【学海风暴】2015-2016学年九年级数学上册 25.3 用频率估计概率课件 (新版)新人教版

合集下载

九年级数学上册第二十五章概率初步25.3用频率估计概率导学案新版新人教版

九年级数学上册第二十五章概率初步25.3用频率估计概率导学案新版新人教版

25.3用频率估计概率一、新课导入1.导入课题:在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0.5?下面我们带着小明提出的问题进入本节课的学习——用频率估计概率.2.学习目标:(1)知道大量重复试验时,频率趋于一个稳定值,知道这个稳定值与概率的关系.(2)会用频率估计概率.3.学习重、难点:重点:理解当试验次数较大时,试验频率趋于理论概率.难点:用频率估计概率的思想方法解决相关实际问题.二、分层学习1.自学指导:(1)自学内容:教材第142页到第143页“思考”之前的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,按课本要求,同学之间加强合作,进行试验,并做好数据的统计,再对数据进行分析,观察频率的变化趋势,从中摸索有何规律.(4)自学参考提纲:①通过试验,完成教材第142页的表25-3以及图25.3-1.②通过分析试验所得数据,你发现出现“正面向上”的频率有什么变化规律?“正面向上”的频率在0.5附近摆动.③阅读并分析表25-4中抛掷硬币实验的数据,你有什么发现?随着试验次数的增加,“正面向上”的频率稳定于0.5.2.自学:学生可参考自学指导进行自学,小组交流,合作学习.3.助学:(1)师助生:①明了学情:深入课堂了解学生的试验情况,并对存在的问题进行收集.②差异指导:对在学习中存在的突出问题进行点拨引导.(2)生助生:小组间相互协作交流,解决学习中的问题.4.强化:随着抛掷硬币次数的增加,硬币“正面朝上”的频率会在0.5左右摆动,并且摆动幅度越来越小.1.自学指导:(1)自学内容:教材第143页“思考”到第144页“练习”之前的内容.(2)自学时间:4分钟.(3)自学方法:阅读、思考,并相互交流探讨各自的结论.(4)自学参考提纲:①当实验次数足够大时,一个随机事件出现的频率与它的概率有什么关系?频率非常接近于概率.②举例说明你对“概率是针对大量重复试验而言的,大量试验反映的规律并非在每一次试验中都发生.”这句话的理解.③练习:a.下表记录了一名球员在罚球线上投篮的结果.ⅰ.计算投中频率(结果保留小数点后两位).ⅱ.这名球员投篮1次,投中的概率约是多少(结果保留小数点后一位)?解:投中的概率约是0.5.b.用前面抛掷硬币的试验方法,全班同学分组做掷骰子的试验,估计掷一次骰子时“点数是1”的概率.解:估计P(点数是1)=16.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:深入了解学生参与活动、完成任务的情况.②差异指导:引导学生合作试验.(2)生助生:分组合作完成试验.4.强化:(1)在大量重复试验中,事件A发生的频率会稳定在某个常数附近.只要试验的次数足够大,我们就可以用事件A发生的频率去估计概率.(2)概率是针对大量试验而言的,大量试验反映的规律并非在每一次试验中都发生.1.自学指导:(1)自学内容:教材第144页到第145页的问题1.(2)自学时间:4分钟.(3)自学要求:总结用频率估计概率的思想来解决实际问题的一般思路和频率的确定方法.(4)自学参考提纲:①幼树的移植成活率采用频率去估计.②完成表25-5及表后的填空.③怎样估计幼树移植的成活率?随着移植数的增加,幼树移植成活的频率越来越稳定,用移植总数最多时成活的频率估计幼树移植的成活率.④练习:某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:一般地,1000千克种子中大约有多少是不能发芽的?将表中数据补全,可以看出发芽种子的频率在0.9左右摆动,所以估计种子发芽的概率为0.9.1000-1000×0.9=100(千克)∴1000千克种子中大约有100千克是不能发芽的.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:对完成提纲中的问题有困难的学生适时指导.(2)生助生:交流讨论、改正错误.4.强化:解决此类问题的基本步骤:计算频率;估计概率;作出结论.1.自学指导:(1)自学内容:教材第145页到第146页的问题2.(2)自学时间:5分钟.(3)自学方法:先弄清损坏率的算法,再填表.(4)自学参考提纲:①完成教材第146页表25-6.②可得柑橘损坏的概率为 0.1 ,所以柑橘完好的概率为 0.9 .③怎样计算柑橘的实际成本?用以2元/千克的价格购进10000千克的成本除以10000千克中完好柑橘的质量9000千克,即为实际成本.④整个问题的问答过程与问题1的解答过程有何异同?相同点:都是用频率估计概率.不同点:问题2是通过损坏率求完好率,而问题1是直接求发芽率.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:教师对重、难点之处适时点拨引导.(2)生助生:小组间交流互助.4.强化:(1)解题思路:①求频率;②估计概率;③求出问题结果;④作出结论.(2)练习:为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中捕获n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么鱼塘中鱼的条数可估计为anb.你认为这种估计方法有道理吗?为什么?解:有道理.不妨设鱼塘中鱼的总条数为x,则n bx a=,所以anxb=.三、评价1.学生的自我评价(围绕三维目标):相互交流各自的学习态度、学习方法和收获,反省学习中的不足.2.教师对学生的评价:(1)表现性评价:教师对学生在课堂学习中的态度和行为上的表现进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的.这节课教师应把握教学难度,注意关注学生的接受情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(D)A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.(10分)下列说法正确的是 (D)A.连续抛掷骰子20次,掷出5点的次数是0,则第21次一定抛出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等3.(10分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是(D)A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是44.(10分)在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是(C)A.0.4B.0.5C.0.6D.0.75.(10分)盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为(B)A.90个B.24个C.70个D.32个6.(10分)一个口袋中放有20个球,其中红球6个,白球和黑球若干个,每个球除了颜色外没有任何区别,小王通过大量重复试验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在0.25左右,请你估计袋中黑球的个数为 5 .7.(10分)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为 0.9 (精确到0.1).二、综合应用(20分)8.(10分)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01);(2)这些频率具有什么样的稳定性?解:这些频率稳定在0.8附近.(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1).这名运动员射击一次时“射中9环以上”的概率约为0.8.9.(10分)动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率是多少?解:(1)设这种动物共有10n 只,则根据题意可知能活到20岁的有8n 只,能活到25岁的有5n 只,能活到30岁的有3n 只,所以现年20岁的这种动物活到25岁的概率为n P n ==15588; (2)由(1)知,现年25岁的这种动物能活到30岁的概率是n P n ==23355. 三、拓展延伸(10分)10.(10分)鸟类学家要估计某森林公园内鸟的数量,你能用学过的知识,为鸟类学家提出一种估计鸟的数量的方法吗?(在一定的时期内,森林公园可以近似地看做与外部环境是相对封闭的)解:在一年中该森林公园内的鸟相对较多的时期,选择一天(晴天)捕捉1000只鸟,并在这些鸟的身体上做上记号,然后全部放飞,两三天后的一天(晴天)再捕捉1000只鸟,检查其中带有记号的鸟的数量,记为a,则这段时期该森林公园内的数量是a610只.。

【学海风暴】2015-2016学年九年级数学上册 25.1.2 概率课件 (新版)新人教版

【学海风暴】2015-2016学年九年级数学上册 25.1.2 概率课件 (新版)新人教版
由于两种球的数量不等,所以摸出白球的可能性小。
再想一想,不同的随机事件发生的可能性会不会相同呢? 我们又如何刻画可能性的大小呢?
新课讲解
问题:从分别写有数字 1,2,3,4,5 的五个纸团 中随机抽取一个,这个纸团里的数字有几种可能?每个 数字被抽到的可能性大小是多少?
新课讲解
问题:掷一枚六个面上分别刻有 1到6 的点数的 骰子,向上一面上出现的点数有几种可能?每种点数 出现的可能性大小是多少?
例题分析
例2 如图是一个可以自由转动的转盘,转盘分成 7 个大小相同的扇形,颜色分为红、绿、黄三种颜色.指 针的位置固定,转动的转盘停止后,其中的某个扇形会 恰好停在指针所指的位置(指针指向两个扇形的交线 时,当作指向右边的扇形).求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; 红 (3)指针不指向红色. 绿 绿 红 黄 黄 红
0≤P(A)≤1 事件发生的可能性越来越小 事件发生的可能性越来越大
0 不可能事件
1概率的值 必然事件
例题分析
例1 掷一枚质地均匀的骰子,观察向上一面的点数, 求下列事件的概率: (1)点数为2; (2) 点数为奇数; (3) 点数大于2且小于5.
例题分析
解:掷一个骰子可能出现的结果共6种. (1)出现点数为2的结果只有1种,故其概率为1/6. (2)点数为奇数时,出现的结果为1、3、5共3种结果,故 其概率为1/2. (3)点数大于2且小于5时,出现的结果为3、4共2种结果, 故其概率为1/3.
课堂练习
课本? (2)如何求事件的概率?求概率时应注意 哪些问题?
新课讲解
上面的问题中,都有两个共同的特点:
1) 在一次实验中,可能出现的结果有限多个.
2) 在一次实验中,各种结果发生的可能性相等. 一般地,如果在一次实验中,有n种可能的结果,并且它 们发生的可能性相等,事件A包含其中的m种结果,那 么事件A发生的概率为:

人教版初中数学课标版九年级上册第二十五章25.3用频率估计概率教案-学习文档

人教版初中数学课标版九年级上册第二十五章25.3用频率估计概率教案-学习文档

《25.3 用频率估计概率》教学设计一、内容和内容解析:1、内容用频率估计概率2、内容解析“用频率估计概率”是“概率初步”这一章的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单等可能事件的概率之后对概率的进一步研究.教材这样编排其主要意图有三:1、遵从概率的产生及发展规律,历史上概率(指客观概率)的定义经历了三个阶段:①概率的古典定义;②概率的统计定义;③概率的公理化定义. 2、符合学生的认知规律概率的古典定义相对简单,所涉事件的概率有确定的结果,学生易于接受,而概率的统计定义其内涵更为深刻. 3、相对于概率的古典定义,用频率估计概率的方法更具一般性与普遍性,它不受列举法求概率两个条件的限制,适用范围更广.它突破了对随机事件发生结果的等可能性与有限性的限制,揭示了偶然性中蕴含的必然规律. “频率稳定性”是概率统计定义的核心,相比古典定义“用频率估计概率”更具普遍性,它是求概率最基本的方法.二、目标和目标解析1. 目标(1)通过试验等活动,让学生理解当试验的次数较大时,试验的频率稳定于理论概率. 并可据此估计某一事件发生的概率.(2)经历试验、统计等活动过程,积累学生参与数学活动的经验,加强学生动手、动脑的意识. 在收集、整理、分析数据中培养学生探究数学规律的兴趣,使学生乐于学习,主动学习,同时培养学生的合作意识和积极思考的习惯,体验数学的应用价值.(3)了解科学家们的试验数据,以及所付出的艰苦劳动,培养学生科学严谨的学习态度.2. 目标解析达成目标(1)的标志是:学生能够从频率表中,估计某一事件的概率,知道估计概率时选择次数较多的频率来估计,会辨别频率与概率的区别与联系,会解决课上练习题。

达成目标(2)的标志是:学生积极认真地投入到抛硬币试验和抛图钉试验中,能够分析整理所得数据,并根据数据得出结论。

达成目标(3)的标志是:了解数学知识的发展史,对试验中的每一个数据的收集能注意要求,严谨认真。

人教版数学九年级上册 25.3用频率估计概率-教学课件(1)

人教版数学九年级上册 25.3用频率估计概率-教学课件(1)
人教版九年级上册第二十五章
§25.3.1 利用频率估计概率
这张电影票该给 谁呢?
我们都想要!
亲历知识的发生和发展
二人一组,一人掷瓶盖,一人负责记录,合
作完成30次试验,6人为一大组,并把“正面朝上 ”的情况记录在下面表格:
投掷次数n
90
“正面朝上”的频数m “正面朝上”的频率m/n
实验探究
整理全班全班同学获得的试验数据,并记录在下表中:
是实际问题 中的一种概 率,可理解为
假如你是林业 部经理……
如何估计移植成活率?
在同样条件下,某林业部门对幼树进行了大量的移植,并统计
成活情况如下表:
移植总数(n) 10 50 270
成活数(m) 8 47
235
成活的频率m/n 0.8 0.940
0.870
400
369
0.923
750
662
0.883
充分混合后,每次从袋子中摸出1粒,记录其颜色后再
放入袋中,再摸…. 反复进行a次后,统计有标记的棋
子出现了m次,你能帮她估计袋子里有多少粒白色棋
子吗? 解:设袋中大约有白棋子x个。
20 X
=
m
a
你还有什么好 办法吗?不防说
来听听.
解得
20a
x= m
你能利用概率问题
设计一种方案求不规则图 形面积吗?
了10 000千克的苹果,如果店主希望这些苹果能够获 得利润5 000元,那么在出售苹果(已去掉损坏的苹 果)时,每千克大约定价为多少元比较合适?
假如你是 店 主……
店主首先从所有的苹果中随机地抽取若干苹果,进行
了“苹果损坏率”统计,并把获得的数据记录在表中,请n)/千克 50 100 150 200 250 300 350 400 450 500

【学海风暴】2015-2016学年九年级数学上册 25.1.1 随机事件课件 (新版)新人教版.

【学海风暴】2015-2016学年九年级数学上册 25.1.1 随机事件课件 (新版)新人教版.

随机事件发生可能性有 大小
例题分析
总结: 一般地,随机事件发生的可能性是有大小的,不同 的随机事件发生的可能性的大小就有可能不同.
课堂练习
1、下面第一排表示各袋中球的情况,请你用第二排的 语言来描述摸到红球的可能性的大小,并用线连起来. 0个红球 10个白球 2个红球 8个白球 5个红球 5个白球 9个红球 1个白球 10个红球 0个白球
一定摸 到红球
很可能 摸到红球
可能摸 到红球
不大可能 摸到红球
不可能 摸到红球
课堂练习
2、4个红球、3个白球、2个黑球放入一个不透明的袋 子里,从中摸出8个球,恰好红球、白球、黑球都摸到, 这件事情是( D ) A.随机事件 B.不可能事件 C.很可能事件 D.必然事件
3、下列事件中是必然事件的是( A ). A.早晨的太阳一定从东方升起 B.佛山的中秋节晚上一定能看到月亮 C.打开电视机,正在播少儿节目 D.张琴今年14岁了,她一定是初中学生
课堂练习
4、下列说法中,正确的是( D ) A.买一张电影票,座位号一定是偶数 B.投掷一枚均匀硬币,正面朝上 C.三条任意长的线段可以组成一个三角形 D.从1,2,3,4,5这五个数字中任取一个数, 取得奇数的可能性大
5、下列事件中是必然事件的是( B ) A. 打开电视机,正在播广告. B. 从一个只装有白球的缸里摸出一个球,摸出的 球是白球. C. 从一定高度落下的图钉,落地后钉尖朝上. D. 今年10月1日 ,厦门市的天气一定是晴天.
随机事件
新课引入
下列现象哪些是必然发生的,哪些是不可能发生的?
①木柴燃烧,产生热 量
②明天,地球还会转动
③煮熟的鸭子,飞了
④在00C下,这些雪融化

人教版九年级数学上册第25章第3节《用频率估计概率》优秀课件

人教版九年级数学上册第25章第3节《用频率估计概率》优秀课件

抛掷次数n
“正面向上” 的频数m
“正面向上”
的频率
m n
50 100 150 200 250 300 350 400
根据上表中的数据,在下图中标注出对应的点.
y 1
0.5
O 100 200 300 400
x
请同学们根据试验所得的数据想一想: “正面向上”的频率有什么规律?
随着抛掷硬币次数的增加,硬币“正面朝 上”的频率会在0.5左右摆动,并且摆动幅度越 来越小.
0.105
0.101
0.097 0.097 0.103 0.101 0.098 0.099 0.103
根据估计的概率可以知道,在 10 000 kg 柑橘
中完好柑橘的质量为
10 000×0.9=9 000(kg).
设每千克柑橘售价为 x 元,则
9 000x -2×10 000=5 000.
解得
x ≈ 2.8(元).
kg柑橘.如果公司希望这些柑橘能够获得利润 5 000 元,
那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定
价为多少元比较合适?
柑橘在运输、储存
中会有损坏,公司必
分析:首先要确认损坏的柑橘
须估算出可能损坏的
有多少,可以通过统计“柑橘
柑橘总数,以便将损
损坏率”进行确认.
坏的柑橘的成本折算
到没有损坏的柑橘售
历史上,有些人曾做过成千上万次抛掷硬币的试 验,试验结果如下:
试验者
棣莫弗 布丰 费勒 皮尔逊 皮尔逊
抛掷次数n
2048 4040 10000 12000 24000
“正面向上” 次数m 1061 2048 4979 6019 12012
“正面向上n ” 的频m率 0.518 0.5069 0.4979 0.5016 0.5005

【学海风暴】2015-2016学年九年级数学上册 25.2 用列举法求概率课件 (新版)新人教版

【学海风暴】2015-2016学年九年级数学上册 25.2 用列举法求概率课件 (新版)新人教版

概率:
(1)两枚硬币全部正面向上;
(2)两枚硬币全部反面向上;
(3)一枚硬币正面向上、一枚硬币反面向上.
例题分析
方法一:将两枚硬币分别记做 A、B,于是可以直 接列举得到:(A正,B正),(A正,B反), (A反,B正), (A反,B反)四种等可能的结果.故: 1 P(两枚正面向上)= . 4 1 P(两枚反面向上)= . 4 1 P(一枚正面向上,一枚反面向上)= . 2
新课讲解
红, 红; 红, 黑; 黑, 红 黑, 黑. 画树状图 ;
枚举 列表
第一次抽出 一张牌 红牌 黑牌
第二次抽出 一张牌 红牌 黑牌 红牌 黑牌
第一次抽 出一张牌 红牌 黑牌
第二次抽 出一张牌 红牌 黑牌 红牌 黑牌
新课讲解
可能产生的结果共4个.每种出现的可 能性相等.各为
1 4
.即概率都为
新课讲解
问题.掷一颗普通的正方体骰子.求: (1)“点数为1”的概率; (2)“点数为1或3”的概率; (3)“点数为偶数”的概率; (4)“点数大于2”的概率.
1 P(点数为1)= 6
1 P(点数为偶数)= 2
1 P(点数为1或3)= 3 2 P(点数大于2)= 3
例题分析
例1 同时抛掷两枚质地均匀的硬币,求下列事件的
例题分析
1
(1,1) (2,1)
一 二
2
(1,2) (2,2)
3
(1,3) (2,3)
4
(1,4) (2,4)
5
(1,5) (2,5)
6
(1,6) (2,6)
1 2 3 4 5 6
(3,1)
(4,1) (5,1) (6,1)
(3,2)

人教版数学九年级上册学案25.3 用频率估计概率

人教版数学九年级上册学案25.3 用频率估计概率

25.3 用频率估计概率【学习目标】1.学会根据问题的特点,用统计频率来估计事件发生的概率. 2.理解用频率估计概率的方法,渗透转化和估算的数学方法. 【学习重点】对利用频率估计概率的理解和应用.【学习难点】比较用列举法求概率与用频率求概率的条件与方法.情景导入 生成问题知识回顾:1.举例说明什么是确定事件,什么是不确定事件. 2.什么是概率?3.抛掷一枚硬币,落定后,正面朝上的概率是多少?你是怎样求出来的? 解:1.确定事件:太阳从东方升起.不确定事件:打开电视正在直播足球比赛. 2.在一定条件下,重复做n 次试验,m 为n 次试验中事件A 发生的次数,如果随着n 逐渐增大,频率mn 逐渐稳定在某一数值p 附近,则数值p 称为事件A 在该条件下发生的概率,记做P(A)=p. 3.概率是0.5. 思考:当试验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,该如何求事件发生的概率呢?解:在相同的条件下,通过大量的重复试验,可以用这个事件发生的稳定的频率值作为这个事件发生的概率的估计值.自学互研 生成能力知识模块一 频率与概率的关系【自主探究】阅读教材,完成下面的内容:试验:把全班同学分成8组,每名同学掷一枚硬币10次,每组统计正面向上的总次数,并记录在表格中:m“正面向上”频率mn320问题:(1)由上表发现,在重复抛掷一枚硬币时,“正面朝上”的频率在0.5左右摆动. (2)随着抛掷次数的增加,一般地,频率呈现出一定的稳定性,在0.5左右摆动的幅度会越来越小.这时,我们称“正面向上”的频率稳定于0.5.归纳:一般地,在大量重复试验中,如果事件A 发生的频率mn 稳定于某个常数p ,那么事件A 发生的概率P(A)=p .(注意:频率估计概率的条件是大量重复试验)范例:小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下表:(1)计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据试验,一次试验中出现‘5点朝上’的概率大”;小红说“如果掷600次,那么出现‘6点朝上’的次数正好是100次.”小颖和小红的说法正确吗?为什么? 解:(1)“3点朝上”的频率为660=110,“5点朝上”的频率为2060=13;(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,因为当试验的次数很多时,随机事件发生的频率会稳定在事件发生的概率附近;小红的说法也是错误的,因为事件发生具有随机性,故如果掷600次,“6点朝上”的次数不一定是100次.知识模块二 用稳定的频率值估计事件的概率 【合作探究】范例:一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:800 0.605(1)请估计:当n 很大时,摸到白球的频率将会接近0.6;(2)假如你去摸一次,你摸到白球的概率是0.6,摸到黑球的概率是0.4. (3)试估算口袋中黑、白两种颜色的球各有多少只? 解:白球:20×0.6=12(只),黑球:20×0.4=8(只).交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【当堂检测】1.下列说法合理的是( D )A.小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30% B.抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6 C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D.在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.512.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是2100个.课后反思查漏补缺1.收获:__________________________________________________2.存在困惑:_____________________________________课堂小练一、选择题1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20B.24C.28D.302.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组3.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过94.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:根据上表可知该队员一次投篮命中的概率大约是( )A.0.9B.0.8C.0.7D.0.725.一个不透明的盒子里有n个除颜色不同外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A.20B.24C.28D.306.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )A.60个B.50个C.40个D.30个7.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放回鱼塘,再从鱼塘中打捞出200条鱼.若在这200条鱼中有5条鱼是有记号的,则估计鱼塘中的鱼有( )A.3000条B.2200条C.1200条D.600条8.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽1张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取1球是黄球D.掷一个质地均匀的正六面体骰子,向上一面的点数是4二、填空题9.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.10.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1).11.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)12.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是(精确到0.01).13.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.14.某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.三、解答题15.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.参考答案16.答案为:D.17.答案为:D.18.答案为:D.19.答案为:D.20.答案为:D.21.答案为:C.22.答案为:C23.答案为:D.24.答案为:100.25.答案为:0.9.26.答案为:0.95.27.答案为:0.90.28.答案为:3.29.答案为:560.30.解:(1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:40÷40%=100(2)爱好上网的人数所占百分比为10%∴爱好上网人数为:100×10%=10,∴爱好阅读人数为:100﹣40﹣20﹣10=30,补全条形统计图,如图所示,(3)爱好运动所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600(4)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为故答案为:(1)100;(3)600;(4)。

【精品】人教版九年级数学上册导学案:25.3_用频率估计概率

【精品】人教版九年级数学上册导学案:25.3_用频率估计概率

25.3 用频率估计概率学习目标:1.理解用频率估计概率的方法;2.了解概率的实验背景及其现实意义.学习重点:通过对事件发生的频率的分析估计事件发生的概率学习难点:合理设计模拟试验,分析频率稳定值从而得到该事件的概率学习过程一、自主学习1、在生产的100件产品中,有95件正品,5件次品。

从中任抽一件是次品的概率为( ).A.0.05B.0.5C.0.95D.952、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?(用两种不同方法求解)二、合作学习1.实验:小组合作完成教材P140实验,并记录在下表中:描点: 思考:(1)分析上面图像可以得出频率随着实验次数的增加,稳定于 左右. (2)从试验数据看,硬币正面向上的概率估计是(3)根据推理计算可知,抛掷硬币一次正面向上的概率应该是结论 对于一般的随机事件,在大量重复试验时,随着实验次数的增加,一件事件出现的频率,总在一个 数的附近摆动,我们就可以用这个数去估计此事件的概率。

归纳:一般地,在大量重复试验中,如果事件A 发生的频率稳定于某个常数p,那么事件A发生概率的概率 : P(A)= p通常我们用频率估计出的概率是一个近似值,即概率约为p 。

2、运用:P143问题1:某林业部门要考察某种幼树在一定条件的移植成活率,就采用什么具体做法? 某林业部门要考查某种幼树在一定条件的移植成活率. (1)它能够用列举法求出吗?为什么? (2)它应用什么方法求出?50 100 150 200 250 300 350 400 450 500……试验次数n(3)请完成下表,并求出移植成活率.由上表可以发现,幼树移植成活的频率在左右摆动,并且随着移植棵数越越大,这种规律愈加明显.所以估计幼树移植成活的概率为.四、拓展训练问题2、某水果公司以2元/千克的成本新进了10000千克的柑橘,如果公司希望这种柑橘能够获得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,•进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.20051.54四、小结1、弄清一种关系——频率与概率的关系当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率估计这一事件发生的概率.2、了解一种方法——用多次试验频率去估计概率3、体会一种思想——用样本去估计总体;用频率去估计概率五、作业1.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求概率是用( ).A.通过统计频率估计概率B.用列举法求概率C.用列表法求概率D.用树形图法求概率2. 在抛一枚均匀硬币的实验中,如果没有硬币,则下列可作为替代物的是()A.一颗均匀的骰子B.瓶盖C.图钉D.两张扑克牌(1张黑桃,1张红桃)3. 不透明的袋中装有3个大小相同的小球,其中2个为白色球,另一个为红色球,每次从袋中摸出一个球,然后放回搅匀再摸,研究恰好摸出红色小球的机会,以下替代实验方法不可行的是()A.用3张卡片,分别写上“白”、“红”,“红”然后反复抽取B.用3张卡片,分别写上“白”、“白”、“红”,然后反复抽取C.用一枚硬币,正面表示“白”,反面表示“红”,然后反复抽取D.用一个转盘,盘面分:白、红两种颜色,其中白色盘面的面积为红色的2倍,然后反复转动转盘4.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱。

九年级数学上册 25.3利用频率估计概率教案 人教新课标版

九年级数学上册 25.3利用频率估计概率教案 人教新课标版

25.3 利用频率估计概率疑难分析:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75.评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.例2某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(2) 请估计,当n很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;×360°≈248°.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A.90个 B.24个 C.70个 D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000B.1200C.12D.153.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C .彩票中奖的机会是1%,买100X 一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论. 4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ).A .110、110B .110、12 C .12、110D .12、125.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).A .10粒B .160粒C .450粒D .500粒6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的53; D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为51,四位同学分别采用了下列装法,你认为他们中装错的是( ). A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;分)C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元二、填一填9.同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场从中任选一头猪,质量在65kg以上的概率是_____________.11.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。

九年级数学上册 25.3 利用频率估计概率(探索新知+巩固练习+应用拓展+综合提高)教案 新人教版

九年级数学上册 25.3 利用频率估计概率(探索新知+巩固练习+应用拓展+综合提高)教案 新人教版

九年级数学上册 25.3 利用频率估计概率(探索新知+巩固练习+应用拓展+综合提高)教案新人教版疑难分析:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率m n(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75.评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.例2某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(2) 请估计,当n很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;(4)0.69×360°≈248°.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率. 基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A .90个B .24个C .70个D .32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ). A .11000 B .1200 C .12 D .153.下列说法正确的是( ).A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论. 4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ).A .110、110 B .110、12 C .12、110 D .12、125.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ). A .10粒 B .160粒 C .450粒 D .500粒6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷;B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8;C .在答卷中,喜欢足球的答卷占总答卷的53; D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为51,四位同学分别采用了下列装法,你认为他们中装错的是( ). A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;分)C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元二、填一填9.同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场从中任选一头猪,质量在65kg以上的概率是_____________.11.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。

秋九年级数学上册 25.3 用频率估计概率课后作业1 (新版)新人教版-(新版)新人教版初中九年级上

秋九年级数学上册 25.3 用频率估计概率课后作业1 (新版)新人教版-(新版)新人教版初中九年级上

用频率估计概率一、教材题目:P144 T1、P147 T3、P148 T4、T5、T61.下表记录了一名球员在罚球线上投篮的结果.计算投中频率(结果保留小数点后两位);这名球员投篮一次,投中的概率约是多少(结果保留小数点后一位)?某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(结果保留小数点后两位);(2)这些频率具有怎样的稳定性?(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(结果保留小数点后一位).投针试验:在一个平面上画一组间距为d=4 cm的平行线,将一根长度为l=3 cm的针任意投掷在这个平面上,针可能与某一直线相交,也可能与任一直线都不相交.根据记录在下表中的投针试验数据,估计针与直线相交的概率.试验25 50 75 100 125 150 175 200 225 250 ... 次数n相交... 频数m相交... 频率在投针试验中,如果在间距d=4 cm,针长l= 3 cm时,针与直线相交的概率为p,那么当d 不变、l减小时,概率p如何变化?当l不变、d减小时,频率p如何变化(在试验中始终保持l<d)?为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼.如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为anb.你认为这种估计方法有道理吗?为什么?动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?二、补充题目:部分题目来源于《典中点》5.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A .掷一枚正六面体的骰子,出现1点的概率B .从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率C .拋一枚硬币,出现正面朝上的概率D .任意写一个整数,它能被2整除的概率(第5题)6.(2014·某某)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率9.下列说法合理的是( )A .小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B .抛掷一枚普通的正六面体骰子,出现6点朝上的概率是16的意思是每掷6次就有1次掷得6点朝上 C .某彩票的中奖机会是2%,那么如果买100X 彩票一定会有2X 中奖D11.(2015·某某)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?答案教材1.,0.50.(2)投中的概率约是0.5.3.,0.83,0.78,0.79,0.80,0.80.(2)这些频率逐渐稳定于0.8.(3)这名运动员射击一次时“射中9环以上”的概率约为0.8.4.略. 点拨:本题的试验比较复杂,需要同学们相互协作.5.解:有道理.因为,不妨设鱼塘中鱼的总条数为x ,则n x =b a ,所以x =an b. 点拨:任意从鱼塘中打捞出的若干条鱼中带记号的鱼的比例与整个鱼塘中带记号的鱼的比例是相同的.6.解:设这种动物共有10n 只,则根据题意知能活到20岁的有8n 只,能活到25岁的有5n 只,能活到30岁的有3n 只.(1)所以现年20岁的这种动物活到25岁的概率为P 1=5n 8n=58.(2)现年25岁的这种动物活到30岁的概率是P 2=3n 5n =35.典中点B 6.D9.错解:A诊断:用频率估计概率时,要注意试验的次数越多,事件发生的频率就会越接近于这个事件发生的概率,试验的次数太少易受偶然性因素影响,此时的频率不能用来估计概率. 正解:D11.解:(1)∵4件同型号的产品中,有1件不合格品,∴P(抽到不合格品)=14. (2)用A 代表不合格品,B 1、B 2、B 3代表合格品,根据题意画树状图如下: (第11题)共有12种等可能的情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=612=12. (3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴估计抽到合格品的概率等于0.95,∴x +3x +4=0.95,解得x =16. ∴可以推算出x 的值大约是16.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课讲解
下表是一张模拟的统计表
成活的频率 移植总数 n 10 50 270 400 750 1 500 3 500 7 000 9 000 14 000 成活数 m 8 47 235 369 662 1 335 3 203 6 335 8 073 12 628 0.800 0.940 0.870 0.922 0.882 0.890 0.915 0.905 0.897 0.902
新课讲解
问题1 某林业部门要考察某种幼树在一定条件下的 移植成活率,应采用什么具体做法? 幼树移植成活率是实际问题中的一种概率.用频 率估计概率. 在同样条件下,大量地对这种幼树进行移植,并统计 成活情况,计算成活的频率.如果随着移植棵数n的 m 越来越大,频率 n 越来越稳定于某个常数,那么这个 常数就可以被当作成活率的近似值.
柑橘损坏的频率 柑橘总质量 n / 千克 50 100 150 200 250 300 350 损坏柑橘质量 m / 千克 5.50 10.50 15.15 19.42 24.25 30.93 35.32 0.110 0.105
n
(结果保留小数点后三位)
400 450
500
39.24 44.57
51.54
用频率估计概率
新课引入
抛掷一枚硬币,“正面向上”的概率为 0.5. 这是否意味着: “抛掷 2 次,1 次正面向上”? “抛掷 50 次,25 次正面向上”? 我们不妨用试验进行检验.
新课引入
试验:
抛掷一枚硬币 1000 次,统计“正面向上”出现的 频数,计算频率,填写表格,思考:
组员分工: 1 号同学 抛掷硬币,约达 1 臂高度,接住落下的 硬币,报告试验结果; 2 号同学 用画记法记录试验结果; 3 号同学 监督,尽可能保证每次试验条件相同, 确保试验的随机性,填写表格. 全班同学分成若干小组,同时进行试验.
新课引入
第一组1 000 次试验
第二组1 000 次试验
新课引入
第三组1 000 次试验
第四组1 000 次试验
新课引入
第五组1 000 次试验
第六组1 000 次试验
新课引入
历史上,有些人曾做过成千上万次抛掷硬币的试 验,其中一些试验结果见下表:
试验者 抛掷次数 n 2 048 4 040 10 000 12 000 24 000
新课引入
任务1: 抛掷一枚硬币,“正面向上” 的概率为 0.5. 意味着什么? 如果重复试验次数增多,结果会如何?
新课引入
任务2: 观察随着重复试验次数的增加,“正面向上” 的频率的变化趋势是什么? 活动: 逐步累加各小组试验获得的“正面向上”的频数, 求频率,用Excel表格生成频率的折线图,观察、思考.
新课讲解
解:根据估计的概率可以知道,在 10 000 kg 柑橘中完 好柑橘的质量为 10 000×0.9=9 000(kg). 设每千克柑橘售价为 x 元,则 9 000x -2×10 000=5 000. 解得 x ≈ 2.8(元). 因此,出售柑橘时,每千克大约定价 2.8 元可获利 润 5 000元.
m n
(结果保留小数点后三位)
新课讲解
在我们的身边,有很多试验的所有可能性是不相 等且结果不是有限多个,这些事件的概率怎样确定呢?
在同样条件下,通过大量反复的试验,根据一个随机 事件发生的频率所逐渐稳定到的常数,可以估计这个事件 发生的概率.
新课讲解
一般地,在大量重复进行同一试验时,事 件A发生的频率总是接近于某个常数,在它附近 摆动,这时就把这个常数叫做事件A的概率,记 作P(A).
课堂练习
课本P147练习
课堂小结
1.
频率及频率的使用;
2. 概率的获取有理论计算和试验估 算.
“正面向上” 的次数 m
1 061 2 048 4 979 6 019 12 012
“正面向上”皮尔逊
0.518 0.506 9 0.497 9 0.501 6 0.500 5
新课讲解
分析: 可以发现,在重复抛掷一枚硬币时,“正面向 上”的频率在0.5的左右摆动.随着抛掷次数的增加, 一般地,频率就呈现出一定的稳定性:在0.5的左右 摆动的幅度会越来越小.由于“正面向上”的频率呈 现出上述稳定性,我们就用0.5这个常数表示“正面 向上”发生的可能性的大小.
P(A)=
m n
新课讲解
问题2 某水果公司以2元/千克的成本新进了10000千克 的柑橘,如果公司希望这些柑橘能够获利5000元,那 么在出售柑橘(去掉损坏的柑橘)时,每千克大约定 价为多少元比较合适?
新课讲解
销售人员首先从所有的柑橘中随机抽取若干柑橘, 进行“柑橘损坏率”统计,并把获得的数据记录在下表 中.请你帮忙完成此表. m
相关文档
最新文档