函数f(x)=3x+sin 2x,则
√A.f′(x)=3xln 3+2cos 2x
C.f′(x)=ln3x3+cos 2x
B.f′(x)=3x+2cos 2x D.f′(x)=ln3x3-2cos 2x
因为函数f(x)=3x+sin 2x, 所以f′(x)=3xln 3+2cos 2x.
对于
C,2sxin2
x′=2sin
x′x2-2sin x4
xx2′=2xcos
x-4sin x3
x,故
C
错误;
对于D,(2x+cos x)′=(2x)′+(cos x)′=2xln 2-sin x,故D正确.
(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则
f′(2)等于
精选 《导数的概念及其几何意义》完整版教学课件PPT
要点二 导数的几何意义
对于曲线 y=f(x)上的点 P0(x0,f(x0))和 P(x,f(x)),当 点 P0 趋 近于点 P 时,割线 P0P 趋近于确定的位置,这个确定位置的直线 P0T 称为点 P0 处的___切__线___.割线 P0P 的斜率是__k_=__f_xx_--__fx_0x_0___.当 点 P 无限趋近于点 P0 时,k 无限趋近于切线 P0T 的斜率.因此,函 数 f(x) 在 x = x0 处 的 导 数 就 是 切 线 P0T 的 __斜__率__k__ , 即 k = _l_iΔ_mx_→0__f_x_0_+__ΔΔ_xx_-__f_x_0_ ____.
∴a=-5.
答案:(2)-5
题型二 求曲线的切线方程——师生共研 例 2 已知曲线 y=13x3,求曲线在点 P(3,9)处的切线方程.
解析:由 y=13x3,
得 y′=li m Δx→0
ΔΔyx=liΔmx→0
13x+Δx3-13x3 Δx
=13liΔmx→0 3x2Δx+3xΔΔxx2+Δx3=13liΔmx→0[3x2+3xΔx+(Δx)2]=x2,
解析:设切点坐标为(x0,y0).
f′(x)=li m Δx→0
fx+Δx-fx Δx
=li m Δx→0
x+Δx2+6-x2+6 Δx
=li m (2x+Δx)=2x. Δx→0
∴过(x0,y0)的切线的斜率为 2x0.
(1)∵切线与直线 y=4x-3 平行,∴2x0=4,x0=2,
y0=x20+6=10,
(1)先由已知求出 l1 的斜率,再由 l1⊥l2,求出 l2 的斜率,进而 求出切点坐标,得出 l2 的方程.
(2)求出 l1 与 l2 的交点坐标,l1,l2 与 x 轴的交点,求出直线 l1, l2 和 x 轴围成的三角形的面积.
高中数学选修1-1(人教A版)第三章导数及其应用3.1知识点总结含同步练习及答案
当点 Pn 趋近于点 P (x 0 , f (x 0 )) 时,割线 P Pn 趋近于确定的位置,这个确定位置的直线 P T 称为点 P 处的切线(tangent line). 割线 P Pn 的斜率是
kn =
f (x n ) − f (x 0 ) . xn − x0
当点 Pn 无限趋近于点 P 时, kn 无限趋近于切线 P T 的斜率. 函数 f (x) 在 x0 处的导数 f ′ (x0 ) 的几何意义,就是曲线 y = f (x) 在点 (x0 , f (x 0 ) 处的导数就是切线 P T 的斜率 k ,即
y ′ ,即 f ′ (x) = y ′ = lim
Δx→0
f (x + Δx) − f (x) . Δx
例题: 求函数 y = 2 2 + 5 在区间 [2, 2 + Δx] 上的平均变化率,并计算当 Δx = 1 时,平均变化率的值. x 解:因为
2
Δy = 2 × (2 + Δx)2 + 5 − (2 × 2 2 + 5) = 8Δx + 2(Δx)2 ,
高中数学选修1-1(人教A版)知识点总结含同步练习题及答案
第三章 导数及其应用 3.1 变化率与导数
一、学习任务 1. 2.
了解平均变化率的概念和瞬时变化率的意义. 了解导数概念的实际背景,体会导数的思想及其内涵.
二、知识清单
数列极限与函数极限 变化率与导数
三、知识讲解
1.数列极限与函数极限 描述: 数列极限 设 {xn } 为实数数列,a 为常数.若对任意给定的正数 ε ,总存在正整数 N ,使得当 n > N 时,有 |x n − a| < ε ,则称 数列 {x n }收敛于 a ,常数 a 称为数列 {x n } 的极限.并记作
高中数学第三章导数及其应用3.2导数的计算课件新人教A版选修1_1
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
x2
-
1
1
x2
.
22
(2)y′=(
ln
x
)′=
(ln
x)x
x ln
x
=
1 x
x
ln
x
x
x2
x2
= 1 ln x . x2
(3)y=tan x; (4)y=3xex-2x+e.
解:(3)y′=( sin x )′= (sin x)cos x sin x(cos x)
cos x
cos2 x
课堂探究 素养提升
题型一 利用导数公式求函数的导数
【例 1】 求下列函数的导数:
(1)y=x8;(2)y=
5
x2
;(3)y=4x;(4)y= log1
2
x;(5)y=sin(x+
π 2
);(6)y=sin
π 3
.
解:(1)y′=(x8)′=8x8-1=8x7.
(2)y′=(
5
x2
)′=(
2
x 5 )′=
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
《导数的概念及应用》课件
极值与导数的关系
总结词
导数的零点通常是函数的极值点,但需 满足一定的条件。在极值点处,导数的 符号发生变化。
VS
详细描述
如果一个函数在某一点的导数为零,且在 这一点的一阶导数存在,那么这个点可能 是函数的极值点。为了确定这一点是否为 极值点,需要检查该点两侧的导数符号是 否发生变化。如果导数的符号在这一点从 正变为负或从负变为正,则该点为极值点 。
曲线的凹凸性与导数的关系
总结词
二阶导数可以判断曲线的凹凸性。二阶导数 大于零的区间内,曲线是凹的;二阶导数小 于零的区间内,曲线是凸的。
详细描述
二阶导数描述了函数值随自变量变化的加速 度。当二阶导数大于零时,表示函数在该区 间内单调递增;当二阶导数小于零时,表示 函数在该区间内单调递减。因此,通过分析 二阶导数的正负,可以判断曲线的凹凸性。
详细描述
在流体动力学中,导数可以用来描述流体速度和压强的变化规律,以及流体流动的稳定性分析。在结构分析中, 导数可以用来计算结构的应力和应变,评估结构的强度和稳定性。在控制理论中,导数可以用来分析系统的动态 响应和稳定性,优化系统的性能和稳定性。
THANKS
感谢观看
极值的概念
函数在某点的极值表示该点附近函数值的大小变化情 况,极值可以是极大值或极小值。
导数与极值的关系
函数在极值点的导数等于零,通过求导可以找到极值 点。
极值问题的求解方法
利用导数等于零的条件,结合函数单调性判断,确定 极值点并计算出极值。
曲线的长度计算
曲线长度的概念
01
曲线长度表示曲线本身的长度,是几何学中的一个基本概念。
导数的几何意义
总结词
导数在几何上表示函数图像在某一点的切线斜率。
高中数学第三章导数及其应用3.1变化率与导数3.1.2导数的概念课时作业(含解析)新人教A版
课时作业22一、选择题 1.在f ′(x 0)=lim Δx →0 f x 0+Δx -f x 0Δx中,Δx 不可能( )A. 大于0B. 小于0C. 等于0D. 大于0或小于0解析:由导数定义知Δx 只是无限趋近于0,故选C. 答案:C2.设f (x )在x =x 0处可导,则lim Δx →0 f x 0-Δx -f x 0Δx等于( )A .-f ′(x 0)B .f ′(-x 0)C .f ′(x 0)D .2f ′(x 0)解析:lim Δx →0 f x 0-Δx -f x 0Δx=lim Δx →0-f x 0-f x 0-ΔxΔx=-lim Δx →0 f x 0-f x 0-ΔxΔx=-f ′(x 0).答案:A3.设函数f (x )在点x 0处附近有定义,且f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A. f ′(x 0)=-aB. f ′(x 0)=-bC. f ′(x 0)=aD. f ′(x 0)=b解析:∵f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2, ∴f x 0+Δx -f x 0Δx=a +b ·Δx .∴lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0 (a +b ·Δx ). ∴f ′(x 0)=a .故选C. 答案:C4.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是( )A .at 0B .-at 0C.12at 0 D .2at 0解析:∵Δs Δt =st 0+Δt -s t 0Δt =12a Δt +at 0,∴lim Δt →0 Δs Δt =at 0. 答案:A 二、填空题5.过曲线y =2x上两点(0,1),(1,2)的割线的斜率为__________. 解析:由平均变化率的几何意义知k =2-11-0=1.答案:16.已知f (x )=2x,则lim x →afx -f ax -a=________.解析:令x -a =Δx ,则x =a +Δx , lim x →af x -f a x -a =lim Δx →0 f a +Δx -f aΔx=lim Δx →0 2a +Δx -2a Δx =lim Δx →0 -2a a +Δx =-2a 2. 答案:-2a27.已知f (x )=1x ,且f ′(m )=-116,则f (m )=________.解析:∵f (x )=1x,∴f ′(m )=lim Δx →0f m +Δx -f mΔx=lim Δx →0 1m +Δx -1m Δx =lim Δx →0 -1m m +Δx =-1m 2. 又f ′(m )=-116,∴-1m 2=-116.∴m =±4.∴f (m )=1m =±14.答案:±14三、解答题8.已知函数f (x )=⎩⎨⎧x ,x ≥01+x 2,x <0,求f ′(1)·f ′(-1)的值.解:当x =1时,Δy Δx =f+Δx -fΔx=1+Δx -1Δx =11+Δx +1.由导数的定义,得f ′(1)=lim Δx →0 11+Δx +1=12.当x =-1时,ΔyΔx=f -1+Δx -f -Δx=1+-1+Δx 2-1--2Δx=Δx -2.由导数的定义,得f ′(-1)=lim Δx →0 (Δx -2)=-2. 所以f ′(1)·f ′(-1)=12×(-2)=-1.9.高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598 s 时的瞬时速度,并解释此时的运动状况.解:令t 0=6598,Δt 为增量.则h t 0+Δt -h t 0Δt=-t 0+Δt2+t 0+Δt +10+4.9t 20-6.5t 0-10Δt=-4.9Δtt 0+Δt +6.5ΔtΔt=-4.9(6549+Δt )+6.5.∴lim Δt →0h t 0+Δt -h t 0Δt =lim Δt →0[-4.9(6549+Δt )+6.5]=0, 即运动员在t 0=6598 s 时的瞬时速度为0 m/s.说明运动员处于跳水运动中离水面最高点处.。
最新人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
5.1 导数的概念及其意义(变化率问题、导数的概念)课件高二数学人教A版(2019)选择性必修第二册
=
( 2 )-( 1 )
.
2 - 1
【变式训练 2】 分别求函数 y=sin x 从 0
比较它们的大小.
π
π
π
到6 和从 3 到 2 的平均变化率,并
解:自变量 x 从 0
自变量 x
π
π
从3 变到 2 ,函数
3
∵2-√3<1,∴
π
>
∴自变量 x 从 0
自变量 x
π
变到 ,函数
6
)
A.Δx-3
C.-3
B.(Δx)2-3Δx
(0+x)2 -3(0+x)-02 +3×0
解析:f'(0)= lim
x
Δ→0
故选C.
答案:C
D.0
=
(Δ)2 -3Δ
Δ
x→0
= lim (Δx-3)=-3.
Δ→0
【思考辨析】
判断下列说法是否正确,正确的在后面的括号里画“√”,错误的画“×”.
Δ
∴
Δ
=
3(Δ)2 +(6+)Δ
=3Δx+6+a,
Δ
y
∴ lim
Δ→0 x
= (3Δx+6+a)=6+a.
∴f'(1)=6+a.
x→0
【易错辨析】
对导数的概念理解不清而致错
【典例】 已知
A.4
f(x 0 +2x)-f(x 0 )
f'(x0)=4,则 lim
的值为(
x
Δ→0
B.2
C.8
f(x 0 +2x)-f(x 0 )
人教A版高考总复习一轮理科数学精品课件 第3章 导数及其应用 第1节 导数的概念及运算
2
f'(x0)= ,所以切线方程为
0
解得
1
x0=e ,
则直线 l:y=2ex-4,所以 b=-4.
y-2ln
2
x0= (x-x0),则
0
2
x0),f'(x)= ,
提示:不一定.
2.基本初等函数的导数公式
基本初等函数
f(x)=c(c为常数)
f(x)=xα(α∈Q*)
f(x)=sin x
f(x)=cos x
f(x)=ex
f(x)=ax(a>0,a≠1)
f(x)=ln x
f(x)=logax(a>0,a≠1)
导函数
f'(x)= 0
f'(x)= αxα-1
f'(x)= cos x
C.6
D.14
(3)(2021 广西南宁模拟)下列函数求导运算正确的是(
ln2
A.(log2x)'=
C.(xcos x)'=cos x+xsin x
)
B.(e-x)'=e-x
2
D.[ln(2x+1)+f'(1)]'=2+1
)
)
答案:(1)D (2)C
解析:(1)由题意得
(3)D
1
f'(x)= +3x2,所以
导数就是质点在x=x0时的 瞬时 速度,在(a,b)内的导数就是质
点在(a,b)内的 速度 方程
微点拨(1)一般地,如果一个函数f(x)在区间(a,b)内的每一点x处都有导数,导
数值记为f'(x),则f'(x)是关于x的函数,称f'(x)为f(x)的导函数,简称为导数.
第三章导数及其应用3-1导数的概念及运算
重点难点
重点:导数的概念、公式及运算法则,导数 的应用
难点:①导数的定义 ②复合函数的导数及积商的导数公式
知识归纳 一、导数及有关概念
(2)瞬时速度 设物体运动路程与时间的关系是 s=f(t),当 Δt 趋近 于 0 时,函数 f(t)在 t0 到 t0+Δt 这段时间内的平均变化率 ΔΔst=ft0+ΔΔtt-ft0趋近于常数,我们把这个常数称为 t0 时刻的瞬时速度.
3.导数 设函数 y=f(x)在 x0 处及其附近有定义,当自变量在 x=x0 附近改变量为 Δx 时,函数值相应地改变量 Δy=f(x0 +Δx)-f(x0).如果当 Δx 趋近于 0 时,平均变化率ΔΔyx= fx0+ΔΔxx-fx0趋近于一个常数 l,那么常数 l 称为函数 f(x) 在点 x0 处的瞬时变化率.函数在点 x0 处的瞬时变化率通 常称为 f(x)在 x=x0 处的导数,又称函数 f(x)在 x=x0 处可 导.
分析:本例所给的函数是100个因式的积, 对于这种结构形式的函数,直接求导比较困 难,可通过两边取对数后再求导,就可以使 问题简化. 但必须注意取对数时真数应为正 实数.
解析:两边取对数得 lny=ln(x-1)+ln(x-2)+…+ln(x-100). 两边对 x 求导:y′y =x-1 1+x-1 2+…+x-1100. ∴y′=x-1 1+x-1 2+…+x-1100·(x-1)(x-2)·…·(x -100).
2.深刻理解“函数在一点处的导数”、 “导函数”、“导数”的区别与联系
(1)函数在一点处的导数f ′(x0)是一个常数, 不是变量.
(2)函数的导数,是针对某一区间内任意点x 而言的.函数f(x)在区间(a,b)内每一点都 可导,是指对于区间(a,b)内的每一个确定 的值x0,都对应着一个确定的导数f ′(x0).根 据函数的定义,在开区间(a,b)内就构成了 一个新的函数,就是函数f(x)的导函数f ′(x).
高考数学一轮复习第三章导数及其应用1导数的概念及运算课件新人教A版
=
2
= (2+1) −
2
.
-15考点1
考点2
解题心得函数求导应遵循的原则:
(1)求导之前,应先利用代数、三角恒等式变形等对函数进行化简,
再求导,这样可以减少运算量,提高运算速度,减少差错.
(2)进行导数运算时,要牢记导数公式和导数的四则运算法则,切
忌记错记混.
(3)复合函数的求导,要正确分析函数的复合层次,先通过设中间
值记为 f'(x),且
为f(x)的
f(x+x)-f(x)
f'(x)= lim
,则
x
Δ→0
导函数
f'(x)是关于 x 的函数,称 f'(x)
,通常也简称为导数.
-6知识梳理
双基自测
4.基本初等函数的导数公式
原函数
f(x)=C(C 为常数)
f(x)=xα(α∈Q,α≠0)
f(x)=sin x
f(x)=cos x
变量,确定复合过程,再求导.
-16考点1
考点2
对点训练 1 分别求下列函数的导数:
2
(1)y=x sin x;cLeabharlann s(2)y=xlne
x+ ;
(3)y= e ;
(4)y=ln(2x-5).
解 (1)y'=(x2)'sin x+x2(sin x)'=2xsin x+x2cos x.
(2)y'= ln
f(x)=ax(a>0,且 a≠1)
f(x)=ex
f(x)=logax(a>0,且 a≠1)
f(x)=ln x
导函数
f'(x)=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[尝试解答] (1)因为次品率 p=4x3+x32, 所以当每天生产 x 件时,有 x·4x3+x32件次品, 有 x 1-4x3+x32件正品. 所以 T=200x·1-4x+3x32-100x·4x3+x32 =25·64xx+-8x2(x∈N*).
(2)T′=-25·(x+(32x)+(8)x-2 16), 由 T′=0,得 x=16 或 x=-32(舍去). 当 0<x<16 时,T′>0; 当 x>16 时,T′<0; 所以当 x=16 时,T 最大, 即该厂的日产量定为 16 件,能获得最大盈利.
讲一讲
3.某厂生产某种电子元件,如果生产出一件正品,可获利 200 元,如果生产出一件次品,则损失 100 元.已知该厂制造 电子元件过程中,次品率 p 与日产量 x 的函数关系是:p=4x3+x32 (x∈N*).
(1)将该厂的日盈利额 T(元)表示为日产量 x(件)的函数; (2)为获最大盈利,该厂的日产量应定为多少件?
∠AON=θ(单位:弧度).
(1)将 S 表示为 θ 的函数; (2)当绿化面积 S 最大时,试确定点 A 的位置,并求最大 面积. [尝试解答] (1)BM=AOsin θ=100sin θ, AB=MO+AOcos θ=100+100cos θ,θ∈(0,π). 则 S=12MB·AB=12×100sin θ×(100+100cos θ) =5 000(sin θ+sin θcos θ),θ∈(0,π).
3
m2,此时 AB
=150 m,即点 A 到北京路一边 l 的距离为 150 m.
(1)平面图形中的最值问题一般涉及线段、三角形、四边 形等图形,主要研究与面积相关的最值问题,一般将面积用 变量表示出来后求导数,求极值,从而求最值.
(2)立体几何中的最值问题往往涉及空间图形的表面积、 体积,在此基础上解决与实际相关的问题.解决此类问题必 须熟悉简单几何体的表面积与体积公式,如果已知图形是由 简单几何体组合而成,则要分析其组合关系,将图形进行拆 分或组合,以便简化求值过程.
练一练 2.一艘轮船在航行中的燃料费和它的速度的立方成正比, 已知在速度为 10 km/h 时,燃料费是每小时 6 元,而其他与速 度无关的费用是每小时 96 元,问此轮船以多大的速度航行时, 能使每千米的费用总和最少? 解:设燃料费 y=kv3,因为当 v=10 时,y=6,∴k=5300, ∴y=5300v3.
函数
导数
[问题思考] 在实际问题中,如果在定义域内函数只有一个极值点,则函 数在该点处取最值吗?
提示: 根据函数的极值与单调性的关系可以判断,函数在
该点处取最值,并且极小值点对应最小值,极大值点对应
最大值 .
[课前反思] 通过以上预习,必须掌握的几个知识点. (1)生活中的优化问题主要涉及哪些问题?
(1)若广告商要求包装盒的侧面积 S(cm2)最大,试问 x 应 取何值?
(2)某厂商要求包装盒的容积 V(cm3)最大,试问 x 应取何 值?并求出此时包装盒的高与底面边长的比值.
解:设包装盒的高为 h(cm),底面边长为 a(cm). 由已知得 a= 2x,h=60-22x= 2(30-x),0<x<30. (1)S=4ah=8x(30-x)=-8(x-15)2+1 800, 所以当 x=15 时,S 取得最大值.
∴每千米总费用:S=v15300v3+96=5300v2+9v6, S′=2350v-9v62. 令 S′=0 得 v=20, 当 v∈(0,20)时,S′<0; 当 v∈(20,+∞)时,S′>0. ∴v=20 km/h 是 S 的极小值点,也是最小值点, ∴v=20 km/h 时,每千米的费用总和最少.
(1)求 k 的值及 f(x)的表达式;
(2)隔热层修建多厚时,总费用 f(x)达到最小,并求最小值.
[尝试解答] (1)由题设,隔热层厚度为 x cm,每年能源消
耗费用为 C(x)=3xk+5,再由 C(0)=8,得 k=40,
因此 C(x)=3x4+0 5.
而建造费用为 C1(x)=6x. 最后得隔热层建造费用与 20 年的能源消耗费用之和为
解决此类有关利润的实际应用题,应灵活运用题设条件, 建立利润的函数关系,常见的基本等量关系有(1)利润=收入 -成本;(2)利润=每件产品的利润×销售件数.
练一练
3.某商场销售某种商品的经验表明,该商品每日的销售 量 y(单位:千克)与销售价格 x(单位:元/千克)满足关系式 y= x-a 3+10(x-6)2,其中 3<x<6,a 为常数.已知销售价格为 5 元/千克时,每日可售出该商品 11 千克.
提示: 要使用料最省,只需圆柱的表面积最小.可设圆
柱的底面半径为
x,列出圆柱表面积
S=2πx2+1
000 x (x
>0),求 S 最小时,圆柱的半径、高即可..
2.归纳总结,核心必记 (1)优化问题 生活中经常遇到求 利润最大 、 用料最省 、效率最高等 问题,这些问题通常称为优化问题. (2)解决优化问题的基本思路
(1)求 a 的值; (2)若该商品的成本为 3 元/千克,试确定销售价格 x 的值, 使商场每日销售该商品所获得的利润最大.
解:(1)因为 x=5 时,y=11,所以a2+10=11,a=2. (2)由(1)可知,该商品每日的销售量 y=x-2 3+10(x-6)2, 所以商场每日销售该商品所获得的利润 f(x)=(x-3)x-2 3+10(x-6)2 =2+10(x-3)(x-6)2,3<x<6. 从而,f′(x)=10[(x-6)2+2(x-3)(x-6)] =30(x-4)(x-6).
对应的最小值为 f(5)=6×5+1850+05=70. 所以,当隔热层修建 5 cm 厚时,总费用达到最小值 70 万元.
实际生活中用料最省、费用最低、损耗最小、最节省时 间等都需要利用导数求解相应函数的最小值,此时根据 f′(x) =0 求出极值点(注意根据实际意义舍去不合适的极值点)后, 函数在该点附近满足左减右增,则此时唯一的极小值就是所 求函数的最小值.
(2)S′=5 000(2cos2θ+cos θ-1) =5 000(2cos θ-1)(cos θ+1).令 S′=0,
得 cos θ=12或 cos θ=-1(舍去),
此时 θ=π3 . 当 θ 变化时,S′,S 的变化情况如下表:
π 所以,当 θ= 3 时,S 取得最大值 Smax=3 750
ห้องสมุดไป่ตู้
讲一讲
2.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和 外墙需要建造隔热层.某幢建筑物要建造可使用 20 年的隔热 层,每厘米厚的隔热层建造成本为 6 万元.该建筑物每年的能 源消耗费用 C(单位:万元)与隔热层厚度 x(单位:cm)满足关系: C(x)=3xk+5(0≤x≤10),若不建隔热层,每年能源消耗费用为 8 万元,设 f(x)为隔热层建造费用与 20 年的能源消耗费用之和.
于是,当 x 变化时,f′(x),f(x)的变化情况如下表:
由上表可得,x=4 是函数 f(x)在区间(3,6)内的极大值 点,也是最大值点.
所以,当 x=4 时,函数 f(x)取得最大值,且最大值等 于 42,即当销售价格为 4 元/千克时,商场每日销售该商品 所获得的利润最大.
1.本节课的重点是利用导数解决生活中的优化问题. 2.本节课要重点掌握的规律方法 (1)利用导数解决面积、体积的最值问题,见讲 1; (2)利用导数解决成本最低(费用最省)问题,见讲 2; (3)利用导数解决利润最大问题,见讲 3. 3.在利用导数解决生活中的优化问题时,要注意函数的 定义域应使实际问题有意义,这也是本节课的易错点.
; (2)解决优化问题的基本思路是什么?
;
讲一讲
1.某市在市内主干道北京路一侧修建圆形休闲广
场.如图,圆形广场的圆心为 O,半径为 100 m,并 与北京路一边所在直线 l 相切于点 M.点 A 为上半圆 弧上一点,过点 A 作 l 的垂线,垂足为点 B.市园林 局计划在△ABM 内进行绿化.设△ABM 的面积为 S(单位:m2),
f(x)
=
20C(x)
+
C1(x)
=
20×
40 3x+5
+
6x
=
800 3x+5
+
6x(0≤x≤10).
(2)f′(x)=6-(32x+4050)2, 令 f′(x)=0,即(32x+4050)2=6, 解得 x=5,x=-235(舍去). 当 0≤x<5 时,f′(x)<0, 当 5<x≤10 时,f′(x)>0, 故 x=5 是 f(x)的最小值点,
第 1 课时 变化率问题、导数的概念
[核心必知] 1.预习教材,问题导入 根据以下提纲,预习教材 P101~P104 的内容,回答下列问题. 某厂家计划用一种材料生产一种盛 500 ml 溶液的圆柱形易 拉罐.
(1)生产这种易拉罐,如何计算材料用的多少呢? 提示: 计算出圆柱的表面积即可 .
(2)如何制作使用材料才能最省?
练一练 1.请你设计一个包装盒.如图所示,ABCD 是边长为 60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角 形,再沿虚线折起,使得 A,B,C,D 四个点重合于图中的点 P, 正好形成一个正四棱柱形状的包装盒.E、F 在 AB 上,是被切去 的一个等腰直角三角形斜边的两个端点.设 AE=FB=x(cm).
(2)V=a2h=2 2(-x3+30x2),V′=6 2x(20-x). 由 V′=0 得 x=0(舍)或 x=20. 当 x∈(0,20)时,V′>0;当 x∈(20,30)时,V′<0. 所以当 x=20 时,V 取得极大值,也是最大值. 此时ha=12,即包装盒的高与底面边长的比值为12.