新河县高中2018-2019学年高二下学期第一次月考试卷数学

合集下载

2018-2019学年高二数学下学期第一次月考试题理 (II)

2018-2019学年高二数学下学期第一次月考试题理 (II)

2018-2019学年高二数学下学期第一次月考试题理 (II)一、选择题:(本题共12小题,每小题5分,共60分) 1.若,则( )A. 2B.C.D.2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .B . 2C .D . 4 3.函数的极大值是( )A. -9B. 0C.D. 4.函数f (x )=2的单调递增区间是( )A. B.和 C. D.和5.已知双曲线C :x 2a 2-y2b2=1(a>0,b >0)的离心率为,则C 的渐近线方程为( )A .y =±12xB .y =±13xC .y =±14x D .y =±x6.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,338=338,4415=4415,5524=5524,…,则按照以上规律,若99n=99n具有“穿墙术”,则n =( )A . 48B . 25C . 80D .637. 若a>2,则函数f(x)=13x 3-ax 2+1在区间(0,2)上恰好有( )A .0个零点B .1个零点C .2个零点D .3个零点8. 过原点O 作直线交椭圆x 2a 2+y2b 2=1(a>b>0)于点A 、B ,椭圆的右焦点为F 2,离心率为e.若以AB 为直径的圆过点F 2,且sin ∠ABF 2=e ,则e =( ) A.12B. C. D.9. 已知P 是椭圆x 225+y 2b2=1,(0<b<5)上除顶点外的一点,F 1是椭圆的左焦点,若|OP →+OF 1→|=8则点P 到该椭圆左焦点的距离为( )A .2B .4C .6 D. 5210. 设函数f (x )=13x 3-a 2x 2+2x +1,若f (x )在区间(-2,-1)内存在单调递减区间,则实数a 的取值范围是( )A .(22,+∞)B .[22,+∞)C . (-∞,-22]D .(-∞,-22)11.f(x)是定义在上的偶函数,当x<0时,f(x)+xf ′(x)<0,且f(-4)=0,则不等式f(x)>0的解集为( )A .(-4,0)∪(4,+∞)B .(-4,0)∪(0,4)C .(-∞,-4)∪(4,+∞)D .(-∞,-4)∪(0,4)12. 若函数f (x )=⎩⎪⎨⎪⎧a ln x -x 2-2x >0,x +1x+a x <0的最大值为f (-1),则实数a 的取值范围为( )A .[0,2e 2] B. (0,2e 2] C .[0,2e 3] D.(0,2e 3] 二、填空题:(本题共4小题,每小题5分,共20分) 13. =________.14. 用数学归纳法证明(n +1)(n +2)……(n +n )=2n·1×3……(2n +1)(n ∈N),从“k 到k +1”左端需增乘的代数式为15.已知椭圆x 29+y2m=1(0<m<9)的左、右焦点分别为F 1、F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为10,则m 的值为________. 16. 已知函数f (x )=m e x2与函数g (x )=-2x 2-x +1的图象有两个不同的交点,则实数m 的取值范围为三、解答题:(本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分)为何实数时,复数满足下列要求: (1)是纯虚数;(2)在复平面内对应的点在第二象限; (3)在复平面内对应的点在直线上. 18. (本小题满分12分)已知函数f(x)=x 2-8lnx ,g(x)=-x 2+14x. (1)求函数f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)与g(x)在区间(a ,a +1)上均为增函数,求a 的取值范围; 19. (本小题满分12分)设直线的方程为,该直线交抛物线于两个不同的点. (1)若点为线段的中点,求直线的方程; (2)证明:以线段为直径的圆恒过点. 20. (本小题满分12分)已知函数f (x )=(x 2-x -5)e x ,g (x )=tx 2+e x -4e 2(t ∈R )(其中e 为自然对数的底数). (1)求函数f (x )的单调区间与极小值;(2)是否存在t <0,对任意的x 1∈R ,任意的x 2∈(0,+∞),都有f (x 1)> g (x 2)?若存在,求出t 的取值范围;若不存在,请说明理由.21.(本小题满分12分)已知动圆过定点,且与直线相切. (1)求动圆圆心的轨迹的方程;(2)过轨迹上一点作倾斜角互补的两条直线,分别与交于异于的 两点. ①求证:直线的斜率为定值;②如果两点的横坐标均不大于,求面积的最大值. 22. (本小题满分12分)设函数,.其中.(1)讨论函数的单调区间;(2)若存在,对任意,使得成立,求的取值范围. D D B A A C B C A D B C13.0 14.2(2k +1). 15. 3 16. [0,2e)∪⎩⎨⎧⎭⎬⎫-18e217.(1);(2);(3).18. 解 (1)因为f ′(x)=2x -8x,所以切线的斜率k =f ′(1)=-6.又f(1)=1,故所求的切线方程为y -1=-6(x -1).即y =-6x +7.…………(5分) (2)因为f ′(x)=2(x +2)(x -2)x,又x>0,所以当x>2时,f ′(x)>0;当0<x<2时,f ′(x)<0.即f(x)在(2,+∞)上单调递增,在(0,2)上单调递减.又g(x)=-(x -7)2+49,所以g(x)在(-∞,7)上单调递增,在(7,+∞)上单调递减.…(9分)欲使函数f(x)与g(x)在区间(a ,a +1)上均为增函数,则⎩⎪⎨⎪⎧a ≥2,a +1≤7,解得2≤a ≤6.……(12分)19. 【解析】(1)联立 ,消去得=, 设, 则==,因为为线段的中点,所以,解得,所以直线的方程为=. …………(6分) (2)因为==, , 所以=, 即=,所以==,因此,即以线段为直径的圆恒过点.…………(12分) 20.解 (1)∵f (x )=(x 2-x -5)e x,∴f ′(x )=(2x -1)e x +(x 2-x -5)e x =(x 2+x -6)e x =(x +3)(x -2)e x.当x <-3或x >2时,f ′(x )>0,即函数f (x )的单调递增区间为(-∞,-3)和(2,+∞). 当-3<x <2时,f ′(x )<0,即函数f (x )的单调递减区间为(-3,2).∴函数f (x )的单调递增区间为(-∞,-3)和(2,+∞),单调递减区间为(-3,2). 故当x =2时,函数f (x )取得极小值,即f (x )极小值=f (2)=-3e 2. …………(6分) (2)由题意,只需f (x )min >g (x )max .由(1)可得当x 趋近于-∞时,f (x )趋近于0, ∴f (x )min =f (2)=-3e 2,∵g (x )=tx 2+e x -4e 2=t ⎝ ⎛⎭⎪⎫x +e 2t 2-e 24t-4e 2,∴g (x )max =g ⎝ ⎛⎭⎪⎫-e 2t =-e 24t -4e 2. 故-3e 2>-e 24t -4e 2,即1>-14t ,得到t <-14,∴存在负数t ∈⎝⎛⎭⎪⎫-∞,-14满足题意. …………(12分) 21. (I )设为动圆圆心,由题意知,动点到定点与定直线的距离相等,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为.…………(4分) (II )设. (1), . 依题意,, 于是.直线的斜率为定值-1. …………(8分) (2)设直线的方程:y=-x+m, , , , 又,.点M 到直线AB 的距离, 弦长m x x x x AB +=-+=1244)(221221,, 设,33103103)(2'<<⇒<+-=m m m m f , f(m)在上单调递增,,.…………(12分) 22、解:(1),当时,令,得,∴的递增区间为. 令,得,,∴的递减区间为.当时,同理得的递增区间为;递减区间为.………(4分) (2)'()2sin 1ln(1)12sin ln(1)f x x x x x =-+++=++, ∵当时,及均为增函数, ∴在为增函数,又, ∴当时,;当时,.从而,在上递减,在上递增,∴在上的最小值为. ……………(8分)∵,∴,∴,当时,∴,∴,∴.当时,,∴,∴,又,∴时不合题意.综上,. ………………(12分)。

高二数学下学期第一次月考试题理55.doc

高二数学下学期第一次月考试题理55.doc

2019学年高二数学下学期第一次月考试题 理卷面满分:150分 考试时间:120分钟一、 选择题(本大题共12小题,每题5分,共60分。

每小题只有一个正确答案) 1. 函数f (x )=2x -sin x 在(-∞,+∞)上( ).A .增函数B .减函数C .有最大值D .有最小值2. 把1,3,6,10,15,21,…这些数叫作三角形数,如图所示,则第七个三角形数是( )A .27B .28C .29D .303. 用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( )A .三个内角中至少有一个钝角B .三个内角中至少有两个钝角C .三个内角都不是钝角D .三个内角都不是钝角或至少有两个钝角4. 用数学归纳法证明1+2+…+(2n +1)=(n +1)(2n +1)时,在验证n =1成立时,左边所得的代数式是( ).A .1B .1+3C .1+2+3D .1+2+3+45. 三角形的面积为S =12(a +b +c )r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( ) ( ).A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h ,(h 为四面体的高)6.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( ).A .S 4<S 5B .S 4=S 5C .S 6<S 5D .S 6=S 57. 设f (n )=1+12+13+…+13n -1(n ∈N +),那么f (n +1)-f (n )等于( ).A.13n +2B.13n +13n +1C.13n +1+13n +2D.13n +13n +1+13n +28. 由曲线xe y =和2,0==y x 围成图形的面积S 表示为( )A .∫ln20e xdx B .2ln2-∫ln20e xdx C .∫ln20(2+e x)dxD .以上都不对9. 某汽车作变速直线运动,在时刻t(单位:h)时的速度为v(t)=t 2+2t(单位:km/h),那么它在3≤t≤4这段时间内行驶的路程s(单位:km)可表示为( )A .B .C.D .10. 抛物线c bx x y ++=2在点)2,1(处的切线与其平行直线0=++c y bx 的距离是( )A.42 B.22 C.223 D.2 11. 曲线y =4-x 2与x 轴围成的平面图形绕x 轴旋转一周,所得球的体积是( ).A.643π B .10π C.323π D .11π12. 函数y =ln xx的最大值为 ( )A .e -1B .eC .e 2D.103二、 填空题(本大题共4小题,每题5分,共20分。

2018-2019学年度第二学期高二年级第一次月考数学试卷(文科)

2018-2019学年度第二学期高二年级第一次月考数学试卷(文科)
16������ 3
) D.16������
C.8������
⃗⃗⃗⃗⃗ = 9.已知抛物线 C:������ 2 = 8������的焦点为 F,直线������ = √3(������ − 2)与 C 交于 A,������(������在 x 轴上方)两点,若������������ ⃗⃗⃗⃗⃗ ,则实数 m 的值为( ) ������ ������������ A.√3 B.3 C.2 D.
������ 2 ������ 2 3
= 1的左,右焦点,������,������,������ 是椭圆上������轴上方的三点,且������������1 ∥ 的取值范围是_______.
|������������1 +������������2 | |������������|
三、解答题 17. (本题满分 10 分) 已知命题������:方程2������ − ������−1 = 1表示焦点在������轴上的椭圆;命题������:方程 5 − ������ = 1表示离心率������ ∈ (1,2) 的双曲线。若������ ∨ ������为真命题,������ ∧ ������为假命题,求实数������的取值范围。
数学(文)试卷
第2页 共4页
第 II 卷(非选择题
二、填空题
共 90 分)
13.能说明“若点������(������, ������)与点������(3, −1)在直线������ + ������ − 1 = 0的同侧,则������2 + ������2 ቤተ መጻሕፍቲ ባይዱ 2”是假命题的一个点������ 的坐标为______. 14.已知函数������(������) = (������ 2 + ������������ + 1)������ ������ (其中������ ∈ ������,e 为自然对数的底数),若函数������(������)在������ = 2处取得极 值,则实数 a 的值为______. 15.在三棱锥������ − ������������������中,������������ ⊥ ������������, ������������ = ������������ = ������������, ������������ ⊥平面������������������ ,������为������������中点,则异面直线������������与������������所成 角的正切值为___________. 16.如图,已知������1 ,������2 分别是椭圆 4 + ������������ ∥ ������������2 (������为坐标原点) ,则

新河县第一中学2018-2019学年下学期高二期中数学模拟题

新河县第一中学2018-2019学年下学期高二期中数学模拟题

新河县第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 某几何体三视图如下图所示,则该几何体的体积是( )A .1+ B .1+ C .1+ D .1+π2. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .3. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+ ⎪⎝⎭等于( ) A .15- B .15C .-5D .54. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .15 5. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h() B .h() C .h() D .h()6. 与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条7. 命题“存在实数x ,使x >1”的否定是( ) A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤18. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法9. 设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( )A .{1,2}B .{﹣1,4}C .{﹣1,2}D .{2,4}10.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )A .1B .2C .3D .4 11.己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或12.一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为( )A .B .C .D .二、填空题13.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .14.满足tan (x+)≥﹣的x 的集合是 .15.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .16.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.17.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .18.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .三、解答题19.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,45a b a b x ++⎡⎤∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.20.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n (单位:台,n ∈N )的函数解析式f (n );(单位:元),求X 的分布列及数学期望.21.已知点(1,)是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )﹣c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n ﹣S n ﹣1=+(n ≥2).记数列{}前n项和为T n ,(1)求数列{a n }和{b n }的通项公式;(2)若对任意正整数n ,当m ∈[﹣1,1]时,不等式t 2﹣2mt+>T n 恒成立,求实数t 的取值范围(3)是否存在正整数m ,n ,且1<m <n ,使得T 1,T m ,T n 成等比数列?若存在,求出m ,n 的值,若不存在,说明理由.22.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,圆22127x y +=与直线1x y a b +=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.23.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .24.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.新河县第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】A【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1;正方体的边长为1,∴几何体的体积V=V正方体+=13+××π×12×1=1+.故选:A.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.2.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C3.【答案】B【解析】考点:三角恒等变换.4.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.5.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.6.【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,;;∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.∴两圆的圆心距=r2﹣r1;∴两个圆外切,∴它们只有1条内公切线,2条外公切线.故选C.7.【答案】C【解析】解:∵命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”故选C8.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.9.【答案】A【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.故选:A.【点评】本题考查交集的运算法则的应用,是基础题.10.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.11.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B12.【答案】C显然甲掷得的向上的点数比乙大的有15种,故甲掷得的向上的点数比乙大的概率为P=.故选:C.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比二、填空题13.【答案】1.【解析】解:在△ABC中,A=60°,|AB|=2,且△ABC的面积为,所以,则|AC|=1.故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查.14.【答案】[kπ,+kπ),k∈Z.【解析】解:由tan(x+)≥﹣得+kπ≤x+<+kπ,解得kπ≤x<+kπ,故不等式的解集为[kπ,+kπ),k∈Z,故答案为:[kπ,+kπ),k∈Z,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.15.【答案】.【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.16.【答案】15 (,)4317.【答案】m≥2.【解析】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以C U A={x|x<﹣m},又B={x|﹣2<x<4},且(∁U A)∩B=∅,所以有﹣m≤﹣2,所以m≥2.故答案为m≥2.18.【答案】(x﹣5)2+y2=9.【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.三、解答题19.【答案】(1)在0,b e ⎛⎫ ⎪⎝⎭上单调递减,在,b e ⎛⎫∞⎪⎝⎭上单调递增.(2)7b e a ≤<【解析】【试题分析】(1)先对函数()()ln ln ,0,h x x x x b a x =-+∈∞求导得()'ln 1ln h x x b =+-,再解不等式()'0h x >得b x e >求出单调增区间;解不等式()'0h x <得bx e<求出单调减区间;(2)先依据题设345a b a b ++<得7b a <,由(1)知()m in 0h x ≤,然后分345a b b a b e ++≤≤、4b a b e +<、35b a be +>三种情形,分别研究函数()()ln ln ,0,h x x x x b a x =-+∈∞的最小值,然后建立不等式进行分类讨论进行求解出其取值范围7be a≤<: 解:(1)()()()ln ln ,0,,'ln 1ln h x x x x b a x h x x b =-+∈∞=+-,由()'0h x >得b x e >,()'h x ∴在0,b e ⎛⎫ ⎪⎝⎭上单调递减,在,b e ⎛⎫∞⎪⎝⎭上单调递增. (2)由345a b a b ++<得7ba <,由条件得()min 0h x ≤. ①当345ab b a b e ++≤≤,即345e b e e a e ≤≤--时,()min b b h x h a e e ⎛⎫==-+ ⎪⎝⎭,由0b a e -+≤得 3,5b b e e e a a e≥∴≤≤-. ②当4b a b e +<时,()4,e a b h x a ->∴在3,45a b a b ++⎡⎤⎢⎥⎣⎦上单调递增, ()min ln ln ln ln 4444a b a b a b a b b h x h b a b ae ++++⎛⎫⎛⎫⎛⎫==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43?3044e b ba b e e b e --+-=>=>,矛盾,∴不成立. 由0ba e-+≤得.③当35b a b e +>,即35b e a e >-时,53e a b e ->,()h x ∴在3,45a b a b ++⎡⎤⎢⎥⎣⎦上单调递减, ()min 3333ln ln ln ln 5555a b a b a b a b b h x h b a b ae ++++⎛⎫⎛⎫⎛⎫==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭52?2230553e b ba b e e b e----=>=>,∴当35b e a e >-时恒成立,综上所述,7b e a ≤<. 20.【答案】【解析】解:(I )当n ≥20时,f (n )=500×20+200×(n ﹣20)=200n+6000, 当n ≤19时,f (n )=500×n ﹣100×(20﹣n )=600n ﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X21.【答案】【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=因为数列{a n}是等比数列,所以,所以c=1.又公比q=,所以;由题意可得:=,又因为b n>0,所以;所以数列{}是以1为首项,以1为公差的等差数列,并且有;当n≥2时,b n=S n﹣S n﹣1=2n﹣1;所以b n=2n﹣1.(2)因为数列前n项和为T n,所以==;因为当m∈[﹣1,1]时,不等式恒成立,所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,设g(m)=﹣2tm+t2,m∈[﹣1,1],所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,所以,解得t<﹣2或t>2,所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).(3)T1,T m,T n成等比数列,得T m2=T1T n∴,∴结合1<m <n 知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.22.【答案】(1)22143x y +=;(2)点R 在定直线1x =-上. 【解析】试题解析:(1)由12e =,∴2214e a =,∴2234a b =7=解得2,a b ==,所以椭圆C 的方程为22143x y +=.设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--,解得1121221212011224424()41()814x x x x x x x x x x x x x x x λλ++⋅-+++===+-++++又2212122226412322424()24343434k k x x x x k k k---++=⨯+⨯=+++, 212223224()883434k x x k k -++=+=++,从而121201224()1()8x x x x x x x ++==-++, 故点R 在定直线1x =-上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.23.【答案】(1)102n a n =-;(2)229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.【解析】试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .当5n ≤时,12||||||n n S a a a =++2129n a a a n n =+++=-∴229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1考点:等差数列的通项公式;数列的求和.24.【答案】(1)()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2+∞.【解析】试题解析:(1)由条件可得221'(1)1f e e a=-=-,∴1a =, 由21()f x e x x =+,可得2222211'()e x f x e x x -=-=, 由'()0f x >,可得2210,0,e x x ⎧->⎨≠⎩解得1x e >或1x e <-;由'()0f x <,可得2210,0,e x x ⎧-<⎨≠⎩解得10x e -<<或10x e <<.所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e上单调递减.(2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>,由()ln kf s t t ≥,可得ln ()t tk f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立,即max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max()()g t f s ⎡⎤=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值.由(1)可知,()f s 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,故()f s 的最小值为1()2f e e=,由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立, 所以()g t 在(1,]e 上的最大值为()ln g e e e e ==,所以只需122e k e ≥=, 所以实数的取值范围是1[,)2+∞.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).。

新和县高中2018-2019学年高二下学期第一次月考试卷数学

新和县高中2018-2019学年高二下学期第一次月考试卷数学

新和县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A.B. C. D .02. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法3. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( )A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )4. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( ) A .[﹣,+∞) B .(﹣∞,﹣] C .[,+∞) D .(﹣∞,] 5. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件6. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处7. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)8.在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .59. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2 ③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .310.关于x 的方程ax 2+2x ﹣1=0至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .﹣1≤a <0C .a >0或﹣1<a <0D .a ≥﹣111.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A. B. C. D .612.如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°二、填空题13.某城市近10年居民的年收入x 与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.14.已知圆O :x 2+y 2=1和双曲线C:﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD,则﹣= .15.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .16.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 17.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为18.某种产品的加工需要A,B,C,D,E五道工艺,其中A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种.(用数字作答)三、解答题19.如图,已知边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.(Ⅱ)证明:AM⊥PM.20.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.21.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB ﹣ccosB . (Ⅰ)求cosB 的值;(Ⅱ)若,且,求a 和c 的值.23.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若22x t =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.24.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA .(1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .25.已知集合A={x|2≤x ≤6},集合B={x|x ≥3}. (1)求C R (A ∩B );(2)若C={x|x ≤a},且A ⊆C ,求实数a 的取值范围.26.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.新和县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解法一:∵,∴(C为常数),取x=1得,再取x=0得,即得,∴,故选B.解法二:∵,∴,∴,故选B.【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.2.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.3.【答案】B【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},∴∁U M={0,1},∴N∩(∁U M)={0,1},故选:B.【点评】本题主要考查集合的子交并补运算,属于基础题.4.【答案】B【解析】解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a≤﹣故选B.5.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A6.【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.故选:A.【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.7.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.8.【答案】B【解析】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.9.【答案】D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.10.【答案】D【解析】解:(1)当a=0时,方程是2x﹣1=0,可知有一个正实根.(2)当a≠0,当关于x的方程ax2+2x﹣1=0有实根,△≥0,解可得a≥﹣1;①当关于x的方程ax2+2x﹣1=0有一个正实根,有﹣<0,解可得a>0;②当关于x的方程ax2+2x﹣1=0有二个正实根,有,解可得a<0;,综上可得,a≥﹣1;故选D.【点评】本题主要考查一个一元二次根的分布问题,属于中档题.在二次项系数不确定的情况下,注意一定要分二次项系数分为0和不为0两种情况讨论.11.【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.12.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.二、填空题13.【答案】18.2【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.14.【答案】1.【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(﹣1,t),则B(﹣1,﹣t),C(1,﹣t),D(1,t),由直线和圆相切的条件可得,t=1.将A(﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.15.【答案】{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.【解析】解:图中的阴影部分的点设为(x,y)则{x,y)|﹣1≤x≤0,﹣≤y≤0或0≤x≤2,0≤y≤1}={(x,y)|xy>0且﹣1≤x≤2,﹣≤y≤1}故答案为:{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.2,616.【答案】[]【解析】考点:简单的线性规划. 【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点(),x y 与原点()0,0的距离;(2(),x y 与点(),a b 间的距离;(3)y x可表示点(),x y 与()0,0点连线的斜率;(4)y b x a--表示点(),x y 与点(),a b 连线的斜率. 17.【答案】222,02,0x x x y x x x ⎧-≥⎪=⎨--<⎪⎩ 【解析】试题分析:令0x <,则0x ->,所以()()()2222f x x x x x -=---=+,又因为奇函数满足()()f x f x -=-,所以()()220f x x x x =--<,所以()y f x =在R 上的解析式为222,02,0x x x y x x x ⎧-≥⎪=⎨--<⎪⎩。

新河县一中2018-2019学年下学期高二期中数学模拟题

新河县一中2018-2019学年下学期高二期中数学模拟题

新河县一中2018-2019学年下学期高二期中数学模拟题一、选择题1. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°2. 已知a 为常数,则使得成立的一个充分而不必要条件是( )A .a >0B .a <0C .a >e D .a <e 3. 设,为正实数,,则=( )a b 11a b +≤23()4()a b ab -=log a b A. B. C. D.或01-11-0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.4. 已知复数,,,是虚数单位,若是实数,则( )11i z a =+232i z =+a ∈R i 12z z a = A . B . C . D .23-13-13235. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( )A .﹣i B .iC .1D .﹣16. 已知,,则“”是“”的( )α[,]βππ∈-||||βα>βαβαcos cos ||||->-A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.7. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种 8. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0D 9. 如图框内的输出结果是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.2401B.2500C.2601D.270410.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A.B.(4+π)C.D.11.如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.12.如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( )A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣3二、填空题13.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .14.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).15.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 . 16.若x 、y 满足约束条件,z =3x +y +m 的最小值为1,则m =________.{x -2y +1≤02x -y +2≥0x +y -2≤0)17.在等差数列中,,其前项和为,若,则的值等}{n a 20161-=a n n S 2810810=-S S 2016S 于 .【命题意图】本题考查等差数列的通项公式、前项和公式,对等差数列性质也有较高要求,属于中等难度.n 18.已知向量若,则( )(1,),(1,1),ax b x ==-r r(2)a b a -⊥r r r |2|a b -=r r A . B . C .2 D 23【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.三、解答题19.(本小题满分12分)如图长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =4,D 1F =8,过点E ,F ,C 的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面α将长方体分成的两部分体积之比.20.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)的市民进行问卷调查,随机抽查了50人,并将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数610121255赞成人数3610643(1)请估计红星路小区年龄在[15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.21.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.22.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:(Ⅰ)集合M,N;(Ⅱ)集合M∩N,∁R(M∪N).23.已知数列{a n}的前n项和为S n,且满足a n=3S n﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.24.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.(1)求S n的最小值及相应n的值;(2)求T n.新河县一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a <b ,∴A <B ,∴A=45°,∴C=180°﹣A ﹣B=75°,故选:D .2. 【答案】C【解析】解:由积分运算法则,得=lnx=lne ﹣ln1=1因此,不等式即即a >1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a >e故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.3. 【答案】B.【解析】,故2323()4()()44()a b ab a b ab ab -=⇒+=+11a b a b ab++≤⇒≤,而事实上,2322()44()1184(82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤12ab ab +≥=∴,∴,故选B.1ab =log 1a b =-4. 【答案】A【解析】,1232(32)i z z a a =-++∵是实数,∴,∴.12z z 320a +=23a =-5. 【答案】D【解析】解:由zi=1+i ,得,∴z 的虚部为﹣1.故选:D .【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.6. 【答案】A.【解析】,设,,||||cos cos ||cos ||cos αβαβααββ->-⇔->-()||cos f x x x =-[,]x ππ∈-显然是偶函数,且在上单调递增,故在上单调递减,∴,()f x [0,]π()f x [,0]π-()()||||f f αβαβ>⇔>故是充分必要条件,故选A.7. 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题8. 【答案】B 【解析】由题意,可取,所以9. 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,故选:B .【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.10.【答案】 D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D .【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.11.【答案】D【解析】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D .12.【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为﹣3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.二、填空题13.【答案】 [1,)∪(9,25] .【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题. 14.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新河县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为( )(A )10 ( B ) 30 (C ) 45 (D ) 1202. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 23. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的() A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)5. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm6. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.7. 两个随机变量x ,y 的取值表为x 0 1 3 4 y2.24.34.86.7若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.65班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40 C .60 D .209. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )13 ( B ) 49 (C ) 23 (D ) 8911.不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>012.已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( ) A. B.C .4D.二、填空题13.i是虚数单位,化简:= .14.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.16.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 17.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________. 18.对于集合M,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .三、解答题19.已知等比数列{a n }的前n 项和为S n ,a n >0,a 1=,且﹣,,成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b n•log3(1﹣S n+1)=1,求适合方程b1b2+b2b3+…+b n b n+1=的正整数n的值.20.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.21.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.22.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.23.如图,在平面直角坐标系xOy 中,以x 为始边作两个锐角α,β,它们的终边分别与单位圆交于A ,B 两点.已知A ,B的横坐标分别为,.(1)求tan (α+β)的值; (2)求2α+β的值.千克24.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.25.已知函数f(x)=a﹣,(1)若a=1,求f(0)的值;(2)探究f(x)的单调性,并证明你的结论;(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小.26.(本小题满分10分)已知圆P过点)0,1(A,)0,4(B.C,求圆P的方程;(1)若圆P还过点)2,6((2)若圆心P的纵坐标为,求圆P的方程.新河县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为2210C x ,系数为21045.C =故选C . 2. 【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2, 所以S 球=4πR 2=6πa 2.故选B3. 【答案】A【解析】解:由“|x ﹣2|<1”得1<x <3,由x 2+x ﹣2>0得x >1或x <﹣2,即“|x ﹣2|<1”是“x 2+x ﹣2>0”的充分不必要条件,故选:A .4. 【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.5. 【答案】D 【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.6.【答案】C7.【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.8.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.9.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.10.【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.11.【答案】A【解析】解:∵不等式ax 2+bx+c <0(a ≠0)的解集为R ,∴a <0,且△=b 2﹣4ac <0,综上,不等式ax 2+bx+c <0(a ≠0)的解集为的条件是:a <0且△<0.故选A .12.【答案】A【解析】解:由题意双曲线kx 2﹣y 2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=±x故=,∴k=,∴可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A .【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k ,熟练掌握双曲线的性质是求解本题的知识保证.二、填空题13.【答案】 ﹣1+2i .【解析】解:=故答案为:﹣1+2i .14.【答案】 6 .【解析】解:双曲线的方程为4x 2﹣9y 2=36,即为:﹣=1,可得a=3, 则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.15.【答案】 【解析】约束条件表示的区域如图, 当直线l :z =2x +by (b >0)经过直线2x -y -1=0与x -2y +1=0的交点A (1,1)时,z min =2+b ,∴2+b=3,∴b =1. 答案:116.【答案】2± 【解析】17.【答案】6【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446y x x ππππωωω=-+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1co s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡⎤++-+=⎢⎥⎣⎦对一切x R ∈恒成立,∴1cos()06sin()06πωπω⎧+=⎪⎪⎨⎪=⎪⎩∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6. 18.【答案】 {1,6,10,12} .【解析】解:要使f A (x )f B (x )=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.三、解答题19.【答案】【解析】解:(Ⅰ)设数列{a n}的公比q,由﹣,,,成等差数列,得,解得或q=﹣1(舍去),∴;(Ⅱ)∵,∴=﹣n﹣1,∴,,==,解得:n=100.【点评】本题考查等比数列和等差数列的概念与性质,以及等比数列的前n项和公式和裂项相消法求和,属于中档题.20.【答案】【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA∵△PCD为正三角形∴PE⊥CD,PE=PDsin∠PDE=2sin60°=∵平面PCD⊥平面ABCD∴PE⊥平面ABCD∵四边形ABCD 是矩形∴△ADE 、△ECM 、△ABM 均为直角三角形 由勾股定理得EM=,AM=,AE=3∴EM 2+AM 2=AE 2,∴∠AME=90° ∴AM ⊥PM(Ⅱ)解:设D 点到平面PAM 的距离为d ,连接DM ,则V P ﹣ADM =V D ﹣PAM∴而在Rt △PEM 中,由勾股定理得PM=∴∴∴,即点D 到平面PAM 的距离为21.【答案】【解析】解:(1)设抽取x 人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A ,B ,在40:59岁之间为a ,b ,c ,随机选取2人的情况有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ), (a ,b ),(a ,c ),(b ,c ),共10种,年龄都在40:59岁之间的有(a ,b ),(a ,c ),(b ,c ),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.22.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克(6分)(Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元;若当天的销售量为[70,100),则超市获利754300⨯=元,(10分)∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)23.【答案】【解析】解:(1)由已知得:.∵α,β为锐角,∴.∴.∴.(2)∵,∴.∵α,β为锐角,∴,∴.24.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:EX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.25.【答案】【解析】解:(1)a=1时:f (0)=1﹣=;(2)∵f (x )的定义域为R ∴任取x 1x 2∈R 且x 1<x 2则f (x 1)﹣f (x 2)=a ﹣﹣a+=.∵y=2x在R 是单调递增且x 1<x 2 ∴0<2x1<2x2,∴2x1﹣2x2<0,2x1+1>0,2x2+1>0, ∴f (x 1)﹣f (x 2)<0 即f (x 1)<f (x 2), ∴f (x )在R 上单调递增.(3)∵f (x )是奇函数∴f (﹣x )=﹣f (x ),即a ﹣=﹣a+,解得:a=1. ∴f (ax )=f (x )又∵f (x )在R 上单调递增∴x >2或x <﹣2时:|f (x )|>f (2), x=±2时:|f (x )|=f (2), ﹣2<x <2时:|f (x )|<f (2).【点评】本题考查的是函数单调性、奇偶性等知识的综合问题.在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力.值得同学们体会和反思.26.【答案】(1)047522=++-+y x y x ;(2)425)2()25(22=-+-y x . 【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程022=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为25,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆P 的方程是022=++++F Ey Dx y x ,则由已知得⎪⎩⎪⎨⎧=+-+-+=++++=++++026)2(6004040001222222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为047522=++-+y x y x .(2)由圆的对称性可知,圆心P 的横坐标为25241=+,故圆心)2,25(P , 故圆P 的半径25)20()251(||22=-+-==AP r ,故圆P 的标准方程为425)2()25(22=-+-y x .考点:圆的方程。

相关文档
最新文档