离散数学(三)
离散数学 第三章 函数
下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2
离散数学第三章 集合
别地,以集合为元素的集合称为集合族或集合类,
如A={{1,2,3}, { 8,9,6}}。
14
2018/11/12
2. 子集、全集与空集 子集是描述一个集合与另一个集合之间的 关系,其定义如下。
定义3.1.1 设A和B是任意两个集合,如果集合 A 的每个元素,都是集合 B 中的一个元素,则
称A是B的子集,或称A被包含于B中,或者说
正则公理的一个自然推论是: 对任何集合S, {S} S (否则有…SSS),
从而规定了集合{S}与 S的不同层次性。
6
2018/11/12
集合与其成员是两个截然不同的概念, 集合 的元素可以是任何具体或抽象事物, 包括别的集
合, 但不能是本集合自身。
因为一个集合是由它的成员构成的, 是先有
10ቤተ መጻሕፍቲ ባይዱ
2018/11/12
表示一个特定集合,基本上有两种方法:
一是枚举法,在可能时列出它的元素,元素之 间用逗号分开,再用花括号括起。如 A={a,e,i,o,u}
表明集合A是由字母a, e, I ,o和u为元素构成的。
11
2018/11/12
二是谓词法,用谓词公式来确定集合。即个体 域中能使谓词公式为真的那些元素,确定了一 个集合,因为这些元素都具有某种特殊性质。 若P(x)含有一个自由变元的谓词公式,则 {x|P(x)}定义了集合S,并可表为 S={x|P(x)}
17
2018/11/12
定义3.1.3 如果一个集合包含了所要讨论的每 一个集合,则称该集合为全集,记为U或E。 它可形式地表为 U={x|P(x)∨┐P(x)}
其中P(x)为任何谓词公式。
18
(完整版)离散数学课后习题答案(第三章)
a t a t i m e an dA l lt h i ng si nt h ei r be i ng ar eg oo df o r so me t hi n 3-5.1 列出所有从X={a,b,c}到Y={s}的关系。
解:Z 1={<a,s>}Z 2={<b,s>} Z 3={<c,s>}Z 4={<a,s>,<b,s>} Z 5={<a,s>,<c,s>} Z 6={<b,s>,<c,s>}Z 7={<a,s>,<b,s>,<c,s>}3-5.2 在一个有n 个元素的集合上,可以有多少种不同的关系。
解 因为在X 中的任何二元关系都是X ×X 的子集,而X ×X=X 2中共有n 2个元素,取0个到n 2个元素,共可组成22n 个子集,即22|)(|n X X =⨯℘。
3-5.3 设A ={6:00,6:30,7:30,…, 9:30,10:30}表示在晚上每隔半小时的九个时刻的集合,设B={3,12,15,17}表示本地四个电视频道的集合,设R 1和R 2是从A 到B 的两个二元关系,对于二无关系R 1,R 2,R 1∪R 2,R 1∩R 2,R 1⊕R 2和R 1-R 2可分别得出怎样的解释。
解:A ×B 表示在晚上九个时刻和四个电视频道所组成的电视节目表。
R 1和R 2分别是A ×B 的两个子集,例如R 1表示音乐节目播出的时间表,R 2是戏曲节日的播出时间表,则R 1∪R 2表示音乐或戏曲节目的播出时间表,R 1∩R 2表示音乐和戏曲一起播出的时间表,R 1⊕R 2表示音乐节目表以及戏曲节目表,但不是音乐和戏曲一起的节日表,R 1-R 2表示不是戏曲时间的音乐节目时间麦。
3-5.4 设L 表示关系“小于或等于”,D 表示‘整除”关系,L 和D 刀均定义于解:L={<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>}D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} L ∩D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>}3-5.5对下列每一式,给出A 上的二元关系,试给出关系图:a){<x,y>|0≤x ∧y ≤3},这里A={1,2,3,4};b){<x,y>|2≤x,y ≤7且x 除尽y ,这里A ={n|n ∈N ∧n ≤10}c) {<x,y>|0≤x-y<3},这里A={0,1,2,3,4};d){<x,y>|x,y 是互质的},这里A={2,3,4,5,6}解:a) R={<0,0>,<0,1>,<0,2>,<0,3>, <1,0>,<1,1>,<1,2>,<1,3>, <2,0>,<2,1>,<2,2>,<2,3>, <3,0>,<3,1>,<3,2>,<3,3>,} 其关系图b) R={<2,0>,<2,2>,<2,4>,<2,6>,<3,0>,<3,3>,<3,6>, <4,0>,<4,4>, <5,0>,<5,5>,i m e an dA l lt h in gs in th ei r be i ng ar eg oo df o rsa)若R1和R2是自反的,则R1○R2也是自反的;b)若R1和R2是反自反的,则R1○R2也是反自反的;c)若R1和R2是对称的,则R1○R2也是对称的;d)若R1和R2是传递的,则R1○R2也是传递的。
屈婉玲离散数学第三章
推理定律——重言蕴涵式
1. A (AB)
附加律
2. (AB) A
化简律
3. (AB)A B
假言推理
4. (AB)B A
拒取式
5. (AB)B A
析取三段论
6. (AB)(BC) (AC)
假言三段论
7. (AB)(BC) (AC)
等价三段论
8. (AB)(CD)(AC) (BD)
构造性二难
熟练掌握判断推理是否正确的不同方法(如真值表法、等 值演算法、主析取范式法等)
牢记 P 系统中各条推理规则 熟练掌握构造证明的直接证明法、附加前提证明法和归谬
法 会解决实际中的简单推理问题
练习1:判断推理是否正确
1. 判断下面推理是否正确: (1) 前提:pq, q 结论:p
解 推理的形式结构: (pq)qp 方法一:等值演算法
练习2解答
(3) 证明: ① p(qr) ②p ③ qr ④ sq ⑤s ⑥ q ⑦r ⑧ rt
前提引入 前提引入 ①②假言推理 前提引入 前提引入 ④⑤假言推理 ③⑥析取三段论 ⑦附加
谢谢大家!
定理3.1 由命题公式A1, A2, …, Ak 推B的推理正确当且仅当 A1A2…AkB为重言式
注意: 推理正确不能保证结论一定正确
推理的形式结构
由{A1, A2, …, Ak}推B的推理有以下的形式结构: 1. {A1, A2, …, Ak} B
若推理正确, 记为{A1,A2,,An} B 2. A1A2…AkB
练习2:构造证明
2. 在系统P中构造下面推理的证明: 如果今天是周六,我们就到颐和园或圆明园玩. 如果颐和 园游人太多,就不去颐和园. 今天是周六,并且颐和园游 人太多. 所以, 我们去圆明园或动物园玩.
离散数学第3章 集合
任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合
《离散数学》试题带答案(三)
《离散数学》试题带答案试卷十四试题与答案一、 填空 10% (每小题 2分)1、 设>-∧∨<,,,A 是由有限布尔格≤><,A 诱导的代数系统,S 是布尔格≤><,A ,中所有原子的集合,则>-∧∨<,,,A ~ 。
2、 集合S={α,β,γ,δ}上的二元运算*为那么,代数系统<S, *>中的幺元是 , α的逆元是 。
3、 设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3m od )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。
4、 设G 是n 阶完全图,则G 的边数m= 。
5、 如果有一台计算机,它有一条加法指令,可计算四数的和。
现有28个数需要计算和,它至少要执行 次这个加法指令。
二、 选择 20% (每小题 2分)1、 在有理数集Q 上定义的二元运算*,Q y x ∈∀,有xy y x y x -+=*,则Q 中满足( )。
A 、 所有元素都有逆元;B 、只有唯一逆元;C 、1,≠∈∀x Q x 时有逆元1-x ; D 、所有元素都无逆元。
2、 设S={0,1},*为普通乘法,则< S , * >是( )。
A 、 半群,但不是独异点;B 、只是独异点,但不是群;C 、群;D 、环,但不是群。
3、图 给出一个格L ,则L 是( )。
A 、分配格;B 、有补格;C 、布尔格;D 、 A,B,C 都不对。
3、 有向图D=<V , E>,则41v v 到长度为2的通路有( )条。
A 、0;B 、1;C 、2;D 、3 。
4、 在Peterson 图中,至少填加( )条边才能构成Euler图。
A 、1;B 、2;C 、4;D 、5 。
三、 判断 10% (每小题 2分)1、 在代数系统<A,*>中如果元素A a ∈的左逆元1-e a 存在,则它一定唯一且11--=e a a 。
离散数学 第三-四章
Ai
(f) A (A∪B ), B (A∪B )
集合与关系 >集合的运算
交与 并的关系 定理3-2.1 设A、B、C为三个集合,则下列分配律 成立。 a) A∩(B∪C)=(A∩B)∪(A∩C) b) A∪(B∩C)=(A∪B)∩(A∪C) 定理3-2.2 设A、B为任意两个集合,则下列吸收律 成立 a) A∪(A∩B)=A b) A∩(A∪B)=A 定理3-2.3 A B 当且仅当 A∪B=B 或 A∩B=A。
集合与关系 > 集合的运算
本节重点掌握的概念: 集合, 集合相等,集合包含, 幂集。
本节重点掌握的方法: 集合的表示, 求幂集.
作业
3-1 (1)(a),(c) ,(e)
(3) (4) (a),(c) ,(e) (5) (6) (a),(c) ,(e) (9)
集合与关系 >集合的概念和表示法
上节知识点: 1. 集合的概念 2. 集合的表示 3 集合之间的关系 4 空集和全集 5 幂集(power set)
A-B
E B
A
集合与关系 >集合的运算
• 绝对补 定义3-2.4 设E为全集,任一集合A关于E的补 E-A, 称为集合A的绝对补,记作~A。
即 ~ A={ x| xE ∧ xA}
集合与关系 >集合的运算
(3) 集合的补(complement) 定义3-2.3 设A、B为任意两个集合,所有属于A而 不属于B的一切元素组成的集合S称为B对于A的 补集,或相对补,记作A-B。 即 A-B={ x| xA ∧ xB} 或 xA-B xA但 xB
例如 A={2, 5, 6} B={1, 2, 4, 7, 9} A-B={5, 6} B-A={1,4,7,9} E - A?
离散数学第三章习题详细答案
3.9解:符号化:p:a是奇数. q:a是偶数. r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:确。
方法2(等值演算法)(p→¬r)∧(q→r) →(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔((p∧r) ∨¬p)∨((q∧¬r) ∨¬q)⇔(r∨¬p) ∨(¬r∨¬q)⇔¬p∨(r∨¬r) ∨¬q⇔1即证得该式为重言式,则原结论正确。
方法3(主析取范式法)(p→¬r)∧(q→r) →(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔m0+ m1+ m2+ m3+ m4+ m5+ m6+ m7可知该式为重言式,则结论推理正确。
3.10. 解:符号化:p:a是负数. q:b是负数. r:a、b之积为负前提: r→(p∧¬q) ∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:不正确。
方法2(主析取范式法)证明:(r→(p∧¬q) ∨(¬p∧q)) →(¬r→(¬p∧¬q))⇔¬ (¬r∨(p∧¬q) ∨(¬p∧q)) ∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只含5个极小项,课件原始不是重言式,因此推理不正确3.11.填充下面推理证明中没有写出的推理规则。
离散数学 第3章 基于归结原理的推理证明
7
3.1.1.2 斯柯林(Skolem)标准范式
定义 3.1.2 从前束范式中消去全部存在量词所得到的公式即为 Skolem 标准范式。 例如,如果用 Skolem 函数 f(x)代替前束形范式 x (y)(z)( P( x) F ( y, z) Q( y, z)) 中 的 y 即得到 Skolem 标准范式: ( x) ( z)(P(x)∧F(f(x), z)∧Q(f(x), z)) Skolem 标准型的一般形式是
(x1 )(x2 )...(xn )M ( x1, x2 ,...,xn )
其中,M(x1,x2,…,xn)是一个合取范式,称为 Skolem 标准型的母式。
8
将谓词公式 G 化为 Skolem 标准型的步骤如下: (1)消去谓词公式 G 中的蕴涵(→)和双条件符号() ,以A∨B 代替 A→B,以(A∧ B)∨(A∧B)替换 AB。 (2)减少否定符号()的辖域,使否定符号“”最多只作用到一个谓词上。 (3)重新命名变元名,使所有的变元的名字均不同,并且自由变元及约束变元亦不同。 (4)消去存在量词。这里分两种情况,一种情况是存在量词不出现在全称量词的辖域内,此 时,只要用一个新的个体常量替换该存在量词约束的变元,就可以消去存在量词;另一种情况 是,存在量词位于一个或多个全称量词的辖域内,这时需要用一个 Skolem 函数替换存在量词 而将其消去。
15
例 3.2.1 求子句集 S={T(x)∨Q(z),R(f(y))}的 H 域。 解 此例中没有个体常量,任意指定一个常量 a 作为个体常量;只有一个函数 f(y),有: H0={a} H1={a,f(a)} H2={a,(a),f(f(a))} …… H∞={a,f(a),f(f(a)),f(f(f(a))),…}
最新离散数学第三章消解原理
*第三章消解原理3・1斯柯伦标准形内容提要我们约泄,本章只讨论不含自由变元的谓词公式(也称语句,sentences),所说前束范式均指前束合取范式。
全称量词的消去是简单的。
因为约左只讨论语句,所以可将全称量词全部省去,把由此出现于公式中的“自由变元”均约立为全称量化的变元。
例如A(x)实指VxA(x)0存在量词的消去要复杂得多。
考虑3xA(x)o(1)当A(x)中除x外没有其它自由变元,那么,我们可以像在自然推理系统中所做那样,可引入A(e/x),其中c为一新的个体常元,称c为斯柯伦(Skolem)常元,用A(c/x)代替3xA(x),但这次我们不把A(c/x)看作假设,详见下文。
(2)当A中除x外还有其它自由变元y】,…,yz那么3xA(x, y】,…,yj来自于Vyr- Vy n3xA(x,yi,…,y』,其中"存在的x”本依赖于yi/-\y n的取值。
因此简单地用A(e/x, yi/-\y n) 代替3xA(x, y h-j n)是不适当的,应当反映出x对九…,y n的依赖关系。
为此引入函数符号f,以A(f(yi,…,y』/x, yi,・・・,yn)代替3xA(x, yi/-\y n),它義示:对任意给立的yi,…,yn,均可依对应关系f确左相应的x ・使x,y“…,y n满足A’」这里f是一个未知的确左的函数,因而应当用一个推理中尚未使用过的新函数符号,称为斯柯伦函数」定理3.1 (斯柯伦定理)对任意只含自由变元x, yi,…,yn的公式A(x, yi,…,y) 3xA(x, yi/-\y n)可满足,当且仅当A(f(y h-\y n),儿…,yj可满足。
这里f为一新函数符号:当n = 0 时,f为新常元。
定义3.1设公式A的前束范式为Bo C是利用斯柯伦常元和斯柯伦函数消去B中量词 (称斯柯伦化)后所得的合取范式,那么称C为A的斯柯伦标准形(Skolem normal form)o 以下我们约定:斯柯伦标准形中,乞子句之间没有相同的变元。
离散数学导论第三章消解原理
在自然语言处理中的应用
总结词
消解原理在自然语言处理中用于解决语义歧义和信息抽取。
详细描述
在自然语言处理中,消解原理主要用于解决语义歧义和信息抽取问题。通过消解语义歧 义,可以确定句子中词语的准确含义,提高自然语言处理的准确率。此外,消解原理还 可以用于信息抽取,从大量的文本数据中抽取关键信息,为后续的数据分析和知识挖掘
提供支持。
06
总结与展望
消解原理的总结
消解原理是离散数学中的一种重要理论,主要用于解决逻辑推理和决策问题。它通过将问题分解为更 小的子问题,并利用已知信息来逐步解决这些子问题,最终达到解决原始问题的目的。
消解原理的应用范围广泛,包括人工智能、自然语言处理、计算机科学等领域。它为许多问题提供了有 效的解决方案,如逻辑推理、规划、约束满足问题等。
02
例如,在约束满足问题中,可以 通过改进消解原理来减少搜索空 间的大小,从而更快地找到满足 约束条件的解。
混合消解原理
混合消解原理是指将不同的消解原理结合起来,形成一个新的消解原理,以处理特定的问题或领域。
例如,在电路验证中,可以将约束满足问题和逻辑推理中的消解原理结合起来,形成一个混合消解原 理,以更有效地处理电路验证问题。
05
消解原理的应用案例
在逻辑电路设计中的应用
总结词
详细描述
消解原理在逻辑电路设计中发挥了重要作用, 通过消解矛盾的逻辑表达式,可以优化电路 设计,减少冗余和冲突。
在逻辑电路设计中,消解原理主要用于解决 逻辑表达式的矛盾。通过将矛盾的逻辑表达 式进行消解,可以找到最简化的解决方案, 优化电路设计。消解原理的应用可以减少冗 余的逻辑门,降低电路的复杂度,提高电路 的性能和可靠性。
02
离散数学试题带答案(三)
离散数学试题带答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)} , R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。
《离散数学》第三章集合的基数
本章讨论集合论中较为困难的问题—集 合的基数问题;但只限于对基数作一简 单介绍;如学时较少可不讲本章或对本 章作恰当的删减.
本章主要概念为:集合的等势、有限集与 无限集、可数集与不可数集及较为常见 的集合的基数.
返回首页
1 2020/2/14
第一节 无穷集的概念
本节主要内容: 1.两个集合等势的定义; 2.基数的概念:基数是集合的一种性质,一
3.设A是任意集合,P(A)为A的幂集,则P(A)的基 数大于A的基数.
返回本章首页
4 2020/2/14
本章小结
本章的主要内容有:集合的等势、有限 集与无限集、可数集与不可数集、较为 常见的集合的基数等.集合的基数反映了 集合的元素的多少,它是集合的一种性 质,一种与该集合等势的集合构成的集 合族的共同性质.
种与该集合等势的集合所构成的集合族 的共同性质,即任何两个集合,如果它 们等势,它们便有相同的基数 (Von.Neumann的观点); 3.利用等势的概念来定义有限集与无限集.
返回本章首页
2 2020/2/14
第二节 可数集与不可数集
可数集是无限集中最简单的一种,本节把无 限集区分为可数集与不可数集,主要结论有:
1.任意可数集都有一个与其等势的真子集; 2.任意一个无限集都包含一个可数子集; 3.可数集的任意无限子集是可数集; 4.可数集与有限集的并集是可数集; 5.两个(因而有限个)可数集的并集仍是可数
集; 6.可数个可数集的并集是可数集; 7.两个(因而有限个)可数集合的笛卡尔积仍
然是可数集.
Hale Waihona Puke 返回本章首页返回本章首页
5 2020/2/14
3 2020/2/14
离散数学:第3讲 序偶与笛卡尔积
2020/12/29
序偶与笛卡尔积
25
二元关系举例
例1: R1={<1,2>,<,>,<a,b>} R1是二元关系.
例2: R2={<1,2>,<3,4>,<白菜,小猫>} R2是二元关系.
例3: A={<a,b>,<1,2,3>,a,,1} A不是关系. #
AB={<1,2>},
BA={<2,1>}.
2020/12/29
序偶与笛卡尔积
11
笛卡尔积非结合性
非结合: (AB)C A(BC) (除非 A= B= C=)
反例: A=B=C={1}. (AB)C={<<1,1>,1>}, A(BC)={<1,<1,1>>}.
AB= A=B=等
2020/12/29
2020/12/29
序偶与笛卡尔积
15
消去律
设A,B,C是任意集合, 若C, 则AC BC AB CA CB AB
2020/12/29
序偶与笛卡尔积
16
消去律(证明)
若 C, 则AC BC AB. 证明(续): ()若A=,则AC=BC.
设 A. <x,y>, <x,y>AC xAyC
2020/12/29
序偶与笛卡尔积
6
笛卡尔积(Cartesian product)
笛卡尔积 : 令A和B是任意两个集合,若 序偶的第一个成员是A中的元素,第二个 成员是B中的元素,所有这些序偶组成的 集合称为集合A和B的笛卡尔积或卡氏积, 记作A B。
离散数学第三章集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理
离散数学 第三章 一阶逻辑
在引入特性谓词后, 5. 在引入特性谓词后,使用全称量词与存 在量词符号化的形式是不同的。 在量词符号化的形式是不同的。
例将命题符号化:(1) 每个自然数都是实数. (2) 有的自然数是实数. 解(1) ∀x(N(x) →R(x)) 其中特性谓词N(x):x是自然数 ; R(x):x是实数 (2) ∃x(N(x) ∧R(x)) 其中特性谓词N(x):x是自然数 ; R(x):x是实数
8
例1(续) 续
2 (2) 2 是无理数仅当 3 是有理数 2 是无理数 3 在一阶逻辑中, 是无理数, 在一阶逻辑中 设F(x): x是无理数 G(x): x是有理 是有理 数 F ( 2 ) → G( 3 )
F ( 2 ) → G( 3 ) (3) 如果2>3,则3<4 如果 ,
符号化为
在一阶逻辑中, 在一阶逻辑中 设 F(x,y):x>y,G(x,y):x<y, : , : 符号化为 F(2,3)→G(3,4) →
15
在不同的个体域中, 4. 在不同的个体域中,命题符号化的形式可能不一样 将命题符号化: 凡有理数均可表成分数, 例:将命题符号化: 凡有理数均可表成分数, 个体域是有理数集合. (1) 个体域是有理数集合. (2) 个体域是实数集合 解(1)∀xA(x) 其中A(x):x可表成分数
(2)∀x( R(x)→A(x) ) 其中 R(x):x是有理数, A(x):x可表成分数
18
一阶逻辑中命题符号化( 一阶逻辑中命题符号化(续)
例3 在一阶逻辑中将下面命题符号化 (1) 兔子比乌龟跑得快 (2) 有的兔子比所有的乌龟跑得快 (3)并不是所有的兔子都比乌龟跑得快 ) (4)不存在跑得同样快的两只兔子 )
19
离散数学3、4章
2020/3/28
离散数学
12
双射的逆也是双射
• 显然,若是A到B的双射,则其逆映 射 – 1也是B到A的双射,并且对任意 的x∈A,均有: – 1((x)) = x .
2020/3/28
离散数学
24
抽屉原理(鸽巢原理)
我们知道,若A,B均为有限集,且A与B 之间存在双射,则A和B的元素个数相等,即 A~B。但是:
定理4.1.2 任何有限集均不能和其真子集等势。
• 此定理也称为抽屉原则:若将n+1个物体放入 n个抽屉中,则至少有一个抽屉中放了两个或 两个以上的物体。
第三章 映 射
映射又称为函数,是两个集合 之间一种特殊的二元关系。
本章主要介绍各种典型的映射及 其性质、运算以及它们之间的联 系。
2020/3/28
离散数学
1
§3.1 基本概念
定义3.1.1: 设A,B是两个集合,是A到B的二 元关系,若对A中每个元素a,有唯一的 b∈B, 使得<a,b>∈ ,则称为A到B的映射,记为:
本章将利用“映射”的概念建立集合 间的等势关系,并拓广集合中元素个数 的概念,引进集合的基数的概念,最后 讨论可数集与不可数集。
2020/3/28
离散数学
20
§4.1 等 势
如何比较两个集合中元素的多少呢? 引入等势的概念。
定义4.1.1 设A和B是集合,若存在A到B 的双射,则称A与B等势,记为A ~B 。 (可形象理解为A与B的元素一样多。)
在,于是A~C,故~是传递的。 综上所
离散数学第三章 函数
第三章 函数
二、反函数
1、定义1:设f:AB是双射,则逆关系 f -1:BA
是从B到A的函数,称为 f 的反函数。
记 f -1 :BA。 由定义可知:当函数 f:AB的反函数存在,若 f (x) = y,则f -1 (y) = x 且
f f 1 I A , f 1 f I B
f 0 ( x) x n 1 n f ( x ) f ( f ( x ))
第三章 函数
(2) 定理2: 设f: A→B,则 f。IB=IA。f=f
(3) 定理3:设有函数f:AB,g:BC
① 若f ,g是单射,则f g也是单射。
② 若f ,g是满射,则f g也是满射。
所以 f。g={(x, 4x 2+4x+2)}, g。f={(x, 2x 2+3)}
f。f={(x, 4x+3)}, g。g={(x, x 4+2x 2+2)}
第三章 函数
2、性质:
⑴ 定理1:设有函数f:AB,g:BC,h:
CD,则f ( g h) 和( f g ) h都是函数,且
③ 若f ,g是双射,则f g也是双射。
注:定理3的逆不成立。
第三章 函数
例3:设A={ 1, 2, 3 }, B={ a, b, c, d }, C={ x, y, z }
令 f = {(1, a), (2, b), (3, c)},
g = {(a , x), (b, y), (c, z), ( d, z)}
f ( g h) = ( f g ) h = f g h 证明: f。(g。h)(x) =(g。h) (f (x))=h (g (f (x)) =h((f。g) (x))=(f。g)。h (x)
《离散数学》第3章 集合
P ( A) = {φ , A}
第二节 集合的运算 内容: 内容:集合的运算,文氏图,运算律。 重点: 重点:(1) 掌握集合的运算
A ∪ B, A ∩ B, A − B, ~ A, A ⊕ B
(2) 用文氏图表示集合间的相互 关系和运算, (3) 掌握基本运算律的内容及运用。
一、集合的运算。 集合的运算。 集合 A, B 的并集 A ∪ B, 交集 A ∩ B,相对补集
三 包含排斥定理 设A和 B是两个有限集合,则 A ∪ B = A + B − A ∩ B ,
B 其中 A, B 分别表示 A、的元数.
把包含排斥定理推广到n个集合的情况可用如下定 理表述: 设A1 , A2 ,⋯ A为有限集合,其元数分别为 A , A ,⋯, A ,则 n
1 2 n
A1 ∪ A2 ∪ ⋯ ∪ An
A= B ⇔ A⊆ B∧B⊆ A
5、特殊的集合。 空集 φ 全集 E (或 U )
φ ⊆ A ⊆ E ( A 为任一集合)
例1、选择适当的谓词表示下列集合。 、 (1) 小于5的非负整数集 (2) 奇整数集合
{x | x ∈ N ∧ x < 5} {x | x = 2n + 1 ∧ n ∈ Z }
{ } (8) {a, b} ∈ {a, b, {{a, b}}}
(7) {a, b} ⊆ a, b, {{a, b}}
例3、A, B, C 为集合,若 A ∈ B 且B ∈ C , 、 有可能 A ∈ C 吗,有可能 A ∉ C 吗? 解:两种情形都有可能。 设 A = {a}, B = {{a}} , C = {{a}, {{a}}} , 则 A ∈ B, B ∈ C ,有 A ∈ C 。 又设 A = {a}, B = {{a}} , C = {{{a}}}, 则 A ∈ B, B ∈ C ,但 A ∉ C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题1、偏序集合的哈斯图一定是连通图(错)2、任意一个谓词公式都与一个前束范式等到价。
(对)3、设R 是非空集合A 上的关系,R 在A 上是传递的,当且仅当RR R R ⊆4、若有向图D 是强连通,则D 必为欧拉图。
5、设R 是集合A 上的传递关系,则R 是传递的.6、设A*、B*分别是命题公式A和B的对偶式,若A⇒B,则A*⇒B*7、在推理中:“如果你上课用心听讲,那么你考试及格:你上课不用心听讲,所以你考试不及格”,中的结论是有效的8、A、B为集合,A-B=A 当且仅当B=Φ9、若A、B为集合,当A∪B=A∪C 且A∩B=A∩C时,则B=C11、集合A上的恒等关系,I A 是对称的反对称的.12、可数个可数集的并一定是可数的 13、在推理“如果我参加马拉松赛,那么我很疲劳;但我不疲劳,所以我没有参加比赛中,结论是有效的14、A 、B是非空集合,若{A-B,B-A}是集合,A∪B的一个划分,则A∩B=Φ15、设A,B分别是命题公式A、B的对偶式,若A⇔B,则A⇔B16、R、S是A上的二元关系,若R和S是自反的,则RS 也是自反的17、设A是集合,P(A)是A的幂集,则A⊆P(A)18、偏序集合的哈斯图一定是连通图 19、若R1∙R2是非空集合A上的等价关系,则R1R2也是A上的等价关系20、若R、S是A上的二元系,若R和S是对称的,则RS 也是对称的21、设R、S是集合A上的关系,若R和S是传递的,则R∩S是传递22、设A*是命题公式A的对偶式,则(A*)*=A23、不是自反的关系一定是反自反的 24、集合(0,1)和集合(∞-,0)是等势的。
25、设<A,≤>是偏序集,B ⊆A ,若b ∈B是B 的最小元,则b 是B 的极小元,下界,下确界。
26、若有向图D是欧拉图,则D必是强连通图 27、设<A,≤>是偏序集,B⊆A ,,则a是B 的上确界,且a ∈B ,则a 是B 的最大元。
则a 是B 的极大元、上界、上确界。
28、设<A, ≤>是偏序集,B ⊆A ,若b ∈B 是B 的最大元,b 是B 的极大元,上界,上确界。
29、设R是A上的二元系,若R是对称的,则r(R),t(R)也是对称的30、若图G中恰有两个奇度数结点,则这两个结点是连通的。
31、若集合A上的关系R是对称的,则R的逆关系R-1也是对称的32、若R和S是集合A上的两对称关系,则RS 也是对称的。
33、设R和S是集合A上的关系,R和S是传递的,则R∪S是传递。
34、对于代数系统<R,*>,R是实数集合,*是普通乘法运算,则每个元素均有逆元 35、若R和S是集合A上的两传递关系,则RS 也是传递的。
36、设R 和S 是集合A 上的等价关系,则R ∪S 一定是等介的。
37、设R 、S 是集合A 的关系,由s(R ∪S)=s(R)∪s(S) 38、设R 、S 是集合A 的关系,由s(R ∪S)=r(R)∪r(S)39、任意一个谓词公式都与一个前束范式等价。
40、若无向图中恰有两个度为奇数的结点,则这两个结点必连能。
41、在有向图中,结点间的可达关系是等价关系。
42、若图G 不连通,则G 必连通。
二、选择题1.对任意集合A,B,C 下属正确的是:A .若A ∈B,B ⊆C 则A ∈C2.设A-B=Φ,则有:C.A ⊆B3.设A=则有:C.{{4,5}}⊆A4.设A={a,{a}}下列选项错误的是: B.{a}⊆P(A)5.集合A={1,2,.,10 }上的关系R={<x,y>︱x+y=10,x,y ∈A}则R 有性质: B.对称的 6.设A={a,b,c},B={1,2},f:A→B,则不同的函数个数为:B.32个 7.函数的复合满足:B.结合律 8.,f g为满射,则f g 必是:C. 满射9.若f g 是满射则:C.g 是满射10.Z 是整数集合,f 定义为z →z()2f x x x =-则:A.单射公倍数12.任何无向图中结点间的连通关系是: B.等价1,,D V E >=<>是强连通图,当且仅当:D. D 中有通过美各界的至少一次的回路 三、填空题6.集合A 的基数为m ,则其幂集P(A)的基数为:2m7.一棵树上有两个结点度数为2,一个基点度数为3,三个结点度数为4,度数为1的结点有 9个.8.R 是集合A 上的等价关系则对任一元素a ∈A,由a 形成R 等价类[]R a ={x ︱a ∈A,aRx}四、证明下列各题3.证明:对于任意集合A,B,C ,(A ∩B)∪C=A ∩(B ∪C)的充要条件是C⊆A.证:""⇒x ∀∈C,则x ∈(A ∩B)∪C ⇔x ∈A ∩(B ∪C)⇒x ∈A 即C ⊆A ""⇐若C ⊆A,则(A ∩B)∪C=(A ∪C)∩(B ∪C) = A ∩(B ∪C) ∴结论成立。
5.若A ∩B ≠Φ,证明:(A B)(B A)= (A A)(B B)=(A B)(B A)⨯⨯⨯⨯⨯ 证: (1)<x,y>(A B)(A B)(A )(A )(A)()(A) ()(,)(, )<x,y>()()(A B)(B )= (A A) (B B)x B y B x x B y y B x y A A x y B B A A B B A ∀∈⨯⇔∈∧∈⇔∈∧∈∧∈∧∈⇔<>∈⨯∧<>∈⨯⇔∈⨯⨯∴⨯⨯⨯ (2)同理可证:<x,y>(A B)(A B)(A )(A )(A)()(A) ()(,)(, )<x,y>()()(A B)(B A)= (A B) (B A)x B y B x x B y y B x y A B x y B A A B B A ∀∈⨯⇔∈∧∈⇔∈∧∈∧∈∧∈⇔<>∈⨯∧<>∈⨯⇔∈⨯⨯∴⨯⨯⨯ .6.若A ∩B ≠Φ,证明:(A B)(B C)= (A A)(B B)⨯⨯⨯证:()()<x,y>(A B)(A B)(A )(A )(A)()(A) ()(A)(A) (B)()(,)(, )<x,y>()()(A B)(A B)= (A A) x B y B x x B y y B x y x y B x y A A x y B B A A B B ∀∈⨯⇔∈∧∈⇔∈∨∈∧∈∧∈⇔∈∧∈∨∈∧∈⇔<>∈⨯∧<>∈⨯⇔∈⨯⨯∴⨯⨯ (B B)⨯7.设R.S.T 均为A 上的二次关系,证明()R S T R S R T = 证:x,y A ∀∈,()()(<x,u>R <u,y>)()<x,u>R (<u,y) <u,y>()<x,u>R (<u,y>) (<x,u>,)()<x,u>R (<u,y>) ()(<x,u>,)<x,y>,<x,y>x y R S T u S T u S T u S R u y T u S u R u y T R S x y R T <>⇔∃∈∧∈⇔∃∈∧∈∨∈⇔∃∈∧∈∨∈∧<>∈⇔∃∈∧∈∨∃∈∧<>∈⇔∈∨<>∈⇔ ()()()()R S R T R S T R S R T∈= 即8.设A.B.C 是集合,证明:A B ()-C=(A-C )(B-C ) 证:A B A B CC C ()-C=() =(A )(B ) =(A-C )(B-C )9.A,B 为任意集合,证明: (1)()()()P A P B P A B ⊆(1)()()()P A P B P A B ⊆证:(1)()()(())(())()()()()()()x P A P B x P A x P B x A x B x A B x P A B P A P B P A B ∀∈⇔∈∨∈⇔⊆∨⊆⇔⊆⇔⊆∴⊆(2)()()(())(())()()()()()()x P A P B x P A x P B x A x B x A B x P A B P A P B P A B ∀∈⇔∈∧∈⇔⊆∧⊆⇔⊆⇔⊆∴⊆11.设R 是A 上的关系,证明R 是对称的1R R -=证:12.证明:(1)若R 是自反的则s(R) t(R)也是自反的(2)若R 是对称的则r(R),t(R)也是对称的(3) 若R 是传递的则r(R) 也是传递的证:(1)若R 是自反的,则(),()(),()A A A I R R s R R t R I s R I t R ⊆⊆⊆∴⊆⊆又即s(R),t(R)是自反的(2) (1)若R 是对称的()1111 ()()()R R R R r R r R ----==== -1A A A 即又r(R)=R I I I 即对称(3)R 传递⇔t(R)=R 要证明r(R)传递只需证tr(R)=r(R)11)() ()=r(R)ii i i R R R R t R R ∞=∞===== A A A A A 又t()=t(I I I I I五、应用题1.某班学生学习PASCAL 语言.C 语言.COBOL 语言的学生分别是110人,98人,75人,同时学习PASCAL 语言和C 语言的有35人,同时学习PASCAL 语言和COBOL 语言的有50人,三门都学的有6人,同时学习C 语言和COBOL 语言的有19人,求同有多少学生。
解:设A.B.C 分别是选学PASCAL. C 语言和COBOL 的人数的集合。
则A=110,B=98,C=75且A B =35,B C=19 A C=50,A B C=6则易求A B C=185人2.设学校有58个学生爱好体育运动,其中15人参加篮球队,20人组成排球队,38人组成足球队,其中有3人同时参加三个球队,求同时参加两个球队的学生共有多少人.解:设A.B.C 是组成篮球.排球.足球队的人数的集合。
则A=15,B=20,C=38A B C=3,A B C=58同时参加两个球队的人数为:A B C A B C A B C A B C +++ =A B A C B C ++2A B C-=A B C A B C A B C ++--=15+20+38-58-3=12人 六、简答题。
1.设全集E={1,2...,12},A={1,3,5,7,9,11},B={2,3,5,7,11},C={2,3,6,12},D={2,4,8}求A B,A C,A-B,A⊕D解:A B ={1,2,3,5,7,9,11}A C={3}A-B=A ⊕D=2.设A={a,b,c}举出A 上的关系R 的例子,使它具有如下属性:(1)R 既是对陈又是反对称的 (2)R 既不是对称又不是反对称 (3)R 既不是自反也不是反自反 解:(1)(2) (3)3.集合A={1,2,3,4,5,6},R={,,x y x y A <>∈,x 整除y} (1)确定R 是A 上的偏序关系,并画出哈斯图。