数学必修四1-1-2

合集下载

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

故 tan ������
1 sin2������
-1
=
tan
������
1-sin2������ sin2������
=
tan
������
cos������ sin������
=
sin������ cos������
·-scions������������
=
−1.
(2)证法一:sin2α+cos2α=1⇒1-cos2α=sin2α
sin������ 1 + cos������ ∴ 1-cos������ = sin������ .
题型一 题型二 题型三 题型四 题型五
题型四 已知 tan α 的值求其他代数式的值
【例4】 已知tan α=7,求下列各式的值.
(1)
sin������+cos������ 2sin������-cos������
则 sin α=−
1-cos2 ������
=

15 17
,
tan
������
=
sin������ cos������
=
185.
反思已知cos α(或sin α)求tan α时,先利用平方关系求出sin α(或 cos α),再利用商关系求出tan α.注意在求sin α(或cos α)时,往往需分 类讨论α所在的象限.
证明三角恒等式就是通过转化和消去等式两边的差异来促成统 一的过程,证明的方法在形式上显得较为灵活.常用的有以下几种:
(1)直接法——从等式的一边开始直接化为等式的另一边,常从比 较复杂的一边开始化简到另一边,其依据是相等关系的传递性.
(2)综合法——由一个已知成立的等式(如公式等)恒等变形得到 所要证明的等式,其依据是等价转化的思想.

(人教B版)高中数学必修四全册同步ppt课件:1-3-1-2

(人教B版)高中数学必修四全册同步ppt课件:1-3-1-2

(2)最小正周期的定义 对于一个 周期函数f(x),如果在它的所有周期中存在一个 最小的正数 ,那么这个最小正数 就叫做它的最小正周期.
2.正弦函数的图象和性质 函数
y=sinx
图象
定义域 值域
奇偶性 周期
x∈R -1≤y≤1
奇函数 2π
函数
y=sinx
单调性
在每一个闭区间 -π2+2kπ,2π+2kπ (k∈Z)上是 增函数; 在每一个闭区间 π2+2kπ,32π+2kπ(k∈Z )上是 减函数
(2)对于函数y=Asin(ωx+φ)(A>0,ω<0),可先用诱导公式
转化为y=-Asin(-ωx-φ),则y=-Asin(-ωx-φ)的增(减)区
间即为函数y=Asin(ωx+φ)的减(增)区间.
课堂互动探究
剖析归纳 触类旁通
典例剖析
例1 求下列函数的值域. (1)y=3-2sin2x(x∈R); (2)y=2sin2x+3π-6π≤x≤π6; (3)y=2cos2x+5sinx-43π≤x≤56π. 剖析 利用正弦函数的值域求解.
x+π2

sinx,因此2π不是sinx的周期.
(2)“f(x+T)=f(x)”是定义域内的恒等式,即对定义域内 的每一个值都成立,T是非零常数,周期T是使函数值重复出现 的自变量x的增加值.周期函数的周期不止一个,若T是周期, 则kT(k∈N+)一定也是周期.
(3)对于周期函数来说,如果所有的周期中存在着一个最 小的正数,就称它为最小正周期,今后提到的三角函数的周 期,如未特别指明,一般都是指它的最小正周期.
答Байду номын сангаас C
4.下列大小关系正确的是( ) A.sin23π<sin43π B.sin1<sin3 C.sin116π<sin43π D.sin-193π<sin-256π

人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语在年轻人的颈项上,没有什么东西能比事业心这颗灿烂的宝珠更迷人的了。

——哈菲兹学习目标1.理解同角三角函数的基本关系.2.会利用同角三角函数的基本关系化简、求值、证明恒等式.学习重点同角三角函数的基本关系式的推导,会利用同角三角函数的基本关系式进行三角函数的化简与证明学习难点会用同角三角函数的基本关系式进行三角函数的化简与证明自主学习同角三角函数的基本关系平方关系: .商的关系:.tanα=预习评价1.已知θ是第一象限角且,则cosθ=.2.化简:= .3.已知3sinα+cosα=0,则t a n = .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.同角三角函数基本关系设角是一个任意象限角,点P(x,y)为角α终边上任意一点,它与原点的距离为r(r= >0),那么:,请根据三角函数的定义思考下面问题:(1)从以上三角函数的定义,试计算sin2α+cos2α与的值,并根据你计算的结果,写出sin ,cos ,t a n 之间的关系式.(2)同角三角函数的两个基本关系成立的条件各是什么?2.利用同角三角函数关系可以解决哪些问题?教师点拨对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将换成或2α也成立,如.(3)商的关系中要注意公式中的隐含条件,cos ≠0,即交流展示——利用基本关系求值1.已知( )A. B. C. D.2.已知,则等于A. B. C. D.3.______.4.已知是第二象限角,,则变式训练1.(2011·山东省潍坊市月考)已知cos α-sin α=-,则sin αcos α的值为()A. B.± C. D.±2.已知tan α=-2,且<α<π,则cos α+sin α=.交流展示——三角函数式的化简5.若,则sinαcosα=A. B. C. D.6.当角α的终边在直线3x+4y=0上时,sin α+cos α=B. C. D.±7.(2012·聊城测试)已知tan α,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<π,则cos α+sin α=.变式训练已知,求(1);(2)的值.交流展示——三角恒等式的证明8.求证:.9.证明:(1-tan4A)cos2A+tan2A=1.变式训练求证:学习小结1.三角函数求值的常用方法若已知tan =m,求其他三角函数值,其方法是解方程组求出sin a和cos a的值.若已知tan =m,求形如的值,其方法是将分子、分母同除以co s a(或cos2a)转化为tan 的代数式,再求值.形如a sin2 +bsin •cos +c•cos2 通常把分母看作1,然后用sin2 +cos2 代换,分子分母同除以cos2 再求解.提醒:在应用平方关系求sin 或cos 时,函数值的正、负是由角的终边所在的象限决定的,切不可不加分析,凭想象乱写结果.2.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα•cosα,cosα= .3.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.4.证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.当堂检测1.已知A为三角形的一个内角,且,则cos A−sin A的值为A. B. C. D.2.化简(1+tan2α)·cos2α=__________.3.已知在△ABC中,.(1)求sin A·cos A的值.(2)判断△ABC是锐角三角形还是钝角三角形.(3)求tan A的值.知识拓展在中,,求的值.详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】(1)sin2α+cos2α=1(2)【预习评价】1.2.cos20°3.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)sin2α+co s2α= + = =1,由以上计算结果可得出以下结论;sin2α+cos2α=1及tanα= .(2)对于平方关系只需同角即可;对于商的关系第一保证是同角,第二保证α≠kπ+ (k∈Z).2.(1)求值:已知一个角的三角函数值,求这个角的其他三角函数的值;(2)化简三角函数式;(3)证明三角恒等式.【交流展示——利用基本关系求值】1.C.【备注】对于与之间的关系,通过平方可以表达出来.2.A,结合可得,所以3.1【解析】本题主要考查同角三角函数基本关系.原式.4.【解析】本题考查同角三角函数基本关系式的应用.利用同角三角函数基本关系式,已知一个角的一个三角函数值可求这个角的其它三角函数值.,又,∴【变式训练】1.A【解析】由已知得(cos α-sin α)2=sin2α+cos2α-2sin αcos α=1-2sin αcos α=,解得sin αcos α=,故选A.2.【解析】本题主要考查了三角函数的概念,意在考查考生对基本概念的理解和应用能力由tan α=-2,得=-2,又sin2α+cos2α=1,且<α<π,解得sin α=,cos α=-,则sin α+cos α==.【交流展示——三角函数式的化简】5.B【解析】由,得,即t a nα.故选B.6.D【解析】在角α的终边上取点P(4t,-3t)(t≠0),则|OP|=5|t|.根据任意角的三角函数的定义,当t>0时,sin α==-,cos α==,sin α+cos α=;当t<0时,sin α==,cos α==-,sin α+cos α=-. 7.-【解析】∵tan α·=k2-3=1,∴k=±2,而3π<α<π,则tan α+=k=2,得tan α=1,则sin α=cos α=-,∴cos α+sin α=-.【变式训练】(1);(2).的一次或二次齐次式,所以可将分子和分母同除以或,然后将代入求解即可.【备注】注意到的应用.【交流展示——三角恒等式的证明】8.证明: 因为1cos sin sin 1cos x x x x+--(1cos )(1cos )sin sin sin (1cos )x x x x x x +--=- 22221cos sin sin sin 0sin (1cos )sin (1cos )x x x xx x x x ---===--,所以1cos sin =sin 1cos x x x x+-. 9.∵左边=·cos 2A+=+=+==1=右边,∴原等式成立. 【变式训练】右边左边.【解析】通过“切割化弦”将右边分子、分母中的正切化为再进行通分求解.【备注】在三角恒等式的证明中化异为同是基本思想,“1”的代换要灵活运用. 【当堂检测】 1.D【解析】由A 为三角形的内角且,可知,,∴cosA −,.故选D. 2.13.(1)由1sin cos 5A A +=,两边平方,得112sin cos 25A A +⋅=,所以12sin cos 25A A ⋅=-. (2)由(1)得12sin cos 025A A ⋅=-<.又0A π<<,所以cos 0A <, 所以A 为钝角.所以ABC ∆是钝角三角形.(3)因为12sin cos 25A A ⋅=-, 所以22449(sin cos )12sin cos 12525A A A A -=-⋅=+=, 又sin 0,cos 0A A ><,所以sin cos 0A A ->,所以7sin cos 5A A -=. 又1sin cos 5A A +=,所以43sin ,cos 55A A ==-. 所以4sin 45tan 3cos 35A A A ===--. 【知识拓展】解:∵,①∴,即,∴.∵,∴,.∴.∵,∴.②①+②,得.①−②,得.∴.【解析】本题主要考查同角三角函数基本关系以及三角形中函数符号的判定。

高中数学 1-1-2弧度制和弧度制与角度制的换算课件 新人教B版必修4

高中数学 1-1-2弧度制和弧度制与角度制的换算课件 新人教B版必修4

(2010·新余市高一下学期期末测试)在单位圆中,面积
为1的扇形所对圆心角的弧度数为
()
A.1
B.2
C.3
D.4
[答案] B
[解析] 设扇形的弧长为l,由题意,
得 S=12lR=12l×1=1,∴l=2,
∴扇形所对圆心角的弧度数为Rl =21=2.
[例4] 已知扇形的周长为20cm,当扇形的圆心角为多 大时,它有最大面积?
[分析] 设扇形的半径是 r,弧长是 l,则扇形面积可 表示为 S=12lr,l 与 r 之间还要满足周长为 20,即 l+2r= 20,所以 l=20-2r,这样 S 就能表示成关于 r 的二次函数, 再利用二次函数的性质求最值即可.
[解析] 设扇形的半径是 r,弧长是 l,由已知条件可 知:l+2r=20,即 l=20-2r.由 0<l<2πr,得 0<20-2r<2πr, ∴π1+01<r<10.
[点评] 用弧度表示的与角α终边相同的角的一般形式 为:β=2kπ+α(k∈Z).这些角所组成的集合为{β|β=2kπ+ α,k∈Z}.
用弧度制分别写出第一、二、三、四象限角的集合. [解析] 第一象限角的集合:
S1=α2kπ<α<π2+2kπ,k∈Z

第二象限角的集合:
S2=απ2+2kπ<α<π+2kπ,k∈Z
rad≈0.01745rad,
1rad= (18π0)°≈57.3°=57°18′.
3.在弧度制下,弧长公式为 l=θr,扇形面积公式为
S=
1 2lr .
重点:弧度的概念,角度与弧度的换算,弧长公式. 难点:弧度概念的理解及角度与弧度的换算和弧度制 下弧长与扇形面积公式. 1.关于弧度的理解,主要明确以下几点: (1)和角度制对比,弧度制是以“弧度”为单位来度量 角的单位制,而角度制是以“度”为单位来度量角的单位 制. (2)根据圆心角定义,对于任何一个圆心角α,所对弧 长与半径的比是一个仅与角α的大小有关的常数.因此,弧 长等于半径的弧所对的圆心角的大小并不随半径变化而变 化,而是一个大小确定的角,可以取为度量角的标准.

高中数学 必修四 课件:1-2-0-1 任意角的三角函数的定义

高中数学  必修四 课件:1-2-0-1 任意角的三角函数的定义
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[小结]该组公式说明:终边相同的角的同名三角函数值相 等;如果给定一个角,它的三角函数值是唯一确定的(不存在 者除外),反过来,如果给定一个三角函数值,却有无数多个 角与之对应.
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[小结]正弦、余弦和正切函数在各象限的符号可用以下口 诀记忆:
“一全正,二正弦,三正切,四余弦”. 其含义是在第一象限各三角函数值全为正,在第二象限 只有正弦值为正,在第三象限只有正切值为正,在第四象限 只有余弦值为正.
第一章 1.2 第1课时
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
(1)判断下列各式的符号.
①sin3·cos4·tan5;
②α 是第二象限角,sinα·cosα.
(2)若 cosθ<0 且 sinθ>0,则θ2是第(
A.一
B.三
C.一或三
D.任意象限角
)象限角.
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
已知α是第三象限角,设sinαcosα=m,则有( )
A.m>0
B.m=0
C.m<0
D.m的符号不确定
[答案] A
第一章 1.2 第1课时
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
3.公式一(k∈Z) sin(α+2kπ)= sinα , cos(α+2kπ)= cosα , tan(α+2kπ)= tanα .

人教版高中数学必修四第一章1-4-2正弦函数余弦函数的性质(一)《导学案》

人教版高中数学必修四第一章1-4-2正弦函数余弦函数的性质(一)《导学案》

第一章 §1.4.2.1 正余弦函数的性质【学习目标】1.了解周期函数及最小正周期的概念.2.会求一些简单三角函数的周期.【学习重点】理解周期函数的意义会求周期函数的周期【基础知识】函数 x x k y sin )2sin(=+=π,说明当自变量x 的值增加π2的整数倍时,函数的值重复出现,数学上用周期来刻画这一变化规律.1.周期函数定义:对于函数f (x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x+T)=f (x),那么函数f (x)就叫做周期函数,非零常数T 叫做这个函数的周期.问题:(1)对于函数sin y x =,x R ∈有2sin()sin 636πππ+=,能否说23π是它的周期?(2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠)(3)若函数()f x 的周期为T ,则kT ,*k Z ∈也是()f x 的周期吗?为什么? (是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+)2.一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈(其中,,A ωϕ 为常数,且0A ≠)的周期2||T πω= 说明:①周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界;②“每一个值”只要有一个反例,则f (x)就不为周期函数(如f (x 0+t)≠f (x 0)) ③T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f(x)的最小正周期(有些周期函数没有最小正周期)y=sinx, y=cosx 的最小正周期为2π (一般称为周期)从图象上可以看出sin y x =,x R ∈;cos y x =,x R ∈的最小正周期为2π;判断:是不是所有的周期函数都有最小正周期? (()f x c =没有最小正周期)3.求周期的方法:(1)公式法:一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈(其中,,A ωϕ 为常数,且0A ≠)的周期2||T πω= (2)定义法:f (x+T)=f (x)(3)图像法:如果函数的图像有一定的变化规律,在某一范围内函数图像重复出现,并且图像一方(左或者右)无限延伸.|sinx |=y 或者|cosx |=y .(4)性质法:你能推出下列函数的周期吗?①)()(x f x f -=+α k x f x f +-=+)()(α(其中k 为非零常数)②)()(x f k x f ±=+α(其中k 为非零常数) ③)(1)(1)(x f x f x f +-=+α, )(1)(1)(x f x f x f -+=+α ④)2()1()(---=x f x f x f⑤)(x f 关于a x =和b x =对称⑥)(x f 关于)0,(a 和)0,(b 对称⑦)(x f 关于a x =和)0,(b 对称【例题讲解】例1 求下列三角函数的周期: ①x y cos 3= ②x y 2sin = ③12sin()26y x π=-,x R ∈.例2 求下列三角函数的周期:①y=sin(-x+3π);② y=cos (-2x );③y=3sin(2x +5π).例3 求下列函数的周期: ①y=|sinx|;②y=|cosx|.【达标检测】1、设0≠a ,则函数)3sin(+=ax y 的最小正周期为( )A 、a πB 、||a πC 、a π2 D 、||2a π2、函数1)34cos(2)(-+=πkxx f 的周期不大于2,则正整数k 的最小值是()A 、13B 、12C 、11D 、103、求下列函数的最小正周期:(1)=-=T x y ),23sin(ππ . (2)=+=T x y ),62cos(ππ .4、已知函数)3sin(2πω+=x y 的最小正周期为3π,则=ω . 5、求函数的周期: (1)x y cos 21=周期为: . (2)43sin x y =周期为: . (3)x y 4cos 2=周期为: .(4)x y 2sin 43=周期为: . 6、cosx sinx y +=是周期函数吗?如果是,则周期是多少?7、函数)sin()(x x f ω=)0(>w 在[0,4]与x 轴有9个交点,求ω的取值范围.【问题与收获】参考答案:例1: ① π2 ② π ③ π4例2: ① π2 ② π ③ π4例3: ① π ② π达标检测:1、D 2、A 3、π6 ,1 4、 6±5、 π2,38π, 2π, π 6、是周期函数,周期T=2π,k 为正整数,最小正周期为2π. f (x+2π)=|sin(x+2π)|+|cos(x+2π)|=|cos(x)|+|-sin(x)|=|sin(x)|+|cos(x)|=f(x)。

高一数学必修3课件:1-1-2-3 循环结构、程序框图的画法

高一数学必修3课件:1-1-2-3 循环结构、程序框图的画法

[思路分析] i=1,s=2; s=2-1=1, i=1+2=3; s=1-2=-2,i=3+2=5; s=-2-5=-7,i=5+2=7,则判断框内应填 “i<6?”,故选D.
[正解] D
1.在一个算法中,如果出现反复执行某一处理步骤的情 况,最好采用( )
A.顺序结构 B.条件结构 C.循环结构 D.条件结构或循环结构
[解析] 成绩不低于60分时输出“及格”,即x≥60时满 足条件,故框1填“是”,框2填“否”.
3.如下图是某一函数的求值流程图,则满足流程图的 函数解析式为________.
[答案]f(x)=|2x-1|-2
[解析]程序框图判断框中对“x>
1 2
”的判断表示f(x)为分
段函数.
当x>12时,f(x)=2x-3=2x-1-2;
[破疑点] 对循环结构的理解: ①循环结构中必须包含条件结构,以保证在适当的时候 终止循环. ②循环结构内不存在无终止的循环. ③循环结构实质上是判断和处理的结合,可以先判断, 再处理,此时是当型循环结构;也可以先处理再判断,此时 是直到型循环结构.
④循环结构中常量的几个变量: 计数变量:即计数器,用来记录执行循环体的次数,如i =i+1,n=n+1. 累加变量:即累加器,用来计算数据之和,如S=S+i. 累乘变量:即累乘器,用来计算数据之积,如P=P*i. ⑤在程序框图中,一般要根据实际情况先给这些变量赋 初始值.一般情况下,计数变量的初始值为1,累加变量的 初始值为0,累乘变量的初始值为1.
第一章 算法初步
1.1 算法与程序框图 1.1.2 程序框图与算法的基本逻辑结构 第3课时 循环结构、程序框图的画法
温故知新 1.下列问题的算法宜用条件结构表示的是( ) A.求点P(-1,3)到直线3x-2y+1=0的距离 B.由直角三角形的两条直角边求斜边 C.解关于x的方程ax+b=0 D.计算100个数的平均数 [答案] C

人教B版数学必修四讲义:第1章 1.1 1.1.2 弧度制和弧度制与角度制的换算 Word版含答案

人教B版数学必修四讲义:第1章 1.1 1.1.2 弧度制和弧度制与角度制的换算 Word版含答案

1.1.2 弧度制和弧度制与角度制的换算1.角度制与弧度制的定义(1)角度制:用度作单位来度量角的制度叫做角度制.角度制规定60分等于1度,60秒等于1分.(2)弧度制:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1 rad.以弧度为单位来度量角的制度叫做弧度制.2.角的弧度数的计算在半径为r 的圆中,弧长为l 的弧所对圆心角为α rad ,则α=lr . 3.角度与弧度的互化4.一些特殊角与弧度数的对应关系思考1:某同学表示与30°角终边相同的角的集合时写成S ={α|α=2k π+30°,k ∈Z },这种表示正确吗?为什么?[提示] 这种表示不正确,同一个式子中,角度、弧度不能混用,否则产生混乱,正确的表示方法应为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=2k π+π6,k ∈Z或{α|α=k ·360°+30°,k ∈Z }. 5.扇形的弧长与面积公式设扇形的半径为r ,弧长为l ,α为其圆心角,则思考2:在弧度制下的扇形面积公式S =12lr 可类比哪种图形的面积公式加以记忆?[提示] 此公式可类比三角形的面积公式来记忆.1.1 080°等于( ) A .1 080 B .π10 C .3π10D .6πD [1 080°=180°×6,所以1 080°化为弧度是6π.] 2.与角23π终边相同的角是( ) A .113πB .2k π-23π(k ∈Z ) C .2k π-103π(k ∈Z )D .(2k +1)π+23π(k ∈Z )C[选项A中11π3=2π+53π,与角53π终边相同,故A项错;2kπ-23π,k∈Z,当k=1时,得[0,2π)之间的角为43π,故与43π有相同的终边,B项错;2kπ-103π,k∈Z,当k=2时,得[0,2π)之间的角为23π,与23π有相同的终边,故C项对;(2k+1)π+23π,k∈Z,当k=0时,得[0,2π)之间的角为53π,故D项错.]3.圆心角为π3弧度,半径为6的扇形的面积为________.6π[扇形的面积为12×62×π3=6π.]A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad的角是周角的12πC.1 rad的角比1°的角要大D.用角度制和弧度制度量角,都与圆的半径有关[思路探究]由题目可获取以下主要信息:各选项中均涉及到角度与弧度,解答本题可从角度和弧度的定义着手.D[根据角度和弧度的定义,可知无论是角度制还是弧度制,角的大小与圆的半径长短无关,而是与弧长与半径的比值有关,所以D项是假命题,A、B、C 项均为真命题.]弧度制与角度制的区别与联系1.下列各说法中,错误的说法是( ) A .半圆所对的圆心角是π rad B .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度 [答案] D【例2】 设角α1=-570°,α2=750°,β1=35π,β2=-73π. (1)将α1,α2用弧度制表示出来,并指出它们各自所在的象限;(2)将β1,β2用角度制表示出来,并在-720°~0°之间找出与它们终边相同的所有角.[思路探究] 由题目可获取以下主要信息:(1)用角度制给出的两个角-570°,750°,用弧度制给出的两个角35π,-73π; (2)终边相同的角的表示.解答本题(1)可先将-570°,750°化为弧度角再将其写成2k π+α(k ∈Z,0≤α<2π)的形式,解答(2)可先将β1、β2用角度制表示,再将其写成β+k ·360°(k ∈Z )的形式.[解] (1)要确定角α所在的象限,只要把α表示为α=2k π+α0(k ∈Z,0≤α0<2π)的形式,由α0所在象限即可判定出α所在的象限.α1=-570°=-196π=-4π+56π, α2=750°=256π=4π+π6.∴α1在第二象限,α2在第一象限. (2)β1=3π5=108°,设θ=β1+k ·360°(k ∈Z ), 由-720°≤θ<0°,得-720°≤108°+k ·360°<0°, ∴k =-2或k =-1,∴在-720°~0°间与β1有相同终边的角是-612°和-252°. 同理β2=-420°且在-720°~0°间与β2有相同终边的角是-60°.角度制与弧度制的转换中的注意点(1)在进行角度与弧度的换算时,抓住关系式π rad =180°是关键.由它可以得:度数×π180=弧度数,弧度数×⎝ ⎛⎭⎪⎫180π°=度数. (2)特殊角的弧度数与度数对应值今后常用,应该熟记.(3)在同一个式子中,角度与弧度不能混合用,必须保持单位统一,如α=2k π+30°,k ∈Z 是不正确的写法.(4)判断角α终边所在的象限时,若α[-2π,2π],应首先把α表示成α=2k π+β,β∈[-2π,2π]的形式,然后利用角β终边所在的象限来确定角α终边所在的象限.2.用弧度表示终边落在如图所示阴影部分内(不包括边界)的角θ的集合.[解] 因为30°=π6 rad,210°=7π6 rad ,这两个角的终边所在的直线相同,因为终边在直线AB 上的角为α=k π+π6,k ∈Z ,而终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z.1.用公式|α|=lr 求圆心角时,应注意什么问题?[提示] 应注意结果是圆心角的绝对值,具体应用时既要注意其大小,又要注意其正负.2.在使用弧度制下的弧长公式及面积公式时,若已知的角是以“度”为单位,需注意什么问题?[提示] 若已知的角是以“度”为单位,则必须先把它化成弧度后再计算,否则结果出错.【例3】 (1)设扇形的周长为8 cm ,面积为4 cm 2,则扇形的圆心角的弧度数是( )A .1 radB .2 radC .3 radD .4 rad(2)已知扇形的周长为20 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?[思路探究] (1)可由扇形周长和面积建立方程组,通过解方程组求得;(2)可通过建立扇形面积的目标函数来求解.(1)B [设扇形半径为r ,弧长为l ,由题意得⎩⎨⎧2r +l =8,12l ·r =4,解得⎩⎪⎨⎪⎧l =4,r =2,则圆心角α=lr =2 rad.](2)解:设扇形的半径为r ,弧长为l ,面积为S .则l =20-2r ,∴S =12lr =12(20-2r )·r =-r 2+10r =-(r -5)2+25(0<r <10). ∴当半径r =5 cm 时,扇形的面积最大,为25 cm 2. 此时α=l r =20-2×55=2 rad.∴当它的半径为5 cm ,圆心角为2 rad 时,扇形面积最大,最大值为25 cm 2.(变条件)弧度制下解决扇形相关问题的步骤:(1)明确弧长公式和扇形的面积公式:l =|α|r ,S =12αr 2和S =12lr ;(这里α必须是弧度制下的角)(2)分析题目的已知量和待求量,灵活选择公式; (3)根据条件列方程(组)或建立目标函数求解.(教师用书独具)1.释疑弧长公式及扇形的面积公式(1)公式中共四个量分别为α,l ,r ,S ,由其中的两个量可以求出另外的两个量,即知二求二.(2)运用弧度制下的弧长公式及扇形的面积公式明显比角度制下的公式简单得多,但要注意它的前提是α为弧度制.(3)在运用公式时,还应熟练地掌握这两个公式的变形运用: ①l =α·r ,α=l r ,r =l α;②S =12αr 2,α=2Sr 2. 2.角度制与弧度制的比较1.把56°15′化为弧度是( ) A.5π8 B.5π4 C.5π6D.5π16D[56°15′=56.25°=2254×π180=5π16.]2.在半径为10的圆中,240°的圆心角所对弧长为()A.403π B.203πC.2003π D.4003πA[240°=240×π180rad=43π rad,∴弧长l=α·r=43π×10=403π,选A.]3.将-1 485°化成2kπ+α(0≤α<2π,k∈Z)的形式为________.-10π+74π[由-1 485°=-5×360°+315°,所以-1 485°可以表示为-10π+74π.]4.一个扇形的面积为1,周长为4,求该扇形圆心角的弧度数.[解]设扇形的半径为r,弧长为l,圆心角为α,则2r+l=4. ①由扇形的面积公式S=12lr,得12lr=1. ②由①②得r=1,l=2,∴α=lr=2 rad.∴扇形的圆心角为2 rad.。

人教A版高中数学必修四第一章:1.1.2弧度制课件

人教A版高中数学必修四第一章:1.1.2弧度制课件
5
(2) 112º30′=112.5× 180 = 8 .
“角化弧”时, 将α乘以 ;
180
2024/11/3
例2. 把
8
5
化成角度。
解:1rad=
(180 )
8 8 (180) 55
288
“弧化角”时,将α乘以
180;0
2024/11/3
填定下列特殊角的度数与弧度数的对应表
角 度
0 30
2024/11/3
复习回顾:正角:射线按逆时针方向旋
1.任意角
转形成的角 负角:射线按顺时针方向
的概念 旋转形成的角
零角:射线不作旋转形成的角
1)把角的顶点放在原点 2.象限角 2)始边重合于X轴的非负半轴
终边落在第几象限就是第几象限角
3 . 终边与 角a相同的角
2024/11/3 S={β|β=α+k·360°,k∈Z}
2024/11/3
证明:由公式 =得rl l=αR
而圆心角为n°的扇形的弧长公式和面积公
式分别是 l n R , S n R2
180
360
R nR 得: n 180 n
180
180
代入面积公式,得 S 1 R2 S 1 lR
2
2
2024/11/第5题做在书上
2024/11/3
P5练习1、2、3、4、5
角度制
在平面几何中研究角的度量,当 时是用度做单位来度量角,如下图:
1°的角
O
2024/11/3
在角度制下,当把两个带着度、分、秒 各单位的角相加、相减时,由于运算进制非 十进制,总给我们带来不少困难.那么我们 能否重新选择角单位,使在该单位制下两角 的加、减运算与常规的十进制加减法一样去 做呢?

高中数学人教B版必修二同步教案:1-1-2常见四棱柱的分类

高中数学人教B版必修二同步教案:1-1-2常见四棱柱的分类

人教B版数学必修2:常见四棱柱的分类
[适用章节]
数学②中1-1-2的2棱柱
[使用目的]
使学生掌握常见四棱柱的分类和定义,并通过对动态直观图的观察能画出这些四棱柱在各种位置的直观图。

[操作说明]
1.使用“慢显”、“快显”按钮可以自动分步显示分类系统表。

2.拖动红色三角形标尺可以根据需要逐步显示分类系统表。

3.每一类四棱柱相应的按钮“转□”、“闪□”可以使此类四棱柱的直观图转动或闪动它的主要特征。

按钮“斜”、“直”可以转化此类四棱柱的斜、直两种情况。

完全显示时如下图:
图2107
按钮“全动”、“还原”可以使直观图一起转动或位置还原。

按钮“关闭”用来使全图还原。

第1页共1页。

新人教A版高一数学必修四第一章 三角函数1.1.2弧度制

新人教A版高一数学必修四第一章 三角函数1.1.2弧度制

[归纳升华] 角度与弧度互化技巧
在进行角度与弧度的换算时,抓住关系式π rad=180°是关键,由它可以得 到:度数×1π80=弧度数,弧度数×1π80°=度数.
1.将下列角度与弧度进行互化: (1)5611π;(2)-71π2 rad;(3)10°;(4)-855°.
解析: (1)5611π=5611×180°=15 330°;
2.5 弧度的角的终边所在的象限为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析: 因为32π<5<2π,因此 5 弧度的角的终边在第四象限.
答案: D
3.扇形圆心角为 216°,弧长为 30π,则扇形半径为________.
解析: 216°=216×1π80=6π5 ,l=α·r=6π5 r=30π,∴r=25. 答案: 25
(3)如图所示,扇形 AOB 的面积是 4 cm2,它的周长是 10 cm,求扇形的圆心 角 α 的弧度数及弦 AB 的长.
[边听边记] (1)由公式|α|=rl,可知圆的半径变为原来的 2 倍,弧长也变为原 来的 2 倍时,圆心角大小不变;但扇形面积 S=12lr,故面积变为原来的 4 倍.
(2)设扇形的弧长为 l,半径为 r,则 l+2r=40,则 S=12lr=12(40-2r)r=20r -r2,所以 r=10 时,扇形面积最大,此时 l=40-2r=20,圆心角的弧度数 α=rl =2100=2.
π (2)如图,330°角的终边与-30°角的终边相同,将-30°化为弧度,即- 6 ,
而 75°=75×1π80=51π2 ,
∴终边落在阴影部分内(不包括边界)的角的集合为
θ|
2kπ-π6 <θ<2kπ+51π2 ,k∈Z.

高中数学必修 第四章 数 列-课件 第1课时 等差数列前n项和公式的推导及简单应用

高中数学必修 第四章 数 列-课件 第1课时 等差数列前n项和公式的推导及简单应用

【题型探究】
题型一 等差数列前 n 项和的基本运算——师生共研 例 1 在等差数列{an}中, (1)已知 a1=56,an=-32,Sn=-5,求 n 和 d; (2)已知 a1=4,S8=172,求 a8 和 d. (3)已知 d=2,an=11,Sn=35,求 a1 和 n.
解:(1)由题意得,Sn=na1+ 2 an=n56- 2 32=-5,解得 n=15. 又 a15=56+(15-1)d=-32,∴d=-16.∴n=15,d=-16. (2)由已知得 S8=8a12+a8=84+2 a8=172,解得 a8=39, 又∵a8=4+(8-1)d=39,∴d=5,∴a8=39,d=5.
跟踪训练 2 (1)设等差数列{an}的前 n 项和为 Sn,若 S4=8,S8=20,
2.若 S 奇表示奇数项的和,S 偶表示偶数项的和,公差为 d, ①当项数为偶数 2n 时,S 偶-S 奇=___n_d____,SS奇偶=___a_an+_n1___;
②当项数为奇数 2n-1 时,S 奇-S 偶=_____a_n______, SS奇偶=____n_-_n_1_____,S2n-1=_(_2_n_-__1_)_an.
例 2 (1)等差数列前 3 项的和为 30,前 6 项的和为 100,
则它的前 9 项的和为( )
A.130
B.170
C.210
D.260
解析:利用等差数列的性质:S3,S6-S3,S9-S6 成等 差数列,所以 S3+(S9-S6)=2(S6-S3), 即 30+(S9-100)=2(100-30),解得 S9=210. 答案:C
解析:Sn-Sn-4=an-3+an-2+an-1+an=80, S4=a1+a2+a3+a4=40. 两式相加得 4(a1+an)=120,∴a1+an=30, 又 Sn=na12+an=15n=210,∴n=14. 答案:14

(人教B版)高中数学必修四全册同步ppt课件:1-2-4-1

(人教B版)高中数学必修四全册同步ppt课件:1-2-4-1

3.角α与α+(2k+1)π(k∈Z)的三角函数关系(公式三) sin[α+(2k+1)π]=-sinα ; cos[α+(2k+1)π]= -cosα tan[α+(2k+1)π]= tanα . ;
思考探究 1.诱导公式一、二各有什么作用? 提示 诱导公式一将角转化到(0,2π)上求值;诱导公式二 将角转化为正角求值. 2.怎样记忆三组诱导公式? 提示 诱导公式的记忆口诀是“函数名不变,符号看象 限”.其含义是诱导公式两边的函数名称一致,符号则是将α 看成锐角时原角所在象限的三角函数值的符号.α看成锐角, 只是公式记忆的方便,实际上α可以是任意角.
4 ∵α是第三象限角,∴cosα=-5, 4 cos(π+α)=-cosα=5.
答案 D
名师点拨 1.公式(三)可以化简为 cos[α+(2k+1)π]=cos(α+π)=-cosα, sin[α+(2k+1)π]=sin(α+π)=-sinα, tan[α+(2k+1)π]=tan(α+π)=tanα. 即cos(α+π)=-cosα, sin(α+π)=-sinα, tan(α+π)=tanα. 这样看起来更简单、易记,要求熟练记忆和应用.
π π π 1 1 =sin6+cos3-tan4=2+2-1=0.
2π 5π π (2)原式=sin6π+ 3 +cos2π+ 6 -tan2π-4 π 2π 5π =sin 3 +cos 6 -tan-4 π π π =sinπ-3+cosπ-6+tan4
典例剖析
例1
求下列各式的值.
16π 17π 29π (1)sin- 3 +cos- 4 -tan- 6 ;
19π 10π 15π (2)sin +cos +tan . 6 3 4

高中数学人教A版必修四课时训练:第一章三角函数1-2任意角的三角函数

高中数学人教A版必修四课时训练:第一章三角函数1-2任意角的三角函数
11.解 (1)
图1
作直线 y= 23交单位圆于 A、B,连结 OA、OB,则 OA 与 OB 围成的区域(图 1 阴影部分), 即为角 α 的终边的范围. 故满足条件的角 α 的集合为 {α|2kπ+π3≤α≤2kπ+23π,k∈Z}. (2)
∴sin 2cos 3tan 4<0.
10.2
解析 ∵y=3x,sin α<0,∴点 P(m,n)位于 y=3x 在第三象限的图象上,且 m<0,n<0,
n=3m.
∴|OP|= m2+n2= 10|m|=- 10m= 10.
∴m=-1,n=-3,∴m-n=2.
11.解 (1)原式=cosπ3+-4×2π+tanπ4+2×2π=cos π3+tan π4=12+1=32.
3.诱导公式一的实质是说终边相同的角的三角函数值相等. 作用是把求任意角的三角函数值转化为求 0~2π(或 0°~360°)角的三角函数值.
答案
知识梳理
y 1.r
x r
y x
3.相等
sinα
cosα
tanα
作业设计
1.A 2.B
3.C [∵sinα<0,∴α 是第三、四象限角.又 tanα>0,
∴α 是第一、三象限角,故 α 是第三象限角.]
4.C [∵1,1.2,1.5 均在0,π2内,正弦线在0,π2内随 α 的增大而逐渐增大,
∴sin1.5>sin1.2>sin1.] 5.D [在同一单位圆中,利用三角函数线可得 D 正确.] 6.A [
如图所示,在单位圆中分别作出 α 的正弦线 MP、余弦线 OM、正切线 AT,很容易地观察出
OM<MP<AT,即 cosα<sinα<tanα.]

「精品」北师大版高中数学必修一课件4-1-1~2-精品课件

「精品」北师大版高中数学必修一课件4-1-1~2-精品课件

∴ ff01> <00, , f2>0,
(6 分)
即 1a> -02, +1<0, 4a-4+1>0,
解得34<a<1.(8 分)
(3)当 a<0 时,设方程的两根为 x1,x2, 则 x1·x2=1a<0,(10 分) x1,x2 一正一负不符合题意. 综上,a 的取值范围为34,1(12 分)
1.25
f(1.25)<0
(1.25,1.5)
1.375
f(1.375)>0
(1.25,1.375)
1.312 5
f(1.312 5)<0
(1.312 5,1.375)
∵|1.375-1.312 5|=0.062 5<0.1, 故函数 f(x)=x3-x-1 在(1,1.5)内的一个近似零点为 1.375, 即方程 x3-x-1=0 在(1,1.5)内的一个近似解为 1.375.
规律方法 这是一类非常基础且常见的问题,考查的是函数零 点的判定方法,一般而言只需将区间端点代入函数求出函数值, 进行符号判断即可得出结论,这类问题的难点往往是函数值符 号的判断,可运用函数的有关性质进行判断,同时也要注意该 函数的单调性.
【训练 1】 求下列函数的零点: (1)f(x)=-x2-2x+3; (2)f(x)=x4-1; (3)f(x)=x3-4x.
规律方法 使用二分法求方程的近似解应转化为求其相应函数 的近似零点,当区间两个端点在满足精确度条件下的近似值相 等时,所得区间两个端点的近似值便为所求方程的根(或函数零 点).
【训练 2】 在一个风雨交加的夜晚,从某水库闸房到防洪指挥 部的电话线路发生了故障,这是一条 10 km 长的线路,每隔 50 m 有一根电线杆,维修工人需爬上电线杆测试,你能帮他找到 一个简便易行的方法吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北考源书业有限公司
第9页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
1 3.在弧度制下的扇形面积公式S= 2 lr可类比哪种图形的 面积公式加以记忆? 提示 可类比三角形的面积公式加以记忆.
河北考源书业有限公司
第2页
返回导航
第一章
基本初等函数(Ⅱ)
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
1.1.2 弧度制和弧度制与角度制的换算
课前预习目标
课堂互动探究
河北考源书业有限公司
第3页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
第15页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
4π 20π 解析 l=r· α=5× 3 = 3 .
答案 B
河北考源书业有限公司
第16页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
4 解析 扇形的半径r=2=2, 1 ∴扇形的面积S=2×2×4=4.
答案
A
河北考源书业有限公司
第18页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
名师点拨 1.弧度制 l (1)圆心角α的弧度数的绝对值|α|=r(l为弧长,r为半径). (2)角度制、弧度制是度量角的两种不同的方法,单位、 进制不同,就像度量长度一样有不同的方法,千米、米、厘米 与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、 处理方法,因此结果就有所不同.
第24页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
剖析 由角和弧度的定义,无论是角度制还是弧度制下的 角,角的大小与圆的半径长短无关,而与弧长与半径的比值有 关.
答案 D
河北考源书业有限公司
第25页
返回导航
第一章
23π 2.与 6 终边相同的角为( π A.-6 5π C. 6 π B.6 7π D. 6
)
河北考源书业有限公司
第13页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
23π π 23π π 解析 6 =4π-6,故 6 的终边与-6的终边相同.
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
规律技巧
本题考查角的基本概念,对于概念性的问题,
要从定义下手,注意分析每一个命题.
河北考源书业有限公司
第26页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
课前预习目标
梳理知识 夯实基础
河北考源书业有限公司
第4页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
学习目标 1.了解弧度制. 2.掌握弧度与角度的换算公式. 3.掌握弧度制下的弧长公式及扇形面积公式.
河北考源书业有限公司
典例剖析
例1
下列命题中,假命题是(
)
A.“度”与“弧度”是度量角的两种不同度量单位 1 1 B.一度的角是周角的 ,一弧度的角是周角的 360 2π C.根据弧度的定义,180° 一定等于π弧度 D.不论是用角度制还是弧度制度量角,它们与圆的半径 长短有关
河北考源书业有限公司
第32页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
规律技巧
①在进行角度与弧度的换算时,关键是抓住π
rad=180° 这一关系;②以后用弧度制表示角时,“弧度”或 “rad”可以省略不写,而只写这个角所对应的弧度数即可,但 是在用角度表示时,“度”或“° ”却不能省略,以防止与弧 度混淆;③用弧度作为单位时,常出现π,如果题目中没有特 殊的要求,应当保留π的形式,不要写成小数.
河北考源书业有限公司
第8页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
思考探究 π 1.下面式子“α=k· 360° + ,k∈Z”正确吗? 3 提示 度制. l 2.比值r与所取的圆的半径大小是否有关? 提示 无关. 不正确,在同一个式子中不能同时出现角度制与弧
河北考源书业有限公司
第21页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
其中α是圆心角的弧度数,n是圆心角的角度数. 由此可知,弧度制下的扇形的弧长与面积公式要比角度制 下的简单.
河北考源书业有限公司
第22页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
课堂互动探究
剖析归纳 触类旁通
河北考源书业有限公司
第23页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
河北考源书业有限公司
第19页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
2.弧度制与实数之间的对应关系 角的概念推广后,无论是用角度制还是用弧度制,都能在 角的集合与实数集R之间建立一种一一对应的关系,即每一个 角都有唯一的一个实数(例如这个角的度数或弧度数)与它对 应;反过来,每一个实数也都有唯一的一个角(例如弧度数或 度数等于这个实数的角)与它对应.
4.若2 rad的圆心角所对的弧长为4 cm,则这个圆心角所 夹的扇形面积为( A.4 cm2 C.4π cm2 ) B.2 cm2 D.2π cm2
河北考源书业有限公司
第17页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
河北考源书业有限公司
第6页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
2.扇形面积公式 若扇形的弧长为l,半径为r,圆心角为α,则扇形的面积
1 1 2 r . 公式为 S=2rl=2α·
河北考源书业有1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
3.弧度制与角度制的换算:
180 π π rad 180° = ;1° = rad≈ 0.01 745 rad ;1 rad= π 180
18′ ° ≈57.30° = 57° .
河北考源书业有限公司
第29页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
180 π 剖析 第(1)(2)小题可直接利用1° =180 rad,1 rad= π ° 进
行转化;第(3)小题可先统一单位,再比较大小.
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
第一章 基本初等函数(Ⅱ)
河北考源书业有限公司
第1页
返回导航
第一章
基本初等函数(Ⅱ)
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
1.1 任意角的概念与弧度制
河北考源书业有限公司
解法2
(化为角度):
π π 180 β = = × π ° =18° ,γ=1≈57.30° , 10 10
7π 180° φ= × π =105° . 12
显然,15° <18° <57.30° <105° . 故α<β<γ<θ=φ.
河北考源书业有限公司
第10页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
自测自评 1.-240° 化为弧度为( 4π A.- 3 7π C.- 6 )
5π B.- 3 11π D.- 6
河北考源书业有限公司
第11页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
π 4π 解析 -240° ×180° =- 3 .
答案
A
河北考源书业有限公司
第12页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
解析 根据弧度制的定义可知,D正确.
答案 D
河北考源书业有限公司
第28页
返回导航
第一章
1.1
1.1.2
名师一号 · 高中同步学习方略 · 新课标B版 · 数学 · 必修4
例2
(1)把202° 30′化成弧度;
相关文档
最新文档