数据挖掘——决策树分类算法 (2)

合集下载

数据挖掘十大算法

数据挖掘十大算法

数据挖掘十大算法数据挖掘是通过挖掘大规模数据集以发现隐藏的模式和关联性的过程。

在数据挖掘领域,存在许多算法用于解决各种问题。

以下是数据挖掘领域中被广泛使用的十大算法:1. 决策树(Decision Trees):决策树是一种用于分类和回归的非参数算法。

它用树结构来表示决策规则,通过划分数据集并根据不同的属性值进行分类。

2. 支持向量机(Support Vector Machines,SVM):SVM是一种二分类算法,通过在数据空间中找到一个最优的超平面来分类数据。

SVM在处理非线性问题时,可以使用核函数将数据映射到高维空间。

3. 朴素贝叶斯(Naive Bayes):基于贝叶斯定理,朴素贝叶斯算法使用特征之间的独立性假设,通过计算给定特征下的类别概率,进行分类。

4. K均值聚类(K-means Clustering):K均值聚类是一种无监督学习算法,用于将数据集分割成多个类别。

该算法通过计算样本之间的距离,并将相似的样本聚类在一起。

5. 线性回归(Linear Regression):线性回归是一种用于建立连续数值预测模型的算法。

它通过拟合线性函数来寻找自变量和因变量之间的关系。

6. 关联规则(Association Rules):关联规则用于发现数据集中项集之间的关联性。

例如,购买了商品A的人也常常购买商品B。

7. 神经网络(Neural Networks):神经网络是一种模拟人脑神经元网络的算法。

它通过训练多个神经元之间的连接权重,来学习输入和输出之间的关系。

9. 改进的Apriori算法:Apriori算法用于发现大规模数据集中的频繁项集。

改进的Apriori算法通过剪枝和利用频繁项集的性质来提高算法的效率。

10. 集成学习(Ensemble Learning):集成学习是一种通过将多个学习器进行组合,从而提高分类准确率的算法。

常用的集成学习方法包括随机森林和梯度提升树。

这些算法在不同的场景和问题中有着不同的应用。

决策树算法

决策树算法
一个类(buys_computer=yes,或buys_computer=no))
3
第一节 决策树算法原理
优点: 使用者不需要了解很多背景知识,只要训练事例能用属性 →结论的方式表达出来,就能用该算法学习; 决策树模型效率高,对训练集数据量较大的情况较为适合; 分类模型是树状结构,简单直观,可将到达每个叶结点的 路径转换为IF→THEN形式的规则,易于理解; 决策树方法具有较高的分类精确度。
14
第一节 决策树算法原理
决策树算法的大体框架都是一样的,都采用了贪心(非回 溯的)方法来以自顶向下递归的方式构造决策树。 它首先根据所使用的分裂方法来对训练集递归地划分递归 地建立树的节点,直至满足下面两个条件之一,算法才停 止运行:( 1)训练数据集中每个子集的记录项全部属于 一类或某一个类占压倒性的多数;(2)生成的树节点通 过某个终止的分裂准则;最后,建立起决策树分类模型。
4
第一节 决策树算法原理
缺点: 不易处理连续数据。数据的属性必须被划分为不同的类别 才能处理,但是并非所有的分类问题都能明确划分成这个 区域类型; 对缺失数据难以处理,这是由于不能对缺失数据产生正确 的分支进而影响了整个决策树的生成; 决策树的过程忽略了数据库属性之间的相关性。
5
第一节 决策树算法原理
21
2.1 ID3算法
属性选择度量 在树的每个节点上使用信息增益(information gain)度量选 择测试属性。这种度量称作属性选择度量或分裂的优良性度 量。 选择具有最高信息增益(或最大信息熵压缩)的属性作为当 前节点的测试属性。该属性使得对结果划分中的样本分类所 需的信息量最小,并反映划分的最小随机性或“不纯性”。 这种信息理论方法使得对一个对象分类所需的期望测试数目 达到最小,并确保找到一棵简单的(但不必是最简单的)树。

《数据挖掘》试题与答案

《数据挖掘》试题与答案

一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。

知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。

流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。

2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。

例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。

2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。

若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。

3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。

由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。

假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。

数据挖掘-决策树PPT资料48页

数据挖掘-决策树PPT资料48页
info([2,3],[4,0],[3,2])=0.693位 计算信息增益 info([9,5])- info([2,3],[4,0],[3,2]) =
0.247位 选择获得最大信息增益 的属性进行划分
划分过程的终止
当所有叶节点都是纯的。
因训练集包含两个具有相同属性集,但具有不同类 的实例。
ID3代表归纳决策树(induction decision—tree)版本 3,它是一种用来由数据构造决策树的递归过程。
lD3算法的步骤
1. 试探性地选择一个属性放置在根节点,并对该属 性的每个值产生一个分支。
2. 分裂根节点上的数据集,并移到子女节点,产生 一棵局部树(partial tree)。
决策树作用(2)
决策树的主要作用是揭示数据中的结构化信息。 决策树汇总了数据,并揭示了其中隐藏的结构:
规则:
如果血压高,则 采用药物A。
如果血压低,则 采用药物B。
如果血压正常。 年龄小于或等于 40,则采用药物 A,否则采用药 物B。
准确率、支持度、错误率
该例得到的规则和对应的准确率和支持度是:
如果血压高,则采用药物A(准确率100%,支持度 3/12)。
如果血压低,则采用药物B(准确率100%,支持度 3/12)。
如果血压正常并且年龄小于或等于40,则采用药 物A(准确率100%,支持度3/12)。
如果血压正常并且年龄大于40。则采用药物B(准 确率100%,支持度3/12)。
3. 对该划分的质量进行评估。 4. 对其他属性重复该过程。 5. 每个用于划分的属性产生一棵局部树。 6. 根据局部树的质量,选择一棵局部树。 7. 对选定的局部树的每个子女节点重复以上1-6步。 8. 这是一个递归过程。如果一个节点上的所有实例

决策树的算法

决策树的算法

决策树的算法一、什么是决策树算法?决策树算法是一种基于树形结构的分类和回归方法,其本质是将训练数据集分成若干个小的子集,每个子集对应一个决策树节点。

在决策树的生成过程中,通过选择最优特征对数据进行划分,使得各个子集内部的样本尽可能属于同一类别或者拥有相似的属性。

在预测时,将待分类样本从根节点开始逐层向下遍历,直到到达叶节点并输出该节点所代表的类别。

二、决策树算法的基本流程1. 特征选择特征选择是指从训练数据集中选取一个最优特征用来进行划分。

通常情况下,选择最优特征需要考虑两个因素:信息增益和信息增益比。

2. 决策树生成通过递归地构建决策树来实现对训练数据集的分类。

具体实现方式为:采用信息增益或信息增益比作为特征选择标准,在当前节点上选择一个最优特征进行划分,并将节点分裂成若干个子节点。

然后对每个子节点递归调用上述过程,直到所有子节点都为叶节点为止。

3. 决策树剪枝决策树剪枝是指通过去掉一些无用的分支来降低决策树的复杂度,从而提高分类精度。

具体实现方式为:先在训练集上生成一棵完整的决策树,然后自底向上地对内部节点进行考察,若将该节点所代表的子树替换成一个叶节点能够提高泛化性能,则将该子树替换成一个叶节点。

三、常见的决策树算法1. ID3算法ID3算法是一种基于信息熵的特征选择方法。

其核心思想是在每个节点上选择信息增益最大的特征进行划分。

由于ID3算法偏向于具有较多取值的特征,因此在实际应用中存在一定局限性。

2. C4.5算法C4.5算法是ID3算法的改进版,采用信息增益比作为特征选择标准。

相比于ID3算法,C4.5算法可以处理具有连续属性和缺失值的数据,并且生成的决策树更加简洁。

3. CART算法CART(Classification And Regression Tree)算法既可以用来进行分类,也可以用来进行回归分析。

其核心思想是采用基尼指数作为特征选择标准,在每个节点上选择基尼指数最小的特征进行划分。

C2决策树分类

C2决策树分类

C2决策树分类决策树是一种常用的机器学习算法,被广泛应用于数据挖掘和模式识别任务中。

它通过构建一棵树状结构来进行分类,每个节点代表一个特征,每个分支代表该特征的不同取值,叶子节点代表最终的分类结果。

决策树的主要优点是易于解释和理解,同时具有良好的可扩展性和可靠性。

在本文中,我们将详细介绍决策树分类算法。

决策树的构造过程包括特征选择、决策树的生成和决策树的剪枝。

特征选择是决策树构造中的关键步骤,其目的是选择能够最好地分类数据集的特征。

决策树的生成过程采用递归的方式,从根节点开始,根据特征选择准则和递归终止条件不断地划分数据集。

决策树的剪枝是为了防止过拟合,通过去掉一些无关的特征和减少树的深度来提高决策树的泛化能力。

特征选择的准则有很多种,常用的有信息增益、信息增益比和基尼指数。

信息增益是指在特征A给定的条件下,样本集合D的信息熵H(D)的减少量,信息增益比是信息增益与划分前的特征熵之比,而基尼指数是衡量数据集纯度的指标。

在每一次划分过程中,选择能够获得最大信息增益或最小基尼指数的特征作为当前节点的划分特征。

决策树的生成过程分为递归地选择最优划分特征和递归生成子节点两个步骤。

在选择最优划分特征时,根据特征的取值个数和类型的不同,决策树的生成算法也有所不同。

针对离散型特征,最常用的是ID3算法和C4.5算法;针对连续型特征,常用的是CART算法。

决策树剪枝是为了防止决策树的过拟合现象。

过拟合是指决策树在训练样本上表现很好,但在测试样本上表现较差的情况。

决策树剪枝的目标是通过去掉一些无用的特征和减少树的深度,来提高决策树的泛化能力。

常用的决策树剪枝算法有预剪枝和后剪枝两种。

预剪枝是在决策树的构建过程中,在每一次划分节点时判断是否进行剪枝,根据一定的规则来预先决定是否切分节点,从而避免决策树过拟合。

常用的预剪枝规则有设置最大深度、设置最小样本数、设置最小信息增益等。

后剪枝是在决策树构造完成后,从底向上对非叶子节点进行考察,判断剪枝后整体效果是否提升,若提升则进行剪枝,否则保持不变。

数据挖掘中的分类算法

数据挖掘中的分类算法

数据挖掘中的分类算法数据挖掘是一种通过分析大量数据来发现模式、关联和趋势的方法。

分类算法是数据挖掘中的一种核心技术,它可以将数据分为不同的类别,有助于我们理解和利用数据。

本文将介绍数据挖掘中常用的几种分类算法。

一、决策树算法决策树算法是一种基于树形结构的分类算法,它将数据集划分为多个子集,每个子集都对应一个决策节点。

通过不断选择最佳划分节点,最终形成一棵完整的决策树。

决策树算法简单易懂,可解释性强,适用于离散型和连续型数据。

常见的决策树算法包括ID3、C4.5和CART 算法。

二、朴素贝叶斯算法朴素贝叶斯算法是一种基于概率统计的分类算法,它基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。

朴素贝叶斯算法在文本分类、垃圾邮件过滤等领域有广泛应用。

它的优点是简单高效,对小样本数据有较好的分类效果。

三、支持向量机算法支持向量机算法是一种通过寻找最优超平面来进行分类的算法。

它的核心思想是将数据映射到高维特征空间,找到能够最好地将不同类别分开的超平面。

支持向量机算法适用于高维数据和样本较少的情况,具有较好的泛化能力和鲁棒性。

四、K近邻算法K近邻算法是一种基于距离度量的分类算法,它的原理是通过计算新样本与训练样本的距离,选取K个最近邻的样本来进行分类。

K近邻算法简单直观,适用于多样本情况下的分类问题。

然而,K近邻算法计算复杂度高,对异常值和噪声敏感。

五、神经网络算法神经网络算法是一种模拟人脑神经元连接方式的分类算法。

它通过构建多层网络、定义激活函数和调整权重来实现分类。

神经网络算法能够处理非线性问题,但对于大规模数据和参数调整比较困难。

六、集成学习算法集成学习算法是一种通过组合多个分类器的预测结果来进行分类的方法。

常见的集成学习算法有随机森林、AdaBoost和梯度提升树等。

集成学习算法能够有效地提高分类准确率和鲁棒性,适用于大规模数据和复杂问题。

在选择分类算法时,需要综合考虑数据类型、数据量、准确性要求以及计算资源等因素。

决策树算法介绍

决策树算法介绍

3.1 分类与决策树概述3.1。

1 分类与预测分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。

例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。

这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。

例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平"、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差",在这个例子中,所研究的属性“信用度"是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。

还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。

那么这种问题在数据挖掘中被称为预测.总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测.3。

1.2 决策树的基本原理1.构建决策树通过一个实际的例子,来了解一些与决策树有关的基本概念.表3—1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、..。

..。

、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。

这里把这个表记做数据集D.银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。

当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。

这里的信用等级分析模型,就可以是一棵决策树. 在这个案例中,研究的重点是“信用等级”这个属性。

给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良"还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良"、“差"这3个类别的某一类别中去.这里把“信用等级”这个属性称为“类标号属性”。

二分类决策树算法

二分类决策树算法

二分类决策树算法
二分类决策树算法是一种监督学习算法,常用于分类问题。

它通过构建一棵树状结构来对数据进行分类。

二分类决策树的基本思想是通过对数据的特征进行分析,选择最能区分不同类别的特征,然后根据该特征将数据划分成两个子节点。

这个过程不断递归,直到子节点中只包含同一类别的数据或者达到某个停止条件。

在构建决策树的过程中,需要选择合适的特征来划分数据。

通常使用信息增益、增益率或基尼系数等指标来衡量特征的重要性。

选择具有最大信息增益或最小基尼系数的特征作为当前节点的划分依据。

决策树的构建过程可以通过递归实现。

首先将整个数据集作为根节点,然后对每个特征计算其信息增益或基尼系数,选择最优特征进行划分,创建子节点。

接着,对子节点重复上述过程,直到满足停止条件。

一旦决策树构建完成,就可以使用它来对新的数据进行分类。

根据输入数据的特征值,从根节点开始,沿着决策树的路径到达叶子节点,最终确定数据所属的类别。

二分类决策树算法的优点是简单易懂、易于实现,并且在处理小型数据集时效果较好。

然而,它可能容易过拟合,对于大型数据集和复杂问题可能效果不佳。

因此,在实际应用中,通常需要结合其他技术如剪枝、集成学习等来提高决策树的性能和泛化能力。

数据挖掘中决策树分类算法的研究

数据挖掘中决策树分类算法的研究

数据挖掘中决策树分类算法的研究决策树分类算法的研究主要包括决策树的构建算法、决策树的剪枝策略、决策树的优化算法等方面。

决策树的构建算法是决策树分类算法的核心部分。

常见的构建算法包括ID3、C4.5、CART等。

ID3算法是最早出现的决策树构建算法,它以信息增益作为划分的准则,每次选择信息增益最大的属性作为划分标准。

C4.5算法是ID3算法的改进版本,它引入了信息增益比来解决ID3算法的偏向问题。

CART算法是一种基于基尼系数的决策树构建算法,它在二分法的基础上构建了多叉树结构。

这些构建算法在处理不同类型的数据时具有不同的优势,需要根据具体情况选择合适的算法。

决策树的剪枝策略是为了避免决策树过拟合而进行的一种策略。

剪枝策略通常分为预剪枝和后剪枝两种。

预剪枝是在构建决策树的过程中进行剪枝操作,比如限制树的最大深度、设置节点的最小样本数等。

预剪枝可以有效地减少决策树的过拟合风险,但有时候也会导致欠拟合的问题。

后剪枝是在构建完成后,通过剪去一些节点来减小决策树的复杂度。

后剪枝能够更好地保持决策树的准确性,但会增加剪枝的计算量。

决策树的优化算法是为了改善决策树分类算法的性能而进行的一种算法优化。

常见的优化算法包括随机森林、AdaBoost等。

随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树来提高模型的鲁棒性和泛化能力。

AdaBoost是一种加权的决策树算法,通过不断调整训练样本的权重来提高模型对于困难样本的分类能力。

总之,决策树分类算法是数据挖掘中重要的分类算法之一,具有广泛的研究和应用价值。

未来的研究可以从决策树的构建算法、剪枝策略、优化算法等多个角度进行深入研究,以进一步提升决策树分类算法的性能和适用性。

决策树分类

决策树分类

∑ − pi log2 ( pi ) .其中,P 是任意样本属于c 的概率,一般可以用来si/s估计。 1
设一个属性 A 具有 V 个不同的值{ a1, a2,..., av }。利用属性 A 将集合 S 划分
为 V 个子集{ s1, s2 ,..., sv },其中 s 包含了集合 s 中属性 取 aj 值的数据样本。若 属性 A 被选为测试属性(用于对当前样本集进行划分),设 s 为子集 si 中属于 c 类 别的样本数。那么利用属性 A 划分当前样本集合所需要的信息(熵)可以计算如下:
图 1.1 决策树分类器示意图 决策树分类算法起源于概念学习系统CLS(Concept Iearning System),然后发 展到ID3方法而为高潮,最后又演化为能处理连续属性的C4.5,有名的决策树 方法还有CART和Assistant,Sliq、Spdnt等等。其中决策树方法中最为著名的算 法是Quinlan于1986年提出的ID3算法,算法以信息熵的增益进行属性选择。但由 于ID3算法采用基于信息熵的属性选择标准,因此偏向于选择属性取值较多的属 性,而属性取值较多的属性却不一定是最佳的分类属性。1993年,Qullan对ID3 算法进行了改进,利用信息增益率进行属性选择,提出了C4.5算法。C4.5算法 还在ID3算法的基础上增加对连续型属性、属性值空缺情况的处理,对剪枝也有 了较成熟的算法。 决策树分类算法主要是利用信息论原理对大量样本的属性进行分析和归纳 而产生的。决策树的根节点是所有样本中信息量最大的属性;树的中间节点是以
RID
Age
Income
Student Credit_rating Class
1
Youth
High
No
Fair

决策树分类方法

决策树分类方法

决策树分类方法决策树是一种常见的用于分类和回归问题的机器学习方法。

它通过构建树形结构的规则来进行预测。

本文将详细介绍决策树分类方法的原理、算法以及相关应用。

一、决策树分类方法的原理决策树分类方法遵循以下原理:1. 特征选择:通过度量特征的信息增益或信息增益比来选择最优的划分特征。

信息增益是指通过划分数据集获得的纯度提升,信息增益比则是对信息增益进行修正,避免倾向于选择取值较多的特征。

2. 决策节点:根据选择的特征创建决策节点,并将样本集划分到不同的子节点中。

3. 叶节点:当将样本划分到同一类别或达到预定的划分次数时,创建叶节点并标记为对应的类别。

4. 剪枝:为了避免过拟合,可以通过剪枝操作来简化生成的决策树。

二、决策树分类方法的算法常见的决策树分类算法包括ID3算法、C4.5算法以及CART算法。

1. ID3算法:通过计算每个特征的信息增益选择划分特征,将样本划分到信息增益最大的子节点中。

此算法对取值较多的特征有所偏好。

2. C4.5算法:在ID3算法的基础上进行改进,引入了信息增益比的概念,解决了ID3算法对取值较多的特征的偏好问题。

3. CART算法:通过计算基尼指数选择划分特征,将样本划分到基尼指数最小的子节点中。

此算法适用于分类和回归问题。

三、决策树分类方法的应用决策树分类方法广泛应用于各个领域,以下是几个常见的应用场景:1. 信用评估:通过构建决策树模型,根据客户的个人信息和历史数据预测其信用等级,用于信贷风险评估和贷款审批。

2. 疾病诊断:通过决策树模型,根据患者的病症和医学检测结果预测其患有何种疾病,用于辅助医生的诊断决策。

3. 电商推荐:通过决策树模型,根据用户的历史购买记录和个人喜好预测其对某些商品的偏好程度,从而进行个性化商品推荐。

4. 欺诈检测:通过构建决策树模型,根据用户的账户行为和交易记录预测其是否存在欺诈行为,用于金融等领域的欺诈检测。

四、决策树分类方法的优缺点决策树分类方法具有以下优点:1. 易于理解和解释:决策树模型的结果具有很好的可解释性,可以通过树形结构直观地看出预测结果的原因。

浅析数据挖掘分类方法中的决策树算法

浅析数据挖掘分类方法中的决策树算法

对各 种决 策树分 类 算法 的基本 思 想进行 阐述 ,并分析 比较 了各 种算 法的 主要特 性 ,为使 用者选择 算法或研 究者改进 算 法提 供借 鉴 。 [ 关键 词 ]算法 数 据挖 掘 分 类 决 策树
中的许多分支都是根据训练样本集合 中的异常数据 ( 由于噪声等原


引言
要 学 习划分 的类 。从 根节 点到 叶结 点 的一条 路径 就对应 着一 条分 类 规 则 ,整个 决策 树就 对应 着一 组析取 表达 式 规则 。树 的最高 层点 就 是根 节点 。
[ 摘 要 ] 类是 数 据挖 掘 、机 器 学习和 模 式识 别 中一个 重要 分
的研 究领域 。决策树 分 类是 一种 重要 的数据 分 类技 术 ,本文通 过对
商 业 研 究
浅析数据挖掘 分类方法中的 决策树 算法
●徐 枫 浙江商业职业技 术学 院
为基础 的 归纳学 习算 法 。它从 一组 无次 序 、无规 则 的元组 中推理 出
决 策树 表示 形式 的分 类规 则 。它采 用 自顶 向下 的递 归方式 ,在决 策
树 的 内部节 点进 行属 性值 的 比较 ,并根 据不 同 的属性值 从 该结点 向 下 分 支 ,其 中树 的每 个 内部节 点代 表对 一个 属性 的测 试 ,叶结点 是
决 策树 的生 成 分 为 学 习 和测 试 两 个 阶段 。决 策树 学 习阶 段 采 用 自顶 向下 的递 归方 式。 决策树 算 法分两 个步 骤 :一是 树 的生成 , 开始 时所 有数 据 都在根 节 点 ,然后递 归地 进 行数据 划分 ,直 至生成 叶结 点 。二是 树枝 修 剪 ,在 一个 决策 树 刚刚建 立起 来 的时候 。它其

决策树算法及应用

决策树算法及应用

决策树算法及应用数一决策树算法简介[1][6][8]决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出有用的规则,用于对新集进行预测.决策树算法可设计成具有良好可伸缩性的算法,能够很好地与超大型数据库结合,处理相关的多种数据类型,并且,其运算结果容易被人理解,其分类模式容易转化成分类规则。

因此,在过去的几十年中,决策树算法在机器学习(machine learning)和数据挖掘( data mining)领域一直受到广泛地重视.决策树算法以树状结构表示数据分类的结果。

树的非叶结点表示对数据属性(at tribute)的测试.每个分枝代表一个测试输出,而每个叶结点代表一个分类。

由根结点到各个叶结点的路径描述可得到各种分类规则。

目前有多种形式的决策树算法。

其中最值得注意的是CART 和ID3/ C4. 5 。

许多其它的算法都是由它们演变而来。

下面介绍决策树算法ID3 (Quinlan ,1979) 在实际中的一例应用.决策树算法ID3 使用信息增益( Information Gain)作为选择属性对节点进行划分的指标。

信息增益表示系统由于分类获得的信息量,该量由系统熵的减少值定量描述。

熵(Entropy) 是一个反映信息量大小的概念。

最终信息增益最高的划分将被作为分裂方案。

决策树和决策规则是实际应用中分类问题的数据挖掘方法。

决策树表示法是应用最广泛的逻辑方法,它通过一组输入-输出样本构建决策树的有指导的学习方法。

对于分类决策树来说,需要先对原始资料来进行分类训练,经由不断的属性分类后,得到预期的分类结果.判定树归纳的基本算法是贪心算法,它采用自上而下、分而治之的递归方式来构造一个决策树。

ID3 算法是一种著名的判定树归纳算法,伪代码如下:Function Generate_decision_tree(训练样本samples,候选属性attributelist){创建节点N:if samples 都在同一个类C then返回N 作为叶节点,以类C 标记;if attribute_list 为空then返回N 为叶节点,标记为samples 中最普通类: //多数表决定选择attribute_list 中有最高信息增益的属性test_attribute:标记节点N 为test_attribute;for each test_attribute 中的已知位ai //划分samples由节点N 长出一个条件为test_attribute=ai 的分枝;设Si 是samples 中test attribute=ai 样本的集合; //一个划分If Si 为空then加上一个树叶,标记为samples 中最普通的类;Else 加上一个由Generate_desdecision_tree(Si,attribute_list_test_attribute)返回的节点:}在树的每个节点上使用具有最高信息增益的属性作为当前节点的测试属性。

数据挖掘中的决策树算法

数据挖掘中的决策树算法

数据挖掘中的决策树算法数据挖掘是一种从大数据集中提取信息的技术,其目的是了解数据集中的模式、趋势和规律,以便为业务做出更明智的决策。

决策树算法是其中一种重要的数据挖掘算法,能够帮助我们对数据进行分析和预测。

一、决策树算法简介决策树算法是一种以树形结构展现决策结果的分类器。

它可以被用来处理由分类和回归两种类型组成的问题,因为它可以将输入数据分成类别或数值。

决策树算法适用于高维数据集,也适用于分类问题和回归问题。

在决策树算法中,我们会根据数据的特征对数据进行分类。

通过对分类树的不断划分,最终我们能够得到一个树形结构,每个叶节点代表一种类别。

当新的数据输入时,我们可以将其通过这个分类树,快速判断其所属的类别。

决策树算法的主要优点是容易理解和解释,并且需要的计算量较少。

然而,它也有其局限性,例如容易出现过度拟合(即过于复杂的分类树会难以泛化)和选择非最优的特征等。

二、决策树算法的基本流程决策树算法的基本流程如下:1. 根据数据集的特征选择一个最优的划分点。

2. 根据这个最优的划分点,将数据集分成两个子集。

3. 对每个子集重复执行1和2,直到划分到某个条件时停止。

4. 将每个子集的划分结果标记为该子集的类别。

这里需要解释一下什么是“最优的划分点”。

最优划分点被定义为可以让每个决策树节点的纯度最大化的分割点。

纯度越高,表示在该节点中有更多相似的数据。

三、决策树算法的分类方法决策树算法主要有两种分类方法:1. ID3算法ID3算法是决策树算法中最早的算法之一,它根据信息熵的概念选择特征。

在ID3算法中,我们会针对数据集的每个特征计算信息熵,根据信息熵的大小来选择最优的特征。

信息熵可以理解为代表一个系统混乱程度的指数,当信息熵越低时,说明数据越有条理。

2. C4.5算法C4.5算法是ID3算法的改进版本,在选择特征时引入了信息增益比的概念。

信息增益比是指将信息增益除以一个归一化项,这个归一化项是针对不同特征计算的。

数据挖掘知到章节答案智慧树2023年青岛大学

数据挖掘知到章节答案智慧树2023年青岛大学

数据挖掘知到章节测试答案智慧树2023年最新青岛大学第一章测试1.数据挖掘就是从大量的、()数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

()。

参考答案:不完全的;随机的;模糊的;有噪声的2.互联网本身具有()的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。

()。

参考答案:数字化;互动性3.KDD和数据挖掘可以应用在很多领域中,它们具有如下一些公共特征:()。

参考答案:数据利用非常不足;在开发知识发现系统时,领域专家对该领域的熟悉程度至关重要;最终用户专门知识缺乏;海量数据集4.大数据的特征有()。

参考答案:Velocity;Value;Variety;Volume5.从宏观上看,数据挖掘过程主要由三个部分组成,即()。

参考答案:数据挖掘;结果的解释评估;数据整理第二章测试1.不完整数据的成因有()。

参考答案:数据收集的时候就缺乏合适的值;人为/硬件/软件问题;数据收集时和数据分析时的不同考虑因素2.处理空缺值的主要方法有()。

参考答案:使用属性的平均值填补空缺值。

;忽略元组;使用与给定元组属同一类的所有样本的平均值。

;使用一个全局常量填补空缺值3.给定一个数值属性,怎样才能平滑数据,去掉噪声?()。

参考答案:回归;聚类;分箱(binning);计算机和人工检查结合4.数据集成时需解决的三个基本问题为()。

参考答案:模式集成的过程中涉及到的实体识别问题;冗余问题;数据集成过程中数值冲突的检测与处理5.常用的数据转换方法有()。

参考答案:聚集;平滑;属性构造;数据概化第三章测试1.下列哪个算法不属于层次聚类算法?()。

参考答案:K-means2.下列哪个算法属于层次聚类算法?()。

参考答案:DIANA3.下列哪个算法属于密度聚类算法?()。

参考答案:DBSCAN4.聚类分析中,通常使用()来衡量两个对象之间的相异度。

()。

参考答案:距离5.下列哪个选项不是DBSCAN算法的缺点?()。

数据挖掘的常用分类算法

数据挖掘的常用分类算法

数据挖掘的常用分类算法数据挖掘是从大量数据中提取出有用信息的过程。

在数据挖掘中,分类算法被广泛应用于将数据样本分为不同的类别。

下面将介绍一些常见的分类算法。

1.决策树算法:决策树是一种基于树形结构的分类算法。

它通过对样本的特征进行逻辑分割,最终得到一个决策树模型。

决策树有许多不同的变种,例如ID3、C4.5和CART算法。

决策树算法易于理解和实现,它能够处理连续和离散的数据,并且能够提供特征的重要性排名。

2.朴素贝叶斯算法:朴素贝叶斯算法是基于贝叶斯定理和特征条件独立性假设的统计分类算法。

该算法假设所有特征之间相互独立,因此计算条件概率时只需要考虑个别特征的概率。

朴素贝叶斯算法在文本分类和垃圾邮件过滤等领域具有广泛的应用。

3. 逻辑回归算法:逻辑回归是一种适用于二分类问题的线性模型。

该算法通过将特征的线性组合映射到一个sigmoid函数上,从而将实数域的输入映射到0~1之间的输出。

逻辑回归算法可以用于预测二分类概率,并且容易解释和使用。

4.支持向量机算法:支持向量机是一种用于二分类和多分类的机器学习算法。

它通过在特征空间中构建一个超平面来实现分类。

支持向量机算法具有稳定的表现、鲁棒性和优化能力,并且在高维空间中效果良好。

5.K近邻算法:K近邻算法是一种基于邻居的分类算法。

该算法将未知数据点分类为其最近邻居所属的类别。

K近邻算法没有显式的训练过程,可以用于处理大型数据集。

然而,该算法对于高维数据和异常值敏感。

6.随机森林算法:随机森林是一种集成学习算法,它综合了多个决策树的分类结果。

随机森林通过随机选择特征子集进行决策树的训练,并采用投票机制来确定最终分类结果。

随机森林算法可以降低过拟合风险,并提供特征重要性排名。

7.梯度提升算法:梯度提升是一种集成学习算法,它通过迭代地训练一系列弱分类器,并将它们组合成一个强分类器。

梯度提升算法通过最小化损失函数的梯度来优化模型,从而能够处理分类和回归问题。

这些分类算法在数据挖掘中被广泛应用,并且具有各自的优缺点。

第4章 决策树分类算法

第4章 决策树分类算法

四、决策树分类算法
2.决策树分类算法-ID3算法原理 2.1 ID3算法原理
ID3算法的基本策略如下: (1)树以代表训练样本的单个节点开始; (2)如果样本都在同一个类中,则这个节点成为树叶结点并标记为该类别; (3)否则算法使用信息熵(称为信息增益)作为启发知识来帮助选择合适的 将样本分类的属性,以便将样本集划分为若干子集, (4)对测试属性的每个已知的离散值创建一个分支,并据此划分样本; (5)算法使用类似的方法,递归地形成每个划分上的样本决策树: (6)整个递归过程在下列条件之一成立时停止。
gain(S,A)是指因为知道属性A的值后导致的熵的期望压缩。
四、决策树分类算法
2.决策树分类算法-ID3算法原理 2.3 ID3算法
(1) 初始化决策树T,使其只包含一个树根结点(X,Q),其中X是全体样本集, Q为全体属性集。 (2) if(T中所有叶节点(X’,Q’)都满足X属于同一类或Q’为空) then 算法停止; (3) else { 任取一个不具有(2)中所述状态的叶节点(X’,Q’);
理,C4.5算法的核心思想与ID3完全一样。
gain_ratio(S,A) gain(S,A) split_info(S,A)
其中,gain(S,A) 表示信息增益。
四、决策树分类算法
4. 决策树分类算法-C4.5算法原理 4.1 C4.5算法
2.数值属性的处理 C4.5处理数值属性的过程如下:
(1)按照属性值对训练数据进行排序; (2)用不同的阈值对训练数据进行动态划分; (3)当输入改变时确定一个阈值; (4)取当前样本的属性值和前一个样本的属性值的中点作为新的阈值; (5)生成两个划分,所有的样本分布到这两个划分中; (6)得到所有可能的阈值、增益和增益比例。

如何使用决策树算法进行分类

如何使用决策树算法进行分类

如何使用决策树算法进行分类随着人工智能领域的不断发展,机器学习被广泛应用于各种领域中,而分类算法则是机器学习中最为基础和重要的一种算法之一。

在分类问题中,决策树算法是一种简单而有效的方法。

下面,我们将探讨如何使用决策树算法进行分类。

一、什么是决策树算法决策树算法是一种基于树模型的非参数监督学习算法,可以用于分类和回归分析。

它通过对训练集中的数据不断进行二分,构建出一棵决策树,使其可以对新的数据进行分类或预测。

决策树算法的构建过程是自顶向下的,即从整体样本集合开始,不断分割生成子节点的过程。

在生成子节点时,需要选择使得分类能力最强的属性进行分割。

为了避免决策树的过拟合,需要采用剪枝方法将过于复杂的决策树进行简化。

二、决策树算法的分类过程决策树算法的分类过程可以分为两个步骤:决策树的构建和分类预测。

1. 决策树的构建在构建决策树时,需要使用训练数据进行学习,并选择最优特征进行节点的划分。

构建过程中,需要注意以下几点:(1)特征选择:决策树的好坏主要取决于属性的选择。

基于信息增益或基尼指数来进行属性选择都是常用的方式。

(2)节点划分:选择了最优特征后,需要将数据集按照该特征的属性值进行划分。

(3)树的生长:重复以上步骤,直到每个叶子节点都是同一类别的样本,或者无法继续进行特征选择为止。

2. 分类预测在构建好决策树后,就可以使用它进行分类预测了。

分类预测的过程是从根节点开始,按照特征进行判断,最终到达某个叶子节点,该叶子节点上的类别即为预测类别。

三、决策树算法的优缺点决策树算法具有以下优点:(1)易于理解和解释:决策树算法生成的决策树可以很清晰地展现出数据的分类情况,方便理解和解释。

(2)处理分类和连续性变量:决策树算法可以处理包括分类和连续性变量在内的各种类型的数据。

(3)高效:在分类预测时,决策树算法的复杂度是O(log2n),效率较高。

然而决策树算法也存在一些缺点:(1)容易过拟合:在样本数量较少或者属性数量较多的情况下,容易出现过拟合现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贝叶斯分类算法学号:20120311108 学生所在学院:软件工程学院学生姓名:朱建梁任课教师:汤亮教师所在学院:软件工程学院2015年11月12软件1班贝叶斯分类算法朱建梁12软件1班摘要:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。

本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。

然后,介绍贝叶斯分类算法的基础——贝叶斯定理。

最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。

关键词:朴素贝叶斯;文本分类1 贝叶斯分类的基础——贝叶斯定理每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。

这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。

这里先解释什么是条件概率:P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。

其基本求解公式为:P(A|B)=P(AB)/P(B)。

贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

下面不加证明地直接给出贝叶斯定理:P(B|A)=P(A|B)P(B)/P(A)2 朴素贝叶斯分类的原理与流程朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。

为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。

朴素贝叶斯分类的正式定义如下:1、X={a1,a2,....am}设为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合c={y1,y2,...,yn}3、计算p(y1|x),p(y2|x),...,p(yn|x)。

4、如果p(yk|x)=max{p(y1|x),p(y2|x),...,p(yn|x)},那么现在的关键就是如何计算第3步中的各个条件概率。

我们可以这么做:1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。

2、统计得到在各类别下各个特征属性的条件概率估计。

即p(a1|y1),p(a2|y1),...,p(am|y1);p(a1|y2),p(a2|y2),...,p(am|y2);p(a1|yn),p(a2 |yn),...,p(am|yn);。

3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:P(yi|x)=P(x|yi)P(yi)/P(x)因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。

又因为各特征属性是条件独立的,所以有:P(x|yi)=P(a1|yi)P(a2|yi)...P(am|yi)可以看到,整个朴素贝叶斯分类分为三个阶段:第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。

这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。

这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。

第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。

其输入是特征属性和训练样本,输出是分类器。

这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。

第三阶段——应用阶段。

这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。

这一阶段也是机械性阶段,由程序完成。

3 估计类别下特征属性划分的条件概率及Laplace校准由上文看出,计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。

当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。

即:g(x,n,o)=1/(^2πoe)-(x-n)2/2o2而P(ak|yi)=g(ak,nk,oyi)因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。

均值与标准差的计算在此不再赘述。

另一个需要讨论的问题就是当P(a|y)=0怎么办,当某个类别下某个特征项划分没有出现时,就是产生这种现象,这会令分类器质量大大降低。

为了解决这个问题,我们引入Laplace校准,它的思想非常简单,就是对没类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。

4 朴素贝叶斯分类实例下面讨论一个使用朴素贝叶斯分类解决实际问题的例子,为了简单起见,对例子中的数据做了适当的简化。

这个问题是这样的,对于SNS社区来说,不真实账号(使用虚假身份或用户的小号)是一个普遍存在的问题,作为SNS社区的运营商,希望可以检测出这些不真实账号,从而在一些运营分析报告中避免这些账号的干扰,亦可以加强对SNS社区的了解与监管。

如果通过纯人工检测,需要耗费大量的人力,效率也十分低下,如能引入自动检测机制,必将大大提升工作效率。

这个问题说白了,就是要将社区中所有账号在真实账号和不真实账号两个类别上进行分类,下面我们一步一步实现这个过程。

首先设C=0表示真实账号,C=1表示不真实账号。

1、确定特征属性及划分这一步要找出可以帮助我们区分真实账号与不真实账号的特征属性,在实际应用中,特征属性的数量是很多的,划分也会比较细致,但这里为了简单起见,我们用少量的特征属性以及较粗的划分,并对数据做了修改。

我们选择三个特征属性:a1:日志数量/注册天数,a2:好友数量/注册天数,a3:是否使用真实头像。

在SNS社区中这三项都是可以直接从数据库里得到或计算出来的。

下面给出划分:a1:{a<=0.05, 0.05<a<0.2, a>=0.2},a1:{a<=0.1, 0.1<a<0.8,a>=0.8},a3:{a=0(不是),a=1(是)}。

2、获取训练样本这里使用运维人员曾经人工检测过的1万个账号作为训练样本。

3、计算训练样本中每个类别的频率用训练样本中真实账号和不真实账号数量分别除以一万,得到:P(c=0)=8900/100000=0.89P(c=1)=110/100000=0.114、计算每个类别条件下各个特征属性划分的频率P(a1<=0.05|C=2)=0.3P(0.05<a1<0.2|C=0)=0.5P(a1>0.2|C=0)=0.2P(a1<=0.05|C=1)=0.1P(0.05<a1<0.2|C=1)=0.1P(a1>0.2|C=1)=0.1P(a1<=0.1|C=0)=0.1P(0.1<a2<0.8|c=0)=0.7P(a2>0.8|C=0)=0.2P(a2<=0.1|C=1)=0.7P(0.1<a2<0.8|C=1)=0.2P(a2>0.2|C=1)=0.1P(a3=0|C=0)=0.2P(a3=1|C=0)=0.8P(a3+0|C=1)=0.9P(a3=1|C=1)=0.15、使用分类器进行鉴别P(C=0)P(x|C=0)=p(C=0)P(0.05<a1<0.2|C=1)P(0.1<a2<0.8|C=0)P(a3=0|C=0)=0.8 9*0.5*0.7=0.0623P(C=1)P(x|C=1)=p(C=1)P(0.05<a1<0.2|C=1)P(0.1<a2<0.8|C=1)P(a3=0|C=1)=0.1 1*0.1*0.2*0.9=0.00198下面我们使用上面训练得到的分类器鉴别一个账号,这个账号使用非真实头像,日志数量与注册天数的比率为0.1,好友数与注册天数的比率为0.2。

可以看到,虽然这个用户没有使用真实头像,但是通过分类器的鉴别,更倾向于将此账号归入真实账号类别。

这个例子也展示了当特征属性充分多时,朴素贝叶斯分类对个别属性的抗干扰性。

参考文献[1]Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 《数据挖掘导论》,北京:人民邮电出版社,2007,第140~145页。

[2] 石志伟, 吴功宜, “基于朴素贝叶斯分类器的文本分类算法”, 第一届全国信息检索与内容安全学术会议,2004[3] 洞庭散人,“基于朴素贝叶斯分类器的文本分类算法(上)”,“基于朴素贝叶斯分类器的文本分类算法(下)”,2008[4]DL88250, “朴素贝叶斯中文文本分类器的研究与实现(1)”,“朴素贝叶斯中文文本分类器的研究与实现(2)”,2008。

相关文档
最新文档