决策树算法介绍
决策树算法解释
决策树算法解释
决策树是一种运用概率与图论中的树对决策中的不同方案进行比较,从而获得最优方案的风险型决策方法。
它由树根(决策节点)、其他内点(方案节点、状态节点)、树叶(终点)、树枝(方案枝、概率枝)、概率值、损益值组成。
决策树是一个利用像树一样的图形或决策模型的决策支持工具,包括随机事件结果,资源代价和实用性。
它是一个算法显示的方法。
决策树分析法是一种非参数的有监督学习算法,能从一系列有特征和标签的数据中总结出决策规则,并可以用树状结构绘制决策流程,达到解决回归和分类的问题。
其核心思想是基于树结构进行对数据划分,通过对各特征进行询问的方式构造决策树。
在决策过程中,决策树通过构建一个类似树状的图形,帮助决策者理清思路,从不同角度考虑问题,并给出各个可能方案的概率和可能的收益。
具体来说,决策树的每个内部节点表示一个决策问题,每个分支代表一个可能的决策结果,每个叶子节点代表一种可能的最终结果。
通过决策树,决策者可以清晰地看到每个决策的可能结果,以及每个结果出现的概率。
总的来说,决策树是一种强大的工具,能够帮助我们理清思路并做出最佳的决策。
决策树算法
3
第一节 决策树算法原理
优点: 使用者不需要了解很多背景知识,只要训练事例能用属性 →结论的方式表达出来,就能用该算法学习; 决策树模型效率高,对训练集数据量较大的情况较为适合; 分类模型是树状结构,简单直观,可将到达每个叶结点的 路径转换为IF→THEN形式的规则,易于理解; 决策树方法具有较高的分类精确度。
14
第一节 决策树算法原理
决策树算法的大体框架都是一样的,都采用了贪心(非回 溯的)方法来以自顶向下递归的方式构造决策树。 它首先根据所使用的分裂方法来对训练集递归地划分递归 地建立树的节点,直至满足下面两个条件之一,算法才停 止运行:( 1)训练数据集中每个子集的记录项全部属于 一类或某一个类占压倒性的多数;(2)生成的树节点通 过某个终止的分裂准则;最后,建立起决策树分类模型。
4
第一节 决策树算法原理
缺点: 不易处理连续数据。数据的属性必须被划分为不同的类别 才能处理,但是并非所有的分类问题都能明确划分成这个 区域类型; 对缺失数据难以处理,这是由于不能对缺失数据产生正确 的分支进而影响了整个决策树的生成; 决策树的过程忽略了数据库属性之间的相关性。
5
第一节 决策树算法原理
21
2.1 ID3算法
属性选择度量 在树的每个节点上使用信息增益(information gain)度量选 择测试属性。这种度量称作属性选择度量或分裂的优良性度 量。 选择具有最高信息增益(或最大信息熵压缩)的属性作为当 前节点的测试属性。该属性使得对结果划分中的样本分类所 需的信息量最小,并反映划分的最小随机性或“不纯性”。 这种信息理论方法使得对一个对象分类所需的期望测试数目 达到最小,并确保找到一棵简单的(但不必是最简单的)树。
决策树算法原理
决策树算法原理1 认识决策树1)决策树的生成过程一棵决策树的生成过程主要分为以下3个部分。
(1)特征选择:从训练数据众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准,从而衍生出不同的决策树算法。
(2)决策树生成:根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分时,决策树停止生长。
对于树结构来说,递归结构是最容易理解的方式。
(3)剪枝:决策树容易过拟合,一般都需要剪枝,缩小树结构规模、缓解过拟合。
2)基于信息论的3种决策树算法划分数据集的最大原则是使无序的数据变得有序。
如果一个训练数据中有10个特征,那么选取哪个作为划分依据?这就必须采用量化的方法来判断,量化划分方法有多种,其中一项就是“信息论度量信息分类”。
基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。
CART算法和C4.5算法支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续变量,即求一个特定的值——分裂值:特征值大于分裂值就走左子树,或者就走右子树。
这个分裂值的选取原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5算法和CART算法有不同的定义方式。
ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上,越是小型的决策树越优于大的决策树。
ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征作为判断模块。
ID3算法可用于划分标称型数据集,没有剪枝的过程,为了解决过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶节点(如设置信息增益阈值)。
使用信息增益其实是有一个缺点的,那就是它偏向于具有大量值的属性,就是在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的。
另外,ID3算法不能处理连续分布的数据特征,于是就有了C4.5算法。
什么是决策树算法?
什么是决策树算法?作为数据挖掘领域中最重要的算法之一,决策树算法是一个用于分类和回归分析的非常有用的工具。
决策树算法采用树形结构来表示决策过程,并通过构建具有最佳分类效果的决策树来实现。
那么为什么我们需要决策树算法呢?在实际的应用场景中,我们通常需要从众多的数据中挑选出最为关键的信息。
这样,我们就可以更好地理解数据,并作出相应的决策。
而决策树算法恰恰可以帮助我们完成这一任务。
那么究竟什么是决策树算法,它又是如何运作的呢?让我们逐步探讨吧。
一、什么是决策树算法?决策树算法是一种树形结构的分类和回归分析方法。
它将一个问题分解为许多小问题,并通过一系列可行的测试来解决问题。
决策树算法可以应用于很多领域,包括医学、天气预测、金融等。
二、决策树算法的构建决策树算法的构建过程非常简单。
首先,将训练集数据拆分为子集并构建决策树。
然后,将训练集输入到决策树中,以确定输入数据的类别。
具体而言,决策树算法是通过一个包含一系列节点的层次结构来实现的。
每个节点都代表了一个问题或一个决策。
从根节点开始,每个节点包含一个或多个分支,每个分支代表一个可能的方式来回答节点所代表的问题。
它们的组合形成了决策树。
三、决策树算法的优缺点决策树算法有许多优点。
首先,它们是一种易于理解和解释的算法,能够对大规模数据进行快速的处理。
其次,通过决策树算法,我们能够轻松地检测出具有决策价值的特征。
最后,决策树算法的使用能够避免假定数据的线性关系。
然而,决策树算法也有其缺点。
首先,决策树算法容易出现过拟合的问题。
其次,当决策树的分支过于复杂时,我们很难解释树的结果。
最后,决策树算法的结果很容易被误解。
四、应用案例决策树算法可以应用于很多领域,下面我们就来介绍几个相对典型的应用案例。
1. 银行信贷风险评估银行需要通过信贷风险评估来决定是否给用户发放贷款。
采用决策树算法,我们可以根据贷款人的个人信息、信用记录等因素来判断其是否符合信贷标准。
2. 个性化推荐决策树算法同样可以应用在个性化推荐领域。
决策树的算法
决策树的算法一、什么是决策树算法?决策树算法是一种基于树形结构的分类和回归方法,其本质是将训练数据集分成若干个小的子集,每个子集对应一个决策树节点。
在决策树的生成过程中,通过选择最优特征对数据进行划分,使得各个子集内部的样本尽可能属于同一类别或者拥有相似的属性。
在预测时,将待分类样本从根节点开始逐层向下遍历,直到到达叶节点并输出该节点所代表的类别。
二、决策树算法的基本流程1. 特征选择特征选择是指从训练数据集中选取一个最优特征用来进行划分。
通常情况下,选择最优特征需要考虑两个因素:信息增益和信息增益比。
2. 决策树生成通过递归地构建决策树来实现对训练数据集的分类。
具体实现方式为:采用信息增益或信息增益比作为特征选择标准,在当前节点上选择一个最优特征进行划分,并将节点分裂成若干个子节点。
然后对每个子节点递归调用上述过程,直到所有子节点都为叶节点为止。
3. 决策树剪枝决策树剪枝是指通过去掉一些无用的分支来降低决策树的复杂度,从而提高分类精度。
具体实现方式为:先在训练集上生成一棵完整的决策树,然后自底向上地对内部节点进行考察,若将该节点所代表的子树替换成一个叶节点能够提高泛化性能,则将该子树替换成一个叶节点。
三、常见的决策树算法1. ID3算法ID3算法是一种基于信息熵的特征选择方法。
其核心思想是在每个节点上选择信息增益最大的特征进行划分。
由于ID3算法偏向于具有较多取值的特征,因此在实际应用中存在一定局限性。
2. C4.5算法C4.5算法是ID3算法的改进版,采用信息增益比作为特征选择标准。
相比于ID3算法,C4.5算法可以处理具有连续属性和缺失值的数据,并且生成的决策树更加简洁。
3. CART算法CART(Classification And Regression Tree)算法既可以用来进行分类,也可以用来进行回归分析。
其核心思想是采用基尼指数作为特征选择标准,在每个节点上选择基尼指数最小的特征进行划分。
经典决策树算法
经典决策树算法经典决策树算法是一种常用的机器学习算法,它通过构建一棵树形结构来进行分类或回归预测。
下面将介绍十个经典决策树算法及其特点。
1. ID3算法ID3算法是决策树算法中最早的一种,它使用信息增益来选择最优的划分属性。
ID3算法适用于离散型属性的分类问题,但对于连续型属性的处理较为困难。
2. C4.5算法C4.5算法是ID3算法的改进版,它引入了信息增益比来解决ID3算法的缺点。
C4.5算法还支持处理连续型属性,能够处理缺失值,并且可以生成带有概率估计的决策树。
3. CART算法CART算法是一种通用的决策树算法,可用于分类和回归问题。
CART算法使用基尼指数来选择最优的划分属性,能够处理连续型和离散型属性,也能处理缺失值。
4. CHAID算法CHAID算法是一种用于分类问题的决策树算法,它使用卡方检验来选择最优的划分属性。
CHAID算法能够处理离散型属性和有序离散型属性,但对于连续型属性的处理较为困难。
5. MARS算法MARS算法是一种基于决策树的回归算法,它使用逐步回归和最小二乘法来构建决策树。
MARS算法能够处理连续型和离散型属性,并且可以生成非线性的决策树。
6. Random Forest算法Random Forest算法是一种集成学习算法,它通过构建多棵决策树并进行投票来进行分类或回归预测。
Random Forest算法能够处理连续型和离散型属性,具有较高的准确性和鲁棒性。
7. Gradient Boosting算法Gradient Boosting算法是一种迭代的决策树算法,它通过逐步优化损失函数来构建决策树。
Gradient Boosting算法能够处理连续型和离散型属性,具有较高的准确性和泛化能力。
8. XGBoost算法XGBoost算法是一种基于梯度提升的决策树算法,它通过正则化和并行计算来提高决策树的性能。
XGBoost算法能够处理连续型和离散型属性,并且具有较高的准确性和效率。
决策树数据挖掘算法
决策树数据挖掘算法一、什么是决策树算法?决策树算法是一种基于树形结构的数据挖掘算法,它通过将数据集划分成不同的子集来构建一个树形模型,以实现对数据的分类或预测。
决策树算法的优点在于易于理解和解释,并且可以处理具有高度非线性关系的复杂数据集。
二、决策树算法的原理1. 决策树的定义决策树是一种基于树形结构的分类模型,它由节点和边组成。
节点表示一个特征或属性,边表示该属性可能取值之间的关系。
2. 决策树算法流程(1)选择最佳特征作为当前节点;(2)将训练集按照该特征进行划分,并创建子节点;(3)对每个子节点递归执行步骤(1)和(2),直到所有叶子节点都为同一类别或无法再划分为止。
3. 决策树算法中用到的概念(1)信息熵:表示数据集纯度或不确定性的度量,计算公式为:$H=-\sum_{i=1}^{n}p_i\log_2p_i$,其中 $p_i$ 表示第 $i$ 个类别在数据集中的占比。
(2)信息增益:表示特征对数据集纯度的提升程度,计算公式为:$IG(D,A)=H(D)-H(D|A)$,其中 $D$ 表示原始数据集,$A$ 表示某个特征。
(3)基尼指数:表示数据集纯度或不确定性的度量,计算公式为:$Gini(D)=\sum_{k=1}^{|\mathcal{Y}|}\sum_{k'\neqk}p_kp_{k'}=1-\sum_{k=1}^{|\mathcal{Y}|}p_k^2$,其中$\mathcal{Y}$ 表示类别集合。
(4)基尼增益:表示特征对数据集纯度的提升程度,计算公式为:$GINI(D,A)=Gini(D)-\sum_{v=1}^{V}\frac{|D^v|}{|D|}Gini(D^v)$,其中 $V$ 表示特征 $A$ 取值的个数,$D^v$ 表示特征 $A=v$ 的样本子集。
三、决策树算法的优缺点1. 优点(1)易于理解和解释;(2)能够处理具有高度非线性关系的复杂数据集;(3)能够同时处理离散型和连续型变量;(4)能够处理多分类问题。
决策树算法原理(三种最优属性划分方法)
决策树算法原理(三种最优属性划分方法)决策树是一种用于分类和回归的机器学习算法,其原理是基于历史数据进行学习,并通过一系列判断条件将数据集划分为不同的类别或者预测目标值。
决策树的主要思想是通过一系列属性值来对数据进行逐层划分,直到达到终止条件为止。
在每一次划分时,决策树需要选择最优的属性来进行划分,以使得划分后的数据纯度最高或者信息增益最大。
三种最优属性划分方法包括信息增益、增益率和基尼指数。
1.信息增益:信息增益是用来衡量划分后数据集纯度提高的程度。
它基于信息论中的熵的概念,计算的是划分前后数据集的信息熵之差。
信息熵可以衡量数据集的不确定性,即数据集中的混乱程度。
在选择划分属性时,我们希望划分后的数据集的不确定性最小,即使得信息增益最大。
2.增益率:增益率是信息增益的一种改进,用于解决信息增益在选择具有较多取值的属性上的偏好问题。
增益率通过考虑属性的分裂信息来衡量属性的纯度提升程度。
分裂信息反映了数据集分裂后的数据集的不确定性。
3.基尼指数:基尼指数是通过测量在给定数据集中随机选择一些样本后,错误分类该样本的概率。
基尼指数可以用于二分类或多分类问题。
在选择划分属性时,我们希望划分后的数据集的基尼指数最小,即使得纯度提高的程度最大。
以上三种最优属性划分方法在决策树学习的过程中都有着重要的应用。
在实际应用中,决策树算法可以通过先验知识或者经验来选择最优属性划分方法。
此外,由于决策树算法在高维数据上容易过拟合的问题,可以通过剪枝等技术来避免过拟合。
决策树算法的优势在于易于理解和解释,但也存在局限性,比如对于处理缺失数据、处理连续数据和处理类别不平衡等问题仍然存在挑战。
决策树的训练算法
决策树的训练算法
决策树的训练算法主要有以下几种:
1. ID3算法:ID3(Iterative Dichotomiser 3)是一种用于决策树学习的经典算法。
它基于信息熵的概念,通过计算每个特征的信息增益来选择最优的划分特征。
2. C4.5算法:C4.5算法是ID3算法的改进版,它在选择划分特征时使用信息增益比来解决ID3算法中对取值较多的特征有偏好的问题。
此外,C4.5算法还支持处理连续特征。
3. CART算法:CART(Classification and Regression Tree)算法是一种用于生成二叉决策树的算法。
它根据基尼系数来选择最优的划分特征,并使用回归树或分类树来处理连续特征。
4. CHAID算法:CHAID(Chi-square Automatic Interaction Detector)算法是一种适用于分类问题的决策树算法。
它使用卡方检验来选择最优的划分特征,并根据卡方统计量的值来评估特征的重要性。
5. 梯度提升决策树(GBDT)算法:GBDT算法是一种集成学习算法,它将多颗决策树进行级联,每颗树的输出作为下一颗树的输入。
GBDT通过梯度下降的方式逐步优化模型的预测能力。
这些算法在决策树的构建过程中采用不同的策略和指标,适用于不同类型的数据和问题。
在实际应用中,可以根据数据特点和问题需
求选择合适的算法进行训练。
决策树算法详解及应用场景分析
决策树算法详解及应用场景分析随着数据量的不断增大,如何从中发掘出有价值的信息成为各个领域所面临的难题。
此时,决策树算法应运而生。
决策树是一种基于树结构来进行分类和预测的机器学习算法,已被广泛应用于金融、医疗、电子商务、社交网络等领域。
本文将详细介绍决策树算法的原理、优缺点及应用场景等内容。
一、决策树算法原理决策树是一种树形结构,其中每个内部结点表示一个测试属性,每个分支表示这个属性的一个可能的值,每个叶子结点表示一个类或类分布。
该树将数据集划分为多个子集,以递归的方式进行分类,同时每次对数据集进行划分的方法旨在最大限度地减少分类的正误差。
具体步骤如下:1. 从根节点开始,选择一个最优的属性进行测试,将数据集按照该属性的不同取值分成若干个子集。
2. 对于每个子集,重复1过程,直到子集内的数据可以被完美分类或无法继续划分为止,此时生成一个叶子结点,并标记其所属类别。
3. 对新的未知数据进行预测。
将该数据从根节点开始,依次通过测试,遇到叶子结点即为其预测值。
二、决策树算法优缺点(一)优点1. 可以处理各种数据类型,包括离散型和连续型。
2. 可以自动处理数据缺失的情况,并且不会影响算法的效果。
3. 生成的决策树易于理解和解释,可以通过图形化的方式展示在界面上。
4. 对于相对于训练数据的规模而言,决策树生成的速度比较快。
(二)缺点1. 决策树容易出现过拟合的情况,从而导致对新数据的泛化能力不足。
2. 在处理高维度的数据时,效果不如其他算法,容易出现“维数灾难”现象。
3. 在处理连续值型数据时容易出现过于复杂的波浪形状,从而导致难以解释和理解。
三、决策树算法应用场景1. 监督学习场景下的分类问题。
例如:银行可以使用决策树算法将客户分为高风险和低风险,以更好地进行信贷授信。
2. 监督学习场景下的回归问题。
例如:金融业可以使用决策树算法预测股票的价格波动情况。
3. 特征选择。
决策树具有自动选择重要特征的能力,可以用于特征选择、数据降维等方面的应用。
决策树算法原理介绍
决策树算法原理介绍
决策树算法是一种常用的机器学习算法,主要用于分类和回归问题。
它的基本原理是通过递归地将数据集划分成若干个子集,并在每个划分点选择最优的划分标准,以构建一棵树状图。
决策树算法的基本步骤如下:
1. 构建根节点:将整个数据集作为根节点,设定一个划分标准,将数据集划分为两个或多个子集。
2. 递归构建子节点:对每个子集,重复上述划分过程,直到满足停止条件(例如子集中所有样本都属于同一类别,或达到预设的深度限制等)。
3. 剪枝处理:为了处理过拟合问题,可以对决策树进行剪枝处理,删除部分分支以提高模型的泛化能力。
决策树算法的优点包括直观易懂、可解释性强、对数据预处理要求低等。
但同时,它也存在一些缺点,如容易受到噪声数据和异常值的影响、对于非线性关系的分类效果不佳等。
为了解决这些问题,可以对决策树算法进行改进和优化,如使用集成学习等技术进行模型融合等。
决策树算法的原理
决策树算法的原理
决策树算法,也称为决策树学习,是一种常见的机器学习算法。
它根据已有的样本数据,用树形结构(每个非叶节点对应一个属性)来生成一个训练模型用于预测和分类,也就是说,构建一个决策支持系统,为用户做出一系列的决定。
决策树算法的原理是基于贝叶斯决策理论的独特要素,贝叶斯决策理论是以概率模型为基础的,其核心思想是根据给定的训练样本数据集,来学习决策规则,用于进行新样例的分类。
决策树算法的基本流程是:
(1)准备:根据训练数据集,对数据进行预处理,将训练数据集转换成决策树的学习例子;
(2)构建:使用贝叶斯决策理论,一步一步地从根节点开始,根据最大信息增益(或最小错误率)的原则,逐步完善决策树;
(3)剪枝:使用测试集对构建的决策树进行验证,并进行剪枝,从而改善决策树的分类精度;
(4)预测:使用构建好的决策树,对新样例数据进行预测,并将其分类到最终的类别中。
综上,决策树算法就是以贝叶斯决策原则为基础,结合数据集构建、剪枝和预测三个步骤,实现决策模型的一种机器学习算法。
此算法具有易于理解、易于实施,能进行非线性分类,能够用于多分类,但也有其不足之处,例如对训练样本数据集要求较高,相比其他算法效率低等。
决策树算法的原理及其分类应用场景
决策树算法的原理及其分类应用场景决策树算法是机器学习中最基础的算法之一。
它模拟人类决策的过程,将复杂的问题划分成多个简单的子问题去解决。
本文将介绍决策树算法的原理及其常见的聚类应用场景。
一、决策树算法的原理决策树算法是一种分类以及回归分析的方法。
它可以处理具有两个或多个决策结果的问题。
决策树算法使用树状图模型表示各种可能的决策以及每种决策的可能结果。
它使用特定的分析方法来建立一棵决策树,可以决定哪个属性在决策一系列有用的问题时是最重要的。
1、特征选择决策树算法的第一步是数据的预处理,包括数据清洗、归一化等,而特征选择是最重要的环节。
特征选择是指从训练数据中选择一个最佳的特征集,以使得决策树建立后能保证最佳的决策准确性和泛化能力。
2、建立决策树在特征选择之后,决策树算法建立一个若干节点的树,节点间通过有向边连接,树的叶子节点表示分类结果。
决策树的建立使用一种自顶向下贪心的策略。
具体来说,从根节点开始,根据某个属性的信息熵,选择最优属性以及对应的属性值,将所有样本分为两部分构建子集,然后递归地对子集构建一个子树。
不断递归直至没有样本或样本均属于同一类别。
3、决策树剪枝为了避免过拟合,通常需要将决策树进行剪枝,即去掉一些不必要的节点或子树。
在剪枝的过程中,可以采用预剪枝和后剪枝两种方式。
预剪枝是在树的构建过程中,根据一定的规则判断是否应该在当前节点继续递归下去,而后剪枝是在树构建完成之后,通过对已有节点以及子树的删除以及合并来达到剪枝的目的。
二、决策树算法的应用场景决策树算法可以处理具有离散变量和连续变量的数据,分类和回归任务都可以使用它来完成。
它在许多领域都有广泛的应用,以下是几个常见的应用场景。
1、医疗诊断在医疗诊断中,决策树算法可以通过患者的症状、生理指标等信息,构建出一颗决策树用于诊断疾病。
决策树中的节点表示各种症状,而叶子节点则表示各种疾病。
2、金融风控在金融风控中,决策树可以通过对客户的信用、资产以及其他信息进行判断,来预测是否会发生违约、逾期等情况。
决策树分类算法
决策树分类算法⼀、决策树原理决策树是⽤样本的属性作为结点,⽤属性的取值作为分⽀的树结构。
决策树的根结点是所有样本中信息量最⼤的属性。
树的中间结点是该结点为根的⼦树所包含的样本⼦集中信息量最⼤的属性。
决策树的叶结点是样本的类别值。
决策树是⼀种知识表⽰形式,它是对所有样本数据的⾼度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。
决策树算法ID3的基本思想:⾸先找出最有判别⼒的属性,把样例分成多个⼦集,每个⼦集⼜选择最有判别⼒的属性进⾏划分,⼀直进⾏到所有⼦集仅包含同⼀类型的数据为⽌。
最后得到⼀棵决策树。
J.R.Quinlan的⼯作主要是引进了信息论中的信息增益,他将其称为信息增益(information gain),作为属性判别能⼒的度量,设计了构造决策树的递归算法。
举例⼦⽐较容易理解:对于⽓候分类问题,属性为:天⽓(A1) 取值为:晴,多云,⾬⽓温(A2) 取值为:冷,适中,热湿度(A3) 取值为:⾼,正常风 (A4) 取值为:有风,⽆风每个样例属于不同的类别,此例仅有两个类别,分别为P,N。
P类和N类的样例分别称为正例和反例。
将⼀些已知的正例和反例放在⼀起便得到训练集。
由ID3算法得出⼀棵正确分类训练集中每个样例的决策树,见下图。
决策树叶⼦为类别名,即P 或者N。
其它结点由样例的属性组成,每个属性的不同取值对应⼀分枝。
若要对⼀样例分类,从树根开始进⾏测试,按属性的取值分枝向下进⼊下层结点,对该结点进⾏测试,过程⼀直进⾏到叶结点,样例被判为属于该叶结点所标记的类别。
现⽤图来判⼀个具体例⼦,某天早晨⽓候描述为:天⽓:多云⽓温:冷湿度:正常风:⽆风它属于哪类⽓候呢?-------------从图中可判别该样例的类别为P类。
ID3就是要从表的训练集构造图这样的决策树。
实际上,能正确分类训练集的决策树不⽌⼀棵。
Quinlan的ID3算法能得出结点最少的决策树。
ID3算法:⒈对当前例⼦集合,计算各属性的信息增益;⒉选择信息增益最⼤的属性A k;⒊把在A k处取值相同的例⼦归于同⼀⼦集,A k取⼏个值就得⼏个⼦集;⒋对既含正例⼜含反例的⼦集,递归调⽤建树算法;⒌若⼦集仅含正例或反例,对应分枝标上P或N,返回调⽤处。
决策树算法
决策树算法决策树算法(DecisionTreeAlgorithm)是一种常用的数据挖掘和分类技术。
它把数据转换成一个树形结构显示出来,以便更加清楚的展示出数据的关联关系。
决策树算法是一种经典的分类算法,其将会把所有的数据属性进行分类,并根据预先定义的规则做出判定,最终将数据划分为多个分类,从而实现数据的分类鉴定和挖掘。
决策树算法是一种非常有效的机器学习算法,可以从数据中自动学习出一组规则,然后根据这些规则来做出决策。
这种算法可以很容易地理解和使用,也很适合与各种任务一起使用,如作为自动化分类和决策系统的一部分。
决策树算法建立在树状结构的基础上,它代表一组决策,每个决策有一定的判断标准,且标准是独一无二的,在每次判断时要根据训练数据里的不同情况来决定根据哪一个判断标准来进行分类。
决策树算法有着自己的优势,如它可以处理事先未知的概念的数据,比如如果有一个数据集包含多个相关的属性,而这些属性之间有着精确的联系,决策树可以非常容易地从一系列复杂的属性之中学习出一种分类规则,然后根据这些规则来做出分类决策。
此外,决策树算法的训练时间较短,而且可以很容易的显示出分类的过程,从而使得决策树算法具备可视化的优势,它可以轻松地展示出分类的结果。
决策树算法有着它自己特有的缺点,如它容易出现过拟合现象,这意味着在训练过程中,决策树可以一味地追求最大的正确率,而忽视掉样本外的情况,从而使得它在实际应用中会出现较大的偏差。
另外,与其他算法相比,决策树算法需要较多的存储空间,因为它的模型包含了很多的特征,而且这些特征也是依次建立的,这样就需要更多的存储来支持这种复杂的模型。
决策树算法日益受到人们的重视,它在数据挖掘和分类任务中发挥着重要的作用。
现在,已经有越来越多的的分类算法出现在市面上,但是决策树算法仍然是众多算法中的佼佼者,它可以从数据中自动学习出一组决策规则,并根据这些规则做出最终的决策,有助于实现有效的数据挖掘和分类。
决策树算法公式
决策树算法公式决策树算法是一种基于树状结构的分类和回归方法,其中树的每个节点代表一个特征属性,每个分支代表该特征属性的一个取值,而每个叶子节点则代表最终的分类或回归结果。
在决策树算法中,通常采用信息增益或基尼指数等方法来选择最优的特征属性进行分割,从而构建出一棵高效的决策树。
具体的决策树算法公式如下:1. 计算信息熵信息熵是反映数据的不确定性的度量,其公式为:$H(D)=-sum_{i=1}^{n} p_i log_2 p_i$其中 $D$ 为数据集,$p_i$ 为第 $i$ 个分类的概率。
信息熵越大,数据的不确定性越高,反之亦然。
2. 计算信息增益信息增益是使用信息熵来选择最优特征属性的方法,其公式为: $Gain(A)=H(D)-sum_{i=1}^{k}frac{|D_i|}{|D|}H(D_i)$ 其中 $A$ 表示特征属性,$k$ 表示属性 $A$ 的可能取值个数,$D_i$ 表示第 $i$ 个取值所对应的数据集,$|D_i|$ 表示 $D_i$ 中样本的个数,$|D|$ 表示数据集 $D$ 中样本的总个数。
信息增益越大,表明选取该特征属性进行分割能够带来更好的分类效果。
3. 计算基尼指数基尼指数是通过选择最小基尼指数来构建决策树的方法,其公式为:$Gini(p)=sum_{k=1}^{K}p_k(1-p_k)=1-sum_{k=1}^{K}p_k^2$ 其中 $p_k$ 表示第 $k$ 个分类的概率。
基尼指数越小,表明数据的纯度越高,反之亦然。
4. 计算基尼指数增益基尼指数增益是使用基尼指数来选择最优特征属性的方法,其公式为:$Gain_Gini(A)=Gini(D)-sum_{i=1}^{k}frac{|D_i|}{|D|}Gini(D_i )$其中 $A$ 表示特征属性,$k$ 表示属性 $A$ 的可能取值个数,$D_i$ 表示第 $i$ 个取值所对应的数据集,$|D_i|$ 表示 $D_i$ 中样本的个数,$|D|$ 表示数据集 $D$ 中样本的总个数。
决策树算法应用和结果解读
决策树算法应用和结果解读
决策树算法是一种常见的机器学习算法,广泛应用于分类和回归问题中。
该算法通过构建一棵树形结构,对数据进行有序、层次化的划分,以预测输出结果。
以下是决策树算法的应用和结果解读:
应用:
1. 分类问题:决策树算法可应用于二分类或多分类问题。
通过构建决策树模型,将数据集划分为不同的类别,根据树的节点和分支规则,对新的输入数据进行分类预测。
2. 回归问题:除了分类问题外,决策树算法也可应用于回归问题。
通过构建决策树模型,对连续的输出变量进行预测,根据树的节点和分支规则,对新的输入数据进行回归分析。
结果解读:
1. 树形结构:决策树算法的结果通常以树形结构的形式展示,树中的每个节点代表一个特征或属性测试,分支代表测试结果,叶子节点代表最终的分类或回归结果。
2. 特征重要性:在决策树模型中,每个特征在决策树中的位置和重要性可以被评估和解读。
特征的重要性通常可以通过特征的分裂信息、基尼不纯度等指标来衡量。
3. 分类结果:对于分类问题,决策树的结果可以展示各类别在每个节点上的分布情况,以及每个分支所代表的类别。
通过观察树的节点和分支规则,可以了解不同类别之间的划分依据。
4. 回归结果:对于回归问题,决策树的结果可以展示每个节点的预测值和实际值之间的差异,以及每个分支所代表的预测值范围。
通过观察树的节点和分支规则,可以了解预测值与实际值之间的关系。
总之,决策树算法的应用广泛,结果易于解读。
通过观察决策树的树形结构和特征重要性、分类或回归结果,可以对数据集进行有效的分析和预测。
第4章 决策树分类算法
四、决策树分类算法
2.决策树分类算法-ID3算法原理 2.1 ID3算法原理
ID3算法的基本策略如下: (1)树以代表训练样本的单个节点开始; (2)如果样本都在同一个类中,则这个节点成为树叶结点并标记为该类别; (3)否则算法使用信息熵(称为信息增益)作为启发知识来帮助选择合适的 将样本分类的属性,以便将样本集划分为若干子集, (4)对测试属性的每个已知的离散值创建一个分支,并据此划分样本; (5)算法使用类似的方法,递归地形成每个划分上的样本决策树: (6)整个递归过程在下列条件之一成立时停止。
gain(S,A)是指因为知道属性A的值后导致的熵的期望压缩。
四、决策树分类算法
2.决策树分类算法-ID3算法原理 2.3 ID3算法
(1) 初始化决策树T,使其只包含一个树根结点(X,Q),其中X是全体样本集, Q为全体属性集。 (2) if(T中所有叶节点(X’,Q’)都满足X属于同一类或Q’为空) then 算法停止; (3) else { 任取一个不具有(2)中所述状态的叶节点(X’,Q’);
理,C4.5算法的核心思想与ID3完全一样。
gain_ratio(S,A) gain(S,A) split_info(S,A)
其中,gain(S,A) 表示信息增益。
四、决策树分类算法
4. 决策树分类算法-C4.5算法原理 4.1 C4.5算法
2.数值属性的处理 C4.5处理数值属性的过程如下:
(1)按照属性值对训练数据进行排序; (2)用不同的阈值对训练数据进行动态划分; (3)当输入改变时确定一个阈值; (4)取当前样本的属性值和前一个样本的属性值的中点作为新的阈值; (5)生成两个划分,所有的样本分布到这两个划分中; (6)得到所有可能的阈值、增益和增益比例。
决策式算法
决策式算法,又称为决策树算法,是一种常见的机器学习算法,主要用于分类和回归任务。
它的核心思想是通过一系列规则对数据进行分类或回归,其中每个规则对应树的一个节点,每个节点代表一个属性测试,从该节点出发,有两个或更多子节点,每个子节点代表该属性的一个可能结果。
决策树算法通常以树形图表示,层次分明,易于理解和解释。
在分类任务中,决策树算法的目标是根据训练数据集生成一棵决策树,使得对于未知类别的数据,能够通过树的路径找到其类别。
生成的决策树可以用于对新数据进行分类或预测。
在回归任务中,决策树算法的目标是根据训练数据集生成一棵决策树,使得对于给定的输入数据,能够通过树的路径找到其对应的输出值。
生成的决策树可以用于对连续值进行预测。
决策树算法有许多优点,例如易于理解和解释、能够处理缺失值和噪声数据、对特征进行自动选择等。
然而,它也有一些局限性,例如对于高维数据可能导致过拟合、容易受到异常值和噪声数据的影响等。
因此,在实际应用中,需要综合考虑各种因素选择合适的算法。
决策树算法原理
决策树算法原理
决策树算法是机器学习中一种流行的分类和回归方法,它模拟简单的人工智能,可以用来帮助决策者根据给定的输入数据做出最佳的决策。
决策树的工作原理是以树状结构的方式来表示和组织决策过程,其中每个内部节点代表一个“测试”,每个分支代表一个可能的结果,而每个叶子节点代表一个决策。
它通过从根节点开始,逐步测试每个节点,直到到达叶子节点,以决定最终的决策。
决策树算法通常用于分类问题,即根据给定的输入数据,将它们分类到正确的类别中。
决策树算法也可以用于回归分析,即根据给定的输入数据,预测它们的值。
决策树算法由三个基本步骤组成:特征选择、决策树构建和决策树剪枝。
首先,特征选择是根据给定的输入数据选择最有效的特征,以最大程度地识别不同的类别。
其次,决策树构建是根据选择的特征构建决策树。
最后,决策树剪枝是为了避免过拟合,即在模型中插入额外的节点。
总之,决策树算法是一种流行的机器学习方法,它可以用来帮助决策者根据给定的输入数据做出最佳决策。
它由特征选择、决策树构建和决策树剪枝三个基本步骤组成,可以用于分类和回归分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 分类与决策树概述3.1.1 分类与预测分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。
例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。
这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。
例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。
还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。
那么这种问题在数据挖掘中被称为预测。
总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。
3.1.2 决策树的基本原理1.构建决策树通过一个实际的例子,来了解一些与决策树有关的基本概念。
表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。
这里把这个表记做数据集D。
银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。
当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。
这里的信用等级分析模型,就可以是一棵决策树。
在这个案例中,研究的重点是“信用等级”这个属性。
给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。
这里把“信用等级”这个属性称为“类标号属性”。
数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,“良”,“差”}。
在决策树方法中,有两个基本的步骤。
其一是构建决策树,其二是将决策树应用于数据库。
大多数研究都集中在如何有效地构建决策树,而应用则相对比较简单。
构建决策树算法比较多,在Clementine中提供了4种算法,包括C&RT、CHAID、QUEST和C5.0。
采用其中的某种算法,输入训练数据集,就可以构造出一棵类似于图3.1所示的决策树。
一棵决策树是一棵有向无环树,它由若干个节点、分支、分裂谓词以及类别组成。
节点是一棵决策树的主体。
其中,没有父亲节点的节点称为根节点,如图3.1中的节点1;没有子节点的节点称为叶子节点,如图3.1中的节点4、5、6、7、8。
一个节点按照某个属性分裂时,这个属性称为分裂属性,如节点1按照“年龄”被分裂,这里“年龄”就是分裂属性,同理,“职业”、“月薪”也是分裂属性。
每一个分支都会被标记一个分裂谓词,这个分裂谓词就是分裂父节点的具体依据,例如在将节点1分裂时,产生两个分支,对应的分裂谓词分别是“年龄<40”和“年龄>=40”。
另外,每一个叶子节点都被确定一个类标号,这里是“优”、“良”或者“差”。
基于以上描述,下面给出决策树的定义:由此可以看出,构建一棵决策树,关键问题就在于,如何选择一个合适的分裂属性来进行一次分裂,以及如何制定合适的分裂谓词来产生相应的分支。
各种决策树算法的主要区别也正在于此。
2.修剪决策树利用决策树算法构建一个初始的树之后,为了有效地分类,还要对其进行剪枝。
这是因为,由于数据表示不当、有噪音等原因,会造成生成的决策树过大或过度拟合。
因此为了简化决策树,寻找一颗最优的决策树,剪枝是一个必不可少的过程。
通常,决策树越小,就越容易理解,其存储与传输的代价也就越小,但决策树过小会导致错误率较大。
反之,决策树越复杂,节点越多,每个节点包含的训练样本个数越少,则支持每个节点样本数量也越少,可能导致决策树在测试集上的分类错误率越大。
因此,剪枝的基本原则就是,在保证一定的决策精度的前提下,使树的叶子节点最少,叶子节点的深度最小。
要在树的大小和正确率之间寻找平衡点。
不同的算法,其剪枝的方法也不尽相同。
常有的剪枝方法有预剪枝和后剪枝两种。
例如CHAID和C5.0采用预剪枝,CART则采用后剪枝。
预剪枝,是指在构建决策树之前,先制定好生长停止准则(例如指定某个评估参数的阈值),在树的生长过程中,一旦某个分支满足了停止准则,则停止该分支的生长,这样就可以限制树的过度生长。
采用预剪枝的算法有可能过早地停止决策树的构建过程,但由于不必生成完整的决策树,算法的效率很高,适合应用于大规模问题。
后剪枝,是指待决策树完全生长结束后,再根据一定的准则,剪去决策树中那些不具一般代表性的叶子节点或者分支。
这时,可以将数据集划分为两个部分,一个是训练数据集,一个是测试数据集。
训练数据集用来生成决策树,而测试数据集用来对生成的决策树进行测试,并在测试的过程中通过剪枝来对决策树进行优化。
3.生成原则在生成一棵最优的决策树之后,就可以根据这棵决策树来生成一系列规则。
这些规则采用“If...,Then...”的形式。
从根节点到叶子节点的每一条路径,都可以生成一条规则。
这条路径上的分裂属性和分裂谓词形成规则的前件(If部分),叶子节点的类标号形成规则的后件(Then部分)。
例如,图3.1的决策树可以形成以下5条规则:If(年龄<40)and(职业=“学生” or 职业=“教师”)Then 信用等级=“优”If(年龄<40)and(职业!=“学生” and 职业!=“教师”)Then 信用等级=“良”If(年龄>=40)and(月薪<1000)Then 信用等级=“差”If(年龄>=40)and(月薪>=1000 and 月薪<=3000)Then 信用等级=“良”If(年龄>=40)and(月薪>3000)Then 信用等级=“优”这些规则即可应用到对未来观测样本的分类中了。
3.2 ID3、C4.5与C5.0ID3算法是最有影响力的决策树算法之一,由Quinlan提出。
ID3算法的某些弱点被改善之后得到了C4.5算法;C5.0则进一步改进了C4.5算法,使其综合性能大幅度提高。
但由于C5.0是C4.5的商业版本,其算法细节属于商业机密,因此没有被公开,不过在许多数据挖掘软件包中都嵌入了C5.0算法,包括Clementine。
3.2.1 ID31.信息增益任何一个决策树算法,其核心步骤都是为每一次分裂确定一个分裂属性,即究竟按照哪一个属性来把当前数据集划分为若干个子集,从而形成若干个“树枝”。
ID3算法采用“信息增益”为度量来选择分裂属性的。
哪个属性在分裂中产生的信息增益最大,就选择该属性作为分裂属性。
那么什么是信息增益呢?这需要首先了解“熵”这个概念。
熵,是数据集中的不确定性、突发性或随机性的程度的度量。
当一个数据集中的记录全部都属于同一类的时候,则没有不确定性,这种情况下的熵为0。
决策树分类的基本原则是,数据集被分裂为若干个子集后,要使每个子集中的数据尽可能的“纯”,也就是说子集中的记录要尽可能属于同一个类别。
如果套用熵的概念,即要使分裂后各子集的熵尽可能的小。
例如在一次分裂中,数据集D被按照分裂属性“年龄”分裂为两个子集D1和D2,如图3.2所示。
2.ID3算法的流程ID3算法是一个从上到下、分而治之的归纳过程。
ID3算法的核心是:在决策树各级节点上选择分裂属性时,通过计算信息增益来选择属性,以使得在每一个非叶节点进行测试时,能获得关于被测试样本最大的类别信息。
其具体方法是:检测所有的属性,选择信息增益最大的属性产生决策树节点,由该属性的不同取值建立分支,再对各分支的子集递归调用该方法建立决策树节点的分支,直到所有子集仅包括同一类别的数据为止。
最后得到一棵决策树,它可以用来对新的样本进行分类。
下面通过一个实例来了解一下决策树的构建过程。
表3-2是一个假想的银行贷款客户历史信息(略去了客户姓名),包含14个样本。
现要求以这14个样本为训练数据集,以“提供贷款”为类标号属性,用ID3算法构造决策树。
3.ID3算法的性能分析ID3算法是一种典型的决策树分析算法,后来发展的许多决策树算法都是以ID3算法为基础发展而来的。
ID3算法的优点在于它构建决策树的速度比较快,它的计算时间随问题的难度只是线性地增加,适合处理大批量数据集。
同时,ID3算法的缺点也是突出的,包括以下几点。
(1)ID3算法对训练样本的质量的依赖性很强,训练样本的质量主要是指是否存在噪声和是否存在足够的样本。
(2)ID3算法只能处理分类属性(离散属性),而不能处理连续属性(数值属性)。
在处理连续属性时,一般要先将连续属性划分为多个区间,转化为分类属性。
例如“年龄”,要把其数值事先转换为诸如“小于30岁”、“30~50岁”、“大于50岁”这样的区间,再根据年龄值落入了某一个区间取相应的类别值。
通常,区间端点的选取包含着一定的主观因素和大量的计算。
(3)ID3算法生成的决策树是一棵多叉树,分支的数量取决于分裂属性有多少个不同的取值。
这不利于处理分裂属性取值数目较多的情况。
因此目前流行的决策树算法大多采用二叉树模型。
(4)ID3算法不包含对树的修剪,无法对决策树进行优化。
正因为ID3还存在着许多不足的地方,Quinlan对ID3算法进行了改进,并于1993年提出了ID3的改进算法C4.5。
3.2.2 C4.5C4.5算法的核心思想与ID3完全相同,但在实现方法上做了更好的改进,并增加了新的功能。
主要包括:采用“增益比例”来选择分裂属性、对连续属性的处理、对样本属性值缺失情况的处理、规则的产生、交叉验证等。
1.用“增益比例”来选择分裂属性如前所述,ID3是采用“信息增益”来选择分裂属性的。
虽然这是一种有效地方法,但其具有明显的倾向性,即它倾向于选择具有大量不同取值的属性,从而产生许多小而纯的子集。
尤其是关系数据库中作为主键的属性,每个样本都有一个不同的取值。
如果以这样的属性作为分裂属性,那么将产生非常多的分支,而且每一个分支产生的子集的熵均为0(因为子集中只有一个样本!)。
显然,这样的决策树是没有实际意义的。
因此,Quinlan提出使用增益比例来代替信息增益。
2.连续属性的处理ID3最初的定义假设数据集的各属性都必须是离散的。
如果有连续属性,则可以采用划分区间的方法来离散化。
假如在前面的例子中,属性“年龄”由于是连续型属性,被划分为“<30”、“[30,50]”、“>50”3个区间,这样属性“年龄” 的不同取值就只有3个了,这就是被离散化的过程。