第9章_决策树算法

合集下载

决策树算法介绍(DOC)

决策树算法介绍(DOC)

决策树算法介绍(DOC)3.1 分类与决策树概述3.1.1 分类与预测分类是⼀种应⽤⾮常⼴泛的数据挖掘技术,应⽤的例⼦也很多。

例如,根据信⽤卡⽀付历史记录,来判断具备哪些特征的⽤户往往具有良好的信⽤;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。

这些过程的⼀个共同特点是:根据数据的某些属性,来估计⼀个特定属性的值。

例如在信⽤分析案例中,根据⽤户的“年龄”、“性别”、“收⼊⽔平”、“职业”等属性的值,来估计该⽤户“信⽤度”属性的值应该取“好”还是“差”,在这个例⼦中,所研究的属性“信⽤度”是⼀个离散属性,它的取值是⼀个类别值,这种问题在数据挖掘中被称为分类。

还有⼀种问题,例如根据股市交易的历史数据估计下⼀个交易⽇的⼤盘指数,这⾥所研究的属性“⼤盘指数”是⼀个连续属性,它的取值是⼀个实数。

那么这种问题在数据挖掘中被称为预测。

总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。

3.1.2 决策树的基本原理1.构建决策树通过⼀个实际的例⼦,来了解⼀些与决策树有关的基本概念。

表3-1是⼀个数据库表,记载着某银⾏的客户信⽤记录,属性包括“姓名”、“年龄”、“职业”、“⽉薪”、......、“信⽤等级”,每⼀⾏是⼀个客户样本,每⼀列是⼀个属性(字段)。

这⾥把这个表记做数据集D。

银⾏需要解决的问题是,根据数据集D,建⽴⼀个信⽤等级分析模型,并根据这个模型,产⽣⼀系列规则。

当银⾏在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、⽉薪等属性,来预测其信⽤等级,以确定是否提供贷款给该⽤户。

这⾥的信⽤等级分析模型,就可以是⼀棵决策树。

在这个案例中,研究的重点是“信⽤等级”这个属性。

给定⼀个信⽤等级未知的客户,要根据他/她的其他属性来估计“信⽤等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信⽤等级为“优”、“良”、“差”这3个类别的某⼀类别中去。

机器学习--决策树算法(ID3C4.5)

机器学习--决策树算法(ID3C4.5)

机器学习--决策树算法(ID3C4.5)在⽣活中,“树”这⼀模型有很⼴泛的应⽤,事实证明,它在机器学习分类和回归领域也有着深刻⽽⼴泛的影响。

在决策分析中,决策树可以明确直观的展现出决策结果和决策过程。

如名所⽰,它使⽤树状决策模型。

它不仅仅是在数据挖掘中⽤户获取特定⽬标解的策略,同时也被⼴泛的应⽤于机器学习。

如何使⽤树来表⽰算法为此,我们考虑使⽤泰坦尼克号数据集的⽰例,以预测乘客是否会⽣存。

下⾯的模型使⽤数据集中的3个特征/属性/列,即性别,年龄和SIBSP(配偶或⼉童的数量)。

这是⼀棵体现了⼈性光辉的决策树。

树的形状是⼀棵上下颠倒的决策树,叶⼦节点在下,根节点在上。

在图像中,⿊⾊中的粗体⽂本表⽰条件/内部节点,基于树分成分⽀/边缘。

不再分裂的分⽀结束是决策/叶⼦,在这种情况下,乘客是否被死亡或幸存,分别表⽰为红⾊和绿⾊⽂本。

虽然,⼀个真实的数据集将有很多功能,这只是⼀个更⼤的树中的部分分⽀,但你不能忽略这种算法的简单性。

该特征重要性是明确的,可以轻易查看决策关系。

该⽅法更常见于来⾃数据的学习决策树,并且在树上被称为分类树,因为⽬标是将乘客分类为幸存或死亡,上⾯所展⽰的决策树就是分类树。

回归树以相同的⽅式表⽰,例如⽤于预测房⼦价格的连续价值。

通常,决策树算法被称为CART或分类和回归树。

那么,算法⽣成的背后发⽣了什么呢?如何⽣成⼀个决策树取决于选择什么特征和在何种情况下进⾏分裂,以及在什么时候停⽌。

因为⼀棵树通常是随意⽣长的,你需要修剪它,让它看起来漂亮(研究如何⽣成决策树)。

ID3算法ID3算法⽣成决策树ID3算法(Iterative Dichotomiser 3)是决策树⽣成算法的⼀种,基于奥卡姆剃⼑原理(简约原则) 1。

是Ross Quinlan发明的⼀种决策树算法,这个算法的基础就是上⾯提到的奥卡姆剃⼑原理,越是⼩型的决策树越优于⼤的决策树,尽管如此,也不总是⽣成最⼩的树型结构,⽽是⼀个启发式算法。

决策树算法公式

决策树算法公式

决策树算法公式
决策树算法公式是机器学习中常用的分类算法,通过构建一个树形结构来实现对数据集的分类。

决策树的主要思路是将数据集分成若干个小部分,每个小部分对应一条分支,直到达到预定的终止条件。

根据数据集的属性特征,决策树算法会选择最优的属性来进行划分,从而得到最优的分类效果。

决策树算法的主要公式包括:
1.信息增益公式:$IG(D, A) = H(D) - H(D|A)$
其中,$H(D)$表示数据集$D$的经验熵,$H(D|A)$表示在属性$A$的条件下,数据集$D$的经验条件熵。

信息增益越大,说明使用属性$A$进行划分能够得到更好的分类效果。

2.基尼系数公式:$Gini(D) =
sum_{k=1}^{|mathcal{Y}|}sum_{k'
eq k}p_kp_{k'} = 1 - sum_{k=1}^{|mathcal{Y}|}p_k^2$ 其中,$|mathcal{Y}|$表示数据集$D$中不同类别的个数,
$p_k$表示数据集$D$中属于第$k$个类别的样本占总样本数的比例。

基尼系数越小,说明使用属性$A$进行划分能够得到更好的分类效果。

通过使用信息增益或基尼系数等公式,决策树算法可以自动选择最优的属性进行划分,从而得到最优的分类效果。

- 1 -。

决策树的算法

决策树的算法

决策树的算法一、什么是决策树算法?决策树算法是一种基于树形结构的分类和回归方法,其本质是将训练数据集分成若干个小的子集,每个子集对应一个决策树节点。

在决策树的生成过程中,通过选择最优特征对数据进行划分,使得各个子集内部的样本尽可能属于同一类别或者拥有相似的属性。

在预测时,将待分类样本从根节点开始逐层向下遍历,直到到达叶节点并输出该节点所代表的类别。

二、决策树算法的基本流程1. 特征选择特征选择是指从训练数据集中选取一个最优特征用来进行划分。

通常情况下,选择最优特征需要考虑两个因素:信息增益和信息增益比。

2. 决策树生成通过递归地构建决策树来实现对训练数据集的分类。

具体实现方式为:采用信息增益或信息增益比作为特征选择标准,在当前节点上选择一个最优特征进行划分,并将节点分裂成若干个子节点。

然后对每个子节点递归调用上述过程,直到所有子节点都为叶节点为止。

3. 决策树剪枝决策树剪枝是指通过去掉一些无用的分支来降低决策树的复杂度,从而提高分类精度。

具体实现方式为:先在训练集上生成一棵完整的决策树,然后自底向上地对内部节点进行考察,若将该节点所代表的子树替换成一个叶节点能够提高泛化性能,则将该子树替换成一个叶节点。

三、常见的决策树算法1. ID3算法ID3算法是一种基于信息熵的特征选择方法。

其核心思想是在每个节点上选择信息增益最大的特征进行划分。

由于ID3算法偏向于具有较多取值的特征,因此在实际应用中存在一定局限性。

2. C4.5算法C4.5算法是ID3算法的改进版,采用信息增益比作为特征选择标准。

相比于ID3算法,C4.5算法可以处理具有连续属性和缺失值的数据,并且生成的决策树更加简洁。

3. CART算法CART(Classification And Regression Tree)算法既可以用来进行分类,也可以用来进行回归分析。

其核心思想是采用基尼指数作为特征选择标准,在每个节点上选择基尼指数最小的特征进行划分。

决策树计算公式

决策树计算公式

决策树计算公式
决策树是一种监督学习算法,用于解决分类问题。

其计算公式如下:
1.特征选择:根据某个特征的信息增益、信息增益比、基尼系数等指标,选择最优的特征进行划分。

2.划分节点:根据选择的最优特征,将数据集划分成多个子集或子节点。

3.递归构建:对每个子节点,重复步骤1和步骤2,直到满足终止条件(例如,节点只含有一类样本,或者达到最大深度等)。

4.终止条件:可以是以下情况之一:
-节点只包含一类样本,无需继续划分;
-达到预设的最大深度;
-无法选择一个特征进行划分。

5.样本分类:根据叶子节点的类别标签进行分类。

需要注意的是,决策树的计算过程是一个递归的过程,通过选择最优特征进行划分,将数据集分成更小的子集,最终得到树形结构的分类模型。

决策树还有其他一些拓展形式,例如随机森林、梯度提升树等。

这些拓展形式在计算公式上可能会有一些差异,但核心的思想和基本的计算过程与原始决策树相似。

Chap9_决策树

Chap9_决策树


Boosting技术
Boosting技术用于机器学习中的有指导学习算法,包括建模和投票两个阶段 建模阶段 建立第一个模型时,训练样本集中的每个观测有相同的权重,即每个观测对模 型的影响程度是相同的。模型建立后,需要调整各个观测的权重,对第一个模 型未能正确预测的样本给予较高的权重,正确预测的样本给以较低的权重 准备建立第二个模型,根据权重重新构造训练样本集,权重越大的样本出现在 训练样本集中的可能性越高。因此,第二个模型重点关注的是第一个模型未能 正确预测的样本 同理,准备建立第三个模型,着重考虑第二个模型未能正确预测的样本。依次 进行下去。 投票阶段 不同的模型具有不同的权重,权重的大小与模型的误差成反比。 误差较小的模型有较高的投票权重,误差较大的模型有较低的投票权重 权重越高的模型,对决策结果的影响越大

无 无 有 有 无 无 无 有 有 无 有
Yes
Yes Yes No Yes No Yes Yes Yes Yes Yes No
决策树的算法
C5.0:以信息增益率为标准确定决策树的分枝准则,寻找最佳分 组变量和分割点。 CART:以基尼系数和方差确定最佳分组变量和分割点,目标变量 可以是分类型也可以是数值型,只能建立二叉树。 CHAID:从统计显著性角度确定当前最佳分组变量和分割点。 QUEST:最佳分组变量和分割点的确定方式吸纳了许多统计学的经 典方法。
第九章 决策树
第九章 决策树
9.1 9.2 9.3 9.4 9.5 决策树算法基本原理 C5.0算法及应用 分类回归树算法(CART)及应用 CHAID算法及应用 QUEST算法及应用
9.1 决策树算法基本原理
决策树最早源于人工智能的机器学习技术,用以实现数据内在规 律的探究和新数据对象的分类预测。 其核心算法较为成熟,很早就被各类智能决策系统所采纳。 由于决策树算法具有出色的数据分析能力和直观易懂的结果展示 等特点,因此被纳入数据挖掘范畴,成为备受广大数据挖掘用户 青睐、使用最为广泛的分类预测算法之一。

决策树(完整)

决策树(完整)
无缺失值样本中在属性 上取值 的样本所占比例
无缺失值样本中在属性 上取值 的样本所占比例
ቤተ መጻሕፍቲ ባይዱ
谢谢大家!
举例:求解划分根结点的最优划分属性
根结点的信息熵:
用“色泽”将根结点划分后获得3个分支结点的信息熵分别为:
属性“色泽”的信息增益为:
若把“编号”也作为一个候选划分属性,则属性“编号”的信息增益为:
根结点的信息熵仍为:
用“编号”将根结点划分后获得17个分支结点的信息熵均为:
则“编号”的信息增益为:
三种度量结点“纯度”的指标:信息增益增益率基尼指数
1. 信息增益
香农提出了“信息熵”的概念,解决了对信息的量化度量问题。香农用“信息熵”的概念来描述信源的不确定性。
信息熵
信息增益
一般而言,信息增益越大,则意味着使用属性a来进行划分所获得的“纯度提升”越大。决策树算法第8行选择属性
著名的ID3决策树算法
远大于其他候选属性信息增益准则对可取值数目较多的属性有所偏好
2. 增益率
增益率准则对可取值数目较少的属性有所偏好著名的C4.5决策树算法综合了信息增益准则和信息率准则的特点:先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。
3. 基尼指数
基尼值
基尼指数
著名的CART决策树算法
过拟合:学习器学习能力过于强大,把训练样本自身的一些特点当作了所有潜在样本都会具有的一般性质,导致泛化性能下降。欠拟合:学习器学习能力低下,对训练样本的一般性质尚未学好。
过拟合无法彻底避免,只能做到“缓解”。
不足:基于“贪心”本质禁止某些分支展开,带来了欠拟合的风险
预剪枝使得决策树的很多分支都没有“展开”优点:降低过拟合的风险减少了训练时间开销和测试时间开销

决策树算法原理(三种最优属性划分方法)

决策树算法原理(三种最优属性划分方法)

决策树算法原理(三种最优属性划分方法)决策树是一种用于分类和回归的机器学习算法,其原理是基于历史数据进行学习,并通过一系列判断条件将数据集划分为不同的类别或者预测目标值。

决策树的主要思想是通过一系列属性值来对数据进行逐层划分,直到达到终止条件为止。

在每一次划分时,决策树需要选择最优的属性来进行划分,以使得划分后的数据纯度最高或者信息增益最大。

三种最优属性划分方法包括信息增益、增益率和基尼指数。

1.信息增益:信息增益是用来衡量划分后数据集纯度提高的程度。

它基于信息论中的熵的概念,计算的是划分前后数据集的信息熵之差。

信息熵可以衡量数据集的不确定性,即数据集中的混乱程度。

在选择划分属性时,我们希望划分后的数据集的不确定性最小,即使得信息增益最大。

2.增益率:增益率是信息增益的一种改进,用于解决信息增益在选择具有较多取值的属性上的偏好问题。

增益率通过考虑属性的分裂信息来衡量属性的纯度提升程度。

分裂信息反映了数据集分裂后的数据集的不确定性。

3.基尼指数:基尼指数是通过测量在给定数据集中随机选择一些样本后,错误分类该样本的概率。

基尼指数可以用于二分类或多分类问题。

在选择划分属性时,我们希望划分后的数据集的基尼指数最小,即使得纯度提高的程度最大。

以上三种最优属性划分方法在决策树学习的过程中都有着重要的应用。

在实际应用中,决策树算法可以通过先验知识或者经验来选择最优属性划分方法。

此外,由于决策树算法在高维数据上容易过拟合的问题,可以通过剪枝等技术来避免过拟合。

决策树算法的优势在于易于理解和解释,但也存在局限性,比如对于处理缺失数据、处理连续数据和处理类别不平衡等问题仍然存在挑战。

基于决策树的算法分析与应用示例

基于决策树的算法分析与应用示例

基于决策树的算法分析与应用示例在机器学习领域,决策树是一个经典的算法,它可以在面对大量数据时进行快速且可靠的分类或回归。

本文将介绍决策树算法的原理与应用,并通过一个具体的案例来展示其实际应用价值。

一、什么是决策树算法决策树是一种树形结构的分类模型,它的构建过程就像是一次“递归”的决策过程。

假设我们有一组数据,每个数据点都有若干个特征(即不同的属性),我们要根据这些特征来决定其类别(如是/否、高/中/低等)。

而决策树的生成就是一个逐步“分治”的过程,将原始数据分成不同子集,并根据不同特征来分别处理,最终得到一棵带有判定条件的树形结构。

决策树的构建过程可以分为三个步骤:特征选择、决策树生成和决策树剪枝。

其中,特征选择是指从所有特征中选出一个最佳特征来作为当前的分类依据;决策树生成是指利用选定的特征对数据进行划分,生成一棵完整的决策树;决策树剪枝是指对已经生成的决策树进行优化,去除一些不必要的节点和分枝,以避免过拟合等问题。

除了常见的二叉树决策树外,还有多叉树、CART树、C4.5树、ID3树等多种类型的决策树算法。

它们在特征选择、剪枝等方面有所不同,但本质上都是基于“树形结构”来完成分类或回归任务的。

二、决策树算法的应用示例决策树算法有许多实际应用,如金融风险评估、医学诊断、信用卡反欺诈等。

这里我们以一个简单的基于决策树的鸢尾花分类为例来说明决策树的应用过程。

鸢尾花数据集是机器学习中常用的一个数据集,它包含了150条记录,每条记录都有四个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。

根据这些特征,我们需要判断鸢尾花属于哪种类型:山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)或维吉尼亚鸢尾(Iris-virginica)。

以下是如何用Python和sklearn库来实现这一任务:```python# 引入相关库和数据集from sklearn.datasets import load_irisfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.model_selection import train_test_splitiris = load_iris()X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)# 构建决策树模型并进行训练clf = DecisionTreeClassifier(criterion='entropy', max_depth=10, random_state=42)clf.fit(X_train, y_train)# 预测并评估模型准确率y_pred = clf.predict(X_test)score = clf.score(X_test, y_test)print(score)```上述代码首先引入了相关的Python库和鸢尾花数据集,并将数据集分为训练集和测试集。

决策树算法的原理

决策树算法的原理

决策树算法的原理
决策树算法,也称为决策树学习,是一种常见的机器学习算法。

它根据已有的样本数据,用树形结构(每个非叶节点对应一个属性)来生成一个训练模型用于预测和分类,也就是说,构建一个决策支持系统,为用户做出一系列的决定。

决策树算法的原理是基于贝叶斯决策理论的独特要素,贝叶斯决策理论是以概率模型为基础的,其核心思想是根据给定的训练样本数据集,来学习决策规则,用于进行新样例的分类。

决策树算法的基本流程是:
(1)准备:根据训练数据集,对数据进行预处理,将训练数据集转换成决策树的学习例子;
(2)构建:使用贝叶斯决策理论,一步一步地从根节点开始,根据最大信息增益(或最小错误率)的原则,逐步完善决策树;
(3)剪枝:使用测试集对构建的决策树进行验证,并进行剪枝,从而改善决策树的分类精度;
(4)预测:使用构建好的决策树,对新样例数据进行预测,并将其分类到最终的类别中。

综上,决策树算法就是以贝叶斯决策原则为基础,结合数据集构建、剪枝和预测三个步骤,实现决策模型的一种机器学习算法。

此算法具有易于理解、易于实施,能进行非线性分类,能够用于多分类,但也有其不足之处,例如对训练样本数据集要求较高,相比其他算法效率低等。

决策树知识点总结

决策树知识点总结

决策树知识点总结1. 决策树算法原理决策树算法的核心思想是通过对特征进行逐步划分,将数据集划分为不同的子集,使得每个子集内的数据尽可能属于同一类别。

在划分过程中,算法会选择一个最优的特征进行划分,使得划分后的子集的纯度最大。

通常情况下,我们会选择信息增益或基尼指数作为划分标准,以找到最优的划分特征。

决策树算法的训练过程可以分为以下几步:(1)选择最优的划分特征:通过计算每个特征的信息增益或基尼指数,选择最优的划分特征。

(2)将数据集按照最优特征进行划分:根据最优特征的取值将数据集划分为不同的子集。

(3)递归的训练子树:对划分得到的每个子集进行递归的训练,直到满足停止条件为止。

这样就可以得到一棵完整的决策树,用于对新数据进行预测。

2. 常见的决策树算法目前比较常见的决策树算法包括ID3、C4.5、CART和CHAID等。

ID3(Iterative Dichotomiser 3)算法是一种基于信息增益进行特征选择的决策树算法。

该算法在每次划分时选择信息增益最大的特征进行划分,直到所有特征都被使用或者剩余数据集中的样本属于同一类别。

C4.5算法是ID3算法的改进版,它使用信息增益比进行特征选择,解决了ID3算法可能会选择取值较多的特征进行划分的问题。

CART(Classification And Regression Tree)算法可以用于分类和回归问题,它使用基尼指数进行特征选择,对分类问题得到的决策树是二叉树结构。

CHAID(Chi-squared Automatic Interaction Detection)算法是一种基于卡方检验进行特征选择的决策树算法,适用于分类问题。

3. 决策树的优缺点(1)优点:决策树算法易于理解和解释,生成的决策树可以直观地表示分类的过程和结果。

此外,决策树算法可以处理数值型和类别型的数据,对缺失值和异常值具有较好的鲁棒性。

另外,决策树算法可以自动选择特征,不需要人工选择。

决策树公式和原理

决策树公式和原理

决策树公式和原理宝子,今天咱来唠唠决策树这个超酷的东西。

决策树呢,就像是一棵倒着长的树,不过这棵树可神奇啦。

它有根节点、分支和叶节点。

根节点就是最开始的那个点,就像树的根一样,所有的决策都是从这儿开始发芽的呢。

比如说你在纠结今天是出去逛街还是在家看剧,这纠结的开始就是根节点啦。

那分支是啥呢?分支就像是从根节点伸出去的小树枝。

还是拿刚刚的例子说,如果你选择出去逛街,那关于去哪儿逛街,是去商场还是去小商业街,这不同的选择就像是不同的分支。

每个分支都代表着一种可能的决策方向。

叶节点就是这些树枝的尽头啦。

比如说你最后决定去商场逛街,然后在商场里选择了一家店,买了一件超好看的衣服,这个买衣服的结果就是一个叶节点。

它的原理其实就像是我们平时做决策的思路。

我们在生活中做决定的时候,也是一个一个问题去想的。

决策树就是把这个过程给整理得清清楚楚。

从数学公式的角度看,决策树主要是通过计算信息增益或者基尼指数这些东西来确定怎么分支的。

听起来有点复杂,咱简单说。

信息增益就像是在看哪个分支能够让我们对结果了解得更多。

比如说你有一堆水果,有苹果、香蕉和橙子。

你想把它们分类,那你可能会先看颜色这个属性,因为按照颜色来分,能让你更快地把这些水果分开,这个颜色属性就有比较大的信息增益。

基尼指数呢,也是类似的作用。

它是用来衡量一个节点里的数据有多“纯”。

如果一个节点里的数据都是一样的,那基尼指数就很小,就说明这个节点很“纯”啦。

就像一盒子里都是苹果,没有其他水果,那这个盒子里的数据就很“纯”。

决策树在好多地方都能用呢。

就像在预测天气的时候,如果我们要决定今天出门要不要带伞。

根节点可能就是看天气预报怎么说。

如果天气预报说可能有雨,那一个分支就是带伞出门,另一个分支就是不带伞赌一把。

然后再根据其他的因素,像是天空的云量啊,风的方向啊,继续分更多的分支。

最后得出一个比较靠谱的决策。

还有在商业里也很有用。

比如说一个公司要决定要不要推出一款新产品。

决策树算法公式

决策树算法公式

决策树算法公式决策树算法是一种基于树状结构的分类和回归方法,其中树的每个节点代表一个特征属性,每个分支代表该特征属性的一个取值,而每个叶子节点则代表最终的分类或回归结果。

在决策树算法中,通常采用信息增益或基尼指数等方法来选择最优的特征属性进行分割,从而构建出一棵高效的决策树。

具体的决策树算法公式如下:1. 计算信息熵信息熵是反映数据的不确定性的度量,其公式为:$H(D)=-sum_{i=1}^{n} p_i log_2 p_i$其中 $D$ 为数据集,$p_i$ 为第 $i$ 个分类的概率。

信息熵越大,数据的不确定性越高,反之亦然。

2. 计算信息增益信息增益是使用信息熵来选择最优特征属性的方法,其公式为: $Gain(A)=H(D)-sum_{i=1}^{k}frac{|D_i|}{|D|}H(D_i)$ 其中 $A$ 表示特征属性,$k$ 表示属性 $A$ 的可能取值个数,$D_i$ 表示第 $i$ 个取值所对应的数据集,$|D_i|$ 表示 $D_i$ 中样本的个数,$|D|$ 表示数据集 $D$ 中样本的总个数。

信息增益越大,表明选取该特征属性进行分割能够带来更好的分类效果。

3. 计算基尼指数基尼指数是通过选择最小基尼指数来构建决策树的方法,其公式为:$Gini(p)=sum_{k=1}^{K}p_k(1-p_k)=1-sum_{k=1}^{K}p_k^2$ 其中 $p_k$ 表示第 $k$ 个分类的概率。

基尼指数越小,表明数据的纯度越高,反之亦然。

4. 计算基尼指数增益基尼指数增益是使用基尼指数来选择最优特征属性的方法,其公式为:$Gain_Gini(A)=Gini(D)-sum_{i=1}^{k}frac{|D_i|}{|D|}Gini(D_i )$其中 $A$ 表示特征属性,$k$ 表示属性 $A$ 的可能取值个数,$D_i$ 表示第 $i$ 个取值所对应的数据集,$|D_i|$ 表示 $D_i$ 中样本的个数,$|D|$ 表示数据集 $D$ 中样本的总个数。

决策树算法应用和结果解读

决策树算法应用和结果解读

决策树算法应用和结果解读
决策树算法是一种常见的机器学习算法,广泛应用于分类和回归问题中。

该算法通过构建一棵树形结构,对数据进行有序、层次化的划分,以预测输出结果。

以下是决策树算法的应用和结果解读:
应用:
1. 分类问题:决策树算法可应用于二分类或多分类问题。

通过构建决策树模型,将数据集划分为不同的类别,根据树的节点和分支规则,对新的输入数据进行分类预测。

2. 回归问题:除了分类问题外,决策树算法也可应用于回归问题。

通过构建决策树模型,对连续的输出变量进行预测,根据树的节点和分支规则,对新的输入数据进行回归分析。

结果解读:
1. 树形结构:决策树算法的结果通常以树形结构的形式展示,树中的每个节点代表一个特征或属性测试,分支代表测试结果,叶子节点代表最终的分类或回归结果。

2. 特征重要性:在决策树模型中,每个特征在决策树中的位置和重要性可以被评估和解读。

特征的重要性通常可以通过特征的分裂信息、基尼不纯度等指标来衡量。

3. 分类结果:对于分类问题,决策树的结果可以展示各类别在每个节点上的分布情况,以及每个分支所代表的类别。

通过观察树的节点和分支规则,可以了解不同类别之间的划分依据。

4. 回归结果:对于回归问题,决策树的结果可以展示每个节点的预测值和实际值之间的差异,以及每个分支所代表的预测值范围。

通过观察树的节点和分支规则,可以了解预测值与实际值之间的关系。

总之,决策树算法的应用广泛,结果易于解读。

通过观察决策树的树形结构和特征重要性、分类或回归结果,可以对数据集进行有效的分析和预测。

决策树算法及应用

决策树算法及应用

决策树算法及应用数一决策树算法简介[1][6][8]决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出有用的规则,用于对新集进行预测.决策树算法可设计成具有良好可伸缩性的算法,能够很好地与超大型数据库结合,处理相关的多种数据类型,并且,其运算结果容易被人理解,其分类模式容易转化成分类规则。

因此,在过去的几十年中,决策树算法在机器学习(machine learning)和数据挖掘( data mining)领域一直受到广泛地重视.决策树算法以树状结构表示数据分类的结果。

树的非叶结点表示对数据属性(at tribute)的测试.每个分枝代表一个测试输出,而每个叶结点代表一个分类。

由根结点到各个叶结点的路径描述可得到各种分类规则。

目前有多种形式的决策树算法。

其中最值得注意的是CART 和ID3/ C4. 5 。

许多其它的算法都是由它们演变而来。

下面介绍决策树算法ID3 (Quinlan ,1979) 在实际中的一例应用.决策树算法ID3 使用信息增益( Information Gain)作为选择属性对节点进行划分的指标。

信息增益表示系统由于分类获得的信息量,该量由系统熵的减少值定量描述。

熵(Entropy) 是一个反映信息量大小的概念。

最终信息增益最高的划分将被作为分裂方案。

决策树和决策规则是实际应用中分类问题的数据挖掘方法。

决策树表示法是应用最广泛的逻辑方法,它通过一组输入-输出样本构建决策树的有指导的学习方法。

对于分类决策树来说,需要先对原始资料来进行分类训练,经由不断的属性分类后,得到预期的分类结果.判定树归纳的基本算法是贪心算法,它采用自上而下、分而治之的递归方式来构造一个决策树。

ID3 算法是一种著名的判定树归纳算法,伪代码如下:Function Generate_decision_tree(训练样本samples,候选属性attributelist){创建节点N:if samples 都在同一个类C then返回N 作为叶节点,以类C 标记;if attribute_list 为空then返回N 为叶节点,标记为samples 中最普通类: //多数表决定选择attribute_list 中有最高信息增益的属性test_attribute:标记节点N 为test_attribute;for each test_attribute 中的已知位ai //划分samples由节点N 长出一个条件为test_attribute=ai 的分枝;设Si 是samples 中test attribute=ai 样本的集合; //一个划分If Si 为空then加上一个树叶,标记为samples 中最普通的类;Else 加上一个由Generate_desdecision_tree(Si,attribute_list_test_attribute)返回的节点:}在树的每个节点上使用具有最高信息增益的属性作为当前节点的测试属性。

决策树算法相关公式

决策树算法相关公式

决策树算法相关公式
决策树算法是一种基于树结构的分类和回归算法,其基本原理是将一系列数据样本根据特征属性进行递归划分,在每个最终子集上生成一个决策树结构,用于预测未知数据的分类或数值。

决策树算法的核心是如何选择最优划分属性,其计算公式主要包括信息熵和信息增益:
信息熵 = -∑(pi*log2pi)
其中,pi为样本中属于第i个类别的概率,log2pi为其对数值,其取值范围为0<=pi<=1,代表数据不确定性的度量,取值越小代表样本分布越纯。

信息增益 = 父节点的信息熵 - ∑(子节点的信息熵*子节点样本数/父节点样本数)
其中,父节点为当前状态下样本的整体信息熵,子节点为当前状态下根据某个属性划分的信息熵,其取值越大代表属性对于样本划分越明显。

基于信息增益,我们可以建立决策树来进行分类或回归,其基本流程如下:
1、对样本数据进行预处理,包括数据清洗、数据标准化等步骤;
2、选择最优划分属性进行树节点的分裂,并计算信息增益;
3、递归划分子节点,直到达到终止条件,如树的深度和样本数量;
4、根据决策树结构和划分规则,对未知数据进行分类或回归。

决策树算法具有良好的可解释性和高度的灵活性,在实际应用中得到了广泛的应用。

决策树算法原理

决策树算法原理

决策树算法原理
决策树算法是一种基于树结构的分类与回归分析方法。

它通过对数据集的分割,构建一个树状模型,从而进行决策和预测。

决策树算法的基本原理是在给定数据集的情况下,根据特征属性的值进行划分,使得划分后的子集尽可能地纯净。

纯净的子集指的是只包含同一类别的数据,或者回归问题中的一个具体数值。

为了选择最佳的划分属性,决策树算法通常利用信息增益、信息增益比、基尼系数等指标来度量属性的纯度和划分质量。

在构建决策树的过程中,决策树算法通常使用递归的方法。

首先,从根节点开始,选择一个最佳的划分属性将数据集分成子集。

然后,对每个子集递归地应用相同的划分方法,直到满足一定的终止条件,例如数据集已经纯净或者达到了最大深度。

最后,将每个叶节点所表示的类别或数值作为预测结果。

决策树算法具有直观、可解释性强的特点,并且能够处理离散型和连续型属性。

它可以用于分类问题,例如预测一个样本属于哪一类;也可以用于回归问题,例如预测一个样本的数值。

决策树算法在实际应用中具有广泛的应用,例如医学诊断、金融风险评估等领域。

数据挖掘第三版第九章课后习题答案

数据挖掘第三版第九章课后习题答案

8.1简述决策树分类的主要步骤答:决策树( Decision Tree )又称为判定树,是运用于分类的一种树结构。

其中的每个内部结点( internal node )代表对某个属性的一次测试,每条边代表一个测试结果,叶结点( leaf )代表某个类( class )或者类的分布( class distribution ),最上面的结点是根结点。

决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。

构造决策树是采用自上而下的递归构造方法。

决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据。

二叉树的内部结点(非叶结点)一般表示为一个逻辑判断,如形式为(a = b) 的逻辑判断,其中a 是属性,b 是该属性的某个属性值;树的边是逻辑判断的分支结果。

多叉树( ID3 )的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。

树的叶结点都是类别标记。

使用决策树进行分类分为两步:第1 步:利用训练集建立并精化一棵决策树,建立决策树模型。

这个过程实际上是一个从数据中获取知识,进行机器学习的过程。

第 2 步:利用生成完毕的决策树对输入数据进行分类。

对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类8.6为什么朴素叶贝斯分类称为“朴素”的?简述朴素叶贝斯分类的主要思想。

答:朴素贝叶斯分类器是一种应用基于独立假设的贝叶斯定理的简单概率分类器。

之所以成为朴素,应该是Naive的直译,意思为简单,朴素,天真。

朴素贝叶斯分类是最常用的两大分类算法(决策树分类和朴素贝叶斯分类)。

分类是将一个未知样本分到几个预先已知类的过程。

朴素贝叶斯分类是基于贝叶斯概率的思想,假设属性之间相互独立,例如A和B,则P (B|A)代表A发生的情况下,B发生的概率。

8.7(b)答:决策树为:(salary = 26K...30K:junior= 31K...35K:junior= 36K...40K:senior= 41K...45K:junior= 46K...50K (department = secretary:junior= sales:senior= systems:Junior= marketing:senior)= 66K...70K:senior)(b)答:(c)答:设元组的各属性之间不独立,其联合概率不能写成份量相乘的形式。

如何使用决策树算法进行分类

如何使用决策树算法进行分类

如何使用决策树算法进行分类随着人工智能领域的不断发展,机器学习被广泛应用于各种领域中,而分类算法则是机器学习中最为基础和重要的一种算法之一。

在分类问题中,决策树算法是一种简单而有效的方法。

下面,我们将探讨如何使用决策树算法进行分类。

一、什么是决策树算法决策树算法是一种基于树模型的非参数监督学习算法,可以用于分类和回归分析。

它通过对训练集中的数据不断进行二分,构建出一棵决策树,使其可以对新的数据进行分类或预测。

决策树算法的构建过程是自顶向下的,即从整体样本集合开始,不断分割生成子节点的过程。

在生成子节点时,需要选择使得分类能力最强的属性进行分割。

为了避免决策树的过拟合,需要采用剪枝方法将过于复杂的决策树进行简化。

二、决策树算法的分类过程决策树算法的分类过程可以分为两个步骤:决策树的构建和分类预测。

1. 决策树的构建在构建决策树时,需要使用训练数据进行学习,并选择最优特征进行节点的划分。

构建过程中,需要注意以下几点:(1)特征选择:决策树的好坏主要取决于属性的选择。

基于信息增益或基尼指数来进行属性选择都是常用的方式。

(2)节点划分:选择了最优特征后,需要将数据集按照该特征的属性值进行划分。

(3)树的生长:重复以上步骤,直到每个叶子节点都是同一类别的样本,或者无法继续进行特征选择为止。

2. 分类预测在构建好决策树后,就可以使用它进行分类预测了。

分类预测的过程是从根节点开始,按照特征进行判断,最终到达某个叶子节点,该叶子节点上的类别即为预测类别。

三、决策树算法的优缺点决策树算法具有以下优点:(1)易于理解和解释:决策树算法生成的决策树可以很清晰地展现出数据的分类情况,方便理解和解释。

(2)处理分类和连续性变量:决策树算法可以处理包括分类和连续性变量在内的各种类型的数据。

(3)高效:在分类预测时,决策树算法的复杂度是O(log2n),效率较高。

然而决策树算法也存在一些缺点:(1)容易过拟合:在样本数量较少或者属性数量较多的情况下,容易出现过拟合现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.2.2.1 C4.5的分裂属性选择度量
ID系列的算法为什么会产生归纳偏置呢? 归纳偏置是一系列前提,这些前提与训练 数据一起演绎论证未来实例分类。如果给 定一个训练数据集,那么通常有很多决策 树与这些样例一致。所以,要描述ID系列 算法的归纳偏置,应找到它从所有一致假 设中选择一个的根据。
第9章 决策树算法
SplitI A ( D) = ∑
j =1 v
er D
× log 2 (
er D
)
第9章 决策树算法
25
9.2.2.1 C4.5的分裂属性选择度量
增益比率的公式如下所示:
Gain( A) GainRatio( A) = SplitI ( A)
第9章 决策树算法
26
9.2.2.2 C4.5对连续数据的处理
只要生成了决策树后,就可以把树转换成 一个IF-THEN规则的集合。当然,每种算法 生成的决策树都可以转换成相应的if-then规 则,C4.5算法处理规则与其他算法不同在 于它把规则存储在一个二维数组中,每一 行都代表着树中的一个规则,即从树根到 叶子之间的一个路径 .
第9章 决策树算法
30
9.2.3 CART算法
第9章 决策树算法
24
9.2.2.1 C4.5的分裂属性选择度量
为了避免这个偏置,弥补ID系列算法的不足就要 舍弃信息增益这个度量而选择别的决策属性作为 度量标准。Quinlan在他1986年中的论文中提出 了一种可以使用的度量标准:增益比率。 增益比率通过加入一个被称为分裂信息(split information)的项来惩罚类似Date这样的属性, 分裂信息用来衡量属性分裂数据的广度和均匀性, 它由如下公式所示:
第9章 决策树算法 31
9.2.3 CART算法
Gini指标主要是度量数据划分或训练数据 集D的不纯度为主,系数值的属性作为测试 属性,Gini值越小,表明样本的“纯净度” 越高。Gini指标定义为如下公式:
Gini ( D ) = 1 ∑ pi2
i =1
m
第9章 决策树算法
32
9.2.3 CART算法
ID3算法最初的定义是假设属性值是离散值, 但在实际环境中,有很多属性是连续的, 不能够用一个确定的标准来对其进行划分。 C4.5使用下面的一系列处理过程来对连续 的属性划分成离散的属性,进而达到能够 建立决策树的目的。
第9章 决策树算法
27
9.2.2.2 C4.5对连续数据的处理
Step1 根据训练数据集D中各个属性的值对该训 练数据集进行排序; Step2 利用其中各属性的值对该训练数据集动态 地进行划分; Step3 在划分后的得到的不同的结果集中确定一 个阈值,该阈值将训练数据集数据划分为两个部 分; Step4 针对这两边各部分的值分别计算它们的增 益或增益比率,以保证选择的划分使得增益最大。
工作过程:
决策树分类模型的工作过程图
第9章 决策树算法 6
9.1 决策树算法原理
定义 9.1 给定一个训练数据集D=,其中每 个实例,称为例子,训练数据集中包含以 下属性A=。同时给定类别集合C。对于训 练数据集D,决策树 决策树是指具有以下性质的树: 决策树 每个内部节点都被标记一个属性Ai。 每个弧都被标记一个值,这个值对应于相 应父结点的属性。 每个叶节点都被标记一个类Cj。
第9章 决策树算法 7
9.1 决策树算法原理
定义9.2 分裂准则 定义为在决策树算法中 定义 将训练数据集D中的元组划分为个体类的最 好的方法与策略,它告诉我们在节点N上测 试哪个属性合适,如何选择测试与测试的 方法,从节点N上应该生长出哪些分支。 定义9.3 分裂属性 分裂属性Xi定义为决策树中每个内 定义 部节点都对应的一个用于分裂数据集的属 性。Xi A= { A1 , A2 ,L , Ah }
第9章 决策树算法
11
9.1 决策树算法原理
X ∈Y
i
颜色 ∈ { 红 , 绿 }
图9-4
按照分裂子集划分而成的决策树(只能是二叉树)图与相关的具体例子图
第9章 决策树算法
12
9.1 决策树算法原理
目前主要使用如下几个量化评估标准 (1)预测准确性 (2)模型强健性 (3)描述的简洁性 (4)计算复杂性 (5)处理规模性
23
9.2.2.1 C4.5的分裂属性选择度量
ID系列的搜索策略为:(1)优先选择较短 的树而不是较长的;(2)选择那些信息增 益高的属性离根节点较近的树。 结论:ID系列算法的归纳偏置是因为它在 选的时候较短的树比较长的树优先所产生 的,也就是那些信息增益高的属性更靠近 的根节点将会有优先生成树的特权。
由于二叉树不易产生数据碎片,精确度往往也会高于多叉 树,所以在CART算法中,统计学家们采用了二元划分, 在分支节点上进行Gini值的测试,如果满足一定纯度则划 分到左子树,否则划分到右子树,最终生成一棵二叉决策 树。 在只有二元分裂的时候,对于训练数据集D中的属性A将 D分成的D1和D2,则给定划分D的Gini指标如下公式所示:
第9章 决策树算法
18
9.2.1 ID3算法
假设训练数据集D中的正例集PD和反例 集ND的大小分别为p和n,则ID3基于下面 两个假设给出该决策树算法中信息增益的 定义,因为信息是用二进制编码的,所以 在下面的公式定义中都用以2为底的对数。 (1)在训练数据集D上的一棵正确决策树 对任意例子的分类概率同D中正反例的概率 一致;(2)一棵决策树能对一个例子做出 正确类别判断所需的信息量如下公式所示:
设训练数据集D一共有m类样例,每类样例数为: pi , i = 1,2,L, m 。 同样以属性A作为决策树的根,具有v个值 v1 , v 2 , L v v ,它将D分为v 个子集 {e1 , e2 ,L, ev } ,假设子集中任意元组属于类C的概率 p i 用表 示,并用 Ci ,D / D 估计。那么,该子集的信息量定义如下所示:
第9章 决策树算法 4
9.1 决策树算法原理
传统的数据分类操作通常有以下两个步骤: 模型训练阶段:根据给定的训练集,找到 合适的映射函数H:→C的表示模型。 使用上一步训练完成的函数模型预测数据 的类别,或利用该函数模型,对数据集中 的每一类数据进行描述,形成分类规则。
第9章 决策树算法
5
9.1 决策树算法原理
第9章 决策树算法
13
9.2 常用决策树算法
ID3算法
ID3是Quinlan于1986年提出的,是机器学习中一种 广为人知的一个算法,它的提出开创了决策树算法的先河, 而且是国际上最早最有影响的决策树方法,在该算法中, 引入了信息论中熵的概念,利用分割前后的熵来计算信息 增益,作为判别能力的度量。
I (er ) = ∑ p i log 2 ( p i )
那么以A为根分类后所需的信息期望如下面公式所示:
i =1 m
E ( A) = ∑
j =1
v
er D
× I (e r )
21
第9章 决策树算法
9.2.2 C4.5算法
(1)分裂 (2)连续数据 (3)缺失数据 (4)规则
第9章 决策树算法
22
第9章 决策树算法
14
9.2.1 ID3算法
定义9.6 信息熵 定义 自信息量只能反映符号的不确定性,而信息熵可以用 来度量整个信源X整体的不确定性。设某事物具有n种相互 独立的可能结果(或称状态):x1 , x 2 , L, x n ,每一种结果出现 的概率分别为 P( x1 ), P( x2 ),L P( xn ), 且有: (9.1) 9.1 ∑ p(x ) = 1
第9章 决策树算法 8
9.1 决策树算法原理
定义9.4 如果Xi是连续属性,那么分裂准则 定义 的形式为Xi,其中,就称为节点n的分裂点 分裂点。 分裂点 定义9.5 如果Xi是离散属性,那么的形式为, 定义 其中,就称为节点n的分裂子集 分裂子集。 分裂子集 注意: 注意:分裂准则与分裂属性、分裂点、分裂 子集并不等同,它们是四个不同的概念, 并且分裂子集分裂点分裂属性分裂准则
第9章 决策树算法 16
9.2.1 ID3算法
Quinlan的首创性工作主要是在决策树的学 习算法中第一次引入了信息论中的互信息 (称之为信息增益),以之作为属性选择 的标准,并且将建树的方法嵌入在其中, 其核心是在决策树的各级节点上选择属性, 用信息增益作为属性选择标准
第9章 决策树算法
17
9.2.1 ID3算法
第9章 决策树算法
9
9.1 决策树算法原理
将上面的定义结合实际的决策树例子可得 决策树图如下图9-1,图9-2,图9-3所示, 图中设X为分裂属性,是属性X的已知值。
图9-2 按照分裂点划分而成的决策树图与相关的具体例子图
第9章 决策树算法 10
9.1 决策树算法原理
图9-3 按照分裂子集划分而成的决策树图与相关的两个具体例子图
E ( A) = ∑
i =1
v
p i + ni I ( p i , ni ) p+n
因此,以A为根的信息增益如下公式所示:
gain ( A) = I ( p, n) E ( A)
第9章 决策树算法
20
9.2.1 ID3算法
上面给出的ID3中的信息论的相关定义主要是在两类分类 问题的前提下,下面给出将其扩展到多类后的相关定义描 述。
第9章 决策树算法
3
9.1 决策树算法原理
优点: 使用者不需要了解很多背景知识,只要训练事例 能用属性→结论的方式表达出来,就能用该算法 学习; 决策树模型效率高,对训练集数据量较大的情况 较为适合; 分类模型是树状结构,简单直观,可将到达每个 叶结点的路径转换为IF→THEN形式的规则,易于 理解; 决策树方法具有较高的分类精确度。
相关文档
最新文档