决策树分类算法的时间和性能测试(DOC)
决策树算法介绍(DOC)
决策树算法介绍(DOC)3.1 分类与决策树概述3.1.1 分类与预测分类是⼀种应⽤⾮常⼴泛的数据挖掘技术,应⽤的例⼦也很多。
例如,根据信⽤卡⽀付历史记录,来判断具备哪些特征的⽤户往往具有良好的信⽤;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。
这些过程的⼀个共同特点是:根据数据的某些属性,来估计⼀个特定属性的值。
例如在信⽤分析案例中,根据⽤户的“年龄”、“性别”、“收⼊⽔平”、“职业”等属性的值,来估计该⽤户“信⽤度”属性的值应该取“好”还是“差”,在这个例⼦中,所研究的属性“信⽤度”是⼀个离散属性,它的取值是⼀个类别值,这种问题在数据挖掘中被称为分类。
还有⼀种问题,例如根据股市交易的历史数据估计下⼀个交易⽇的⼤盘指数,这⾥所研究的属性“⼤盘指数”是⼀个连续属性,它的取值是⼀个实数。
那么这种问题在数据挖掘中被称为预测。
总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。
3.1.2 决策树的基本原理1.构建决策树通过⼀个实际的例⼦,来了解⼀些与决策树有关的基本概念。
表3-1是⼀个数据库表,记载着某银⾏的客户信⽤记录,属性包括“姓名”、“年龄”、“职业”、“⽉薪”、......、“信⽤等级”,每⼀⾏是⼀个客户样本,每⼀列是⼀个属性(字段)。
这⾥把这个表记做数据集D。
银⾏需要解决的问题是,根据数据集D,建⽴⼀个信⽤等级分析模型,并根据这个模型,产⽣⼀系列规则。
当银⾏在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、⽉薪等属性,来预测其信⽤等级,以确定是否提供贷款给该⽤户。
这⾥的信⽤等级分析模型,就可以是⼀棵决策树。
在这个案例中,研究的重点是“信⽤等级”这个属性。
给定⼀个信⽤等级未知的客户,要根据他/她的其他属性来估计“信⽤等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信⽤等级为“优”、“良”、“差”这3个类别的某⼀类别中去。
决策树算法
3
第一节 决策树算法原理
优点: 使用者不需要了解很多背景知识,只要训练事例能用属性 →结论的方式表达出来,就能用该算法学习; 决策树模型效率高,对训练集数据量较大的情况较为适合; 分类模型是树状结构,简单直观,可将到达每个叶结点的 路径转换为IF→THEN形式的规则,易于理解; 决策树方法具有较高的分类精确度。
14
第一节 决策树算法原理
决策树算法的大体框架都是一样的,都采用了贪心(非回 溯的)方法来以自顶向下递归的方式构造决策树。 它首先根据所使用的分裂方法来对训练集递归地划分递归 地建立树的节点,直至满足下面两个条件之一,算法才停 止运行:( 1)训练数据集中每个子集的记录项全部属于 一类或某一个类占压倒性的多数;(2)生成的树节点通 过某个终止的分裂准则;最后,建立起决策树分类模型。
4
第一节 决策树算法原理
缺点: 不易处理连续数据。数据的属性必须被划分为不同的类别 才能处理,但是并非所有的分类问题都能明确划分成这个 区域类型; 对缺失数据难以处理,这是由于不能对缺失数据产生正确 的分支进而影响了整个决策树的生成; 决策树的过程忽略了数据库属性之间的相关性。
5
第一节 决策树算法原理
21
2.1 ID3算法
属性选择度量 在树的每个节点上使用信息增益(information gain)度量选 择测试属性。这种度量称作属性选择度量或分裂的优良性度 量。 选择具有最高信息增益(或最大信息熵压缩)的属性作为当 前节点的测试属性。该属性使得对结果划分中的样本分类所 需的信息量最小,并反映划分的最小随机性或“不纯性”。 这种信息理论方法使得对一个对象分类所需的期望测试数目 达到最小,并确保找到一棵简单的(但不必是最简单的)树。
第10章 决策树
的算法,其剪枝的方法也不尽相同。常用的剪枝方法有预剪枝和后剪枝两种。例如CHILD和C5.0采用预剪枝,CART则采用后
剪枝。
(1)预剪枝:是指在构建决策树之前,先指定好生长停止准则(例如指定某个评估参数的阈值),此做法适合应用于大规模
和CART几乎同时被提出,但都采用类似的方法从训练样本中学习决策树。
决策树算法
算法描述
ID3算法
其核心是在决策树的各级分裂节点上,使用信息增益作为分裂变量的选择标准,来帮助确定生成每个节点时所
应采用的合适自变量
C4.5算法
C4.5决策树算法相对于ID3算法的重要改进是使用信息增益率来选择节点属性。C4.5算法可以克服ID3算法存在
示自变量A的信息熵。
C5.0算法是由计算机科学家J.Ross Quinlan为改进他之前的算法C4.5开发的新版本。该算法增强了对大量数据的处理能力,
并加入了Boosting以提高模型准确率。尽管Quinlan将C5.0算法销售给商业用户,但是该算法的一个单线程版本的源代码
是公开的,因此可以编写成程序,R中就有相应的包实现C5.0算法。
用log函数。可见,发生的概率p越大,其不确定性越低。
考虑到信源的所有可能发生的事件,假设其概率为{1 , 2 , … , },则可以计算其平均值(数学期望),该值被称为信息熵或者经验熵。假设S是s
个数据样本的集合,假定离散变量有m个不同的水平: ( = 1,2, … , ),假设 是类 中的样本数。对一个给定的样本,它总的信息熵为:
CART算法正好适用于连续型特征。CART算法使用二元切分法来处理连续型变量。而使用二元切分法则易于对树构建过程进行调整。
决策树
预修剪技术
预修剪的最直接的方法是事先指定决策树生长的最 大深度, 使决策树不能得到充分生长。 目前, 许多数据挖掘软件中都采用了这种解决方案, 设置了接受相应参数值的接口。但这种方法要求 用户对数据项的取值分布有较为清晰的把握, 并且 需对各种参数值进行反复尝试, 否则便无法给出一 个较为合理的最大树深度值。如果树深度过浅, 则 会过于限制决策树的生长, 使决策树的代表性过于 一般, 同样也无法实现对新数据的准确分类或预测。
决策树的修剪
决策树学习的常见问题(3)
处理缺少属性值的训练样例 处理不同代价的属性
决策树的优点
可以生成可以理解的规则; 计算量相对来说不是很大; 可以处理连续和离散字段; 决策树可以清晰的显示哪些字段比较重要
C4.5 对ID3 的另一大改进就是解决了训练数据中连续属性的处 理问题。而ID3算法能处理的对象属性只能是具有离散值的 数据。 C4.5中对连续属性的处理采用了一种二值离散的方法,具体 来说就是对某个连续属性A,找到一个最佳阈值T,根据A 的取值与阈值的比较结果,建立两个分支A<=T (左枝)和 A>=T (右枝),T为分割点。从而用一个二值离散属性A (只 有两种取值A<=T、A>=T)替代A,将问题又归为离散属性的 处理。这一方法既可以解决连续属性问题,又可以找到最 佳分割点,同时就解决了人工试验寻找最佳阈值的问题。
简介
决策树算法是建立在信息论的基础之上的 是应用最广的归纳推理算法之一 一种逼近离散值目标函数的方法 对噪声数据有很好的健壮性且能学习析取(命题 逻辑公式)表达式
信息系统
决策树把客观世界或对象世界抽象为一个 信息系统(Information System),也称属性--------值系统。 一个信息系统S是一个四元组: S=(U, A, V, f)
《数据挖掘》试题与答案
一、解答题(满分30分,每小题5分)1。
怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。
知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式.流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。
2。
时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。
例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型.2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。
若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测.3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。
由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。
假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测.3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。
决策树(完整)
无缺失值样本中在属性 上取值 的样本所占比例
ቤተ መጻሕፍቲ ባይዱ
谢谢大家!
举例:求解划分根结点的最优划分属性
根结点的信息熵:
用“色泽”将根结点划分后获得3个分支结点的信息熵分别为:
属性“色泽”的信息增益为:
若把“编号”也作为一个候选划分属性,则属性“编号”的信息增益为:
根结点的信息熵仍为:
用“编号”将根结点划分后获得17个分支结点的信息熵均为:
则“编号”的信息增益为:
三种度量结点“纯度”的指标:信息增益增益率基尼指数
1. 信息增益
香农提出了“信息熵”的概念,解决了对信息的量化度量问题。香农用“信息熵”的概念来描述信源的不确定性。
信息熵
信息增益
一般而言,信息增益越大,则意味着使用属性a来进行划分所获得的“纯度提升”越大。决策树算法第8行选择属性
著名的ID3决策树算法
远大于其他候选属性信息增益准则对可取值数目较多的属性有所偏好
2. 增益率
增益率准则对可取值数目较少的属性有所偏好著名的C4.5决策树算法综合了信息增益准则和信息率准则的特点:先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。
3. 基尼指数
基尼值
基尼指数
著名的CART决策树算法
过拟合:学习器学习能力过于强大,把训练样本自身的一些特点当作了所有潜在样本都会具有的一般性质,导致泛化性能下降。欠拟合:学习器学习能力低下,对训练样本的一般性质尚未学好。
过拟合无法彻底避免,只能做到“缓解”。
不足:基于“贪心”本质禁止某些分支展开,带来了欠拟合的风险
预剪枝使得决策树的很多分支都没有“展开”优点:降低过拟合的风险减少了训练时间开销和测试时间开销
(三)决策树方法
(三)决策树方法
决策树是一种基于对对象属性进行划分,以构建由多个属性组成的有向无环图的分类算法。
它能够被应用于特征较多的数据集,来预测数据实体的类别,比如判断是否为良性肿瘤或者判断产品的满意度属于高、中、低的哪个类型。
决策树的基本思想是根据实体的对象特征来判断实体的类别,可以把建立决策树的过程想象为一个问答过程,具体步骤如下:
1、生成决策树。
首先根据样本集,计算得出测试属性中信息增益高的属性作为根节点,根据根节点属性值针对所有样本逐一划分,构建二叉子树。
2、根据数据集合进行分类。
对每一个节点都进行分类判断,如果所有样本属于同一类,将节点分配给该类,否则重复第一步。
3、在决策树上添加分支。
每一个分支节点都重复上述过程,只不过是从当前根节点获取一个测试属性来进行划分,直到所有样本均被划分完毕。
4、创建新树结构。
最后,对所有节点总结归纳,建立结构,创建新树结构来替代原来的树,形成一棵完整的决策树。
决策树的优点是它易于实现,易于理解。
且它可以被用于多种应用场景,比如机器学习中的分类问题、关联规则的挖掘以及建模预测等等。
缺点在于它的性能受算法本身的决策过程影响,当测试属性的划分无法明显区分样本时,结果可能会出现错误。
此外,在构建决策树时,需要一定的时间消耗,若样本量较大,处理时间也较长。
决策树C4.5算法总结
数据集准备
数据清洗
去除异常值、缺失值,对数据进行预处理,使其满足算法要 求。
数据分割
将数据集分为训练集和测试集,用于训练和评估决策树模型 。
特征选择与划分
特征重要性评估
计算每个特征对目标变量的影响程度,选择最重要的特征作为划分标准。
特征划分
根据特征的重要性和信息增益率,将数据集划分为不同的子集,形成决策树的 节点。
THANKS
感谢观看
案例二:医疗诊断分类
数据集
医疗诊断数据集包含了1452 条样本,每个样本有11个特 征,目标变量为是否患有某
种疾病。
算法应用
使用C4.5算法构建决策树模 型,对数据进行训练和测试 ,评估模型的准确率、召回
率和F1分数等指标。
结果分析
通过决策树模型,可以辅助 医生进行疾病诊断,提高诊 断的准确性和效率。
处理连续属性和缺失值的方法优化
• C4.5算法在处理连续属性和缺失值时采用了一些简单的策略,如将连续属性离散化或忽略缺失值。这些策略可 能导致决策树无法充分利用数据中的信息。因此,一些研究者提出了更复杂的方法来处理连续属性和缺失值, 如使用插值或回归方法来处理连续属性,以及使用特殊标记或填充值来处理缺失值。这些方法可以提高决策树 对连续属性和缺失值的处理能力,从而提高模型的分类准确率。
2
C4.5算法采用了信息增益率、增益率、多变量增 益率等更加复杂的启发式函数,提高了决策树的 构建精度和泛化能力。
3
C4.5算法还引入了剪枝策略,通过去除部分分支 来避免过拟合,提高了决策树的泛化性能。
决策树C4.5算法的应用场景
数据挖掘
C4.5算法广泛应用于数据挖掘 领域,用于分类、回归和聚类
adaboosting 考试完整例题
adaboosting 考试完整例题Adaboosting是一种机器学习算法,被广泛应用于分类和回归问题中。
以下是一道Adaboosting分类算法的考试例题。
假设我们有一个训练数据集,其包含三个特征变量 x1、x2、x3 和二分类响应变量 y。
我们想使用Adaboosting算法来构建一个分类器来预测新观测值的分类。
训练数据集如下:| x1 | x2 | x3 | y ||----|----|----|---|| 0 | 1 | 1 | 0 || 1 | 0 | 1 | 1 || 1 | 1 | 0 | 1 || 1 | 1 | 1 | 0 || 0 | 0 | 1 | 0 |假设我们想使用三个决策树作为Adaboosting算法的基础分类器。
每个决策树都使用一个特征变量作为划分变量,并根据其结果将数据集分成两个子集。
以下是每个决策树的分类器结果:第一个决策树:当 x1 = 0 时属于类别 0,当 x1 = 1 时属于类别 1。
第二个决策树:当 x2 = 0 时属于类别 1,当 x2 = 1 时属于类别 0。
第三个决策树:当 x3 = 0 时属于类别 0,当 x3 = 1 时属于类别 1。
请回答以下问题:1. 如何计算第一个决策树的权重?2. 使用Adaboosting算法,如何计算第一个分类器的总权重?3. 对于新的数据点(1,1,0),使用训练好的Adaboosting模型进行分类,它属于哪个类别?答案:1. 权重的计算是基于每个决策树的分类误差率。
对于第一个决策树,分类错误的数据点是第二行和第三行,因此分类误差率为 2/5,权重为 ln((1 - 2/5) / (2/5)) ≈ 0.51。
2. 总权重的计算是基于每个分类器的权重。
对于第一个分类器,它的总权重为 1/2 * ln((1 - 2/5) / (2/5)) ≈ 0.25。
3. 对于新的数据点(1,1,0),我们可以将其输入每个决策树,根据其结果计算每个决策树的权重并将它们加起来。
决策树的经典算法ID3与C45
决策树的经典算法ID3与C45决策树是一种常用的机器学习算法,用于分类和回归任务。
决策树算法可以看作是一种基于树结构的分类方法,它将数据集拆分成若干个子集,每个子集对应一个属性测试条件,通过不断递归地划分数据集,最终形成一棵决策树。
经典的决策树算法包括ID3和C5,本文将对这两种算法进行介绍。
ID3(Iterative Dichotomiser 3)是由Ross Quinlan提出的,它是最早的决策树算法之一。
ID3算法采用了信息增益作为属性选择度量,通过计算每个属性的信息增益,选择信息增益最大的属性进行分裂。
我们计算每个属性的信息增益。
信息增益被定义为父节点与子节点之间的信息差异,计算公式为:Gain(S,A)=H(S)-sum(P(a) * H(S_a))其中,H(S)表示节点S的熵,P(a)表示属性A的取值a在节点S中出现的概率,H(S_a)表示子节点S_a的熵。
选择信息增益最大的属性作为当前节点的分裂属性。
根据当前节点的分裂属性将数据集划分成若干个子集,对每个子集递归地执行步骤1和步骤2,直到满足停止条件(例如子集中所有样本都属于同一类别,或每个属性都已使用过)。
C5算法是ID3算法的改进版,它使用了增益率作为属性选择度量,以解决ID3算法中偏好于选择取值较多的属性的问题。
增益率定义为信息增益与分裂信息的比值,分裂信息被定义为:split_info(S,A)=-sum(P(a) * log2(P(a)))其中,P(a)表示属性A 的取值a在节点S中出现的概率。
C5算法的步骤与ID3算法类似,但在选择分裂属性时优先考虑增益率较高的属性。
C5算法还引入了剪枝技术,通过设置一个置信度阈值来避免过拟合,从而生成更加健壮的决策树。
ID3算法和C5算法都是经典的决策树算法,它们在处理分类问题时具有较高的准确率和可解释性。
然而,这两种算法也存在一些局限性,例如对于连续属性和处理缺失值的处理能力有限。
后续的许多研究者对决策树算法进行了改进和优化,如CART、CHD、BOOSTING等,这些算法在处理复杂问题、提高分类准确率和处理连续属性方面做出了更多的探索和实践。
决策树分类算法
决策树分类算法⼀、决策树原理决策树是⽤样本的属性作为结点,⽤属性的取值作为分⽀的树结构。
决策树的根结点是所有样本中信息量最⼤的属性。
树的中间结点是该结点为根的⼦树所包含的样本⼦集中信息量最⼤的属性。
决策树的叶结点是样本的类别值。
决策树是⼀种知识表⽰形式,它是对所有样本数据的⾼度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。
决策树算法ID3的基本思想:⾸先找出最有判别⼒的属性,把样例分成多个⼦集,每个⼦集⼜选择最有判别⼒的属性进⾏划分,⼀直进⾏到所有⼦集仅包含同⼀类型的数据为⽌。
最后得到⼀棵决策树。
J.R.Quinlan的⼯作主要是引进了信息论中的信息增益,他将其称为信息增益(information gain),作为属性判别能⼒的度量,设计了构造决策树的递归算法。
举例⼦⽐较容易理解:对于⽓候分类问题,属性为:天⽓(A1) 取值为:晴,多云,⾬⽓温(A2) 取值为:冷,适中,热湿度(A3) 取值为:⾼,正常风 (A4) 取值为:有风,⽆风每个样例属于不同的类别,此例仅有两个类别,分别为P,N。
P类和N类的样例分别称为正例和反例。
将⼀些已知的正例和反例放在⼀起便得到训练集。
由ID3算法得出⼀棵正确分类训练集中每个样例的决策树,见下图。
决策树叶⼦为类别名,即P 或者N。
其它结点由样例的属性组成,每个属性的不同取值对应⼀分枝。
若要对⼀样例分类,从树根开始进⾏测试,按属性的取值分枝向下进⼊下层结点,对该结点进⾏测试,过程⼀直进⾏到叶结点,样例被判为属于该叶结点所标记的类别。
现⽤图来判⼀个具体例⼦,某天早晨⽓候描述为:天⽓:多云⽓温:冷湿度:正常风:⽆风它属于哪类⽓候呢?-------------从图中可判别该样例的类别为P类。
ID3就是要从表的训练集构造图这样的决策树。
实际上,能正确分类训练集的决策树不⽌⼀棵。
Quinlan的ID3算法能得出结点最少的决策树。
ID3算法:⒈对当前例⼦集合,计算各属性的信息增益;⒉选择信息增益最⼤的属性A k;⒊把在A k处取值相同的例⼦归于同⼀⼦集,A k取⼏个值就得⼏个⼦集;⒋对既含正例⼜含反例的⼦集,递归调⽤建树算法;⒌若⼦集仅含正例或反例,对应分枝标上P或N,返回调⽤处。
基于决策树的分类算法
基于决策树的分类算法1 分类的概念及分类器的评判分类是数据挖掘中的⼀个重要课题。
分类的⽬的是学会⼀个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某⼀个。
分类可⽤于提取描述重要数据类的模型或预测未来的数据趋势。
分类可描述如下:输⼊数据,或称训练集(training set)是⼀条条记录组成的。
每⼀条记录包含若⼲条属性(attribute),组成⼀个特征向量。
训练集的每条记录还有⼀个特定的类标签(类标签)与之对应。
该类标签是系统的输⼊,通常是以往的⼀些经验数据。
⼀个具体样本的形式可为样本向量:(v1,v2,…,…vn:c)。
在这⾥vi表⽰字段值,c表⽰类别。
分类的⽬的是:分析输⼊数据,通过在训练集中的数据表现出来的特性,为每⼀个类找到⼀种准确的描述或者模型。
这种描述常常⽤谓词表⽰。
由此⽣成的类描述⽤来对未来的测试数据进⾏分类。
尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。
注意是预测,⽽不能肯定。
我们也可以由此对数据中的每⼀个类有更好的理解。
也就是说:我们获得了对这个类的知识。
对分类器的好坏有三种评价或⽐较尺度:预测准确度:预测准确度是⽤得最多的⼀种⽐较尺度,特别是对于预测型分类任务,⽬前公认的⽅法是10番分层交叉验证法。
计算复杂度:计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是⾮常重要的⼀个环节。
模型描述的简洁度:对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采⽤规则表⽰的分类器构造法就更有⽤。
分类技术有很多,如决策树、贝叶斯⽹络、神经⽹络、遗传算法、关联规则等。
本⽂重点是详细讨论决策树中相关算法。
2 基于决策树的数据分类算法及其性能2.1 ID3和C4.5算法决策树技术是⽤于分类和预测的主要技术,决策树学习是以实例为基础的归纳学习算法。
它着眼于从⼀组⽆次序、⽆规则的事例中推理除决策树表⽰形式的分类规则。
决策树分类
∑ − pi log2 ( pi ) .其中,P 是任意样本属于c 的概率,一般可以用来si/s估计。 1
设一个属性 A 具有 V 个不同的值{ a1, a2,..., av }。利用属性 A 将集合 S 划分
为 V 个子集{ s1, s2 ,..., sv },其中 s 包含了集合 s 中属性 取 aj 值的数据样本。若 属性 A 被选为测试属性(用于对当前样本集进行划分),设 s 为子集 si 中属于 c 类 别的样本数。那么利用属性 A 划分当前样本集合所需要的信息(熵)可以计算如下:
图 1.1 决策树分类器示意图 决策树分类算法起源于概念学习系统CLS(Concept Iearning System),然后发 展到ID3方法而为高潮,最后又演化为能处理连续属性的C4.5,有名的决策树 方法还有CART和Assistant,Sliq、Spdnt等等。其中决策树方法中最为著名的算 法是Quinlan于1986年提出的ID3算法,算法以信息熵的增益进行属性选择。但由 于ID3算法采用基于信息熵的属性选择标准,因此偏向于选择属性取值较多的属 性,而属性取值较多的属性却不一定是最佳的分类属性。1993年,Qullan对ID3 算法进行了改进,利用信息增益率进行属性选择,提出了C4.5算法。C4.5算法 还在ID3算法的基础上增加对连续型属性、属性值空缺情况的处理,对剪枝也有 了较成熟的算法。 决策树分类算法主要是利用信息论原理对大量样本的属性进行分析和归纳 而产生的。决策树的根节点是所有样本中信息量最大的属性;树的中间节点是以
RID
Age
Income
Student Credit_rating Class
1
Youth
High
No
Fair
决策树分类方法
决策树分类方法决策树是一种常见的用于分类和回归问题的机器学习方法。
它通过构建树形结构的规则来进行预测。
本文将详细介绍决策树分类方法的原理、算法以及相关应用。
一、决策树分类方法的原理决策树分类方法遵循以下原理:1. 特征选择:通过度量特征的信息增益或信息增益比来选择最优的划分特征。
信息增益是指通过划分数据集获得的纯度提升,信息增益比则是对信息增益进行修正,避免倾向于选择取值较多的特征。
2. 决策节点:根据选择的特征创建决策节点,并将样本集划分到不同的子节点中。
3. 叶节点:当将样本划分到同一类别或达到预定的划分次数时,创建叶节点并标记为对应的类别。
4. 剪枝:为了避免过拟合,可以通过剪枝操作来简化生成的决策树。
二、决策树分类方法的算法常见的决策树分类算法包括ID3算法、C4.5算法以及CART算法。
1. ID3算法:通过计算每个特征的信息增益选择划分特征,将样本划分到信息增益最大的子节点中。
此算法对取值较多的特征有所偏好。
2. C4.5算法:在ID3算法的基础上进行改进,引入了信息增益比的概念,解决了ID3算法对取值较多的特征的偏好问题。
3. CART算法:通过计算基尼指数选择划分特征,将样本划分到基尼指数最小的子节点中。
此算法适用于分类和回归问题。
三、决策树分类方法的应用决策树分类方法广泛应用于各个领域,以下是几个常见的应用场景:1. 信用评估:通过构建决策树模型,根据客户的个人信息和历史数据预测其信用等级,用于信贷风险评估和贷款审批。
2. 疾病诊断:通过决策树模型,根据患者的病症和医学检测结果预测其患有何种疾病,用于辅助医生的诊断决策。
3. 电商推荐:通过决策树模型,根据用户的历史购买记录和个人喜好预测其对某些商品的偏好程度,从而进行个性化商品推荐。
4. 欺诈检测:通过构建决策树模型,根据用户的账户行为和交易记录预测其是否存在欺诈行为,用于金融等领域的欺诈检测。
四、决策树分类方法的优缺点决策树分类方法具有以下优点:1. 易于理解和解释:决策树模型的结果具有很好的可解释性,可以通过树形结构直观地看出预测结果的原因。
评估用于医学诊断的不同分类算法的性能和效率。
评估用于医学诊断的不同分类算法的性能和效率。
用于医学诊断的分类算法在改善诊断准确性和效率方面发挥着重要作用。
这些算法可以通过对已知数据集进行训练,然后将训练好的模型应用于未知的测试集来预测患者的疾病。
本文将评估几种常用的分类算法在医学诊断中的性能和效率,包括朴素贝叶斯分类器、决策树、支持向量机和深度学习模型。
首先,朴素贝叶斯分类器是一种基于贝叶斯定理的概率分类算法。
它假设特征之间是相互独立的,并使用贝叶斯公式计算给定特征的类别的概率。
朴素贝叶斯算法具有较高的分类准确性和计算效率,尤其适用于处理高维数据。
在医学诊断中,它可以用于预测患者是否患有某种疾病,并根据特定的症状和体征提供患病的概率。
其次,决策树是一种基于属性值的条件判断来进行分类的算法。
它通过构建一个树状结构来表示各个决策路径,并根据属性值来选择最佳的分类标签。
决策树算法具有易于理解和解释的特点,并且可以处理各种数据类型。
在医学诊断中,决策树可以通过选择最相关的特征来帮助医生做出准确的诊断。
第三,支持向量机(SVM)是一种基于学习理论的二分类算法。
它通过将样本映射到高维空间中,并构建一个最优的超平面来实现分类。
SVM具有强大的分类能力和对噪声的鲁棒性,可以处理线性和非线性分类问题。
在医学诊断中,SVM可以用于识别异常的生物标记物、分析影像数据等,从而帮助医生判断疾病的风险。
最后,深度学习模型是一种基于多层神经网络的机器学习算法。
它通过多层非线性变换来提取特征,并通过最后一层的分类器进行分类。
深度学习模型可以对复杂的数据进行建模,并在一些医学领域,如肿瘤诊断和影像分析中取得了显著的成果。
然而,深度学习模型需要大量的训练数据和计算资源,并且通常比其他算法更复杂和难以解释。
评估这些分类算法的性能和效率需要考虑几个指标。
首先是分类准确性,即算法在预测中的准确率。
可以使用混淆矩阵来评估算法的分类性能。
其次是计算效率,即算法在处理大规模数据时的速度和资源占用情况。
决策树测试用例
决策树测试用例可以按照以下步骤编写:一、目的本测试用例旨在测试使用决策树算法进行分类和预测的准确性。
二、测试范围本次测试范围包括以下方面:1. 决策树算法的构建和评估;2. 决策树算法在分类和预测任务中的表现;3. 决策树算法在不同数据集上的表现。
三、测试环境1. 硬件环境:CPU:Intel i7 8700K,内存:16GB,硬盘:SSD;2. 软件环境:Python3.8,scikit-learn库。
四、测试数据集本次测试使用以下数据集:1. 鸢尾花数据集;2. 乳腺癌数据集;3. 房价预测数据集。
五、测试步骤1. 导入所需库和数据集;2. 构建决策树模型并进行参数调优;3. 对测试集进行分类和预测,并评估准确率、精度、召回率等指标;4. 对决策树算法进行性能比较,分析不同数据集上的表现。
六、测试用例内容(1)构建决策树模型并进行参数调优,测试其分类和预测准确率是否符合预期。
具体包括以下情况:1. 使用默认参数构建决策树模型,评估其分类和预测准确率;2. 对决策树模型进行参数调优,包括树的最大深度、最小样本分裂数等,评估调优后的模型分类和预测准确率是否有所提高。
(2)测试决策树算法在不同数据集上的表现,包括以下情况:1. 对鸢尾花数据集进行分类和预测,评估决策树算法在多分类问题上的表现;2. 对乳腺癌数据集进行分类和预测,评估决策树算法在复杂数据集上的表现;3. 对房价预测数据集进行分类和预测,评估决策树算法在时间序列数据上的表现。
根据以上测试用例的步骤和内容,对不同数据集的决策树算法进行全面测试,并对结果进行分析和比较,以验证决策树算法在不同任务中的性能是否满足实际需求。
决策树分类模型实验报告
一、实验背景决策树分类模型是一种常用的机器学习算法,通过构建一棵树状结构来对数据进行分类。
在实验中,我们将使用Python编程语言和Scikit-learn库来实现决策树分类模型,并使用鸢尾花数据集进行训练和测试。
二、实验目的1. 理解决策树分类模型的基本原理和算法流程;2. 掌握使用Python和Scikit-learn库实现决策树分类模型的方法;3. 通过实验验证决策树分类模型的性能,并分析其对不同数据集的适用性。
三、实验环境1. 操作系统:Windows 10;2. 编程语言:Python3.7;3. 数据库:Scikit-learn库。
四、实验步骤1. 数据导入与预处理首先,我们需要导入鸢尾花数据集。
鸢尾花数据集是机器学习领域常用的数据集,包含150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度,以及对应的类别标签(Iris-setosa、Iris-versicolor、Iris-virginica)。
```pythonfrom sklearn.datasets import load_irisiris = load_iris()X = iris.dataY = iris.target```2. 决策树模型构建接下来,我们使用Scikit-learn库中的DecisionTreeClassifier类来构建决策树分类模型。
我们需要设置一些参数,如树的深度、最大叶节点数、最小样本数等。
```pythonfrom sklearn.tree import DecisionTreeClassifierclf = DecisionTreeClassifier(max_depth=3, min_samples_leaf=5)```3. 模型训练与测试使用训练集对模型进行训练,并使用测试集对模型进行测试。
```pythonfrom sklearn.model_selection import train_test_splitX_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=0)clf.fit(X_train, Y_train)Y_pred = clf.predict(X_test)```4. 模型评估使用准确率、召回率、F1值等指标来评估模型的性能。
机器学习 第3章 决策树与分类算法
议程
CART算法
议程
CART算法示例
以下是基于sklearn库的CART算法示例代码。通过构建决策树(采用Gini指标)对随机生成(通过np.random.randint方法)的数字进行分类,自变量X为100x4的矩阵,随机生成的数字大于10,因变量Y为大于2的100x1矩阵。树的最大深度限制为3层,训练完成之后将树可视化显示。
议程
C4.5算法
议程
C5.0算法
C5.0算法是Quinlan在C4.5算法的基础上提出的商用改进版本,目的是对含有大量数据的数据集进行分析 C5.0算法与C4.5算法相比有以下优势: 决策树构建时间要比C4.5算法快上数倍,同时生成的决策树规模也更小,拥有更少的叶子结点数 使用了提升法(boosting),组合多个决策树来做出分类,使准确率大大提高 提供可选项由使用者视情况决定,例如是否考虑样本的权重、样本错误分类成本等
议程
ID3 算法
脊椎动物训练样本集以“饮食习性”作为分支属性的分裂情况 “饮食习性”为“肉食动物”的分支中有3个正例、5个反例,其熵值为:
议程
ID3 算法
同理,计算出“饮食习性”分类为“草食动物”的分支与分类为“杂食动物”的分支中的熵值分别为 设“饮食习性”属性为Y,由此可以计算得出,作为分支属性进行分裂之后的信息增益为
import numpy as np import random from sklearn import tree from graphviz import Source np.random.seed(42) X=np.random.randint(10, size=(100, 4)) Y=np.random.randint(2, size=100) a=np.column_stack((Y,X)) clf = tree.DecisionTreeClassifier(criterion='gini',max_depth=3) clf = clf.fit(X, Y) graph = Source(tree.export_graphviz(clf, out_file=None)) graph.format = 'png' graph.render('cart_tree',view=True)
第4章 决策树分类算法
四、决策树分类算法
2.决策树分类算法-ID3算法原理 2.1 ID3算法原理
ID3算法的基本策略如下: (1)树以代表训练样本的单个节点开始; (2)如果样本都在同一个类中,则这个节点成为树叶结点并标记为该类别; (3)否则算法使用信息熵(称为信息增益)作为启发知识来帮助选择合适的 将样本分类的属性,以便将样本集划分为若干子集, (4)对测试属性的每个已知的离散值创建一个分支,并据此划分样本; (5)算法使用类似的方法,递归地形成每个划分上的样本决策树: (6)整个递归过程在下列条件之一成立时停止。
gain(S,A)是指因为知道属性A的值后导致的熵的期望压缩。
四、决策树分类算法
2.决策树分类算法-ID3算法原理 2.3 ID3算法
(1) 初始化决策树T,使其只包含一个树根结点(X,Q),其中X是全体样本集, Q为全体属性集。 (2) if(T中所有叶节点(X’,Q’)都满足X属于同一类或Q’为空) then 算法停止; (3) else { 任取一个不具有(2)中所述状态的叶节点(X’,Q’);
理,C4.5算法的核心思想与ID3完全一样。
gain_ratio(S,A) gain(S,A) split_info(S,A)
其中,gain(S,A) 表示信息增益。
四、决策树分类算法
4. 决策树分类算法-C4.5算法原理 4.1 C4.5算法
2.数值属性的处理 C4.5处理数值属性的过程如下:
(1)按照属性值对训练数据进行排序; (2)用不同的阈值对训练数据进行动态划分; (3)当输入改变时确定一个阈值; (4)取当前样本的属性值和前一个样本的属性值的中点作为新的阈值; (5)生成两个划分,所有的样本分布到这两个划分中; (6)得到所有可能的阈值、增益和增益比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决策树分类算法的时间和性能测试姓名:ls学号:目录一、项目要求 (3)二、基本思想 (3)三、样本处理 (4)四、实验及其分析 (9)1.总时间 (9)2.分类准确性. (12)五、结论及不足 (13)附录 (14)一、项目要求(1)设计并实现决策树分类算法(可参考网上很多版本的决策树算法及代码,但算法的基本思想应为以上所给内容)。
(2)使用UCI 的基准测试数据集,测试所实现的决策树分类算法。
评价指标包括:总时间、分类准确性等。
(3) 使用UCI Iris Data Set 进行测试。
二、基本思想决策树是一个类似于流程图的树结构,其中每个内部节点表示在一个属性变量上的测试,每个分支代表一个测试输出,而每个叶子节点代表类或分布,树的最顶层节点是根节点。
当需要预测一个未知样本的分类值时,基于决策树,沿着该树模型向下追溯,在树的每个节点将该样本的变量值和该节点变量的阈值进行比较,然后选取合适的分支,从而完成分类。
决策树能够很容易地转换成分类规则,成为业务规则归纳系统的基础。
决策树算法是非常常用的分类算法,是逼近离散目标函数的方法,学习得到的函数以决策树的形式表示。
其基本思路是不断选取产生信息增益最大的属性来划分样例集和,构造决策树。
信息增益定义为结点与其子结点的信息熵之差。
信息熵是香农提出的,用于描述信息不纯度(不稳定性),其计算公式是Pi为子集合中不同性(而二元分类即正样例和负样例)的样例的比例。
这样信息收益可以定义为样本按照某属性划分时造成熵减少的期望,可以区分训练样本中正负样本的能力,其计算公式是三、样本处理以UCI提供的Iris Plants Database为测试样本,Iris Plants共有sepal-length ,sepal-width ,petal-length ,petal-width四种属性,根据属性的不同分为三种: class:-- Iris Setosa-- Iris Versicolour-- Iris Virginica为方便实现,只取Iris Setosa和Iris Versicolour这两种植物的样例进行测试。
实现该算法的样例集合如下:5.1,3.5,1.4,0.2,Iris-setosa4.9,3.0,1.4,0.2,Iris-setosa4.7,3.2,1.3,0.2,Iris-setosa4.6,3.1,1.5,0.2,Iris-setosa5.0,3.6,1.4,0.2,Iris-setosa5.4,3.9,1.7,0.4,Iris-setosa4.6,3.4,1.4,0.3,Iris-setosa5.0,3.4,1.5,0.2,Iris-setosa4.4,2.9,1.4,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa5.4,3.7,1.5,0.2,Iris-setosa4.8,3.4,1.6,0.2,Iris-setosa4.8,3.0,1.4,0.1,Iris-setosa4.3,3.0,1.1,0.1,Iris-setosa5.8,4.0,1.2,0.2,Iris-setosa5.7,4.4,1.5,0.4,Iris-setosa5.4,3.9,1.3,0.4,Iris-setosa5.1,3.5,1.4,0.3,Iris-setosa5.7,3.8,1.7,0.3,Iris-setosa5.1,3.8,1.5,0.3,Iris-setosa5.4,3.4,1.7,0.2,Iris-setosa5.1,3.7,1.5,0.4,Iris-setosa4.6,3.6,1.0,0.2,Iris-setosa5.1,3.3,1.7,0.5,Iris-setosa4.8,3.4,1.9,0.2,Iris-setosa5.0,3.0,1.6,0.2,Iris-setosa5.0,3.4,1.6,0.4,Iris-setosa5.2,3.5,1.5,0.2,Iris-setosa5.2,3.4,1.4,0.2,Iris-setosa4.7,3.2,1.6,0.2,Iris-setosa4.8,3.1,1.6,0.2,Iris-setosa5.4,3.4,1.5,0.4,Iris-setosa5.2,4.1,1.5,0.1,Iris-setosa5.5,4.2,1.4,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa5.0,3.2,1.2,0.2,Iris-setosa 5.5,3.5,1.3,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa4.4,3.0,1.3,0.2,Iris-setosa5.1,3.4,1.5,0.2,Iris-setosa 5.0,3.5,1.3,0.3,Iris-setosa 4.5,2.3,1.3,0.3,Iris-setosa4.4,3.2,1.3,0.2,Iris-setosa5.0,3.5,1.6,0.6,Iris-setosa 5.1,3.8,1.9,0.4,Iris-setosa4.8,3.0,1.4,0.3,Iris-setosa5.1,3.8,1.6,0.2,Iris-setosa4.6,3.2,1.4,0.2,Iris-setosa5.3,3.7,1.5,0.2,Iris-setosa 5.0,3.3,1.4,0.2,Iris-setosa 7.0,3.2,4.7,1.4,Iris-versicolor6.4,3.2,4.5,1.5,Iris-versicolor 6.9,3.1,4.9,1.5,Iris-versicolor5.5,2.3,4.0,1.3,Iris-versicolor6.5,2.8,4.6,1.5,Iris-versicolor5.7,2.8,4.5,1.3,Iris-versicolor6.3,3.3,4.7,1.6,Iris-versicolor 4.9,2.4,3.3,1.0,Iris-versicolor 6.6,2.9,4.6,1.3,Iris-versicolor 5.2,2.7,3.9,1.4,Iris-versicolor 5.0,2.0,3.5,1.0,Iris-versicolor5.9,3.0,4.2,1.5,Iris-versicolor6.0,2.2,4.0,1.0,Iris-versicolor 6.1,2.9,4.7,1.4,Iris-versicolor5.6,2.9,3.6,1.3,Iris-versicolor6.7,3.1,4.4,1.4,Iris-versicolor 5.6,3.0,4.5,1.5,Iris-versicolor5.8,2.7,4.1,1.0,Iris-versicolor6.2,2.2,4.5,1.5,Iris-versicolor 5.6,2.5,3.9,1.1,Iris-versicolor5.9,3.2,4.8,1.8,Iris-versicolor6.1,2.8,4.0,1.3,Iris-versicolor 6.3,2.5,4.9,1.5,Iris-versicolor 6.1,2.8,4.7,1.2,Iris-versicolor 6.4,2.9,4.3,1.3,Iris-versicolor 6.6,3.0,4.4,1.4,Iris-versicolor 6.8,2.8,4.8,1.4,Iris-versicolor6.7,3.0,5.0,1.7,Iris-versicolor6.0,2.9,4.5,1.5,Iris-versicolor5.7,2.6,3.5,1.0,Iris-versicolor5.5,2.4,3.8,1.1,Iris-versicolor5.5,2.4,3.7,1.0,Iris-versicolor5.8,2.7,3.9,1.2,Iris-versicolor6.0,2.7,5.1,1.6,Iris-versicolor5.4,3.0,4.5,1.5,Iris-versicolor6.0,3.4,4.5,1.6,Iris-versicolor6.7,3.1,4.7,1.5,Iris-versicolor6.3,2.3,4.4,1.3,Iris-versicolor5.6,3.0,4.1,1.3,Iris-versicolor5.5,2.5,4.0,1.3,Iris-versicolor5.5,2.6,4.4,1.2,Iris-versicolor6.1,3.0,4.6,1.4,Iris-versicolor5.8,2.6,4.0,1.2,Iris-versicolor5.0,2.3,3.3,1.0,Iris-versicolor5.6,2.7,4.2,1.3,Iris-versicolor5.7,3.0,4.2,1.2,Iris-versicolor5.7,2.9,4.2,1.3,Iris-versicolor6.2,2.9,4.3,1.3,Iris-versicolor5.1,2.5,3.0,1.1,Iris-versicolor5.7,2.8,4.1,1.3,Iris-versicolor根据样本说明中对样本的总统计:对四种属性进行进一步划分:sepal-length 4.3-5.84 a 5.84-7.9 bsepal-width 2.0-3.05 c 3.05-4.4 dpetal-length 1.0-3.76 e 3.76-6.9 fpetal-width 0.1-1.20 g 1.20-2.5 h得到处理后的测试样例集为:test sepal-length sepal-width petal-length petal-width class1 a d e g Iris-setosa2 a c e g Iris-setosa3 a d e g Iris-setosa4 a d e g Iris-setosa6 a d e g Iris-setosa7 a d e g Iris-setosa8 a d e g Iris-setosa9 a c e g Iris-setosa10 a d e g Iris-setosa11 a d e g Iris-setosa12 a d e g Iris-setosa13 a c e g Iris-setosa14 a c e g Iris-setosa15 a d e g Iris-setosa16 a d e g Iris-setosa17 a d e g Iris-setosa18 a d e g Iris-setosa19 a d e g Iris-setosa20 a d e g Iris-setosa21 a d e g Iris-setosa22 a d e g Iris-setosa23 a d e g Iris-setosa24 a d e g Iris-setosa25 a d e g Iris-setosa26 a c e g Iris-setosa27 a d e g Iris-setosa28 a d e g Iris-setosa29 a d e g Iris-setosa30 a d e g Iris-setosa31 a d e g Iris-setosa32 a d e g Iris-setosa33 a d e g Iris-setosa34 a d e g Iris-setosa35 a d e g Iris-setosa36 a d e g Iris-setosa37 a d e g Iris-setosa38 a d e g Iris-setosa39 a c e g Iris-setosa40 a d e g Iris-setosa41 a d e g Iris-setosa42 a c e g Iris-setosa43 a d e g Iris-setosa44 a d e g Iris-setosa45 a d e g Iris-setosa46 a c e g Iris-setosa47 a d e g Iris-setosa48 a d e g Iris-setosa50 a d e g Iris-setosa51 b d f h Iris-versicolor52 b d f h Iris-versicolor53 b d f h Iris-versicolor54 a c f h Iris-versicolor55 b c f h Iris-versicolor56 a c f h Iris-versicolor57 b d f h Iris-versicolor58 a c e g Iris-versicolor59 b c f h Iris-versicolor60 a c f h Iris-versicolor61 a c e g Iris-versicolor62 b c f h Iris-versicolor63 b c f g Iris-versicolor64 b c f h Iris-versicolor65 a c e h Iris-versicolor66 b d f h Iris-versicolor67 a c f h Iris-versicolor68 a c f g Iris-versicolor69 b c f h Iris-versicolor70 a c f g Iris-versicolor71 b d f h Iris-versicolor72 b c f h Iris-versicolor73 b c f h Iris-versicolor74 b c f g Iris-versicolor75 b c f h Iris-versicolor76 b c f h Iris-versicolor77 b c f h Iris-versicolor78 b c f h Iris-versicolor79 b c f h Iris-versicolor80 a c e g Iris-versicolor81 a c f g Iris-versicolor82 a c e g Iris-versicolor83 a c f g Iris-versicolor84 b c f h Iris-versicolor85 a c f h Iris-versicolor86 b d f h Iris-versicolor87 b d f h Iris-versicolor88 b c f h Iris-versicolor89 a c f h Iris-versicolor90 a c f h Iris-versicolor91 a c f g Iris-versicolor92 b c f h Iris-versicolor93 a c f g Iris-versicolor94 a c e g Iris-versicolor95 a c f h Iris-versicolor96 a c f g Iris-versicolor97 a c f h Iris-versicolor98 b c f h Iris-versicolor99 a c e g Iris-versicolor100 a c f h Iris-versicolorEnd四、实验及其分析1.总时间(1).抽取不同规模的样例进行测试,比较决策树构造时间随机抽取10组样例进行测试,运行结果如图2.6,总时间为0.05s图1 10组样例构建决策树随机抽取40组样例进行测试,运行结果如图2.6,总时间为0.167s图2 40组样例构建决策树随机抽取70组样例进行测试,运行结果如图2.6,总时间为0.369s图3 70组样例构建决策树选取100组样例进行测试,运行结果如图2.6,总时间为0.646s图4 100组样例构建决策树得到样例数—时间表:样例个数10 40 70 100运行时间(s) 0.05 0.167 0.369 0.646表1. 样例数—时间表画出样例数—时间折线图:图4 样例数—时间折线图由图4可以看出,本文的决策树分类算法的运行时间与样例数成正比关系。