数据挖掘——决策树分类算法 (2)
数据挖掘十大算法

数据挖掘十大算法数据挖掘是通过挖掘大规模数据集以发现隐藏的模式和关联性的过程。
在数据挖掘领域,存在许多算法用于解决各种问题。
以下是数据挖掘领域中被广泛使用的十大算法:1. 决策树(Decision Trees):决策树是一种用于分类和回归的非参数算法。
它用树结构来表示决策规则,通过划分数据集并根据不同的属性值进行分类。
2. 支持向量机(Support Vector Machines,SVM):SVM是一种二分类算法,通过在数据空间中找到一个最优的超平面来分类数据。
SVM在处理非线性问题时,可以使用核函数将数据映射到高维空间。
3. 朴素贝叶斯(Naive Bayes):基于贝叶斯定理,朴素贝叶斯算法使用特征之间的独立性假设,通过计算给定特征下的类别概率,进行分类。
4. K均值聚类(K-means Clustering):K均值聚类是一种无监督学习算法,用于将数据集分割成多个类别。
该算法通过计算样本之间的距离,并将相似的样本聚类在一起。
5. 线性回归(Linear Regression):线性回归是一种用于建立连续数值预测模型的算法。
它通过拟合线性函数来寻找自变量和因变量之间的关系。
6. 关联规则(Association Rules):关联规则用于发现数据集中项集之间的关联性。
例如,购买了商品A的人也常常购买商品B。
7. 神经网络(Neural Networks):神经网络是一种模拟人脑神经元网络的算法。
它通过训练多个神经元之间的连接权重,来学习输入和输出之间的关系。
9. 改进的Apriori算法:Apriori算法用于发现大规模数据集中的频繁项集。
改进的Apriori算法通过剪枝和利用频繁项集的性质来提高算法的效率。
10. 集成学习(Ensemble Learning):集成学习是一种通过将多个学习器进行组合,从而提高分类准确率的算法。
常用的集成学习方法包括随机森林和梯度提升树。
这些算法在不同的场景和问题中有着不同的应用。
决策树算法

3
第一节 决策树算法原理
优点: 使用者不需要了解很多背景知识,只要训练事例能用属性 →结论的方式表达出来,就能用该算法学习; 决策树模型效率高,对训练集数据量较大的情况较为适合; 分类模型是树状结构,简单直观,可将到达每个叶结点的 路径转换为IF→THEN形式的规则,易于理解; 决策树方法具有较高的分类精确度。
14
第一节 决策树算法原理
决策树算法的大体框架都是一样的,都采用了贪心(非回 溯的)方法来以自顶向下递归的方式构造决策树。 它首先根据所使用的分裂方法来对训练集递归地划分递归 地建立树的节点,直至满足下面两个条件之一,算法才停 止运行:( 1)训练数据集中每个子集的记录项全部属于 一类或某一个类占压倒性的多数;(2)生成的树节点通 过某个终止的分裂准则;最后,建立起决策树分类模型。
4
第一节 决策树算法原理
缺点: 不易处理连续数据。数据的属性必须被划分为不同的类别 才能处理,但是并非所有的分类问题都能明确划分成这个 区域类型; 对缺失数据难以处理,这是由于不能对缺失数据产生正确 的分支进而影响了整个决策树的生成; 决策树的过程忽略了数据库属性之间的相关性。
5
第一节 决策树算法原理
21
2.1 ID3算法
属性选择度量 在树的每个节点上使用信息增益(information gain)度量选 择测试属性。这种度量称作属性选择度量或分裂的优良性度 量。 选择具有最高信息增益(或最大信息熵压缩)的属性作为当 前节点的测试属性。该属性使得对结果划分中的样本分类所 需的信息量最小,并反映划分的最小随机性或“不纯性”。 这种信息理论方法使得对一个对象分类所需的期望测试数目 达到最小,并确保找到一棵简单的(但不必是最简单的)树。
《数据挖掘》试题与答案

一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。
知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。
流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。
2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。
例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。
2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。
若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。
3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。
由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。
假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。
3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。
数据挖掘-决策树PPT资料48页

0.247位 选择获得最大信息增益 的属性进行划分
划分过程的终止
当所有叶节点都是纯的。
因训练集包含两个具有相同属性集,但具有不同类 的实例。
ID3代表归纳决策树(induction decision—tree)版本 3,它是一种用来由数据构造决策树的递归过程。
lD3算法的步骤
1. 试探性地选择一个属性放置在根节点,并对该属 性的每个值产生一个分支。
2. 分裂根节点上的数据集,并移到子女节点,产生 一棵局部树(partial tree)。
决策树作用(2)
决策树的主要作用是揭示数据中的结构化信息。 决策树汇总了数据,并揭示了其中隐藏的结构:
规则:
如果血压高,则 采用药物A。
如果血压低,则 采用药物B。
如果血压正常。 年龄小于或等于 40,则采用药物 A,否则采用药 物B。
准确率、支持度、错误率
该例得到的规则和对应的准确率和支持度是:
如果血压高,则采用药物A(准确率100%,支持度 3/12)。
如果血压低,则采用药物B(准确率100%,支持度 3/12)。
如果血压正常并且年龄小于或等于40,则采用药 物A(准确率100%,支持度3/12)。
如果血压正常并且年龄大于40。则采用药物B(准 确率100%,支持度3/12)。
3. 对该划分的质量进行评估。 4. 对其他属性重复该过程。 5. 每个用于划分的属性产生一棵局部树。 6. 根据局部树的质量,选择一棵局部树。 7. 对选定的局部树的每个子女节点重复以上1-6步。 8. 这是一个递归过程。如果一个节点上的所有实例
决策树的算法

决策树的算法一、什么是决策树算法?决策树算法是一种基于树形结构的分类和回归方法,其本质是将训练数据集分成若干个小的子集,每个子集对应一个决策树节点。
在决策树的生成过程中,通过选择最优特征对数据进行划分,使得各个子集内部的样本尽可能属于同一类别或者拥有相似的属性。
在预测时,将待分类样本从根节点开始逐层向下遍历,直到到达叶节点并输出该节点所代表的类别。
二、决策树算法的基本流程1. 特征选择特征选择是指从训练数据集中选取一个最优特征用来进行划分。
通常情况下,选择最优特征需要考虑两个因素:信息增益和信息增益比。
2. 决策树生成通过递归地构建决策树来实现对训练数据集的分类。
具体实现方式为:采用信息增益或信息增益比作为特征选择标准,在当前节点上选择一个最优特征进行划分,并将节点分裂成若干个子节点。
然后对每个子节点递归调用上述过程,直到所有子节点都为叶节点为止。
3. 决策树剪枝决策树剪枝是指通过去掉一些无用的分支来降低决策树的复杂度,从而提高分类精度。
具体实现方式为:先在训练集上生成一棵完整的决策树,然后自底向上地对内部节点进行考察,若将该节点所代表的子树替换成一个叶节点能够提高泛化性能,则将该子树替换成一个叶节点。
三、常见的决策树算法1. ID3算法ID3算法是一种基于信息熵的特征选择方法。
其核心思想是在每个节点上选择信息增益最大的特征进行划分。
由于ID3算法偏向于具有较多取值的特征,因此在实际应用中存在一定局限性。
2. C4.5算法C4.5算法是ID3算法的改进版,采用信息增益比作为特征选择标准。
相比于ID3算法,C4.5算法可以处理具有连续属性和缺失值的数据,并且生成的决策树更加简洁。
3. CART算法CART(Classification And Regression Tree)算法既可以用来进行分类,也可以用来进行回归分析。
其核心思想是采用基尼指数作为特征选择标准,在每个节点上选择基尼指数最小的特征进行划分。
C2决策树分类

C2决策树分类决策树是一种常用的机器学习算法,被广泛应用于数据挖掘和模式识别任务中。
它通过构建一棵树状结构来进行分类,每个节点代表一个特征,每个分支代表该特征的不同取值,叶子节点代表最终的分类结果。
决策树的主要优点是易于解释和理解,同时具有良好的可扩展性和可靠性。
在本文中,我们将详细介绍决策树分类算法。
决策树的构造过程包括特征选择、决策树的生成和决策树的剪枝。
特征选择是决策树构造中的关键步骤,其目的是选择能够最好地分类数据集的特征。
决策树的生成过程采用递归的方式,从根节点开始,根据特征选择准则和递归终止条件不断地划分数据集。
决策树的剪枝是为了防止过拟合,通过去掉一些无关的特征和减少树的深度来提高决策树的泛化能力。
特征选择的准则有很多种,常用的有信息增益、信息增益比和基尼指数。
信息增益是指在特征A给定的条件下,样本集合D的信息熵H(D)的减少量,信息增益比是信息增益与划分前的特征熵之比,而基尼指数是衡量数据集纯度的指标。
在每一次划分过程中,选择能够获得最大信息增益或最小基尼指数的特征作为当前节点的划分特征。
决策树的生成过程分为递归地选择最优划分特征和递归生成子节点两个步骤。
在选择最优划分特征时,根据特征的取值个数和类型的不同,决策树的生成算法也有所不同。
针对离散型特征,最常用的是ID3算法和C4.5算法;针对连续型特征,常用的是CART算法。
决策树剪枝是为了防止决策树的过拟合现象。
过拟合是指决策树在训练样本上表现很好,但在测试样本上表现较差的情况。
决策树剪枝的目标是通过去掉一些无用的特征和减少树的深度,来提高决策树的泛化能力。
常用的决策树剪枝算法有预剪枝和后剪枝两种。
预剪枝是在决策树的构建过程中,在每一次划分节点时判断是否进行剪枝,根据一定的规则来预先决定是否切分节点,从而避免决策树过拟合。
常用的预剪枝规则有设置最大深度、设置最小样本数、设置最小信息增益等。
后剪枝是在决策树构造完成后,从底向上对非叶子节点进行考察,判断剪枝后整体效果是否提升,若提升则进行剪枝,否则保持不变。
数据挖掘中的分类算法

数据挖掘中的分类算法数据挖掘是一种通过分析大量数据来发现模式、关联和趋势的方法。
分类算法是数据挖掘中的一种核心技术,它可以将数据分为不同的类别,有助于我们理解和利用数据。
本文将介绍数据挖掘中常用的几种分类算法。
一、决策树算法决策树算法是一种基于树形结构的分类算法,它将数据集划分为多个子集,每个子集都对应一个决策节点。
通过不断选择最佳划分节点,最终形成一棵完整的决策树。
决策树算法简单易懂,可解释性强,适用于离散型和连续型数据。
常见的决策树算法包括ID3、C4.5和CART 算法。
二、朴素贝叶斯算法朴素贝叶斯算法是一种基于概率统计的分类算法,它基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。
朴素贝叶斯算法在文本分类、垃圾邮件过滤等领域有广泛应用。
它的优点是简单高效,对小样本数据有较好的分类效果。
三、支持向量机算法支持向量机算法是一种通过寻找最优超平面来进行分类的算法。
它的核心思想是将数据映射到高维特征空间,找到能够最好地将不同类别分开的超平面。
支持向量机算法适用于高维数据和样本较少的情况,具有较好的泛化能力和鲁棒性。
四、K近邻算法K近邻算法是一种基于距离度量的分类算法,它的原理是通过计算新样本与训练样本的距离,选取K个最近邻的样本来进行分类。
K近邻算法简单直观,适用于多样本情况下的分类问题。
然而,K近邻算法计算复杂度高,对异常值和噪声敏感。
五、神经网络算法神经网络算法是一种模拟人脑神经元连接方式的分类算法。
它通过构建多层网络、定义激活函数和调整权重来实现分类。
神经网络算法能够处理非线性问题,但对于大规模数据和参数调整比较困难。
六、集成学习算法集成学习算法是一种通过组合多个分类器的预测结果来进行分类的方法。
常见的集成学习算法有随机森林、AdaBoost和梯度提升树等。
集成学习算法能够有效地提高分类准确率和鲁棒性,适用于大规模数据和复杂问题。
在选择分类算法时,需要综合考虑数据类型、数据量、准确性要求以及计算资源等因素。
决策树算法介绍

3.1 分类与决策树概述3.1。
1 分类与预测分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。
例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。
这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。
例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平"、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差",在这个例子中,所研究的属性“信用度"是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。
还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。
那么这种问题在数据挖掘中被称为预测.总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测.3。
1.2 决策树的基本原理1.构建决策树通过一个实际的例子,来了解一些与决策树有关的基本概念.表3—1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、..。
..。
、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。
这里把这个表记做数据集D.银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。
当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。
这里的信用等级分析模型,就可以是一棵决策树. 在这个案例中,研究的重点是“信用等级”这个属性。
给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良"还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良"、“差"这3个类别的某一类别中去.这里把“信用等级”这个属性称为“类标号属性”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝叶斯分类算法学号:20120311108 学生所在学院:软件工程学院学生姓名:朱建梁任课教师:汤亮教师所在学院:软件工程学院2015年11月12软件1班贝叶斯分类算法朱建梁12软件1班摘要:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。
本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。
然后,介绍贝叶斯分类算法的基础——贝叶斯定理。
最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。
关键词:朴素贝叶斯;文本分类1 贝叶斯分类的基础——贝叶斯定理每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。
这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。
这里先解释什么是条件概率:P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。
其基本求解公式为:P(A|B)=P(AB)/P(B)。
贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下面不加证明地直接给出贝叶斯定理:P(B|A)=P(A|B)P(B)/P(A)2 朴素贝叶斯分类的原理与流程朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。
为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。
朴素贝叶斯分类的正式定义如下:1、X={a1,a2,....am}设为一个待分类项,而每个a为x的一个特征属性。
2、有类别集合c={y1,y2,...,yn}3、计算p(y1|x),p(y2|x),...,p(yn|x)。
4、如果p(yk|x)=max{p(y1|x),p(y2|x),...,p(yn|x)},那么现在的关键就是如何计算第3步中的各个条件概率。
我们可以这么做:1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。
2、统计得到在各类别下各个特征属性的条件概率估计。
即p(a1|y1),p(a2|y1),...,p(am|y1);p(a1|y2),p(a2|y2),...,p(am|y2);p(a1|yn),p(a2 |yn),...,p(am|yn);。
3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:P(yi|x)=P(x|yi)P(yi)/P(x)因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。
又因为各特征属性是条件独立的,所以有:P(x|yi)=P(a1|yi)P(a2|yi)...P(am|yi)可以看到,整个朴素贝叶斯分类分为三个阶段:第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。
这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。
这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。
第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。
其输入是特征属性和训练样本,输出是分类器。
这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。
第三阶段——应用阶段。
这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。
这一阶段也是机械性阶段,由程序完成。
3 估计类别下特征属性划分的条件概率及Laplace校准由上文看出,计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。
当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。
即:g(x,n,o)=1/(^2πoe)-(x-n)2/2o2而P(ak|yi)=g(ak,nk,oyi)因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。
均值与标准差的计算在此不再赘述。
另一个需要讨论的问题就是当P(a|y)=0怎么办,当某个类别下某个特征项划分没有出现时,就是产生这种现象,这会令分类器质量大大降低。
为了解决这个问题,我们引入Laplace校准,它的思想非常简单,就是对没类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。
4 朴素贝叶斯分类实例下面讨论一个使用朴素贝叶斯分类解决实际问题的例子,为了简单起见,对例子中的数据做了适当的简化。
这个问题是这样的,对于SNS社区来说,不真实账号(使用虚假身份或用户的小号)是一个普遍存在的问题,作为SNS社区的运营商,希望可以检测出这些不真实账号,从而在一些运营分析报告中避免这些账号的干扰,亦可以加强对SNS社区的了解与监管。
如果通过纯人工检测,需要耗费大量的人力,效率也十分低下,如能引入自动检测机制,必将大大提升工作效率。
这个问题说白了,就是要将社区中所有账号在真实账号和不真实账号两个类别上进行分类,下面我们一步一步实现这个过程。
首先设C=0表示真实账号,C=1表示不真实账号。
1、确定特征属性及划分这一步要找出可以帮助我们区分真实账号与不真实账号的特征属性,在实际应用中,特征属性的数量是很多的,划分也会比较细致,但这里为了简单起见,我们用少量的特征属性以及较粗的划分,并对数据做了修改。
我们选择三个特征属性:a1:日志数量/注册天数,a2:好友数量/注册天数,a3:是否使用真实头像。
在SNS社区中这三项都是可以直接从数据库里得到或计算出来的。
下面给出划分:a1:{a<=0.05, 0.05<a<0.2, a>=0.2},a1:{a<=0.1, 0.1<a<0.8,a>=0.8},a3:{a=0(不是),a=1(是)}。
2、获取训练样本这里使用运维人员曾经人工检测过的1万个账号作为训练样本。
3、计算训练样本中每个类别的频率用训练样本中真实账号和不真实账号数量分别除以一万,得到:P(c=0)=8900/100000=0.89P(c=1)=110/100000=0.114、计算每个类别条件下各个特征属性划分的频率P(a1<=0.05|C=2)=0.3P(0.05<a1<0.2|C=0)=0.5P(a1>0.2|C=0)=0.2P(a1<=0.05|C=1)=0.1P(0.05<a1<0.2|C=1)=0.1P(a1>0.2|C=1)=0.1P(a1<=0.1|C=0)=0.1P(0.1<a2<0.8|c=0)=0.7P(a2>0.8|C=0)=0.2P(a2<=0.1|C=1)=0.7P(0.1<a2<0.8|C=1)=0.2P(a2>0.2|C=1)=0.1P(a3=0|C=0)=0.2P(a3=1|C=0)=0.8P(a3+0|C=1)=0.9P(a3=1|C=1)=0.15、使用分类器进行鉴别P(C=0)P(x|C=0)=p(C=0)P(0.05<a1<0.2|C=1)P(0.1<a2<0.8|C=0)P(a3=0|C=0)=0.8 9*0.5*0.7=0.0623P(C=1)P(x|C=1)=p(C=1)P(0.05<a1<0.2|C=1)P(0.1<a2<0.8|C=1)P(a3=0|C=1)=0.1 1*0.1*0.2*0.9=0.00198下面我们使用上面训练得到的分类器鉴别一个账号,这个账号使用非真实头像,日志数量与注册天数的比率为0.1,好友数与注册天数的比率为0.2。
可以看到,虽然这个用户没有使用真实头像,但是通过分类器的鉴别,更倾向于将此账号归入真实账号类别。
这个例子也展示了当特征属性充分多时,朴素贝叶斯分类对个别属性的抗干扰性。
参考文献[1]Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 《数据挖掘导论》,北京:人民邮电出版社,2007,第140~145页。
[2] 石志伟, 吴功宜, “基于朴素贝叶斯分类器的文本分类算法”, 第一届全国信息检索与内容安全学术会议,2004[3] 洞庭散人,“基于朴素贝叶斯分类器的文本分类算法(上)”,“基于朴素贝叶斯分类器的文本分类算法(下)”,2008[4]DL88250, “朴素贝叶斯中文文本分类器的研究与实现(1)”,“朴素贝叶斯中文文本分类器的研究与实现(2)”,2008。